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Abstract—Wireless device classification techniques play a vital
role in supporting spectrum awareness applications, such as
spectrum access policy enforcement and unauthorized network
access monitoring. Recent works proposed to exploit distortions
in the transmitted signals caused by hardware impairments of
the devices to provide device identification and classification
using deep learning. As technology advances, the manufacturing
impairment variations among devices become extremely insignif-
icant, and hence the need for more sophisticated device classi-
fication techniques becomes inescapable. This paper proposes a
scalable, RF data-driven deep learning-based device classification
technique that efficiently classifies transmitting radios from a
large pool of bit-similar, high-end, high-performance devices
with same hardware, protocol, and/or software configurations.
Unlike existing device classification techniques, the novelty of
the proposed approach lies in exploiting both the in-band and
out-of-band distortion information, caused by inherent hardware
impairments, to enable scalable and accurate device classification.
Using convolutional neural network (CNN) model for classifica-
tion, our results show that the proposed technique substantially
outperforms conventional approaches in terms of both classi-
fication accuracy and learning times. In our experiments, the
testing accuracy obtained under the proposed technique is about
96% whereas that obtained under the conventional approach is
only about 50% when the devices exhibit very similar hardware
impairments. The proposed technique can be implemented with
minimum receiver design tuning, as radio technologies, such as
cognitive radios, can easily allow for both in-band and out-of-
band sampling.
Index Terms—Wireless device classification, device fingerprinting,
hardware impairments, deep learning.

I. INTRODUCTION

Deep learning based wireless device classification techniques

have emerged as potential solution approaches for supporting

spectrum access awareness applications, such as permitting

spectrum regulatory agencies to enforce their access policy

and allowing network administrators to monitor and control

unauthorized access to their wireless networks. More recently,

there has been a focus on exploiting distortions in the trans-

mitted signals that are caused by hardware impairments during

the manufacturing process to provide unique features and

signatures of the devices that can be leveraged to improve

the accuracy of device classification (e.g., [1], [2]). The train-

ing/testing accuracy of these deep learning based approaches

decreases, however, with the decrease in the impairment

variability among the wireless devices. Therefore, it is dif-

ficult for these deep learning approaches to achieve accurate

device classification when the devices exhibit very similar (i.e.,

indistinguishable) hardware distortions. For instance, high-

end, bit-similar software-defined radios (SDRs), such as USRP

X310 radios, are made with hardware components with low

impairment variability, making them not easy to identify using

existing deep learning based methods. Oracle [1], for example,

intentionally introduces artificial impairments in the signal to

increase the differentiability among devices while maintaining

a tolerable bit error rate (BER) for each device. DeepRa-

dioID [2], on the other hand, uses a carefully-optimized digital

finite response filter (FIR) at the transmitter’s side to slightly

modify the baseband signal to compensate for current channel

condition. These methods showed considerable improvement

and resiliency against high similarity among transmitters and

high channel condition variability. However, they suffer from

scalability issues, since the set of artificial impairment values

that can be added without exceeding the tolerable BER level is

limited. Additionally, it is not practical to integrate additional

hardware, such as FIR filters, into each transmitter’s circuit

that desires to interact with the network.

In this paper, we propose WideScan, a novel, deep learning-

based device classification technique that uses IQ samples

collected from the RF signals to efficiently identify and clas-

sify high-performing transmitters with the same, minimally-

distorted hardware components. WideScan (1) is scalable in

that it can distinguish among a large number of minimally-

distorted devices, regardless of their protocol/software con-

figurations, (2) is robust against signature cloning and mod-

ification, (3) requires no changes at the transmitters, and (4)

incurs minimal extra processing at the receiver side that can be

performed with existing hardware. The novelty of the proposed

technique lies in considering both the in-band and out-of-

band (OOB) spectrum emissions of the received signals to

capture hardware signatures and features, which are then used

to uniquely and efficiently discriminate among devices, even

when devices have same hardware with significantly reduced

distortions [3]. OOB emissions are those that predominate the

out-of-band domain, defined as the frequency range separated

from the assigned emission frequency by less than 250%

of the message bandwidth [4]. OOB emissions are mainly

caused by the modulation and the nonlinearity of the RF

transceiver front-end, which result in in-band distortions as

well as in an interference into adjacent channels. Despite the

endless efforts to reduce OOB emissions, there will always

be some inevitable amounts of OOB emissions, which can be
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Fig. 1: Typical transceiver with main RF impairments

