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Abstract—Wireless device classification techniques play a vital
role in supporting spectrum awareness applications, such as
spectrum access policy enforcement and unauthorized network
access monitoring. Recent works proposed to exploit distortions
in the transmitted signals caused by hardware impairments of
the devices to provide device identification and classification
using deep learning. As technology advances, the manufacturing
impairment variations among devices become extremely insignif-
icant, and hence the need for more sophisticated device classi-
fication techniques becomes inescapable. This paper proposes a
scalable, RF data-driven deep learning-based device classification
technique that efficiently classifies transmitting radios from a
large pool of bit-similar, high-end, high-performance devices
with same hardware, protocol, and/or software configurations.
Unlike existing device classification techniques, the novelty of
the proposed approach lies in exploiting both the in-band and
out-of-band distortion information, caused by inherent hardware
impairments, to enable scalable and accurate device classification.
Using convolutional neural network (CNN) model for classifica-
tion, our results show that the proposed technique substantially
outperforms conventional approaches in terms of both classi-
fication accuracy and learning times. In our experiments, the
testing accuracy obtained under the proposed technique is about
96% whereas that obtained under the conventional approach is
only about 50% when the devices exhibit very similar hardware
impairments. The proposed technique can be implemented with
minimum receiver design tuning, as radio technologies, such as
cognitive radios, can easily allow for both in-band and out-of-
band sampling.

Index Terms—Wireless device classification, device fingerprinting,
hardware impairments, deep learning.

I. INTRODUCTION

Deep learning based wireless device classification techniques
have emerged as potential solution approaches for supporting
spectrum access awareness applications, such as permitting
spectrum regulatory agencies to enforce their access policy
and allowing network administrators to monitor and control
unauthorized access to their wireless networks. More recently,
there has been a focus on exploiting distortions in the trans-
mitted signals that are caused by hardware impairments during
the manufacturing process to provide unique features and
signatures of the devices that can be leveraged to improve
the accuracy of device classification (e.g., [1], [2]). The train-
ing/testing accuracy of these deep learning based approaches
decreases, however, with the decrease in the impairment
variability among the wireless devices. Therefore, it is dif-
ficult for these deep learning approaches to achieve accurate
device classification when the devices exhibit very similar (i.e.,

indistinguishable) hardware distortions. For instance, high-
end, bit-similar software-defined radios (SDRs), such as USRP
X310 radios, are made with hardware components with low
impairment variability, making them not easy to identify using
existing deep learning based methods. Oracle [1], for example,
intentionally introduces artificial impairments in the signal to
increase the differentiability among devices while maintaining
a tolerable bit error rate (BER) for each device. DeepRa-
dioID [2], on the other hand, uses a carefully-optimized digital
finite response filter (FIR) at the transmitter’s side to slightly
modify the baseband signal to compensate for current channel
condition. These methods showed considerable improvement
and resiliency against high similarity among transmitters and
high channel condition variability. However, they suffer from
scalability issues, since the set of artificial impairment values
that can be added without exceeding the tolerable BER level is
limited. Additionally, it is not practical to integrate additional
hardware, such as FIR filters, into each transmitter’s circuit
that desires to interact with the network.

In this paper, we propose WideScan, a novel, deep learning-
based device classification technique that uses IQ samples
collected from the RF signals to efficiently identify and clas-
sify high-performing transmitters with the same, minimally-
distorted hardware components. WideScan (1) is scalable in
that it can distinguish among a large number of minimally-
distorted devices, regardless of their protocol/software con-
figurations, (2) is robust against signature cloning and mod-
ification, (3) requires no changes at the transmitters, and (4)
incurs minimal extra processing at the receiver side that can be
performed with existing hardware. The novelty of the proposed
technique lies in considering both the in-band and out-of-
band (OOB) spectrum emissions of the received signals to
capture hardware signatures and features, which are then used
to uniquely and efficiently discriminate among devices, even
when devices have same hardware with significantly reduced
distortions [3]. OOB emissions are those that predominate the
out-of-band domain, defined as the frequency range separated
from the assigned emission frequency by less than 250%
of the message bandwidth [4]. OOB emissions are mainly
caused by the modulation and the nonlinearity of the RF
transceiver front-end, which result in in-band distortions as
well as in an interference into adjacent channels. Despite the
endless efforts to reduce OOB emissions, there will always
be some inevitable amounts of OOB emissions, which can be
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Fig. 1: Typical transceiver with main RF impairments

