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ABSTRACT

Serving ML prediction pipelines spanning multiple models
and hardware accelerators is a key challenge in production
machine learning. Optimally configuring these pipelines to
meet tight end-to-end latency goals is complicated by the
interaction between model batch size, the choice of hardware
accelerator, and variation in the query arrival process.

In this paper we introduce InferLine, a system which
provisions and manages the individual stages of prediction
pipelines to meet end-to-end tail latency constraints while
minimizing cost. InferLine consists of a low-frequency com-
binatorial planner and a high-frequency auto-scaling tuner.
The low-frequency planner leverages stage-wise profiling,
discrete event simulation, and constrained combinatorial
search to automatically select hardware type, replication,
and batching parameters for each stage in the pipeline. The
high-frequency tuner uses network calculus to auto-scale
each stage to meet tail latency goals in response to changes
in the query arrival process. We demonstrate that InferLine
outperforms existing approaches by up to 7.6x in cost while
achieving up to 34.5x lower latency SLO miss rate on
realistic workloads and generalizes across state-of-the-art
model serving frameworks.
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1 INTRODUCTION

Cloud applications as well as cloud infrastructure providers
today increasingly rely on ML inference over multiple models
linked together in a dataflow DAG. Examples include a digi-
tal assistant service (e.g., Amazon Alexa), which combines
audio pre-processing with downstream models for speech
recognition, topic identification, question interpretation and
response and text-to-speech to answer a user’s question. The
natural evolution of these applications leads to a growth in the
complexity of the prediction pipelines. At the same time, their
latency-sensitive nature dictates tight tail latency constraints
(e.g., 200-300ms). As the pipelines grow and the models used
become increasingly sophisticated, they present a unique set
of systems challenges for provisioning and managing these
pipelines.

Each stage of the pipeline must be assigned the appropriate
hardware accelerator (e.g., CPU, GPU, TPU) — a task compli-
cated by increasing hardware heterogeneity. Each model must
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Figure 1: InferLine System Overview

be configured with the appropriate query batch size — neces-
sary for optimal utilization of the hardware. And each pipeline
stage can be replicated to meet the application throughput
requirements. Per-stage decisions with respect to the hard-
ware type and batch size affect the latency contributed by
each stage towards the end-to-end pipeline latency bound
by the application-specified Service Level Objective (SLO).
This creates a combinatorial search space with three control
dimensions per model (hardware type, batch size, number of
replicas) and constraints on aggregate latency.

A number of prediction serving systems exist today, in-
cluding Clipper [9], TensorFlow Serving [37], and NVIDIA
TensorRT Inference Server [36] that optimize for single model
serving. This pushes the complexity of coordinating cross-
model interaction and, particularly, the questions of per-model
configuration to meet application-level requirements, to the
application developer. To the best of our knowledge, no sys-
tem exists today that automates the process of pipeline pro-
visioning and configuration, subject to specified tail latency
SLO in a cost-aware manner. Thus, the goal of this paper is
to address the problem of configuring and managing multi-
stage prediction pipelines subject to end-to-end tail latency
constraints cost efficiently.

We propose InferLine — a system for provisioning and
management of ML inference pipelines. It composes with
existing prediction serving frameworks, such as Clipper and
TensorFlow Serving. It is necessary for such a system to con-
tain two principal components: a low-frequency planner and
a high-frequency funer. The low-frequency planner is respon-
sible for navigating the combinatorial search space to produce
per-model pipeline configuration relatively infrequently to
minimize cost. It is intended to run periodically to correct
for workload drift or fundamental changes in the steady-state,
long-term query arrival process. It is also necessary for inte-
grating new models added to the repository and to integrate
new hardware accelerators. The high frequency component
is intended to operate at time scales three orders of magni-
tude faster. It monitors instantaneous query arrival traffic and
tunes the running pipeline to accommodate unexpected query
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spikes cost efficiently to maintain latency SLOs under bursty
and stochastic workloads.

To enable efficient exploration of the combinatorial con-
figuration space, InferLine profiles each stage in the pipeline
individually and uses these profiles and a discrete event simu-
lator to accurately estimate end-to-end pipeline latency given
the hardware configuration and batchsize parameters. The
low-frequency planner uses a constrained greedy search algo-
rithm to find the cost-minimizing pipeline configuration that
meets the end-to-end tail latency constraint determined using
the discrete event simulator on a sample planning trace.

The InferLine high-frequency tuner leverages traffic en-
velopes built using network calculus tools to capture the ar-
rival process dynamics across multiple time scales and deter-
mine when and how to react to changes in the arrival process.
As a consequence, the tuner is able to maintain the latency
SLO in the presence of transient spikes and sustained varia-
tion in the query arrival process.

In summary, the primary contribution of this paper is a
system for provisioning and managing machine learning in-
ference pipelines for latency-sensitive applications cost ef-
ficiently. It consists of two key components that operate at
time scales orders of magnitude apart to configure the system
for near-optimal performance. The planner builds on a high-
fidelity model-based networked queueing simulator, while
the tuner uses network calculus techniques to rapidly adjust
pipeline configuration, absorbing unexpected query traffic
variation cost efficiently.

We apply InferLine to provision and manage resources for
multiple state-of-the-art prediction serving systems. We show
that InferLine significantly outperforms alternative pipeline
configuration baselines by a factor of up to 7.6X on cost,
while exceeding 99% latency SLO attainment—the highest
level of attainment achieved in relevant prediction serving
literature.

2 BACKGROUND AND MOTIVATION

Prediction pipelines combine multiple machine learning mod-
els and data transformations to support complex prediction
tasks [32]. For instance, state-of-the-art visual question an-
swering services [1, 23] combine language models with vision
models to answer the question.

A prediction pipeline can be represented as a directed
acyclic graph (DAG), where each vertex corresponds to a
model (e.g., mapping images to objects in the image) or a
data transformation (e.g., extracting key frames from a video)
and edges represent dataflow between vertices.

