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Abstract—Most prior works on deep learning-based wireless
device classif cation using radio frequency (RF) data apply
off-the-shelf deep neural network (DNN) models, which were
matured mainly for domains like vision and language. How-
ever, wireless RF data possesses unique characteristics that
differentiate it from these other domains. For instance, RF
data encompasses intermingled time and frequency features
that are dictated by the underlying hardware and protocol
conf gurations. In addition, wireless RF communication signals
exhibit cyclostationarity due to repeated patterns (PHY pilots,
frame pref xes, etc.) that these signals inherently contain. In this
paper, we begin by explaining and showing the unsuitability as
well as limitations of existing DNN feature design approaches
currently proposed to be used for wireless device classif cation.
We then present novel feature design approaches that exploit
the distinct structures of the RF communication signals and
the spectrum emissions caused by transmitter hardware im-
pairments to custom-make DNN models suitable for classifying
wireless devices using RF signal data. Our proposed DNN
feature designs substantially improve classif cation robustness
in terms of scalability, accuracy, signature anti-cloning, and
insensitivity to environment perturbations. We end the paper
by presenting other feature design strategies that have great
potentials for providing further performance improvements of
the DNN-based wireless device classif cation, and discuss the
open research challenges related to these proposed strategies.

I. INTRODUCTION

This paper is concerned with machine learning-based
techniques that exploit radio frequency (RF) spectrum in-
formation to classify wireless devices. Although the study
of the wireless classif cation problem already dates back to
a few decades ago [1], much has changed over time. These
changes include the methods and tools being used, the tech-
nological capabilities becoming available, and the increas-
ing relevance and importance of the wireless classif cation
problem due to several, newly emerging wireless applica-
tions such as spectrum access enforcement, dynamic spec-
trum sharing, and network access anomaly detection. More
specif cally, the solutions are recently being shifted from
conventional, model-based machine learning approaches us-
ing handcrafted features (e.g., Bayesian networks) to data-
driven, function-based machine learning approaches capa-
ble of representation learning (e.g., deep neural networks
(DNNs)). The application scenarios are also being shifted
from detecting and identifying within a predefned small
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class space (e.g., few modulation types) to excessively large
spaces, resulting from the growing diversity and scale of
wireless devices due, for instance, to the large numbers
of emerging IoT devices with their diverse hardware and
protocol conf gurations. This shift is motivated and enabled
primarily by recent advances in computing technology that
are making data-driven approaches feasible in ways that
were previously impossible.

Most previous works on wireless device classif cation that
are RF data driven apply off-the-shelf deep neural network
(DNN) models, which were primarily developed for the
vision and language domains. However, wireless RF data
has characteristics and structures that are different from
those of the vision and language domains. For instance, RF
data embeds intermingled time and frequency features that
are impacted by the conf gurations and information of the
underlying hardware and protocol implementations. Another
key difference is that wireless RF communication signals
exhibit cyclostationarity because of the repeated patterns
(e.g., PHY pilots, frame prefxes, etc.) that these signals
inherently contain. In recent years, research has also been
focusing on exploiting signal distortions, caused by hard-
ware impairments during manufacturing, to extract device
features that can be used to increase classif cation accuracy.
However, the accuracy achieved under these prior hardware-
specifc DNN approaches degrades with the decrease in
the impairment variability among the devices, rendering
such approaches unf't for classifying devices with high-end,
minimally-distorted hardware components.