tolerated by standards but our proposed technique also exploits
to provide unique device signatures. Our results show that
WideScan substantially outperforms existing approaches that
only consider the in-band distortion information by achieving
significantly higher performances in terms of both classifi-
cation accuracy and learning time, even when considering
minimally-distorted devices with very similar hardware im-
pairments. In our experiments, the testing accuracy obtained
under WideScan is about 96% whereas that obtained under
the conventional approach is only about 50% when the devices
exhibit very similar hardware impairments.

The rest of the paper is organized as follows. Section II
presents the key hardware impairments of a typical transmitter
and illustrates their impacts on out-of-band spectrum emis-
sions. Section III presents the proposed technique, and Section
IV presents the performance results and analysis. Finally,
Section V concludes the paper.

II. TRANSMITTER HARDWARE IMPAIRMENTS

Transmitter hardware impairments, acquired during manu-
facturing and assembly stages, cause transmitted RF signals
to deviate from their ideal values, thus establishing unique
signatures for their corresponding transmitter devices. Despite
the efforts aimed at designing hardware techniques that can
eliminate/limit these hardware impairments so that they fall
within tolerable ranges, these impairments cannot be elim-
inated completely. Therefore, since our focus in this paper
is on exploiting such impairments to enable efficient device
classification, we begin in this section by taking a closer look
at the sources, modeling, and impact of the most significant
transmitter-specific impairments, with more emphasis on the
OOB distortions that these impairments cause. Fig. 1, showing
these impairments, will be used throughout for illustration.

A. DC Offset

Direct-conversion transmitters like the one shown in Fig. 1
leverage the quadrature mixer configuration to implement the
upconversion of the baseband signal without the need for
filtering. It does so by separately (in parallel) upconverting, at
the carrier frequency w,, the two in-phase (I) baseband mod-
ulated, S7(t) = A(t) cos(¢(t)), and quadrature (Q) baseband
modulated, Sq(t) = A(t)sin(¢(t)), components with two
independent mixers fed by a local oscillator (LO) tone shifted
by 90° from one another. Each mixer outputs the product
of the baseband signal (I or Q component) and the carrier
signal coming from the LO port. For ideal mixers, the output

consists of two terms, one appearing at the summation and
one appearing at the difference of the two multiplied/mixed
frequencies. However, due to hardware impairments, real mix-
ers also produce some other unwanted emissions at different
frequencies. Of particular importance is an undesired spike,
known as carrier leakage spike, that appears at the center of the
desired signal and cannot be easily filtered out. This results in
distortion of the signal constellation, as well as in an increase
in the error vector magnitude.

There are two main sources of DC offsets: carrier leakage
and second-order nonlinearity. Carrier leakage stems from the
LO leakage due to the poor isolation between the LO and
RF output ports of the mixer. Thus, a strong LO signal can
leak through unintended paths toward the mixer output port
and appear at the middle of the desired signal spectrum [5].
For example, when mixing the in-phase baseband component
Sy(t), because of this LO leakage, the mixer output becomes
Stnp = S1(t) cos(wet) + v, cos(wet), where vy, cos(w,t) is
the unwanted carrier term resulting from LO’s leakage through
the mixer output port and appearing at the middle of the
spectrum, and v, is a hardware-specific quantity that varies
from a mixer to another.

