
FBNetV2: Differentiable Neural Architecture Search

for Spatial and Channel Dimensions

Alvin Wan1⇤, Xiaoliang Dai2, Peizhao Zhang2, Zijian He2, Yuandong Tian2, Saining Xie2, Bichen Wu2,
Matthew Yu2, Tao Xu2, Kan Chen2, Peter Vajda2, Joseph E. Gonzalez1

1UC Berkeley, 2Facebook Inc.
{alvinwan,jegonzal}@berkeley.edu

{xiaoliangdai,stzpz,zijian,yuandong,s9xie,bichen,mattcyu,xutao,kanchen18,vadjap}@fb.com

Abstract

Differentiable Neural Architecture Search (DNAS) has
demonstrated great success in designing state-of-the-art, ef-
ficient neural networks. However, DARTS-based DNAS’s
search space is small when compared to other search
methods’, since all candidate network layers must be ex-
plicitly instantiated in memory. To address this bottle-
neck, we propose a memory and computationally efficient
DNAS variant: DMaskingNAS. This algorithm expands the
search space by up to 1014⇥ over conventional DNAS,
supporting searches over spatial and channel dimensions
that are otherwise prohibitively expensive: input resolu-
tion and number of filters. We propose a masking mech-
anism for feature map reuse, so that memory and com-
putational costs stay nearly constant as the search space
expands. Furthermore, we employ effective shape prop-
agation to maximize per-FLOP or per-parameter accu-
racy. The searched FBNetV2s yield state-of-the-art per-
formance when compared with all previous architectures.
With up to 421⇥ less search cost, DMaskingNAS finds mod-
els with 0.9% higher accuracy, 15% fewer FLOPs than
MobileNetV3-Small; and with similar accuracy but 20%
fewer FLOPs than Efficient-B0. Furthermore, our FBNetV2
outperforms MobileNetV3 by 2.6% in accuracy, with equiv-
alent model size. FBNetV2 models are open-sourced at
https://github.com/facebookresearch/mobile-vision.

1. Introduction

Deep neural networks have led to significant progress
in many research areas and applications, such as computer
vision and autonomous driving. Despite this, designing
an efficient network for resource-constrained settings re-
mains a challenging problem. Initial directions involved

⇤Work done while interning at Facebook.

... ...

...

DNAS
with all possible channels

DNAS
no channel search

Ours
with all possible channels

Pruning
Exploring one channel option at a time

... ...

dimension mismatch

pruningtraining

f () f () f ()

Figure 1: DNAS: Adding all possible numbers of filters
to DNAS (top-right) increases computational and memory
costs drastically, exacerbating DNAS’s memory bottleneck
on search space size. Pruning: Channel pruning (bottom-
left) is limited to training one architecture at a time. Ours:
With our weight-sharing approximation, DNAS can explore
all possible number of filters simultaneously with negligible
memory and computation overhead. See Fig. 2 for details.

compressing existing networks [7] or building small net-
works [23, 26]. However, the design space can easily
contain more than 1018 candidate architectures [33, 27],
making manual design choices sub-optimal and difficult to
scale. In lieu of manual tuning, recent work uses neural ar-
chitecture search (NAS) to design networks automatically.

1

ar
X

iv
:2

00
4.

05
56

5v
1

 [c
s.C

V
]

12
 A

pr
 2

02
0

Previous NAS methods utilize reinforcement learning
(RL) techniques or evolutionary algorithms (EAs). How-
ever, both methods are computationally expensive and con-
sume thousands of GPU hours [40, 29]. As a result, recent
NAS literature [33, 20, 24] focuses on differentiable neural
architecture search (DNAS); DNAS searches over a super-
graph that encompasses all candidate architectures, select-
ing a single path as the final neural network. Unlike conven-
tional NAS, DNAS can search large combinatorial spaces in
the time it takes to train a single model [20, 35, 33, 27]. One
class of DNAS methods, based on DARTS [20], suffer from
two significant limitations [5]:

• Memory costs bound the search space. Short of pag-
ing in and out tensors, the supergraph and feature maps
must reside in GPU memory for training, which limits
the search space.