tolerated by standards but our proposed technique also exploits

to provide unique device signatures. Our results show that

WideScan substantially outperforms existing approaches that

only consider the in-band distortion information by achieving

significantly higher performances in terms of both classifi-

cation accuracy and learning time, even when considering

minimally-distorted devices with very similar hardware im-

pairments. In our experiments, the testing accuracy obtained

under WideScan is about 96% whereas that obtained under

the conventional approach is only about 50% when the devices

exhibit very similar hardware impairments.

The rest of the paper is organized as follows. Section II

presents the key hardware impairments of a typical transmitter

and illustrates their impacts on out-of-band spectrum emis-

sions. Section III presents the proposed technique, and Section

IV presents the performance results and analysis. Finally,

Section V concludes the paper.

II. TRANSMITTER HARDWARE IMPAIRMENTS

Transmitter hardware impairments, acquired during manu-

facturing and assembly stages, cause transmitted RF signals

to deviate from their ideal values, thus establishing unique

signatures for their corresponding transmitter devices. Despite

the efforts aimed at designing hardware techniques that can

eliminate/limit these hardware impairments so that they fall

within tolerable ranges, these impairments cannot be elim-

inated completely. Therefore, since our focus in this paper

is on exploiting such impairments to enable efficient device

classification, we begin in this section by taking a closer look

at the sources, modeling, and impact of the most significant

transmitter-specific impairments, with more emphasis on the

OOB distortions that these impairments cause. Fig. 1, showing

these impairments, will be used throughout for illustration.

A. DC Offset

Direct-conversion transmitters like the one shown in Fig. 1

leverage the quadrature mixer configuration to implement the

upconversion of the baseband signal without the need for

filtering. It does so by separately (in parallel) upconverting, at

the carrier frequency wc, the two in-phase (I) baseband mod-

ulated, SI(t) = A(t) cos(φ(t)), and quadrature (Q) baseband

modulated, SQ(t) = A(t) sin(φ(t)), components with two

independent mixers fed by a local oscillator (LO) tone shifted

by 90° from one another. Each mixer outputs the product

of the baseband signal (I or Q component) and the carrier

signal coming from the LO port. For ideal mixers, the output

consists of two terms, one appearing at the summation and

one appearing at the difference of the two multiplied/mixed

frequencies. However, due to hardware impairments, real mix-

ers also produce some other unwanted emissions at different

frequencies. Of particular importance is an undesired spike,

known as carrier leakage spike, that appears at the center of the

desired signal and cannot be easily filtered out. This results in

distortion of the signal constellation, as well as in an increase

in the error vector magnitude.

There are two main sources of DC offsets: carrier leakage

and second-order nonlinearity. Carrier leakage stems from the

LO leakage due to the poor isolation between the LO and

RF output ports of the mixer. Thus, a strong LO signal can

leak through unintended paths toward the mixer output port

and appear at the middle of the desired signal spectrum [5].

For example, when mixing the in-phase baseband component

SI(t), because of this LO leakage, the mixer output becomes

SIRF
= SI(t) cos(wct) + vlo cos(wct), where vlo cos(wct) is

the unwanted carrier term resulting from LO’s leakage through

the mixer output port and appearing at the middle of the

spectrum, and vlo is a hardware-specific quantity that varies

from a mixer to another.

The second source of DC offsets is the second-order non-

linearity. When passing single-tone signals through a system

with second-order nonlinearity, the output signal contains fre-

quency components at integers multiple of the input frequency.