In this paper we study several (Figure 2) representative
prediction pipeline motifs. The Image Processing pipeline
consists of basic image pre-processing (e.g., cropping and
resizing) followed by image classification using a deep neural
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Figure 2: Example Pipelines. We evaluate InferLine on four prediction pipelines that span a range of models, control flow, and input characteristics.

network. The Video Monitoring pipeline was inspired by
[40] and uses an object detection model to identify vehicles
and people and then performs subsequent analysis including
vehicle and person identification and license plate extraction
on any relevant images. The Social Media pipeline translates
and categorizes posts based on both text and linked images by
combining computer vision models with multiple stages of
language models to identify the source language and translate
the post if necessary. The TensorFlow (TF) Cascade pipeline
combines fast and slow TensorFlow models, invoking the
slow model only when necessary.

In the Social Media, Video Monitoring, and TF Cascade
pipelines, a subset of models are invoked based on the output
of earlier models in the pipeline. This conditional evaluation
pattern appears in bandit algorithms [3, 20] used for model
personalization as well as more general cascaded prediction
pipelines [2, 14, 24, 34].

We show that for such pipelines InferLine is able to main-
tain latency constraints with P99 service level objectives (99%
of query latencies must be below the constraint) at low cost,
even under bursty and unpredictable workloads.

2.1 Challenges

Prediction pipelines present new challenges for the design and
provisioning of prediction serving systems. First, we discuss
how the proliferation of specialized hardware accelerators
and the need to meet end-to-end latency constraints leads
to a combinatorially large configuration space. Second, we
discuss some of the complexities of meeting tight latency
SLOs under bursty stochastic query loads. Third, we contrast
this work with ideas from the data stream processing literature,
which shares some structural similarities, but is targeted at
fundamentally different applications and performance goals.
Combinatorial Configuration Space: Many machine learn-
ing models can be computationally intensive with substantial
opportunities for parallelism. In some cases, this parallelism
can result in orders of magnitude improvements in throughput
and latency. For example, in our experiments we found that
TensorFlow can render predictions for the relatively large
ResNet152 neural network at 0.6 queries per second (QPS)
on a CPU and at 50.6 QPS on an NVIDIA Tesla K80 GPU, an
84x difference in throughput (Fig. 3). However, not all mod-
els benefit equally from hardware accelerators. For example,
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Figure 3: Example Model Profiles on K80 GPU. The preprocess model
has no internal parallelism and cannot utilize a GPU. Thus, it sees no
benefit from batching. Res152 (image classification) & TF-NMT(text
translation model) benefit from batching on a GPU but at the cost of
increased latency.

several widely used classical models (e.g., decision trees [7])
can be difficult to parallelize on GPUs, and common data
transformations (e.g. text feature extraction) often cannot be
efficiently computed on GPUs.

In many cases, to fully utilize the available parallel hard-
ware, queries must be processed in batches (e.g., ResNet152
required a batch size of 32 to maximize throughput on the
K80). However, processing queries in a batch can also in-
crease latency, as we see in Fig. 3. Because most hardware
accelerators operate at vector level parallelism, the first query
in a batch is not returned until the last query is completed.
As a consequence, it is often necessary to set a maximum
batch size to bound query latency. However, the choice of the
maximum batch size depends on the hardware and model and
affects the end-to-end latency of the pipeline.

Finally, in heavy query load settings it is often necessary
to replicate individual operators in the pipeline to provide
the throughput demanded by the workload. As we scale up
pipelines through replication, each operator scales differently,
an effect that can be amplified by the use of conditional con-
trol flow within a pipeline causing some components to be
queried more frequently than others. Low cost configurations
require fine-grained scaling of each operator.

Allocating parallel hardware resources to a single model
presents a complex model dependent trade-off space between
cost, throughput, and latency. This trade-off space grows expo-
nentially with each model in a prediction pipeline. Decisions
made about the choice of hardware, batching parameters, and
replication factor at one stage of the pipeline affect the set of
feasible choices at the other stages due to the need to meet



SoCC 20, October 19-21, 2020, Virtual Event, USA

end-to-end latency constraints. For example, trading latency
for increased throughput on one model by increasing the
batch size reduces the latency budget of other models in the
pipeline and, as a consequence, constrains feasible hardware
configurations as well.

Queueing Delays: As stages of a pipeline may operate at
different speeds, due to resource and model heterogeneity, it
is necessary to have a queue per stage. Queueing also allows
to absorb query inter-arrival process irregularities and can be
a significant end-to-end latency component. Queueing delay
must be explicitly considered during pipeline configuration,
as it directly depends on the relationship between the inter-
arrival process and system configuration.

Stochastic and Unpredictable Workloads: Prediction
serving systems must respond to bursty, stochastic query
streams. At a high-level these stochastic processes can be
characterized by their average arrival rate A and their coef-
ficient of variation, a dimensionless measure of variability
defined by CVA2 = Z—i, where [ = % and o are the mean and
standard-deviation of the query inter-arrival time. Processes
with higher CVA2 have higher variability and often require
additional over-provisioning to meet latency objectives.
Clearly, over-provisioning the whole pipeline on specialized
hardware can be prohibitively expensive. Therefore, it is
critical to be able to identify and provision the bottlenecks in
a pipeline to accommodate the bursty arrival process. Finally,
as the workload changes, we need mechanisms to monitor,
quickly detect, and fune individual stages in the pipeline.
Comparison to Stream Processing Systems: Many of the
challenges around configuring and scaling pipelines have
been studied in the context of generic data stream processing
systems [8, 10, 30, 33, 38]. However, these systems focus
their effort on supporting more traditional data processing
workloads, which include stateful aggregation operators and
support for a variety of windowing operations. These systems
tend to focus on maximizing throughput while avoiding back-
pressure, with latency as a second order performance goal
(§8). Even those that consider latency directly such as [8] do
not manage tail latency.

3 SYSTEM DESIGN

In this section, we provide a high-level overview of the main
system components in InferLine (Fig. 1). The system requires
a planner that operates infrequently and re-configures the
whole pipeline w.r.t. all of the control parameters and a funer
that makes adjustments to the pipeline configurations in re-
sponse to dynamically observed query traffic patterns.
InferLine runs on top of any prediction serving system that
meets a few simple requirements. The underlying serving
system must be able to 1) deploy multiple replicas of a model
and scale the number of replicas at runtime across a cluster
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of worker machines, 2) allow for batched inference with the
ability to configure a maximum batch size, and 3) use a cen-
tralized batched queueing system to distribute batches among
model replicas. The first two properties are necessary for
InferLine to configure the serving engine, and a centralized
queueing system provides deterministic queueing behavior
that can be accurately simulated by the Estimator. In our ex-
perimental evaluation, we run InferLine with both Clipper [9]
and TensorFlow Serving [37]. Both systems needed only mi-
nor modifications to meet these requirements.