In this paper, we propose novel DNN feature designs
that exploit the distinct structures of the RF communication
signals as well as the hardware-impaired spectrum emissions
to improve the robustness and eff ciency of DNN-based de-
vice classif cation in terms of scalability, accuracy, signature
anti-cloning, and insensitivity to environment perturbations.
More specif cally, in this paper,

e We propose to expand the DNN feature set to include
out-of-band spectrum emissions that are caused by hard-
ware impairments to capture unique device signatures that
eff ciently separate among bit-similar, high-performance
devices. This new feature set increases classif cation accu-
racy and signature anti-cloning substantially, yet without
requiring any change in transmitters’ hardware.

e We exploit the cyclostationarity property of RF signals
to extract signatures from signal patterns to improve
learning latency and invariance to environment distor-
tions. We propose to feed spectral correlation function
(SCF) values of RF data as features to the DNN classif ers
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Fig. 1. Sensitivity to channel and noise impairments. Solid line (in blue):
accuracy vs. SNR values; Bar graph (in black): accuracy vs. multipath gains

instead of the raw RF data, and we show that by doing so,

the proposed feature designs reduce the sensitivity of the

classif ers to channel and noise distortions substantially.

e We propose and discuss other feature design strategies
to further improve the classif cation performance. We
show that by leveraging high-order data statistics and
dimensionality compression techniques, we can further
enhance the classif cation accuracy and learning overhead,
as well as the robustness to channel impairments and
system noise.

The paper is organized as follows. We start, in Section I,
by explaining the unsuitability and limitations of existing
feature design approaches being currently used for DNN-
based device classif cation. We end Section II by present-
ing key goals and guidelines for designing eff cient DNN
features suitable for classifying wireless devices. We then
propose, in Sections III and IV, two complementary RF data-
driven feature design approaches for eff cient device classif -
cation. Finally, in Section V, we present new feature design
strategies that can provide further classif cation performance
improvements, and also discuss the open challenges related
to these proposed strategies.

II. RF DATA-DRIVEN DNN FEATURES: CURRENT
LIMITATIONS AND DESIGN GOALS

Previous RF data-driven DNN classif cation approaches
mostly extract their features from hardware and/or protocol
information, which provide radios with signatures that can
distinguish them from one another. Protocol-specif ¢ features
capture patterns that are extracted from repeated symbols
such as PHY pilots and MAC headers, whereas hardware-
specif ¢ features capture distortions in the signals that are
caused by manufacturing errors in transmitters’ hardware.

A. Limitations of State-of-the-Art DNN Feature Designs

DNN features in prior approaches are mostly extracted
directly from raw RF data (i.e., IQ samples) of transmitted
RF signals, without any prior processing or transformation of
the input data. Though this makes their design simple, these
feature designs suffer from the following major limitations:
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1) Sensitivity to channel and noise impairments.: Features
that are learned directly from raw IQ input data are proven
to be sensitive to channel condition variation and noise.
To illustrate, we simulated and measured the classif cation
accuracy of DNN classif ers with features extracted from raw
IQ data under varied SNR values and multipath gains. In this
experiment, RF signals all communicated over a Rayleigh
channel using eleven different modulation schemes (BPSK,
8PSK, 16QAM, 64QAM, FSK, CPFSK, GFSK, SSB-AM,
DSB-AM, PAM4 and B-FM) are classifed using a DNN
classifer with raw IQ samples fed as its input features.
More details about experiment setup and dataset generation
are provided in Section IV-B. Our results [2] summarized
in Fig. 1 show that the accuracy of the DNN classifer
with raw 1Q-based features exhibit high sensitivity to both
noise and channel quality. For instance, the accuracy shrinks
down from about 75% under an SNR of 5dB to about 25%
under an SNR of -15dB. Likewise, we also observed that the
accuracy shrinks from about 75% under an multipath gain
of -1.5 dB to about 10% under a multipath gain of -25dB.

2) Low separability among same-family protocols: Fea-
tures directly extracted from raw IQ data have also been
proven to lead to low separability and longer training times.
In Fig. 2, we depict the confusion matrix of the IQ-based
DNN classifer for RF signals using the eleven different
modulations described above. Observe that the classifer
fails to distinguish among schemes belonging to the same
modulation family. For instance, there is a clear confusion
between 16QAM and 64QAM and between SSB-AM and
DSB-AM. We show later that some basic transformation
of the raw input data prior to feature extraction can not
only improve class separability signif cantly, but also reduce
training times by 5x without compromising the accuracy.