• Cost grows linearly with the number of options per

layer. This means that each new search dimension in-
troduces combinatorially more options and combina-
torial memory and computational costs.

The other class of DNAS methods, not based on DARTS,
suffer from similar issues: For example, ProxylessNAS
tackles the memory constraint by training only one path in
the supergraph each iteration. However, this means Proxy-
lessNAS would take a prohibitively long time to converge
on an order-of-magnitude larger search space. These mem-
ory and computation issues, for all DNAS methods, prevent
us from expanding the search space to explore larger spaces
of configurations. Noting that feature maps typically dom-
inate memory cost [1], we propose a formulation of DNAS
(Fig. 1) called DMaskingNAS (Fig. 2) that increases the
search space size by orders of magnitude. To accomplish
this, we represent multiple channel and input resolution op-
tions in the supergraph with masks, which carry negligible
memory and computational costs. Furthermore, we reuse
feature maps for all options in the supergraph, which en-
ables nearly constant memory cost with increasing search
space sizes. These optimizations yield the following three
contributions:

• A memory and computationally efficient DNAS

that optimizes both macro- (resolution, channels) and
micro- (building blocks) architectures jointly in a
1014⇥ larger search space using differentiable search.
To the best of our knowledge, we are the first to tackle
this problem using a differentiable search framework
supergraph, with substantially less computational cost
and roughly constant memory cost.

• A masking mechanism and effective shape propa-

gation for feature map reuse. This is applied to both
the spatial and channel dimensions in DNAS.

• State-of-the-art results on ImageNet classification.
With only 27 hours on 8 GPUs, our searched compact
models lead to substantial per-parameter, per-FLOP
accuracy improvements. The searched models outper-
form all previous state-of-the-art neural networks, both
manually and automatically designed, small and large.

Table 1: The number of DMaskingNAS design choices
eclipses that of previous search spaces: number of chan-
nels c, kernel size k, number of layers l, bottleneck type b,
input resolution r, and expansion rate e.

NAS algorithm c k l b r e

MnasNet [29] X X X X
ProxylessNAS [2] X X X X
Single-Path NAS [27] X X X
ChamNet [3] X X X X
FBNet [33] X X X X
DMaskingNAS X X X X X X

2. Related Work

Hand-crafted, efficient neural networks see two predom-
inant approaches: (1) compressing existing architectures
and (2) designing compact architectures from scratch.

Network compression includes both architectural and
non-architectural modifications. One non-architectural ap-
proach is low-bit quantization, where weights and activa-
tions alike may be represented with fewer bits. For example,
Wang et al. [31] propose hardware-aware automated quan-
tization, which achieves a 1.4-1.95⇥ latency reduction on
MobileNet [12]. These techniques are orthogonal to and
can be combined with the methods in this paper. Alter-
natively, architectural modifications include network prun-
ing [8, 32, 36], where various heuristics govern layer-wise
or channel-wise pruning. For example, Han et al. [8] show
that magnitude-based pruning can reduce parameter count
by orders of magnitude without accuracy loss, and Ne-
tAdapt [37] utilizes a filter pruning algorithm that achieves a
1.2⇥ speedup for MobileNetV2. However, with heuristics-
based simplifications, pruning methods train potential ar-
chitectures separately, one after another – in some cases,
pruning methods consider only one architecture [22, 10].