Using InferLine: To deploy a new prediction pipeline man-
aged by InferLine, developers provide a driver program, sam-
ple query trace used for planning, and a latency service level
objective. The driver function interleaves application-specific
code with asynchronous calls to models hosted in the under-
lying serving system to execute the pipeline.

The Planner runs as a standalone Python process that runs
periodically independent of the prediction serving framework.
The Tuner runs as a standalone process implemented in C++.
It observes the incoming arrival trace streamed to it by the cen-
tralized queueing system and triggers model addition/removal
executed by serving-framework-specific APIs.
Low-Frequency Planning: The first time planning is per-
formed, InferLine uses the Profiler to create performance
profiles of all the individual models referenced by the driver
program. A performance profile captures model throughput
as a function of hardware type and maximum batch size. An
entry in the model profile is measured empirically by evaluat-
ing the model in isolation in the given configuration using the
queries in the sample trace.

The Planner finds a cost-efficient initial pipeline configura-
tion subject to the end-to-end latency SLO and the specified
arrival process. It uses a globally-aware, cost-minimizing opti-
mization algorithm to set the three control parameters for each
model in the pipeline. In each iteration of the optimization
algorithm, the Planner uses the model profiles to select a cost-
minimizing step while relying on the Estimator to check for
latency constraint violations. After the initial configuration
is generated and the pipeline is deployed to serve live traffic,
the Planner is re-run periodically (hours to days) on the most
recent arrival history to find a cost-optimal configuration for
the current workload.

High-Frequency Tuning: The Tuner monitors the dynamic
behavior of the arrival process to adjust per-model replica-
tion factors and maintain high SLO attainment at low cost.
InferLine only adjusts per-model replication factors during
tuning to avoid expensive hardware migration operations dur-
ing live serving and to ensure that scaling decisions can be
made quickly to maintain latency SLOs even during sharp
bursts. The Tuner continuously monitors the current traffic en-
velope [19] to detect deviations from the planning trace traffic
envelope at different timescales simultaneously. By analyzing
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the timescale at which the deviation occurred, the Tuner is
able to take appropriate mitigating action within seconds to
ensure that SLOs are met without unnecessarily increasing
cost. It ensures that latency SLOs are maintained during un-
expected changes to the arrival workload in between runs of
the Planner.

4 LOW-FREQUENCY PLANNING

During planning, the Profiler, Estimator and Planner are used
to estimate model performance characteristics and optimally
provision and configure the system for a given sample work-
load and latency SLO. In this section, we expand on each of
these three components.

4.1 Profiler

The Profiler creates performance profiles for each of the mod-
els in the pipeline as a function of batch size and hardware.
Profiling begins with InferLine executing the sample set of
queries on the pipeline. This generates input data for profiling
each of the component models individually. We also track
the frequency of queries visiting each model, called the scale
factor, s. The scale factor represents the conditional proba-
bility that a model will be queried given a query entering the
pipeline, independent of the behavior of any other models. It
is used by the Estimator to simulate the effects of conditional
control flow on latency (§4.2) and the Tuner to make scaling
decisions (§5).

The Profiler captures model throughput as a function of
hardware type and batch size to create per-model performance
profiles. An individual model configuration corresponds to
a specific value for each of these parameters as well as the
model’s replication factor. Because the models scale hori-
zontally, profiling a single replica is sufficient. Profiling only
needs to be performed once for each hardware and batch size
pair and is re-used in subsequent runs of the Planner.

4.2 Estimator

The Estimator is responsible for rapidly estimating the end-to-
end latency of a given pipeline configuration for the sample
query trace. It takes as input a pipeline configuration, the
individual model profiles, and a sample trace of the query
workload, and returns accurate estimates of the latency for
each query in the trace. The Estimator is implemented as
a continuous-time, discrete-event simulator [5], simulating
the entire pipeline, including queueing delays and conditional
control flow (using the scale factor s). The simulator maintains
a global logical clock that is advanced from one discrete event
to the next with each event triggering future events that are
processed in temporal order. Because the simulation only
models discrete events, we are able to faithfully simulate
hours worth of real-world traces in hundreds of milliseconds.
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Algorithm 1: Find an initial, feasible configuration

1 Function Initialize(pipeline, slo):
2 foreach model in pipeline do

3 model.batchsize = 1;

4 model.replicas = 1;

5 model hw = BestHardware (model);

if ServiceTime (pipeline) > slo then
7 L return False;

else
while not Feasible (pipeline, slo) do

10 model = FindMinThru(pipeline);
11 model.replicas += 1;
12 return pipeline;

The Estimator simulates the deterministic behavior of
queries flowing through a centralized batched queueing
system. It combines this with the model profile information
which informs the simulator how long a model running on a
specific hardware configuration will take to process a batch
of a given size.

4.3 Planning Algorithm

At a high-level, the planning algorithm is an iterative con-
strained optimization procedure that greedily minimizes cost
while ensuring that the latency constraint is satisfied. The
algorithm can be divided into two phases. In the first (Algo-
rithm 1), it finds a feasible initial configuration that meets the
latency SLO while ignoring cost. In the second (Algorithm 2),
it greedily modifies the configuration to reduce the cost while
using the Estimator to identify and reject configurations that
violate the latency SLO. The algorithm converges when it
can no longer make any cost reducing modifications to the
configuration without violating the SLO.
Initialization (Algorithm 1): First, an initial latency-
minimizing configuration is constructed by setting the batch
size to 1 using the lowest latency hardware available for each
model (lines 2-5). If the service time under this configuration
(the sum of the processing latencies of all the models on
the longest path through the pipeline DAG) is greater than
the SLO then the latency constraint is infeasible given
the available hardware and the Planner terminates (lines
6-7). Otherwise, the Planner then iteratively determines the
throughput bottleneck and increases that model’s replication
factor until it is no longer the bottleneck (lines 9-11).
Cost-Minimization (Algorithm 2): In each iteration of
the cost-minimizing process, the Planner considers three can-
didate modifications for each model: increase the batch size,
decrease the replication factor, or downgrade the hardware
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Algorithm 2: Find the min-cost configuration