To illustrate, let’s feed the in-phase baseband component to

the mixer while considering only the nonlinearity up to the

second-order and ignoring the LO leakage effect. The output of

the mixer in this case becomes SIRF
(t) = α1SI(t) cos(wct)+

α2S
2
I (t) cos

2(wct), where α1 and α2 are the coefficients

that model and capture the mixer ’s first- and second-order

nonlinearity terms. When replacing SI(t) by its expression

A(t) cos(φ(t)), the second-order nonlinearity term—the one

responsible for the DC component—can be written as

α2S
2
I (t) cos

2(wct) =
α2A

2(t)

4
+

α2A
2(t)

8

[︁

2 cos(2wct)+

2 cos(2φ(t))+ cos(2(φ(t)−wct))+ cos(2(φ(t)+wct))
]︁

(1)

Note that the first term in Eq. (1) represents the DC compo-

nent, and it is affected by the nonlinearity distortion captured

by the parameter α2. Beside the relatively large carrier leakage

component at the center of the signal spectrum, the nonlin-

earity of the mixer also introduces other undesired harmonic

spurs in the out-of-band domain. The amplitude of the carrier

leakage spike and its harmonics depend on both the silicon-

level circuitry of the mixer and the second-order nonlinearity

distortion of the device. This can be clearly observed in Fig. 2,

which compares the amplitudes of the carrier leakage spikes

shown through the PSD of three simulated devices. Here,

device 1 mimics an ideal mixer (i.e., zero DC offset), while

device 2 and device 3 mimic real mixers with in-phase DC

offset values of 0.9 and 0.5 and quadrature offset values of

0.9 and 0.5, respectively. The figure clearly shows that while

the output of the ideal mixer (Device 1) has neither a carrier
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(c) Device 3

Fig. 2: DC Offset Effect: Device 1 (ideal mixer, DC offset = 0); Device 2

(DC offset: I=Q=0.9); Device 3 (DC offset: I=Q=0.5)

(a) Ideal Local Oscillator. (b) Real Local Oscillator.

Fig. 3: Phase Noise Effect

leakage spike nor harmonic spurs, real mixers (Devices 2 and

3) cause DC offset spikes (carrier leakage and the harmonic

spurs) to appear not only in the center of the message spec-

trum, but also in its out-of-band surroundings. Also, observe

that for the two real devices, the amplitudes of the spikes

are quite different from one device to another even though

the difference between their DC offset values is insignificant.

Therefore, the carrier leakage and the harmonic spurs caused

by mixer impairments can potentially be leveraged for pro-

viding unique device signatures that can be used for device

classification. Furthermore, providing the classifier with out-

of-band information capturing the differences between the DC

offset harmonic spurs can increase device separability and

classification accuracy.

B. Phase Noise

In RF transmitter architectures, Local Oscillators (LOs) are

responsible for generating periodic oscillating signals that can

be used by the mixer to upconvert the baseband signal at

the carrier frequency. In an ideal LO, this periodic signal

can be represented as a pure sinusoidal waveform cos(wct),
which allows to upconvert baseband signals at the carrier

frequency wc while preserving their original spectrum shape.

This is illustrated in Fig. 3a, which upconverts a baseband

tone to 100KHz using an ideal LO. In real LOs, the time

domain instability of the generated signals causes random

phase fluctuations that result in expansion or regrowth of

the signal spectrum in both sides of the carrier frequency.

The real LO oscillating signal can thus be represented as

cos(wct + θ(t)), where θ(t) is the phase deviation or noise

term. The impact of this noise, commonly known as phase

noise, is illustrated in Fig. 3b, which shows the upconversion

of the same tone—whose upconversion using ideal LO is

shown in Fig. 3a—using real LO signal.
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(c) Device 3

Fig. 4: Phase Noise Effect: Device 1 (ideal LO); Device 2 (phase noise = -80
dBc/Hz); Device 3 (phase noise = -72 dBc/Hz); at 1MHz frequency offset.