Compact architecture design aims to directly construct
efficient networks, rather than trim an expensive one [15,
34]. For example, MobileNet [12] and MobileNetV2 [26]
achieve substantial efficiency improvements by exploiting a
depth-wise convolution and an inverted residual block, re-
spectively. ShuffleNetV2 [23] shrinks the model size uti-
lizing low-cost group convolutions. Tan et al. propose a
compound scaling method, obtaining a family of architec-
tures that achieve state-of-the-art accuracy with an order
of magnitude fewer parameters than previous convolutional

g1 g2 g3

h
w

c

Channel masking Resolution subsampling

M

F

F

F

g1

g2

g3

h

w

c

m3m2m1

X A B C D

Figure 2: Channel Masking for channel search: A column vector mask M 2 Rc is the weighted sum of several masks
mi 2 Rc, with Gumbel Softmax weights gi. Each mi has ones (white) in the first k entries and zeros (blue) in the next c� k

entries, for some k 2 Z. Multiplication with this mask speeds up channel search, using a weight-sharing approximation
described in Fig. 3. Resolution Subsampling for input resolution: X is an intermediate output feature map for the network.
A is subsampled from X using nearest neighbors. Values at the blue pixels in column A are assembled to create the smaller
feature map in B. Next, run the operation F . Finally, each value in C is placed back into a larger feature map in D. Note we
put values back (D) into pixels where we pulled values from (A). This process is motivated in Fig. 4.

networks [30]. However, these models rely on finely-tuned,
manual decisions that are bested by automatic design.

Neural architecture search automates the design of
state-of-the-art neural networks. Zoph et al. first proposed
using RL for automated neural network design in [39]. This
and other early NAS approaches are based on RL [39, 29]
and EA [25]. However, both approaches consume substan-
tial computational resources.

Later works utilize various techniques to reduce the com-
putational cost of search. One such technique formulates
the architecture search problem as a path-finding process in
a supergraph [33, 20, 6, 27]. Among them, gradient-based
NAS has emerged as a promising tool. Wu et al. show
that gradient-based, differentiable NAS yields state-of-the-
art compact architectures with 421⇥ less search cost than
RL-based approaches. Another direction is to exploit a per-
formance predictor to guide the search process [3, 19]. Such
approaches explore the search space by trimming progres-
sively and lead to significant reductions in search cost.

Stamoulis et al. [28] introduce weight-sharing to further
reduce the computational cost of search. However, ker-
nel weight-sharing doesn’t address the primary drawback of
DARTS, namely a memory bottleneck yielding small search
space size: Say a “mixed kernel” contains weights shared
between a 3⇥3 and 5⇥5. Since it is impossible to extract a
3⇥ 3 convolution’s outputs from a 5⇥ 5’s (and vice versa),
this mixed kernel still convolves 2⇥ and still stores 2 feature
maps for backpropagation. Thus, 2 kernel-weight-sharing
convolutions induce memory and computational costs of 2
vanilla convolutions.

Searching along spatial and channel dimensions has
been studied both with and without NAS. Liu et al [18]

develop a NAS variant that searches over varying strides
for semantic segmentation. However, this method suffers
from increasing memory cost as the number of possible in-
put resolutions grows. As described above, network pruning
suffers from inefficient and sequential exploration of archi-
tectures, one-by-one. Yu et al [38] amend this partially by
creating a batchnorm invariant to the number input chan-
nels; after training the “supergraph” they see competitive
accuracy without further training, for each possible subset
of channels. Yu et al [21] expand on these slimmable net-
works by introducing a test-time greedy channel selection
procedure. However, these methods are orthogonal to and
can be combined with DMaskingNAS, as we train the sam-
pled architecture from scratch. To address these concerns,
our algorithm jointly optimizes over multiple input resolu-
tions and channel options simultaneously, increasing mem-
ory cost only negligibly as the number of options grows.
This allows DMaskingNAS to support orders of magnitude
more possible architectures, under existing memory con-
straints.

3. Method

We propose DMaskingNAS to search over spatial and
channel dimensions, summarized in Fig. 2. The search
space would be computationally prohibitive and ill-formed
without the optimizations described below; our approach
makes it possible to search this expanded search space (Ta-
ble 1) over channels and input resolutions.