3) Low separability among devices with bit-similar hard-
ware: Because hardware-specif ¢ features rely on the differ-
ence in the hardware impairment values to separate devices,
their achievable classif cation accuracy decreases with the
decrease in the impairment variability. In other words, when
devices have similar impairment values, these features lead
to poor classif cation accuracy. In addition, the signatures of
these devices become more sensitive to distortions that arise
from wireless channel and noise impairments. For instance,
software-def ned radios, such as USRP X310 radios, exhibit
low impairment variability because they are made of high-



performance hardware components, which make them not
easy to classify using existing hardware-driven features.
Furthermore, as technology advances, the manufacturing im-
pairment variations across devices are becoming extremely
insignif cant and the hardware is being made with lesser dis-
tortion. This also makes these prior classif cation approaches
inaccurate and unscalable when applied to such devices.

B. Feature Design Goals

We propose feature designs that combine hardware im-
pairments and protocol-specif ¢ information to:

e [mprove scalability by maintaining high separability
accuracy in the presence of massive numbers of devices
with diverse protocol and hardware conf gurations.

o Ensure robustness against device signature cloning by
incorporating out-of-band TX hardware impairments into
feature designs, making it too hard to recreate or replicate.

e Reduce sensitivity to environment distortions by lever-
aging high-order statistics and deep learning to propose
features that are agnostic to noise and channel variability.

® Reduce learning latency by proposing hybrid features
that combine model-based approaches with deep learning
capability to accelerate learning tasks.

It is important to mention that even feeding raw 1Q data as
input to the DNN classif ers will eventually allow the DNN
to learn to classify based on both hardware impairments and
protocol-specif ¢ information. However, the key challenge
here—and hence the novelty of our techniques that we
present in the next sections—Ilies in devising eff cient strate-
gies for providing ’denoised’ extraction of these features,
so as to achieve high separability and low learning latency
while being agnostic to channel and noise distortions.

III. FEATURE DESIGN APPROACH I: EXPLOITING
OUT-OF-BAND DISTORTION INFORMATION

Unlike protocol-specifc features, features that are ex-
tracted from hardware impairments are scalable and less
susceptible to cloning and impersonation. As a result, recent
works proposed to extract and use features from hard-
ware errors and distortions incurred during manufacturing
to improve classif cation performances. As discussed in
Section II, these prior feature designs do not scale well
and cannot provide high enough device separability accu-
racy when considering realistic environments—with varying
wireless channel impairments—and newly emerging mas-
sive devices—with diverse protocol/hardware conf gurations
and/or reduced hardware distortions.

A. Leveraging Out-of-Band (OOB) Spectrum Distortion In-
formation: A Novel Approach

We now present a novel technique that substantially
increases the performance of classifying bit-similar, high-
performing transmitters. The proposed technique (i) is scal-
able in that it can distinguish among large numbers of de-
vices made with minimally-distorted hardware, (ii) is robust
against signature cloning and replication, (iii) requires no
changes in transmitters’ hardware, and (iv) incurs minimal

extra processing at the receiver side that can be performea
with existing smart radios.

The novelty of our technique lies in considering both
the in-band and out-of-band (OOB) spectrum emissions of
received RF signals, caused by hardware impairments, to
capture unique device signatures that eff ciently discrim-
inate among devices, even when devices are made with
same, minimally-distorted hardware. OOB emissions are
those that predominate the out-of-band domain, defned as
the frequency range separated from the assigned emission
frequency by less than 250% of the message bandwidth [3].
OOB emissions are mainly caused by the modulation and the
nonlinearity of the RF transceiver front-end, which result in
an inevitable signal leakage into adjacent bands, despite the
endless engineering and research efforts aimed at reducing
it [4]. Our proposed technique exploits such OOB emissions
to provide unique device signatures and increase device
separability and classif cation accuracy.