The phase noise manifests in a random rotation in the receiver

signal constellation, thereby increasing the symbol detection

error [6] as well as the out-of-band noise level. To illustrate

this, consider mixing the in-phase baseband signal, SI(t),
with the real LO signal, cos(wct + θ(t)); here θ(t) repre-

sents the phase noise. Now applying the Fourier transform

to the mixer output, i.e., the upconverted/modulated signal

SIRF
(t) = SI(t) cos(wct+ θ(t)), yields

F [SIRF
(t)]=

1

2

{︁

S̄I(f−fc)∗F [ejθ(t)]+S̄I(f+fc)∗F [e−jθ(t)]
}︁

(2)

where fc = wc

2π , S̄I(f) = F [SI(t)], and F [.] and * are the

Fourier transform and convolution operators. From Eq. (2),

we observe that the phase noise θ(t) results in a bandwidth

expansion beyond the original signal’s spectrum around the

carrier frequency fc, which comes from the convolution of

the spectrum of the bandpass (upconverted) signal, S̄I(f+fc),
and that of the phase noise, F [e−jθ(t)].
Now since the spectrum expansion (or regrowth) depends on

the LO phase noise, different devices will exhibit different out-

of-band distortions. This can be clearly seen in Fig. 4, where

the PSD of three simulated devices, each with a different

phase noise value but all with the same frequency offset, are

displayed. Device 1 mimics an ideal LO (i.e., zero phase noise

value), while device 2 and device 3 mimic real LOs with phase

noise values of −80 and −72 dBc/Hz, respectively, at the

same frequency offset, 1MHz. The figure clearly shows that

the out-of-band spectrum shapes for device 2 and device 3
are different from one another and from device 1. Therefore,

like DC offsets, a transmitter’s phase noise caused by its LO

impairments can potentially be leveraged for providing unique

device signature that can too be used for device classification.

Additionally, considering the out-of-band information makes

the spectra of devices more discernible and thus enhances the

performance of the classifier.

C. Power Amplifier (PA) Nonlinearity Distortion

The majority of circuit nonlinearity is attributed to PAs as

they provide the modulated RF signals with the required

radiation power to reach their destination. When a PA operates

in the linear region, its I/O characteristics is linear and an

acceptable performance is ensured. However, operating in

that region leads to more power consumption due to the

associated lower power efficiency. Since PAs dominate power

consumption, transmitters typically drive PAs to work near the



saturation region for higher power efficiency. Unfortunately,

power efficiency and linearity conflict one another in that

signals would suffer severely from the nonlinearity of the

PA when operating in the saturation region. Such nonlinear

distortions result in amplitude compression, as well as in high

adjacent channel power leakage as a result of the bandwidth

expansion, aka spectral regrowth. Although many methods

have been proposed to minimize the distortion, PAs still exhibit

some nonlinearity behaviors.

PA nonlinearity distortion is typically captured through the in-

stantaneous amplitude and phase output responses to changes

in the amplitude of the PA input signal, respectively known as

Amplitude-to-Amplitude (AM-AM) and Amplitude-to-Phase

(AM-PM) distortion curves. Using complex power series [7],

the nonlinear PA output modelling the AM-AM and AM-

PM distortions in response to the PA input signal SRF (t)
can be expressed as [8] SPA(t) = α̃1SRF (t) + α̃3S

3
RF (t) +

α̃5S
5
RF (t)+ ..., where α̃is are the complex coefficients of the

model. As we can infer from the equation, only the odd terms

can be determined from single-tone complex compression

characteristics, but fortunately, the odd-order terms are the

most important as they produce intermodulation distortion in-

band and adjacent to the desired signal [9]. To illustrate the

impact of PA nonlinearity on out-of-band spectrum distortions,

suppose the PA input signal SRF (t) = A(t) cos(wct + φ(t))
and consider looking at the effect of the third-order nonlinear-

ity term only; i.e., the term

α̃3S
3
RF(t)=

α̃3A
3(t)