The second source of DC offsets is the second-order non-
linearity. When passing single-tone signals through a system
with second-order nonlinearity, the output signal contains fre-
quency components at integers multiple of the input frequency.
To illustrate, let’s feed the in-phase baseband component to
the mixer while considering only the nonlinearity up to the
second-order and ignoring the LO leakage effect. The output of
the mixer in this case becomes St,,,.(t) = a1.51(t) cos(w.t)+
a25%(t) cos?(w,t), where oy and as are the coefficients
that model and capture the mixer ’s first- and second-order
nonlinearity terms. When replacing S;(t) by its expression
A(t) cos(¢(t)), the second-order nonlinearity term—the one
responsible for the DC component—can be written as

Oé2A2 (t) + (6%) A2 (t)
4 8

2 cos(2¢(t)) + cos(2(p(t) — wet)) + cos(2((t) +wet))] (1)

Note that the first term in Eq. (1) represents the DC compo-
nent, and it is affected by the nonlinearity distortion captured
by the parameter 5. Beside the relatively large carrier leakage
component at the center of the signal spectrum, the nonlin-
earity of the mixer also introduces other undesired harmonic
spurs in the out-of-band domain. The amplitude of the carrier
leakage spike and its harmonics depend on both the silicon-
level circuitry of the mixer and the second-order nonlinearity
distortion of the device. This can be clearly observed in Fig. 2,
which compares the amplitudes of the carrier leakage spikes
shown through the PSD of three simulated devices. Here,
device 1 mimics an ideal mixer (i.e., zero DC offset), while
device 2 and device 3 mimic real mixers with in-phase DC
offset values of 0.9 and 0.5 and quadrature offset values of
0.9 and 0.5, respectively. The figure clearly shows that while
the output of the ideal mixer (Device 1) has neither a carrier

o S%(t) cos? (wet) =

2 cos(2w,t)+
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Fig. 2: DC Offset Effect: Device 1 (ideal mixer, DC offset = 0); Device 2
(DC offset: 1=Q=0.9); Device 3 (DC offset: I=Q=0.5)
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leakage spike nor harmonic spurs, real mixers (Devices 2 and
3) cause DC offset spikes (carrier leakage and the harmonic
spurs) to appear not only in the center of the message spec-
trum, but also in its out-of-band surroundings. Also, observe
that for the two real devices, the amplitudes of the spikes
are quite different from one device to another even though
the difference between their DC offset values is insignificant.
Therefore, the carrier leakage and the harmonic spurs caused
by mixer impairments can potentially be leveraged for pro-
viding unique device signatures that can be used for device
classification. Furthermore, providing the classifier with out-
of-band information capturing the differences between the DC
offset harmonic spurs can increase device separability and
classification accuracy.

B. Phase Noise

In RF transmitter architectures, Local Oscillators (LOs) are
responsible for generating periodic oscillating signals that can
be used by the mixer to upconvert the baseband signal at
the carrier frequency. In an ideal LO, this periodic signal
can be represented as a pure sinusoidal waveform cos(w.t),
which allows to upconvert baseband signals at the carrier
frequency w, while preserving their original spectrum shape.
This is illustrated in Fig. 3a, which upconverts a baseband
tone to 100KHz using an ideal LO. In real LOs, the time
domain instability of the generated signals causes random
phase fluctuations that result in expansion or regrowth of
the signal spectrum in both sides of the carrier frequency.
The real LO oscillating signal can thus be represented as
cos(wet + 6(t)), where 6(t) is the phase deviation or noise
term. The impact of this noise, commonly known as phase
noise, is illustrated in Fig. 3b, which shows the upconversion
of the same tone—whose upconversion using ideal LO is
shown in Fig. 3a—using real LO signal.