1 Function MinimizeCost (pipeline, slo):

2 pipeline = Initialize(pipeline, slo);
3 if pipeline == False then

4 L return False;

5 actions = [IncreaseBatch, RemoveReplica,
DowngradeHW J;

6 repeat

7 best = NULL;

8 foreach model in pipeline do

9 foreach action in actions do

10
11
12

new = action(model, pipeline);
if Feasible (new) then
L if new.cost < best.cost then

13 L best = new,
14 if best is not NULL then

15 L pipeline = best,

16 until besr == NULL;

17

| return pipeline;

(line 5), searching for the modification that maximally de-
creases cost while still meeting the latency SLO. It evaluates
each modification on each model in the pipeline (lines 8-10),
discarding candidates that violate the latency SLO according
to the Estimator (line 11).

The batch size only affects throughput and does not affect
cost. It will therefore only be the cost-minimizing modifica-
tion if the other two would create infeasible configurations.
Increasing the batch size does increase latency. The batch
size is increased by factors of two as the throughput improve-
ments from larger batch sizes have diminishing returns (ob-
serve Fig. 3). In contrast, decreasing the replication factor
directly reduces cost. Removing replicas is feasible when a
previous iteration of the algorithm has increased the batch
size for a model, increasing the per-replica throughput.

Downgrading hardware is more involved than the other
two actions, as the batch size and replication factor for the
model must be re-evaluated to account for the differing batch-
ing behavior of the new hardware. It is often necessary to
reduce the batch size and increase replication factor to find a
feasible pipeline configuration. However, the reduction in
hardware price sometimes compensates for the increased
replication factor. For example, in Fig. 10, the steep decrease
in cost when moving from an SLO of 0.1 to 0.15 can be
largely attributed to downgrading the hardware of a language
identification model from a GPU to a CPU.
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Figure 4: Arrival and Service Curves. The arrival curve captures the
maximum number of queries to be expected in any interval of time x
seconds wide. The service curve plots the expected number of queries
processed in an interval of time x seconds wide.

To evaluate a hardware downgrade, we first freeze the con-
figurations of the other models in the pipeline and perform
the initialization stage for that model using the next cheapest
hardware. The planner then performs a localized version of
the cost-minimizing algorithm to find the batch size and repli-
cation factor for the model on the newly downgraded resource
allocation needed to reduce the cost of the previous configu-
ration. If there is no cost reducing feasible configuration the
hardware downgrade action is rejected.

At the point of termination, the planning algorithm provides
the following guarantees: (1) If there is a configuration that
meets the latency SLO, then the algorithm will return a valid
configuration. (2) There is no single action that can be taken
to reduce cost without violating the SLO.

S HIGH-FREQUENCY TUNING

InferLine’s Planner finds an efficient, low-cost configuration
that is guaranteed to meet the provided latency objective.
However, this guarantee only holds for the sample planning
workload provided to the planner. Real workloads evolve
over time, changing in both arrival rate (change in A) as well
as becoming more or less bursty (change in CVAZ). When
the serving workload deviates from the sample, the original
configuration will either suffer from queue buildups leading
to SLO misses or be over-provisioned and incur unnecessary
costs. The Tuner both detects these changes as they occur
and takes the appropriate scaling action to maintain both the
latency constraint and cost-efficiency objective.

In order to maintain P99 latency SLOs, the Tuner must be
able to detect changes in the arrival workload dynamics across
multiple timescales simultaneously. The Planner guarantees
that the pipeline is adequately provisioned for the sample
trace. The Tuner’s detection mechanism detects when the
current request workload exceeds the sample workload. To do
this, we draw on the idea of traffic envelopes from network
calculus [19] to characterize the workloads.

A traffic envelope for a workload is constructed by slid-
ing a window of size AT; over the workload’s inter-arrival
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Figure 5: Observed traffic envelope exceeds sample envelope. The ob-
served traffic envelope (in red) exceeds the sample trace traffic envelope
(in blue) at window w3, triggering the Tuner to scale up the pipeline.
The pipeline will be re-scaled for the new arrival rate r,,,, = kel

w3 *
process and capturing the maximum number of queries seen
anywhere within this window (see Fig. 4). Thus, each x = AT;
is mapped to y = ¢; (number of queries) for all x over the du-
ration of a trace. This powerful characterization captures how
much the workload can burst in any given interval of time.
In practice, we discretize the x-axis by setting the smallest
AT; to Ty, the service time of the system, and then double the
window size up to 60 seconds. For each such interval, the
maximum arrival rate r; for this interval can be computed as
ri = A%' By measuring r; across all AT; simultaneously we
capture a fine-grain characterization of the arrival workload
that enables simultaneous detection of changes in both short
term (burstiness) and long term (average arrival rate) traffic
behavior.

Initialization: During planning, the Planner constructs the
traffic envelope for the sample arrival trace. The Planner
also computes the max-provisioning ratio for each model
Pm = ”im, the ratio of the arrival rate A to the maximum
throughput of the model u in its current configuration. While
the max-provisioning ratio is not a fundamental property of
the pipeline, it provides a useful heuristic to measure how
much “slack” the Planner has determined is needed for this
model to be able to absorb bursts and still meet the SLO. The
Planner then provides the Tuner with the traffic envelope for
the sample trace, the max-provisioning ratio p,, and single
replica throughput i, for each model in the pipeline.

In the low-latency applications that InferLine targets, fail-
ing to scale up the pipeline in the case of an increased work-
load results in missed latency objectives and degraded quality
of service, while failing to scale down the pipeline in the case
of decreased workload only results in slightly higher costs.
We therefore handle the two situations separately.