Due to manufacturing errors, the various hardware com-
ponents of transmitters—including mixers, local oscillators
(LO), and power amplifers (PA)—are built with impair-
ments. Such impairments manifest themselves in various
signal and spectrum distortions—including phase noise, DC
offset, IQ mismatch and others—that result in inevitable
OOB emissions. In this section, we take a closer look at the
sources and impact of two key impairments, LO phase noise
and PA nonlinearity distortion, caused by the transmitter’s
LO and PA components. Detailed analysis of these two
impairments as well as other impairment manifestations
(e.g., IQ mismatch, DC offset, quantization noise) can be
found in [5].

1) LO Phase Noise: Typical direct-conversion transmitters
leverage the quadrature mixer conf guration to upconvert
(separately and in parallel) the in-phase (I) and quadrature
(Q) components of the baseband signal at the carrier fre-
quency w. with two independent mixers fed by the LO
tone shifted by 90° from one another. That is, frst, the in-
phase signal component is multiplied (by one mixer) with
the oscillating signal coming from the LO port and the
quadrature signal component is multiplied (by the second
mixer) also with the oscillating signal coming from the LO
port but shifted by 90°. Then, these two mixers’ outputs
are summed up to yield the upconverted signal modulated
at the carrier frequency w.. Here, the LO is responsible for
generating periodic oscillating signals that the mixers use to
upconvert the baseband signal at the carrier frequency. That
is, for an ideal LO, this periodic signal can be represented
as a pure sinusoidal waveform cos(w.t), which allows to
upconvert baseband signals at the carrier frequency w. while
preserving their original spectrum shape.

However, due to hardware impairments, the time domain
instability of the oscillating signals generated by real LOs
causes random phase f uctuations that result in expansion or
regrowth of the signal spectrum in both sides of the carrier
frequency. In other words, a real LO oscillating signal can
be represented as cos(w.t + 6(t)), where (t) represents
the phase noise, which results in a random rotation of the
signal constellation observed at the receiver and thus incurs
undesired OOB emission. To illustrate this OOB emission,
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Fig. 3. Phase Noise Effect: Device 1 (ideal LO); Device 2 (phase noise
= -80 dBc/Hz); Device 3 (phase noise = -72 dBc/Hz); at IMHz frequency
offset.

consider applying the Fourier transform to the output of the
in-phase mixer, Sy (t) cos(w.t+0(t)), which is the product of
the in-phase baseband signal, S;(t), and the real LO signal,
cos(w,t+0(t)). Straightforward Fourier analysis shows that
this phase noise term, 0(t), results in a bandwidth expansion
or regrowth beyond the original signal’s spectrum around the
carrier frequency w,.. This bandwidth expansion originates
from the convolution of the spectrum of the upconverted
signal centred around w. and that of the phase noise (or
precisely Fourier transform of e ~7?(*)). We refer the readers
to Eq. (7) of [5] for formal expressions of this Fourier
analysis, illustrating the bandwidth expansion beyond the
original signal’s spectrum bandwidth.

Now since the spectrum regrowth depends on the LO’s
phase noise, different devices will exhibit different OOB
distortions. This can be seen in Fig. 3, which simulates
three devices with different phase noise values but same
frequency offset of IMHz. Device 1 mimics an ideal LO
(i.e., zero phase noise), while Device 2 and Device 3 mimic
real LOs with phase noise values of —80 and —72 dBc/Hz,
respectively. The fgure clearly shows that OOB spectrum
shapes for Device 2 and Device 3 are different from one an-
other and from Device 1. As will be shown in Section III-B,
our technique exploits these OOB distortions, caused by
the transmitters’ phase noises as well as other hardware
impairments, to enhance device classif cation performance.