A
3
S
S

A
S

@

2

&
S
&
S

B |

4
S

4
3
4
3

Power spectral density (dBm / Hz)
& &
3 g
Power spectral density (dBm / Hz)
3
Power spectral density (dBm / Hz)
&
3

&
S
»
3

©

2 2.1 22 23
Frequency (GHz) Frequency (GHz) Frequency (GHz)

(a) Device 1 (b) Device 2 (c) Device 3

Fig. 4: Phase Noise Effect: Device 1 (ideal LO); Device 2 (phase noise = -80
dBc/Hz); Device 3 (phase noise = -72 dBc/Hz); at IMHz frequency offset.
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The phase noise manifests in a random rotation in the receiver
signal constellation, thereby increasing the symbol detection
error [6] as well as the out-of-band noise level. To illustrate
this, consider mixing the in-phase baseband signal, S;(t),
with the real LO signal, cos(w.t + 6(t)); here 0(t) repre-
sents the phase noise. Now applying the Fourier transform
to the mixer output, i.e., the upconverted/modulated signal
S1np(t) = S1(t) cos(wet + 0(t)), yields

FIStasltI=g {51(f— )5 FIO" OIS (1) = Fle 1}
2
where f. = 2=, S;(f) = F[S:(t)], and F[.] and * are the
Fourier transform and convolution operators. From Eq. (2),
we observe that the phase noise 6(t) results in a bandwidth
expansion beyond the original signal’s spectrum around the
carrier frequency f., which comes from the convolution of
the spectrum of the bandpass (upconverted) signal, S f+f.),
and that of the phase noise, Fle 7%(*)].
Now since the spectrum expansion (or regrowth) depends on
the LO phase noise, different devices will exhibit different out-
of-band distortions. This can be clearly seen in Fig. 4, where
the PSD of three simulated devices, each with a different
phase noise value but all with the same frequency offset, are
displayed. Device 1 mimics an ideal LO (i.e., zero phase noise
value), while device 2 and device 3 mimic real LOs with phase
noise values of —80 and —72 dBc/Hz, respectively, at the
same frequency offset, IMHz. The figure clearly shows that
the out-of-band spectrum shapes for device 2 and device 3
are different from one another and from device 1. Therefore,
like DC offsets, a transmitter’s phase noise caused by its LO
impairments can potentially be leveraged for providing unique
device signature that can too be used for device classification.
Additionally, considering the out-of-band information makes
the spectra of devices more discernible and thus enhances the
performance of the classifier.

C. Power Amplifier (PA) Nonlinearity Distortion

The majority of circuit nonlinearity is attributed to PAs as
they provide the modulated RF signals with the required
radiation power to reach their destination. When a PA operates
in the linear region, its I/O characteristics is linear and an
acceptable performance is ensured. However, operating in
that region leads to more power consumption due to the
associated lower power efficiency. Since PAs dominate power
consumption, transmitters typically drive PAs to work near the



saturation region for higher power efficiency. Unfortunately,
power efficiency and linearity conflict one another in that
signals would suffer severely from the nonlinearity of the
PA when operating in the saturation region. Such nonlinear
distortions result in amplitude compression, as well as in high
adjacent channel power leakage as a result of the bandwidth
expansion, aka spectral regrowth. Although many methods
have been proposed to minimize the distortion, PAs still exhibit
some nonlinearity behaviors.
PA nonlinearity distortion is typically captured through the in-
stantaneous amplitude and phase output responses to changes
in the amplitude of the PA input signal, respectively known as
Amplitude-to-Amplitude (AM-AM) and Amplitude-to-Phase
(AM-PM) distortion curves. Using complex power series [7],
the nonlinear PA output modelling the AM-AM and AM-
PM distortions in response to the PA input signal Sgpp(t)
can be expressed as [8] Spa(t) = a1Srr(t) + a3Shp(t) +
a5S8%(t) + ..., where ds are the complex coefficients of the
model. As we can infer from the equation, only the odd terms
can be determined from single-tone complex compression
characteristics, but fortunately, the odd-order terms are the
most important as they produce intermodulation distortion in-
band and adjacent to the desired signal [9]. To illustrate the
impact of PA nonlinearity on out-of-band spectrum distortions,
suppose the PA input signal Spp(t) = A(t) cos(w.t + ¢(t))
and consider looking at the effect of the third-order nonlinear-
ity term only; i.e., the term