Scaling Up (Algorithm 3): The Tuner continuously com-
putes the traffic envelope for the current arrival workload.
This yields a set of arrival rates for the current workload that
can be directly compared to those of the sample workload (as
in Fig. 5). If any of the current rates exceed their correspond-
ing sample rates (lines 3-6), the pipeline is underprovisioned
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Algorithm 3: Reactively scale up the pipeline
Function CheckScaleUp():

Tmax = -1;

for i in Windows.size do

Tobs = MaxQueries [i]/Windows [i];

if 7ops > SampleRates [i] then
Fmax = Max (Fmax, Tobs) >

A T R W N =

if rmax > O then
foreach model in Pipeline do
ki = rmax ¥ model.scalefactor /
(model .throughput * model.p);
reps = Ceil(k,,) - model.replicas;
if reps > 0 then

AddReps (model, reps);
L LastUpdate = Now();

o« 3

10
11
12
13

and the Tuner checks whether it should add replicas for any
models in the pipeline.

At this point, not only has the Tuner detected that rescaling
may be necessary, it also knows what arrival rate it needs to
reprovision the pipeline for: the current workload rate 7,y
that triggered rescaling. If the overall A of the workload has
not changed but it has become burstier, this will be a rate
computed with a smaller AT;, and if the burstiness of the
workload is stationary but the A has increased, this will be
a rate with a larger AT;. In the case that multiple rates have
exceeded their sample trace counterpart, we take the max rate.

To determine how to reprovision the pipeline, the Tuner
computes the number of replicas needed for each model to
Process Fygy as ky = [%—‘ (lines 9-10). s, is the scale
factor for model m, which prevents over-provisioning for
a model that only receives a portion of the queries due to
conditional logic. p,, is the max-provisioning ratio, which
ensures enough slack remains in the model to handle bursts.
The Tuner then adds the additional replicas needed for any
models that are underprovisioned (lines 11-12).

Scaling Down (Algorithm 4): InferLine takes a conservative
approach to scaling down the pipeline to prevent unneces-
sary configuration oscillation which can cause SLO misses.
Drawing on the work in [13], the Tuner waits for a period of
time after any configuration changes to allow the system to
stabilize before considering any down scaling actions. Infer-
Line uses a delay of 15 seconds (3x the 5 second activation
time of spinning up new replicas in the underlying prediction
serving frameworks), but the precise value is unimportant as
long as it provides enough time for the pipeline to stabilize
after a scaling action. Once this delay has elapsed (line 2), the
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Algorithm 4: Reactively scale down the pipeline

1 Function CheckScaleDown():

2 if (Now() - LastUpdate) > 15 then

3 Anew = Max(RecentLambdas);

4 foreach model in Pipeline do

5 ki = Apew * model.scalefactor /
(model.throughput * Ppin);

6 extraReps = model .replicas - Ceil (k;;);
7 if extraReps > 0 then
8 L RemoveReps (model, extraReps);

Tuner continuously computes the max request rate A,,,, that
has been observed over the last 30 seconds, using 5 second
windows (line 3).

The Tuner computes the number of replicas needed for
each model to process A, similarly to the procedure for

AnewSm
mPp
scaling up, when scaling down we use the minimum max pro-

visioning factor in the pipeline p, = min (p,,Vm € models).
Because the max provisioning factor is a heuristic that has
some dependence on the sample trace, using the min across
the pipeline provides a more conservative downscaling al-
gorithm and ensures the Tuner is not overly aggressive in
removing replicas. If the workload has dropped substantially,
the next time the Planner runs it will find a new lower-cost
configuration that is optimal for the new workload.

scaling up, setting k,,, = —‘ (lines 5-6). In contrast to

6 EXPERIMENTAL SETUP

To evaluate InferLine we constructed four prediction pipelines
(Fig. 2) representing common application domains and us-
ing models trained in a variety of machine learning frame-
works [25-27, 35]. We configure each pipeline with varying
input arrival processes and latency budgets. We evaluate the
latency SLO attainment and pipeline cost under a range of
both synthetic and real world workload traces.

Coarse-Grained Baseline Comparison: Current prediction
serving systems do not provide functionality for provisioning
and managing prediction pipelines with end-to-end latency
constraints. Instead, the individual pipeline components are
each deployed as a separate micro-service to a prediction serv-
ing system such as [9, 15, 36, 37] and a pipeline is manually
constructed by individual calls to each service.

Any performance tuning for end-to-end latency or cost
treats the entire pipeline as a single black-box service and
tunes it as a whole. We therefore use this same approach as
our baseline for comparison. Throughout the experimental
evaluation we refer to this as the Coarse-Grained baseline.
We deploy pipelines configured with both InferLine and the
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coarse-grained baseline to the same underlying prediction-
serving framework. All experiments used Clipper [9] as the
prediction-serving framework except for those in Fig. 14
which compare InferLine running on Clipper and TensorFlow
Serving [37]. Both prediction-serving frameworks were mod-
ified to add a centralized batched queueing system.

We use the techniques proposed in [13] to do both low-
frequency planning and high-frequency tuning for the coarse-
grained pipelines as a baseline for comparison. In this base-
line, we profile the entire pipeline as a single black box to
identify the single maximum batch size capable of meeting
the SLO, in contrast to InferLine’s per-model profiling. The
pipeline is then replicated as a single unit to achieve the re-
quired throughput as measured on the same sample arrival
trace used by the Planner. We evaluate two strategies for
determining required throughput. CG-Mean uses the mean
request rate computed over the arrival trace while CG-Peak
determines the peak request rate in the trace computed using a
sliding window of size equal to the SLO. The coarse-grained
tuning mechanism scales the number of pipeline replicas us-
ing the scaling algorithm introduced in [13].

Physical Execution Environment: We ran all experiments
in a distributed cluster on Amazon EC2. The pipeline dri-
ver client was deployed on an m4. 16xlarge instance which
has 64 vCPUs, 256 GiB of memory, and 25Gbps network-
ing across two NUMA zones. We used large client instance
types to ensure that network bandwidth from the client is
not a bottleneck. Models were deployed to a cluster of up
to 16 p2.8xlarge GPU instances. This instance type has
8 NVIDIA K80 GPUs, 32 vCPUs, 488.0 GiB of memory
and 10Gbps networking all within a single NUMA zone. All
instances ran Ubuntu 16.04 with Linux Kernel version 4.4.0.