2) PA Nonlinearity Distortion: The majority of circuit
nonlinearity is attributed to the PA whose main job is to
boost the modulated RF signal with enough radiation power
to allow it to reach its target destination. The PA’s nonlinear
output in response to an input signal, S(t), can be modelled
as [6]

a1S(t) + azS3(t) + a5 S (t) + ...

where a;s are model parameters. To understand the impact
of PA nonlinearity on OOB spectrum distortions, suppose
the PA input signal is S(t) = A(t) cos(w.t + ¢(t)) and
consider illustrating the effect of the third-order nonlinear
term, a3 S>(t), only, which can be written as

013143 (t)

1 [3 cos(wet + ¢(t)) + cos(3wct + 3¢(t))].
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Fig. 4. Nonlinearity effect under 16QAM modulation

Now provided that the out-of-band component at 3w, is
located suff ciently far away from the center frequency, w.,
and that the bandwidth of the original signal is much less
than w,, this out-of-band component can easily be fltered
out without causing any bandwidth regrowth around the
original message spectrum. However, the frst term at w,
can lead to spectrum regrowth. For instance, in the case of
constant-envelope modulation schemes such as BPSK where
the amplitude A(¢) is constant, the spectrum of the modu-
lated signal in the vicinity of w, clearly remains unchanged.
However, for variable-envelope modulation schemes such
as 16QAM where the amplitude A(t) varies over time,
nonlinearity causes a spectral regrowth of the original signal
spectrum because the a3 A3(t)/4 term generally exhibits a
broader spectrum than A(t) itself. For this case of modu-
lation, the severity of the spectral growth also depends on
the nonlinearity model parameter «3. To illustrate, we show
in Fig. 4 the case of a 16QAM modulated signal passing
through a linear PA (Device 1) and two nonlinear PAs
(Devices 2 and 3) each under slightly different nonlinearity
parameters. Two key observations we make from these
results. First, observe that the nonlinearity of PA leads to
an OOB spectrum growth (or distortion). Second, even a
slight difference in the PA nonlinearity impairments causes
considerable differences in the amplitude of the frequency
components in the OOB spectrum. Our proposed technique
exploits such an OOB distortion information to increase
device distinguishability, thereby enhancing device classi-
f cation performance. More details on this proposed OOB
technique can be found in [5], [7].

B. Performance Evaluation

We used MATLAB’s Deep Learning Toolbox, running on
a system with Intel Core i7 8th Gen CPU, to implement
a convolution neural network (CNN) model, with input
feature being the collected IQ samples, each represented
as a 2 x 1024 real-valued tensor. We chose to use CNN
because it is proven to be an effective model for wireless
classif cation (see [8]). The frst convolutional layer has 16
1 x 4 flters, with each flter learning 4-sample variations
in time over the I or Q dimension. After each convolutional
layer follows a Batch normalization layer, a ReLU activation,
and a Maximum Pooling layer with flters of size 1 x 2 and
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stride [1 2]. The last convolutional layer is followed by an
Average Pooling layer with a dimension 1 x 32, which is then
given as an input to the Fully Connected layer whose output
is fnally passed to a softmax classif er layer. We set dropout
rate to 0.5 to address overf tting, and use the gradient descent
with momentum for weight optimization. Error is minimized
via back-propagation with categorical cross-entropy used for
loss function. Refer to [5] for additional setup detail.

We emulated fve hardware-impaired devices to compare
the performance of the proposed technique, leveraging both
in-band and out-of-band spectrum distortion information,
and that of the conventional technique, using in-band distor-
tion information only. The impairment values of the devices
are set very similar to resemble bit-similar, high-performing
radios. Each device sends 16QAM modulated signals over
an AWGN channel with IQ values being collected for two
different bandwidths, 2.075 — 2.125 GHz, which represents
the bandwidth of the message (in-band), and 1.9 — 2.3
GHz, which includes both in-band (message bandwidth) and
out-of-band spectra. Our results, depicted in Fig. 5, show
that our technique achieves substantially higher accuracy
than that of the in-band only technique, with a testing
accuracy of about 96% under our technique versus only
about 50% under the in-band only technique. Our results
show that exploiting OOB distortion information caused by
radio hardware impairments increases device separability
substantially.