= A3
a3 S p(t) = asA°() [3 cos(wet + @(t)) + cos(Bwet + 34(t))]
Now provided that the out-of-band component at 3w, is
located sufficiently far away from the center frequency, w,,
and that the bandwidth of the original signal is much less
than w,, this out-of-band component can easily be filtered out
without causing any bandwidth regrowth around the original
message spectrum. However, the first term at w. can lead
to spectrum regrowth. For instance, in the case of constant-
envelope modulation schemes such as BPSK where the am-
plitude A(t) is constant, the spectrum of the modulated signal
in the vicinity of w, remains unchanged. This can be shown
in Fig. 5 where the spectrum of a BFSK modulated signal
has not changed after passing through a nonlinear PA. Note
that the shape of the spectrum is the same under both linear
and nonlinear PAs. However, for variable-envelope modulation
schemes such as 16QAM where the amplitude A(t) varies
over time, nonlinearity causes a spf{%tr%l regrowth of the
original signal spectrum in that the %(t) term generally
exhibits a broader spectrum than A(t) itself. For this case of
modulation, the severity of the spectral growth also depends on
the nonlinearity model parameter as. To illustrate, we show in
Fig. 6 the case of a I6QAM modulated signal passing through
a linear PA (Fig. 6a) and two nonlinear PAs (Figs. 6b and 6¢)
each under slightly different nonlinearity parameters. Two
key observations we make from these results. First, observe
that the nonlinearity of PA leads to an out-of-band spectrum
growth (or distortion). Second, even a slight difference in the
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nonlinearity impairments causes a considerable differences in
the amplitude of the frequency components in the out-of-band
spectrum, as can be observed from the indicated amplitudes
of the spikes. That is, different PA nonlinearity impairments
cause different out-of-band spectrum distortions. Therefore,
we argue that out-of-band spectrum distortion information due
to PA nonlinearity can potentially be exploited to increase
device distinguishability, thereby enhancing the accuracy and
scalability of device classification.

D. IQ Mismatch

As shown in Fig. 1, the I and Q baseband components, S;(t) =
A(t) cos(¢(t)) and Sg(t) = A(t) sin(¢(t)), are upconverted at
the carrier frequency w, with two mixers, and the two outputs
of the mixers are summed up, yielding, for real mixers, the
bandpass modulated signal

Srr(t) = A(t) cos(¢(t)) cos(wet) — A(t) sin(p(t)) sin(w,t)

However, DAC and mixer hardware impairments manifest in
amplitude mismatch, Aa, and phase deviation, Af, between
the I and Q paths. This IQ mismatch, aka IQ imbalance, leads
to imperfect image cancellation and results in residual energy
at the mirror frequency —w,, causing interference and SNR
degradation. Considering an amplitude and a phase imbalances
of Aa and A6 when upconverting the baseband signal, the
distorted bandpass signal can be expressed as:

Srr(t) = (1 — Aa)S1(t) cos(wet) — Sq(t) sin(w.t + Ab)

Now assuming an ideal power amplifier and an ideal direct-
conversion receiver, the distorted complex baseband signal
R(t) = Srp(t)e= 7% received at the receiver after downcon-
version can be expressed as (after some math manipulations
and clearing the terms appearing at twice the carrier frequency)

rfe) = (1 —QAa> i)+ (sin(Ae) —2j cos(A9)> Sol®)




Clearly, IQ imbalances cause in-band and out-of-band signal
distortions that can be extracted and used for increasing device
signature separability and device classification.