CPU costs were computed by dividing the total hourly cost

of an instance by the number of CPUs. GPU costs were com-
puted by taking the difference between a GPU instance and
its equivalent non-GPU instance (all other hardware matches),
then dividing by the number of GPUs. This cost model pro-
vides consistent prices across instance sizes.
Workload Setup: We generated synthetic traces by sampling
inter-arrival times from a gamma distribution with differing
mean [ to vary the request rate, and C VA2 to vary the workload
burstiness. When reporting performance on a specific work-
load as characterized by A = ﬁ and CVA2, a trace for that work-
load was generated once and reused across all comparison
points to provide a more direct comparison of performance.
We generated separate traces with the same performance char-
acteristics for profiling and evaluation to avoid overfitting to
the sample trace.

To generate synthetic time-varying workloads, we evolve
the workload generating function between different Gamma
distributions over a specified period of time, the transition
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time. This allows us to generate workloads that vary in mean
throughput, CVA2, or both, and thus evaluate the performance
of the Tuner under a wide range of conditions.

In Fig. 7 we evaluate InferLine on traces derived from real
workloads studied in the AutoScale system [13]. These work-
loads only report the average request rate each minute for an
hour, rather than providing the full trace of query inter-arrival
times. To derive traces from these workloads, we followed
the approach used by [13] to re-scale the max throughput to
300 QPS, the maximum throughput supported by the coarse-
grained baseline pipelines on a 16 node (128 GPU) cluster.
We then iterated through each of the mean request rates in the
workload and sample from a Gamma distribution with C VA2
1.0 for 30 seconds. We use the first 25% of the trace as the
sample for the Planner, and the remaining 75% as the live
serving workload (see Fig. 7).

7 EXPERIMENTAL EVALUATION

In this section we evaluate InferLine’s performance. First,
we evaluate end-to-end performance of InferLine relative to
current state of the art methods for configuring and provision-
ing prediction pipelines with end-to-end latency constraints
(§7.1). We show that InferLine outperforms the baselines
on latency SLO attainment and cost for synthetic and real-
world derived workloads with both stable and unpredictable
workload dynamics. Second, we demonstrate that InferLine
is robust to unplanned dynamics of the arrival process (§7.2):
changes in the arrival rate as well as unexpected inter-arrival
bursts, as the Tuner rapidly re-scales the pipeline in response
to these changes. Third, we perform an ablation study to show
that the system benefits from both the low-frequency plan-
ning and high-frequency tuning. We conclude by showing
that InferLine composes with multiple underlying prediction-
serving frameworks (§7.4).

7.1 End-to-end Evaluation

We first establish that InferLine’s planning and tuning compo-
nents outperform state-of-the-art pipeline-level configuration
alternatives in an end-to-end evaluation (§7.1). InferLine is
able to achieve the same throughput at significantly lower
cost, while maintaining zero or near-zero latency SLO miss
rate.

Low-Frequency Planning: In the absence of a workload-
aware planner (§4.3), the options are limited to either (a)
provisioning for the peak (CG Peak), or (b) provisioning for
the mean (CG Mean) request rate. We compare InferLine to
these two end-points of the configuration continuum across
2 pipelines (Fig. 6). InferLine meets latency SLOs at the
lowest cost. CG Peak meets SLOs, but at much higher cost,
particularly for burstier workloads. And CG Mean is not
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provisioned to handle bursts which results in high SLO miss
rates.

The Planner consistently finds lower cost configurations

than both coarse-grained provisioning strategies and is able to
achieve up to a 7.6x reduction in cost by minimizing pipeline
imbalance. Finally, we observe that the Planner consistently
finds configurations that meet the SLO for workloads with
the same characteristics as the sample trace used for planning.
Next, we evaluate the Tuner’s ability to meet SLOs during
unexpected changes in workload.
High-Frequency Tuning: InferLine is able to (1) maintain
a negligible SLO miss rate, and (2) and reduce cost by up
to 4.2x when compared to the state-of-the-art approach [13]
when handling unexpected changes in the arrival rate and
burstiness. In Fig. 7 we evaluate the Social Media pipeline
on 2 traces derived from real workloads studied in [13]. The
Planner finds a 5x cheaper initial configuration than coarse-
grained provisioning (Fig. 7(a)). Both systems achieve near-
zero SLO miss rates throughout most of the workload, and
when the big spike occurs we observe that InferLine’s Tuner
quickly reacts by scaling up the pipeline as described in §5.
As soon as the spike dissipates, InferLine scales the pipeline
down to maintain a cost-efficient configuration. In contrast,
the coarse-grained tuning mechanism operates much slower
and, therefore, is ill-suited for reacting to rapid changes in the
request rate of the arrival process.

In Fig. 7(b), InferLine scales up the pipeline smoothly and
recovers rapidly from an instantaneous spike, unlike the CG
baseline. As the workload drops quickly after 1000 seconds,
InferLine rapidly responds by shutting down replicas to re-
duce cluster cost. In the end, InferLine and the coarse-grained
pipelines converge to similar costs due to the low terminal
request rate which hides the effects of pipeline imbalance, but
InferLine has a 34.5x lower SLO miss rate than the baseline.

We further evaluate the differences between the InferLine
and coarse-grained tuning algorithms on a set of synthetic
workloads with increasing arrival rates in Fig. 8. We observe
that the traffic envelope monitoring described in §5 enables
InferLine to detect the increase in arrival rate earlier and
therefore scale up the pipeline sooner to maintain a low SLO
miss rate. In contrast, the coarse-grained baseline only reacts
to the increase in request rate at the point when the pipeline is
overloaded and therefore reacts when the pipeline is already in
an infeasible configuration. The effect of this delayed reaction
is compounded by the longer provisioning time needed to
replicate an entire pipeline, resulting in the coarse-grained
baselines being unable to recover before the experiment ends.
They will eventually recover as we see in Fig. 7 but only after
suffering a period of 100% SLO miss rate.
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7.2 Sensitivity Analysis

We evaluate the sensitivity and robustness of the Planner and

the Tuner. We analyze the accur

acy of the Estimator in esti-

mating tail latencies from the sample trace and the Planner’s
response to varying arrival rates, latency SLOs, and burstiness
factors. We also analyze the Tuner’s sensitivity to changes in
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the arrival process and ability to re-scale individual pipeline

stages to maintain latency
changes to the workload.