4

[︁

3 cos(wct+ φ(t)) + cos(3wct+3φ(t))
]︁

Now provided that the out-of-band component at 3wc is

located sufficiently far away from the center frequency, wc,

and that the bandwidth of the original signal is much less

than wc, this out-of-band component can easily be filtered out

without causing any bandwidth regrowth around the original

message spectrum. However, the first term at wc can lead

to spectrum regrowth. For instance, in the case of constant-

envelope modulation schemes such as BPSK where the am-

plitude A(t) is constant, the spectrum of the modulated signal

in the vicinity of wc remains unchanged. This can be shown

in Fig. 5 where the spectrum of a BFSK modulated signal

has not changed after passing through a nonlinear PA. Note

that the shape of the spectrum is the same under both linear

and nonlinear PAs. However, for variable-envelope modulation

schemes such as 16QAM where the amplitude A(t) varies

over time, nonlinearity causes a spectral regrowth of the

original signal spectrum in that the
α̃3

3
A3(t)
4 term generally

exhibits a broader spectrum than A(t) itself. For this case of

modulation, the severity of the spectral growth also depends on

the nonlinearity model parameter α̃3. To illustrate, we show in

Fig. 6 the case of a 16QAM modulated signal passing through

a linear PA (Fig. 6a) and two nonlinear PAs (Figs. 6b and 6c)

each under slightly different nonlinearity parameters. Two

key observations we make from these results. First, observe

that the nonlinearity of PA leads to an out-of-band spectrum

growth (or distortion). Second, even a slight difference in the
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(a) Linear PA
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(b) Nonlinear PA

Fig. 5: Nonlinearity effect under BFSK modulation

1.9 2 2.1 2.2 2.3

Frequency (GHz)

-80

-70

-60

-50

-40

P
o

w
er

 s
p

ec
tr

al
 d

en
si

ty
 (

d
B

m
 / 

H
z)

Out-of-BandOut-of-Band

In-Band

(a) Linear PA

1.9 2 2.1 2.2 2.3

Frequency (GHz)

-80

-70

-60

-50

-40

P
o

w
e
r 

s
p

e
c
tr

a
l 
d

e
n

s
it

y
 (

d
B

m
 /
 H

z)
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(c) Nonlinear PA 2

Fig. 6: Nonlinearity effect under 16QAM modulation

nonlinearity impairments causes a considerable differences in

the amplitude of the frequency components in the out-of-band

spectrum, as can be observed from the indicated amplitudes

of the spikes. That is, different PA nonlinearity impairments

cause different out-of-band spectrum distortions. Therefore,

we argue that out-of-band spectrum distortion information due

to PA nonlinearity can potentially be exploited to increase

device distinguishability, thereby enhancing the accuracy and

scalability of device classification.

D. IQ Mismatch

As shown in Fig. 1, the I and Q baseband components, SI(t) =
A(t) cos(φ(t)) and SQ(t) = A(t) sin(φ(t)), are upconverted at

the carrier frequency wc with two mixers, and the two outputs

of the mixers are summed up, yielding, for real mixers, the

bandpass modulated signal

SRF (t) = A(t) cos(φ(t)) cos(wct)−A(t) sin(φ(t)) sin(wct)

However, DAC and mixer hardware impairments manifest in

amplitude mismatch, ∆α, and phase deviation, ∆θ, between

the I and Q paths. This IQ mismatch, aka IQ imbalance, leads

to imperfect image cancellation and results in residual energy

at the mirror frequency −wc, causing interference and SNR

degradation. Considering an amplitude and a phase imbalances

of ∆α and ∆θ when upconverting the baseband signal, the

distorted bandpass signal can be expressed as:

SRF (t) = (1−∆α)SI(t) cos(wct)− SQ(t) sin(wct+∆θ)

Now assuming an ideal power amplifier and an ideal direct-

conversion receiver, the distorted complex baseband signal

R̃(t) = SRF (t)e
−jwct received at the receiver after downcon-

version can be expressed as (after some math manipulations

and clearing the terms appearing at twice the carrier frequency)

R̃(t)=

(︃

1−∆α

2

)︃

SI(t)+j

(︃

sin(∆θ)− j cos(∆θ)

2

)︃

SQ(t)



Clearly, IQ imbalances cause in-band and out-of-band signal

distortions that can be extracted and used for increasing device

signature separability and device classification.