3.1. Channel Search

To support searches over varying numbers of channels,
previous DNAS methods simply instantiate a block for ev-

Step A Step B

Step E

Step C

Incompatible Expensive

()

g1 g2 g3 g1 g2 g3

g1
g2 g3

Step D

g1 g2 g3
g1 g2 g3

Figure 3: Channel Search Challenges: Step A: Consider
3 convolutions with varying numbers of filters. Each out-
put (gray) will have varying numbers of channels. Thus,
the outputs cannot be naively summed. Step B: Zero-
padding (blue) outputs allows them to be summed. How-
ever, both FLOP and memory cost increases sub-linearly
with the number of channel options. Step C: This is equiv-
alent to running three convolutions with equal numbers of
filters, multiplied by masks of zeros (blue) and ones (white).
Step D: We approximate using weight sharing – all three
convolutions are represented by one convolution. Step E:
This is equivalent to summing the masks first, before mul-
tiplying by the output. Now, FLOP and memory cost are
effectively constant w.r.t. the number of channel options.

ery channel option in the supergraph. For a convolution
with k filters, this could mean up to k(k + 1)/2 ⇠ O(k2)
convolutions. Previous channel pruning methods [21] suf-
fer from a similar drawback: each option must be trained
separately, finding the “optimal” channel count in one shot
or iteratively. Furthermore, even without saturating the
maximum number of possibilities, there are two problems,
the first of which makes this search impossible:

1. Incompatible dimensions: DNAS is divided into sev-
eral “cells”. In each cell, we consider a number of
different block options; the outputs of all options are
combined in a weighted sum. This means that all block
outputs must align dimensions. If each block adopts
convolutions with different number of filters, each out-
put will have a different number of channels. As a re-
sult, DNAS could not perform a weighted sum.

2. Slower training, increased memory cost: Even with
a workaround, with this nave instantiation, each con-

volution with a different channel option must be run
separately, resulting in a O(k) increase in FLOP cost.
Furthermore, each output feature map must be stored
separately in memory.

To address the aforementioned issues, we handle the in-
compatibility (Fig. 3, Step A): consider a block b with vary-
ing numbers of filters, where bi denotes this block with i

filters. The maximum number of filters is k. The outputs of
all blocks are then zero-padded to have k channels (Fig. 3,
Step B). Given input x, the Gumbel Softmax output is thus
the following, with Gumbel weights gi:

y =
kX

i=1

giPAD(bi(x), k) (1)

Note that this is equivalent to increasing the number of fil-
ters for all convolutions to k, and masking out the extra
channels (Fig. 3, Step C). i 2 Rk is a column vector with
i leading 1s and k � i trailing zeros. Note that the search
method is invariant to the ordering of 1s and 0s. Since all
blocks bi have the same number of filters, we can approxi-
mate by sharing weights, so that bi = b (Fig. 3, Step D).

y =
kX

i=1

gi(b(x) � i) (2)

Finally, with this approximation, we can handle the com-
putational complexity of the nave channel search approach:
this is equivalent to computing the aggregate mask and run-
ning the block b only once (Fig. 3, Step E).

y = b(x) �
kX

i=1

gi i

| {z }
M

(3)

This approximation only requires one forward pass and
one feature map, inducing no additional FLOP or memory
costs other than the negligible M term in Eq. 3 (Fig. 2,
Channel Masking). Furthermore, the approximation falls
short of equivalence only because weights are shared, which
is shown to reduce train time and boost accuracy in DNAS
[28]. This allows us to search the number of output chan-
nels for any block, including related architectural decisions
such as the expansion rate in an inverted residual block.