SLOs during these unexpected

Planner Sensitivity: We first evaluate how closely the la-

tency distribution produced

by the Estimator reflects the la-

tency distribution of the running system in Fig. 9. We observe
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Figure 9: Comparison of estimated and measured tail latencies. We
compare the latency distributions produced by the Estimator on a work-
load with 4 of 150 gps and CVK of 4, observing that in all cases the es-
timated and measured latencies are both close to each other and below
the latency SLO.
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Figure 10: Planner sensitivity: Variation in configuration cost across
different arrival processes and latency SLOs for the Social Media
pipeline. We observe that 1) cost decreases as SLO increases, 2) burstier
workloads require higher cost configurations, and 3) cost increases as 1
increases.

that the estimated and measured P99 latencies are close across
all four experiments. Further, we see that the Estimator has the
critical property of ensuring that the P99 latency of feasible
configurations is below the latency objective. The near-zero
SLO miss rates in Fig. 6 are a further demonstration of the
Estimator’s ability to detect infeasible configurations.

Next, we evaluate the Planner’s performance under varying
load, burstiness, and end-to-end latency SLOs. We observe
three important trends in Fig. 10. First, increasing burstiness
(from C Vj:l to CVA2=4) requires more costly configurations
as the Planner provisions more capacity to ensure that tran-
sient bursts do not cause the queues to diverge more than the
SLO allows. We also see the cost gap narrowing between
CV2=1 and CV?=4 as the SLO increases. As the SLO in-
creases, additional slack in the deadline can absorb more
variability in the arrival process and therefore fewer pipeline
replicas are needed to process transient bursts within the SLO.
Second, the cost decreases as a function of the latency SLO.
While this downward cost trend generally holds, the optimizer
occasionally finds sub-optimal configurations, as it makes
locally optimal decisions to change a resource assignment.
Third, the cost increases as a function of expected arrival rate,
as more queries require more replicas.

Tuner Sensitivity: A common type of unpredictable behav-
ior is a change in the arrival rate. We compare the behavior
of InferLine with and without its Tuner enabled as the arrival
rate changes from the planned-for 150 QPS to 250 QPS. We
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Figure 11: Sensitivity to arrival rate changes (Social Media pipeline).
We observe that the Tuner quickly detects and scales up the pipeline in
response to increases in A. Further, the Tuner finds cost-efficient config-
urations that either match or are close to those found by the Planner
given full oracle knowledge of the trace.

vary the rate of arrival throughput change 7. InferLine is able
to maintain the SLO miss rate close to zero while matching or
beating two alternatives: (a) a pipeline with only the Planner
enabled but given full oracle knowledge of the arrival trace,
and (b) a pipeline with only the Planner enabled and provided
only the sample planning trace. Neither of these baselines
responds to changes in workload during live serving. As we
see in Fig. 11, InferLine continues to meet the SLO, and in-
creases the cost of the pipeline only for the duration of the
unexpected burst. The oracle Planner with full knowledge of
the workload is able to find the cheapest configuration at the
peak because it is equipped with the ability to configure batch
size and hardware type along with replication factor. But it
pays this cost for the entire duration of the workload. The
Planner without oracular knowledge starts missing latency
SLOs as soon as the ingest rate increases as it is unable to
respond to unexpected changes in the workload without the
Tuner.

A less obvious but potentially debilitating change in the
arrival process is an increase in its burstiness, even while
maintaining the same mean arrival rate A. This change is also
harder to detect, as common practice is to look at moments
of the arrival rate distribution, such as the mean or 99%.
In Fig. 12 we show that Tuner is able to detect deviation
from expected arrival burstiness and react to meet the latency
SLOs by employing the traffic-envelope detection mechanism
described in §5.

7.3 Attribution of Benefit

InferLine benefits from (a) low-frequency planning and (b)
high-frequency tuning. Thus, we evaluate the following com-
parison points: baseline coarse grain planning (Baseline Plan),
InferLine’s planning (InferLine Plan), InferLine planning
with baseline tuning (InferLine Plan + Baseline Tune), and
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Figure 12: Sensitivity to arrival burstiness changes (Social Media
Pipeline). We observe that the network-calculus based detection mecha-
nism of the Tuner detects changes in workload burstiness and takes the
appropriate scaling action to maintain a near-zero SLO miss rate.
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Figure 13: Attribution of benefit between the InferLine low-frequency
Planner and high-frequency Tuner on the Image Processing pipeline.
‘We observe that the Planner finds a more than 3x cheaper configuration
than the baseline. We also observe that InferLine’s Tuner is the only
alternative that maintains the latency SLO throughout the workload.

InferLine planning with InferLine tuning (InferLine Plan + In-
ferLine Tune), building up from pipeline-level configuration
to the full feature set InferLine provides. InferLine’s Planner
reduces the cost of the initial pipeline configuration by more
than 3x (Fig. 13), but starts missing latency SLOs when the
request rate increases. Adding the baseline tuning mechanism
(InferLine Plan + Baseline Tune) adapts the configuration, but
too late to completely avoid SLO misses, although it recovers
faster than planning-only alternatives. The InferLine Tuner
has the highest SLO attainment and is the only alternative
that maintains the SLO across the entirety of the workload.
This emphasizes the need for both the Planner for initial cost-
efficient pipeline configuration, and the Tuner to promptly
and cost-efficiently adapt to unexpected workload changes.

7.4 Multiple Prediction-Serving Frameworks

The contributions of this work generalize to different underly-
ing serving frameworks. Here, we evaluate the InferLine Plan-
ner running on top of both Clipper and TensorFlow Serving
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Figure 14: Comparison of the InferLine Planner provisioning the
TF Cascade pipeline in the Clipper and TensorFlow Serving (TFS)
prediction-serving frameworks. The SLO is 0.15 and the CVA2 is 1.0.
(TES). In this experiment, we achieve the same low latency
SLO miss rate for both prediction-serving frameworks. This
indicates the generality of the planning algorithms used to
configure individual models in InferLine. In Fig. 14 we show
both the SLO attainment rates and the cost of pipeline pro-
visioning when running InferLine on the two serving frame-
works. The cost for running on TFS is slightly higher due to
some additional RPC serialization overheads not present in
Clipper.