III. LEVERAGING OUT-OF-BAND DISTORTIONS FOR

ROBUST DEVICE CLASSIFICATION

A. WideScan: The Proposed Technique

Based on the aforementioned description of the relationship

between the out-of-band emissions and the hardware impair-

ments of RF front-end components, and the observations we

made from our simulations, we found that we are missing

valuable indicative information when we process and leverage

only the (in-band) message bandwidth for providing device

signatures. Therefore, we propose in this paper to consider

both the in-band and out-of-band spectra by oversampling the

captured signals at the receiver with an appropriate factor.

Without any further processing, the raw IQ values obtained

from the oversampled signals are then fed into a deep con-

volutional neural network (CNN) for device identification

and classification. It is worth mentioning that technology

advancements of transceiver designs nowadays (e.g., software

defined and cognitive radios) can easily allow for sampling the

captured signals in the out-of-band region, and therefore, the

proposed technique, WideScan, can be implemented without

requiring newly/sophisticated receiver designs.

B. CNN Classifier Architecture

We use a variation of the CNN architecture used in [10], where

each IQ input sequence is represented as a two-dimensional

(I and Q components) real-valued tensor of size 2×1024.

The input is fed to the first convolutional layer (Conv1),

which consists of 16 filters, each of size 1x4. Each filter

learns 4-sample variations in time over the I or Q dimen-

sion separately to generate 16 distinct feature maps over the

complete input sample. Each ConvLayer is followed by a

Batch normalization layer, a Rectified Linear Unit (ReLU)

activation, and a maximum pooling (MaxPool) layer with

filters of size 1x2 and stride [1 2] to perform a pre-determined

non-linear transformation on each element of the convolved

output, except the last ConvLayer, which is followed by an

Average Pooling (AP) layer with a dimension 1x32. The output

of the AP layer is then provided as an input to the Fully

Connected (FC) layer, which has 5 neurons. Then, the output

of the FC is finally passed to a classifier layer. To overcome

overfitting, we set the dropout rate to 0.5 at the dense layers.

A softmax classifier is used in the last layer to output the

probabilities of each frame being fed to the CNN.

The weights of the network are trained using stochastic

gradient descent with momentum (SGDM) optimizer with an

initial learning rate of l = 0.02 and a learning rate drop factor

of 0.1 with a learning rate drop period of 9. We minimize the

prediction error through back-propagation, using categorical

cross-entropy as a loss function computed on the classifier

output. We implement our CNN architecture in MATLAB

using the Deep Learning Toolbox running on a system with

intel Corei7 8th Gen CPU.

(a) Our proposed method: WideScan.

(b) Conventional method: In-band only.

Fig. 7: Training and validation accuracy

IV. PERFORMANCE EVALUATION AND ANALYSIS

Using MATLAB’s Communications toolbox, we designed a

simulation model of a typical full wireless communications

processing chain for 5 wireless devices. Different RF impair-

ments blocks have been used to introduce hardware impair-

ments to the ideal blocks of the simulation. The impairments

that have been considered in this experiment are the follow-

ing: IQ imbalance, DC offset, carrier frequency offset, phase

noise, and PA nonlinearity distortion. Each device represents

a transmitter that sends 16QAM modulated signals over an

AWGN channel. For each transmitter, we collect the raw IQ

values of two different bandwidths, 2.075 - 2.125 GHz, which

represents the bandwidth of the message (in-band), and 1.9 -

2.3 GHz, which includes both in-band (message bandwidth)

and out-of-band domain. We generate 200, 000 samples for

each of the five devices, divided into training, validation, and

test sets, to be used in the classification task.

Our simulation model emulates the RF front-end of 5 im-

paired wireless devices with all the relevant impairments to

assess the performance of the two methods: the proposed

method, WideScan, leveraging both in-band and out-of-

band spectrum distortion information, and the conventional

method using in-band distortion information only. We set the

impairments values very similar across the devices to resemble

the bit-similar radios and to make the identification task even

harder. Table I shows the RF impairment values used for this

experiment. The generated dataset is divided into three sets:

80% of data used for training, 10% of data used for validation,

and 10% of data used for testing.