3.2. Input Resolution Search

For spatial dimensions, we search over input resolutions.
As with channels, previous DNAS methods would simply
instantiate each block with every input resolution. This
nave method’s downfalls are twofold: increased memory
cost and incompatible dimensions. As before, we address
both issues directly by zero-padding the result. However,
there are two caveats:

1. Pixel misalignment: means padding cannot occur
navely as before. It would not make sense to zero-
pad the periphery of the image, since the sum in Eq. 1
would result in misaligned pixels (Fig. 4, B). To handle
pixel misalignment, we zero-pad such that zeros are in-
terspersed spatially (Fig. 4, C). This zero-padding pat-
tern is uniform; except for the zeros, this is a nearest
neighbors upsampling. For example, a 2⇥ increase in
size would involve zero-padding every other row and
column. Zero-padding instead of upsampling mini-
mizes “pixel contamination” across input resolutions
(Fig. 5).

2. Receptive field misalignment: Since subsets of the
feature map correspond to different resolutions, navely
convolving over the full feature map would result in a
reduced receptive field (Fig. 4, D). To handle receptive
field misalignment, we convolve over subsampled in-
put instead. (Fig. 4, E). Using Gumbel Softmax, we
arrive at “resolution subsampling” in Fig. 2.

NASNet [40] introduces a similar notion of combining
hidden states. These combinations are also used to effi-
ciently explore a combinatorially large search space but are
used to determine – instead of input resolution or channels
– the number of times to repeat a searched cell. With the
above insights, the input resolution search thus incurs con-
stant memory cost, regardless of the number of input res-
olutions. On the other hand, computational cost increases
sub-linearly as the number of resolutions grows.

3.3. Effective Shape Propagation

Note this calculation for effective shape is only used
during training. In our formulation of the weighted sum
Eq. 1, the output y retains the maximum number of chan-
nels. However, there exists a non-integral number of effec-
tive channels: say a 16-channel output has Gumbel weight
gi = 0.8 and a 12-channel output has weight gi = 0.2.
This means the effective number of channels is 0.8 ⇤ 16 +
0.2 ⇤ 12 = 15.2. These effective channels are necessary for
both FLOP and parameter computation, as assigning higher
weight to more channels should incur a larger cost penalty.
This effective shape is how we realize effective resource
costs introduced in previous works [33, 35]: First, define
the gumbel softmax weights as

g
l
i =

exp[(↵l
i + ✏

l
i)/⌧]

⌃iexp[(↵l
i + ✏li)/⌧]

(4)

with sampling parameter ↵, Gumbel noise ✏, temperature
⌧ . For a convolution with Gumbel Softmax in the l

th layer,
we define its effective output shape S̄

l
out in Eq. 7 using ef-

fective output channel (C̄l
out, Eq. 5), and effective height,

width (h̄l
out, w̄

l
out, Eq. 6).

C̄
l
out = ⌃ig

l
i · Cl

i,out (5)

F

F

=

=

Pixel Misalignment

Receptive Field Misalignment

D

E

B

C

A

Incompatible Dimensions

Figure 4: Spatial Search Challenges: A: Tensors with dif-
ferent spatial dimensions cannot be summed due to incom-
patible dimensions. B: Zero-padding along the periphery
of the smaller feature map makes summing possible. How-
ever, the top-right pixels (blue) are not aligned correctly.
C: Interspersing zero-padding spatially results in a sum that
aligns pixels correctly. Note the top-right pixels of both fea-
ture maps are correctly overlapping in the sum. D: Say F is
a convolution with 3 ⇥ 3 kernels. Convolving navely with
the feature map, containing a subset (gray), results in re-
duced receptive field (2 ⇥ 2, blue) for the subset. E: To
preserve receptive field for all searched input resolutions,
the input must be subsampled before convolving. Note the
receptive field (blue) is still 3 ⇥ 3. Furthermore, note we
can achieve the same effect, without the need to construct a
smaller tensor, with appropriately-strided dilated convolu-
tions; we subsample to avoid modifying the operation F .

h̄
l
out = ⌃ig

l
i · h̄l

in, w̄
l
out = ⌃ig

l
i · w̄l

in (6)