8 RELATED WORK

A number of recent efforts study the design of generic predic-
tion serving systems [4, 9, 36, 37]. TensorFlow Serving [37]
is a commercial grade prediction serving system primarily
designed to support prediction pipelines implemented using
TensorFlow [35], but does not provide any automatic pro-
visioning or support latency constraints. Clipper adopts a
containerized design allowing each model to be individually
managed, configured, and deployed in separate containers,
but does not support prediction pipelines or reasoning about
latency deadlines across models.

Several systems have explored offline pipeline configura-
tion for data pipelines [6, 16]. However, these target generic
data streaming pipelines. They use black box optimization
techniques that require running the pipeline end-to-end to
measure the performance of each candidate configuration. In-
ferLine instead leverages performance profiles of each stage
and a simulation-based performance estimator to explore the
configuration space without needing to run the pipeline.

Dynamic pipeline scaling is a critical feature in data stream-
ing systems to avoid backpressure and over-provisioning. Sys-
tems such as [11, 18] are throughput-oriented with the goal
of maintaining a well-provisioned system under changes in
the request rate. The DS2 autoscaler in [18] estimates true
processing rates for each operator in the pipeline by instru-
menting the underlying streaming system. They use these
processing rates in conjunction with the pipeline topology
structure to estimate the optimal degree of parallelism for all
operators at once. In contrast, [11] identifies a single bottle-
neck stage at a time, taking several steps to converge to a
well-provisioned system. Both systems provision for the aver-
age ingest rate and ignore any burstiness which can transiently
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overload the system. In contrast, InferLine maintains a traffic
envelope of the request workload and uses this to ensure that
the pipeline is well-provisioned for the peak workload across
several timescales simultaneously, including any burstiness
(see §5).

A few streaming autoscaling systems consider latency-
oriented performance goals [12, 21, 22]. The closest work
to InferLine, [21] treats each stage in a pipeline as a single-
server queueing system and uses queueing theory to estimate
the total queue waiting time of a job under different degrees
of parallelism. They leverage this queueing model to greedily
increase the parallelism of the stage with the highest queue
waiting time until they can meet the latency SLO. However,
their queueing model only considers average latency and ig-
nores tail latency. InferLine’s Tuner automatically provisions
for worst-case latencies.

SEDA [39] studies dynamically controlling pipeline sys-
tems connected by queues. However, SEDA focuses on man-
aging multi-threaded single-process systems using techniques
such as thread pool management and adaptive load-shedding
to remain performant even when overloaded. In contrast, Infer-
Line is a distributed system that maintains end-to-end latency
objectives and scales resource usage to avoid overload.

VideoStorm [40] explores the design of a streaming video
processing system with a distributed design with pipeline op-
erators provisioned across compute nodes and explores the
combinatorial search space of hardware and model configura-
tions. VideoStorm jointly optimizes for quality and lag and
does not provide latency guarantees.

Nexus [31] configures DNN inference pipelines for video-
streaming applications. Similar to InferLine, it uses model
profiles to understand model batching behavior and provisions
pipelines for end-to-end latency objectives. However, they do
not configure which hardware to use, instead assuming a ho-
mogeneous GPU cluster. They also rely on admission control
to reject queries while InferLine’s Tuner quickly re-scales the
pipeline to maintain SLOs without rejecting queries.

A large body of prior work leverages profiling for sched-
uling, including recent work on workflow-aware schedul-
ing [17, 29]. In contrast, InferLine exploits the compute-
intensive and side-effect free nature of ML models to estimate
end-to-end pipeline performance based on individual model
profiles.

Autoscale [13] surveys work aimed at automatically scaling
the number of servers reactively, subject to changing load
in the context of web services. Autoscale works well for
single model replication without batching as it assumes bit-
at-a-time instead of batch-at-a-time processing. However, we
find that the InferLine Tuner outperforms the coarse-grain
baselines using the Autoscale mechanism on both latency
SLO attainment and cost (§7.1).
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9 LIMITATIONS

One assumption in the Planner is that the available hardware
has a total ordering of latency across all batch sizes. As spe-
cialized accelerators for ML proliferate, there may be settings
where one accelerator is slower than another at smaller batch
sizes but faster at larger batch sizes. This would require modi-
fications to the hardware downgrade portion of the Planner to
account for this batch-size dependent ordering.

A second assumption is that the inference latency of ML
models is independent of their input. There are emerging
classes of ML tasks [27, 28] where state-of-the-art models
have inference latency that varies based on the input. One
way to account for this is to measure this latency distribution
during profiling based on the variability in the sample queries
and use the tail of the distribution as the processing time
in the estimator, which will lead to feasible but more costly
configurations.

10 CONCLUSION

In this paper we studied the problem of provisioning and man-
aging prediction pipelines to meet end-to-end tail latency re-
quirements at low cost and across heterogeneous parallel hard-
ware. We introduced InferLine- -a system which efficiently
provisions prediction pipelines subject to end-to-end latency
constraints. InferLine combines a low-frequency Planner that
finds cost-optimal configurations with a high-frequency Tuner
that rapidly re-scales pipelines to meet latency SLOs in re-
sponse to changes in the query workload. The low-frequency
Planner combines profiling, discrete event simulation, and
constrained combinatorial optimization to find the cost min-
imizing configuration that meets the end-to-end tail latency
requirements without ever instantiating the system (§4). The
high-frequency Tuner uses network-calculus to quickly auto-
scale each stage of the pipeline to accommodate changes in
the query workload (§5). In combination, these components
achieve the combined effect of cost-efficient heterogeneous
prediction pipeline provisioning that can be deployed to a va-
riety of prediction-serving frameworks to serve applications
with a range of tight end-to-end latency objectives. As a result,
we achieve up to 7.6x improvement in cost and 34.5x improve-
ment in SLO attainment for the same throughput and latency
objectives over state-of-the-art provisioning alternatives.
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