Fig. 7 shows that the training accuracy (blue curve) of the

proposed WideScan outperforms the conventional classifica-

tion approach that uses in-band information only. These results

show that considering out-of-band distortion information in

addition to in-band information increases the classification

accuracy substantially. Our experiments show that the out-of-

band additional processing exploited in our proposed tech-

nique does not incur an increase in the computation time of



RF IQ-amp(dB) IQ-phase(deg) I-DC offset Q-DC offset AM-AM AM-PM Phase noise(dBc/Hz) Freq offset(Hz)

Dev1 0.08 0.1 0.1 0.15 [2.178 1.12157] [4.0893 9.2040] [-60, -80] [20, 200]

Dev2 0.1 0.09 0.109 0.1 [2.197 1.16157] [4.13 9.2540] [-60, -80] [20, 200]

Dev3 0.09 0.09 0.1 0.1 [2.16 1.10157] [4.0933 9.2840] [-59.9, -80] [20, 200.9]

Dev4 0.109 0.108 0.1 0.1 [2.17 1.12157] [4.113 9.2040] [-60, -80.1] [20, 200]

Dev5 0.1 0.099 0.099 0.1 [2.1587 1.15157] [4.133 9.2040] [ -60, -80 ] [20.1, 200 ]

TABLE I: RF impairments: IQ-amp and IQ-phase are amplitude mismatch and phase deviation. I-DC and Q-DC are the in-phase and
quadrature DC offsets. AM-AM and AM-PM distortions are represented by the alpha and beta parameters of Saleh model [11]. LO phase
noise is introduced by a filtered Gaussian noise using a spectral mask specified by noise level and the frequency offset vectors.

the method; the running times of the reported results are 97.38
and 96.35 minutes for the in-band only and the proposed

technique, respectively. Also, from the validation accuracy (the

black dotted line in the figure), we can infer that our technique

does not suffer from overfitting.

In Fig. 8, we show the confusion matrices of classification

accuracy under each of the two methods where di indi-

cates device i. The figure shows that the proposed method,

WideScan, substantially surpasses the in-band only method

in terms of classification accuracy. The testing accuracy ob-

tained under the proposed method across the five tested devices

is 96.2% whereas that obtained under the in-band only method

is only 48.6%. It is worth mentioning that similar results are

also obtained when considering the 8-PSK modulation scheme

as opposed to the 16QAM scheme.

The main reason for why WideScan achieves such a high

accuracy is because it leverages, in addition to the in-band

distortion information already exploited by prior methods, out-

of-band distortion information caused by the different radio

hardware components, which, as explained in the previous sec-

tions, provide unique device signatures that lead to substantial

increase in device separability.

Another point that is also worth mentioning is that our exper-

iments indicated that this accuracy gab between our proposed

technique and the prior in-band only method is inversely

proportional to the hardware impairments variability among

devices, meaning that both techniques enjoy high classification

accuracy when the devices exhibit relatively high impair-

ment values. However, we strongly argue that as technol-

ogy advancements continue to reduce such impairments, the

variability among these impairments across different devices

will continue to shrink, making the reliance on in-band only

information for device classification inefficient. Our proposed

technique, leveraging out-of-band distortion in addition to in-

band information, becomes in this case increasingly com-

pelling and suitable for providing robust and scalable device

separability performance.

V. CONCLUSION

We proposed WideScan, a scalable, deep learning based

technique that exploits both the in-band and out-of-band

signal information to enable efficient device classification. We

presented the models and the impact of the main hardware

RF transmitter impairments in considerable depth and insight,

with more emphasis on the out-of-band signal distortions and
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Fig. 8: Confusion matrices: di indicates device i

their potentials and contributions to providing unique device

signatures and features that can increase devices’ separability.

Experimental results showed that our proposed technique

increases the device classification accuracy significantly, espe-

cially in realistic scenarios where the variability of hardware

impairment values among the different devices is insignificant,

which is the case of high-end, high-performance radios.
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