IV. FEATURE DESIGN APPROACH II: EXPLOITING RF
SPECTRUM DOMAIN KNOWLEDGE

We now present feature designs that build on the well-
established cyclostationary analysis theory [9] to comple-
ment the hardware-specif ¢ features presented in Section III.
This theory exploits the fact that wireless communication
signals exhibit cyclostationarity [9], because they inherently
contain periodic patterns due, for instance, to repeated PHY
pilots, symbol prefxes, MAC headers, and so on. This
means that although the raw signal itself does not implicitly
contain repeating patterns, high-order statistics (moments
and cumulants) of the data exhibit periodic patterns that can
be exploited and extracted to serve as unique signal features.

A. Leveraging Second-Order Data Statistics: A Spectra?
Correlation Function (SCF) Based Approach

Provided that the signal received and sampled by the
receiver is cyclostationary, its autocorrelation function,
R(t,T), is periodic in time ¢ and peaks when the delay lag
7 corresponds to the period at which the pattern repeats. In
other words, the autocorrelation function can be expressed

as a Fourier series,
a j2mat
Z R (1)l
@

with a sum taken over cyclic frequencies « that are integer
multiples of the fundamental frequency of the repeated
pattern, and the Fourier coeffcient R*(7) peaks only at
cyclic frequencies o and delay lags 7 that correspond to the
repeating pattern of the signal. Now because if the pattern
repeats every 7 then it will repeat every integer multiple
of 7, the Fourier transform of the autocorrelation function,
also known as the spectral correlation function (SCF), will
peak at angular frequency f = 1/7 if the Fourier coeff cient
R“(7) peaks at delay lag 7. That is, SCF, which is a function
of both angular and cyclic frequencies f and «, will peak
at frequencies f that are inversely proportional to the delay
lags 7 that correspond to the repeated pattern. Therefore, the
frequencies of the repeating pattern embedded in the signal
can be used to increase separability across different PHY
signals, and hence, can serve as protocol-specif ¢ features.

B. Performance Evaluation

We used MATLAB’s Communication and Deep Learning
Toolboxes to generate a dataset for eleven modulated signal
types, BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM, PAM4,
GFSK, CPFSK, B-FM, DSB-AM, and SSB-AM, using a
Rayleigh channel with multipath gains: —25, —10, —3,
—1.5, 0 dB. The dataset contains 1000 frames/samples for
each modulation type. For the DNN model, we used a CNN
architecture similar to the one presented in Section III-B,
consisting of 2D convolutional layers with 8 and 16 features
maps, respectively, two Batch Normalization layers, and one
fully connected layer with output being fed to an 11-way
softmax that produces a distribution over the 11 modulation
classes. Additional detail on this setup can be found in [2].

In Fig. 6, we compare the classifcation performance
obtained under the proposed approach, using SCF as the
DNN features, and the existing approach, using 1Q samples
as the DNN features. The (right) fgure shows that SCF-
based features can reduce learning time by 5x, without
impacting the accuracy (both achieve about 80% accuracy
for this experiment). In addition, the (left) fgure shows
that these SCF-based features are less sensitive to channel
condition variations caused by varied multipath gains. Al-
though high-order statistics based features (e.g., SCF) show
promising results, there remains key challenges that need to
be addressed, some of which are discussed in Section V.

V. OTHER FEATURE DESIGN IDEAS AND THEIR
UNSOLVED RESEARCH CHALLENGES

We now present new feature design ideas and strategies
that provide further improvements of the classif cation per-
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formance, with again a focus on accuracy, learning overhead,
and invariance to channel impairments and system noise.