III. LEVERAGING OUT-OF-BAND DISTORTIONS FOR
ROBUST DEVICE CLASSIFICATION

A. WideScan: The Proposed Technique

Based on the aforementioned description of the relationship
between the out-of-band emissions and the hardware impair-
ments of RF front-end components, and the observations we
made from our simulations, we found that we are missing
valuable indicative information when we process and leverage
only the (in-band) message bandwidth for providing device
signatures. Therefore, we propose in this paper to consider
both the in-band and out-of-band spectra by oversampling the
captured signals at the receiver with an appropriate factor.
Without any further processing, the raw IQ values obtained
from the oversampled signals are then fed into a deep con-
volutional neural network (CNN) for device identification
and classification. It is worth mentioning that technology
advancements of transceiver designs nowadays (e.g., software
defined and cognitive radios) can easily allow for sampling the
captured signals in the out-of-band region, and therefore, the
proposed technique, WideScan, can be implemented without
requiring newly/sophisticated receiver designs.

B. CNN Classifier Architecture

We use a variation of the CNN architecture used in [10], where
each IQ input sequence is represented as a two-dimensional
(I and Q components) real-valued tensor of size 2x1024.
The input is fed to the first convolutional layer (Convl),
which consists of 16 filters, each of size 1x4. Each filter
learns 4-sample variations in time over the I or Q dimen-
sion separately to generate 16 distinct feature maps over the
complete input sample. Each ConvLayer is followed by a
Batch normalization layer, a Rectified Linear Unit (ReLU)
activation, and a maximum pooling (MaxPool) layer with
filters of size 1x2 and stride [1 2] to perform a pre-determined
non-linear transformation on each element of the convolved
output, except the last ConvLayer, which is followed by an
Average Pooling (AP) layer with a dimension 1x32. The output
of the AP layer is then provided as an input to the Fully
Connected (FC) layer, which has 5 neurons. Then, the output
of the FC is finally passed to a classifier layer. To overcome
overfitting, we set the dropout rate to 0.5 at the dense layers.
A softmax classifier is used in the last layer to output the
probabilities of each frame being fed to the CNN.

The weights of the network are trained using stochastic
gradient descent with momentum (SGDM) optimizer with an
initial learning rate of [ = 0.02 and a learning rate drop factor
of 0.1 with a learning rate drop period of 9. We minimize the
prediction error through back-propagation, using categorical
cross-entropy as a loss function computed on the classifier
output. We implement our CNN architecture in MATLAB
using the Deep Learning Toolbox running on a system with
intel Corei7 8th Gen CPU.
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Fig. 7: Training and validation accuracy

IV. PERFORMANCE EVALUATION AND ANALYSIS

Using MATLAB’s Communications toolbox, we designed a
simulation model of a typical full wireless communications
processing chain for 5 wireless devices. Different RF impair-
ments blocks have been used to introduce hardware impair-
ments to the ideal blocks of the simulation. The impairments
that have been considered in this experiment are the follow-
ing: IQ imbalance, DC offset, carrier frequency offset, phase
noise, and PA nonlinearity distortion. Each device represents
a transmitter that sends 16QAM modulated signals over an
AWGN channel. For each transmitter, we collect the raw 1Q
values of two different bandwidths, 2.075 - 2.125 GHz, which
represents the bandwidth of the message (in-band), and 1.9 -
2.3 GHz, which includes both in-band (message bandwidth)
and out-of-band domain. We generate 200,000 samples for
each of the five devices, divided into training, validation, and
test sets, to be used in the classification task.

Our simulation model emulates the RF front-end of 5 im-
paired wireless devices with all the relevant impairments to
assess the performance of the two methods: the proposed
method, WideScan, leveraging both in-band and out-of-
band spectrum distortion information, and the conventional
method using in-band distortion information only. We set the
impairments values very similar across the devices to resemble
the bit-similar radios and to make the identification task even
harder. Table I shows the RF impairment values used for this
experiment. The generated dataset is divided into three sets:
80% of data used for training, 10% of data used for validation,
and 10% of data used for testing.