A. Cyclic Frequency Estimation for Nonblind Classif cation

For the SCF-based DNN classifers proposed in Sec-
tion IV, having prior knowledge of the cyclic frequencies
(CFs) can improve the achievable classif cation performance
substantially. To illustrate this, we performed an experiment
for classifying PHY signals with the eleven different modu-
lation schemes studied and described in Section II-A, where
analytically-derived CFs [10] (one for each modulation type)
are used for nonblind classif cation, and random CFs are
used for blind classif cation. Our results [2] show that
nonblind (i.e., with known CFs) classif ers achieve an overall
classif cation accuracy of about 70% whereas blind (i.e.,
with unknown CFs) classif ers achieve an accuracy of about
45% only. Several well-established techniques (e.g., TSM
and SSCA [11], [12]) for estimating the CFs and SCF have
already been developed over a couple of decays worth of
research. These techniques, however, are computationally
complex, making them unsuitable for real-time application
scenarios.

One potential solution is to investigate the use of SSCA, a
computationally eff cient method for cyclic feature analysis
of second-order cyclostationary communication signals with
unknown CFs [12]. SSCA takes as input 1Q data, sampling
frequency, spectral resolution and cyclic resolution, and
outputs CFs and SCF. One approach is to frst use SSCA
to compute (off ine) CFs for different IQ input samples, and
then use these computed CFs along with their corresponding
IQ samples to train DNN whose output would be the CFs.
During the inference phase, this trained SSCA DNN is to be
used for real-time computation of the CFs, which are then
fed (along with the other features) to the DNN classif er for
device classif cation.

B. Exploiting High-Order Data Statistics

So far, we have shown that using order-2 cumulants
(e.g., SCF-based) as features improve classif cation perfor-
mance. Another potential idea is to consider using high-
order cumulants; for formal defnitions of cumulants, we

refer readers to [13]. To illustrate, we run an experimenét
where order-2 and order-4 cumulants are used as features for
the DNN classif er to separate between different RF signals
modulated with QPSK, 16QAM and 64QAM, and our results
(not shown in this paper; see [2] for details) reveal that
order-4 cumulant based features offer better separability than
using order-2 cumulants only. Another benef'ts of designing
features based on high-order cumulants is that they have
been proven to be less sensitive to noise [14]. Though
promise much better separability, they are, however, also
much harder to compute and hence pose some feasibility
challenges. One approach, which requires further investiga-
tion, for overcoming this challenge is to consider hybrid
model-based and data-driven DNN strategies that allow to
extract features from these complex models through deep
learning, and then use these features for device classif cation.

C. Feature Compression and Dimensionality Reduction

The performance of the SCF-based approach presented in
Section IV-A depends heavily on the (cyclic and angular)
frequency resolutions chosen during SCF sampling. This is
because both accuracy and training time depend on the SCF
input size. More specif cally, with SCF, the higher frequency
resolution, the higher the accuracy, but also the longer the
training time. One potential approach for addressing this
issue is compressed learning, which provides a projection
from the data domain to a measurement domain that pre-
serves the linear separability under certain conditions [15].
Classif cation in the measurement domain can still be possi-
ble (without compromising accuracy) after transforming the
data to some appropriate compressed domain, provided that
the linear projection preserves the structure of the instance
space. Compressed learning can be exploited to reduce
SCF’s high dimensionality, thus reducing its computational
complexity during training time. However, although proven
effective in many other classif cation applications like image
recognition, natural language processing, sensor networks,
and automatic modulation recognition, much work remains
to be done to apply compressed learning for wireless device
classif cation.

VI. CONCLUSION

This paper presents new DNN feature designs that rely on
RF data to classify wireless devices. The proposed designs
exploit the distinct structures of RF communication signals
and the hardware impairments incurred during device man-
ufacturing to custom-make DNN models to improve clas-
sif cation scalability and accuracy, signature anti-cloning,
and insensitivity to environment distortions. The paper also
explains the limitations of existing DNN features when
applied to device classif cation, and presents other feature
design ideas and discusses their related challenges.
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