Fig. 7 shows that the training accuracy (blue curve) of the
proposed WideScan outperforms the conventional classifica-
tion approach that uses in-band information only. These results
show that considering out-of-band distortion information in
addition to in-band information increases the classification
accuracy substantially. Our experiments show that the out-of-
band additional processing exploited in our proposed tech-
nique does not incur an increase in the computation time of



RF I1Q-amp(dB) | IQ-phase(deg) | I-DC offset | Q-DC offset AM-AM AM-PM Phase noise(dBc/Hz) | Freq offset(Hz)
Devl | 0.08 0.1 0.1 0.15 [2.178 1.12157] [4.0893 9.2040] | [-60, -80] [20, 200]

Dev2 | 0.1 0.09 0.109 0.1 [2.197 1.16157] [4.13 9.2540] [-60, -80] [20, 200]

Dev3 | 0.09 0.09 0.1 0.1 [2.16 1.10157] [4.0933 9.2840] | [-59.9, -80] [20, 200.9]
Dev4 | 0.109 0.108 0.1 0.1 [2.17 1.12157] [4.113 9.2040] [-60, -80.1] [20, 200]

Dev5 | 0.1 0.099 0.099 0.1 [2.1587 1.15157] [4.133 9.2040] [ -60, -80 ] [20.1, 200 ]

TABLE I: RF impairments: IQ-amp and IQ-phase are amplitude mismatch and phase deviation. I-DC and Q-DC are the in-phase and
quadrature DC offsets. AM-AM and AM-PM distortions are represented by the alpha and beta parameters of Saleh model [11]. LO phase
noise is introduced by a filtered Gaussian noise using a spectral mask specified by noise level and the frequency offset vectors.

the method; the running times of the reported results are 97.38
and 96.35 minutes for the in-band only and the proposed
technique, respectively. Also, from the validation accuracy (the
black dotted line in the figure), we can infer that our technique
does not suffer from overfitting.

In Fig. 8, we show the confusion matrices of classification
accuracy under each of the two methods where di indi-
cates device ¢. The figure shows that the proposed method,
WideScan, substantially surpasses the in-band only method
in terms of classification accuracy. The testing accuracy ob-
tained under the proposed method across the five tested devices
is 96.2% whereas that obtained under the in-band only method
is only 48.6%. It is worth mentioning that similar results are
also obtained when considering the 8-PSK modulation scheme
as opposed to the 16QAM scheme.

The main reason for why WideScan achieves such a high
accuracy is because it leverages, in addition to the in-band
distortion information already exploited by prior methods, out-
of-band distortion information caused by the different radio
hardware components, which, as explained in the previous sec-
tions, provide unique device signatures that lead to substantial
increase in device separability.

Another point that is also worth mentioning is that our exper-
iments indicated that this accuracy gab between our proposed
technique and the prior in-band only method is inversely
proportional to the hardware impairments variability among
devices, meaning that both techniques enjoy high classification
accuracy when the devices exhibit relatively high impair-
ment values. However, we strongly argue that as technol-
ogy advancements continue to reduce such impairments, the
variability among these impairments across different devices
will continue to shrink, making the reliance on in-band only
information for device classification inefficient. Our proposed
technique, leveraging out-of-band distortion in addition to in-
band information, becomes in this case increasingly com-
pelling and suitable for providing robust and scalable device
separability performance.

V. CONCLUSION

We proposed WideScan, a scalable, deep learning based
technique that exploits both the in-band and out-of-band
signal information to enable efficient device classification. We
presented the models and the impact of the main hardware
RF transmitter impairments in considerable depth and insight,
with more emphasis on the out-of-band signal distortions and
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Fig. 8: Confusion matrices: di indicates device ¢

their potentials and contributions to providing unique device
signatures and features that can increase devices’ separability.
Experimental results showed that our proposed technique
increases the device classification accuracy significantly, espe-
cially in realistic scenarios where the variability of hardware
impairment values among the different devices is insignificant,
which is the case of high-end, high-performance radios.
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