S̄
l
out = (n, C̄l

out, h̄
l
out, w̄

l
out) (7)

with batch size n, effective input width w̄in and height h̄in.
For a convolution layer without a Gumbel Softmax, ef-

fective output shape simplifies to Eq. 8, where effective
channel count is equal to actual channel count. For a depth-
wise convolution, effective output shape simplifies to Eq. 9,

8x8
(full)

4x4
(subsampled)

2x2
(subsampled)

4x4
(combined)

+ =

Figure 5: Minimizing Pixel “Contamination”: On the far
left, we have the original 8⇥8 feature map. The blue 4⇥4 is
a feature map subsampled with nearest neighbors and zero-
padded uniformly. The yellow 2⇥2 is also subsampled and
zero-padded. Summing the 2 ⇥ 2 with the 4 ⇥ 4 yields the
combined feature map to the far right. Only the green pix-
els in the corners hold values from both feature map sizes;
these green values are “contaminated” by the lower resolu-
tion feature maps.

where effective channel count is simply propagated.

C̄
l
out = C

l
out (8)

C̄
l
out = C̄

l
in (9)

with actual output channel count Cout, effective input chan-
nel count C̄in. Then, we define the cost function for the l

th

layer as follow:

costl =

(
k
2 · h̄l

out · w̄l
out · C̄l

in · C̄l
out / � if FLOP

k
2 · C̄l

in · C̄l
out / � if param

(10)
with � convolution groups. The effective input channels for
the (l+ 1)th layer are C̄

l+1
in = C̄

l
out. The total training loss

consists of (1) cross-entropy loss and (2) total cost, which
is the sum of cost from all layers: costtotal = ⌃lcostl.

In the forward pass, for all convolutions, we calculate
and return both the output tensor and effective output shape.
Additionally, ⌧ in the Gumbel Softmax Eq. 4 decreases
throughout training, [16], forcing g

l to approach a one-hot
distribution. argmaxig

l
i would thus select a path of blocks in

the supergraph; a single channel and expansion rate option
for each block; and a single input resolution for the entire
network. This final architecture is then trained. Note this
final model does not employ masking or require effective
shapes.

4. Experiments

We use DMaskingNAS to search for convolutional net-
work architectures under different objectives. We com-
pare our search space, performance of searched models, and
search cost to previously state-of-the-art networks. Detailed
numerical results are listed in Table 4.

F1

F4

L2

P1

kernel size 3 kernel size 5 skip

Figure 6: Searched FBNetV2 architectures, with colors de-
noting different kernel sizes and heights denoting different
expansion rates. The heights are drawn to scale.

4.1. Experimental Setup

We implement DMaskingNAS using PyTorch on 8 Tesla
V100 GPUs with 16GB memory. We use DMaskingNAS to
search for convolutional neural networks on the ImageNet
(ILSVRC 2012) classification dataset [4], a widely-used
NAS evaluation benchmark. We use the same training set-
tings as reported in [33]: we randomly select 10% of classes
from the original 1000 classes and train the supergraph for
90 epochs. In each epoch, we train the network weights
with 80% of training samples using SGD. We then train the
Gumbel Softmax sampling parameter ↵ with the remaining
20% using Adam [17]. We set initial temperature ⌧ to 5.0
and exponentially anneal by e

�0.045 ⇡ 0.956 every epoch.

4.2. Search Space

Previous cell-level searches produced fragmented, com-
plicated, and latency-unfriendly blocks. Thus, we adopt a
layer-wise search space for known, latency-friendly blocks.

Table 3 describes the micro-architecture search space:
the block structure is inspired by [26, 11] and sequentially
consists of a 1⇥ 1 point-wise convolution, a 3⇥ 3 or 5⇥ 5
depth-wise convolution, and another 1 ⇥ 1 point-wise con-
volution. Table 2 describes the macro-architecture. The
search space contains more than 1035 candidate architec-
tures, which is 1014⇥ larger than DNAS’s [33].

4.3. Memory Cost

Our memory optimizations yield a ⇠1MB increase in
memory cost for every 2 orders of magnitude the channel
search space grows by; for context, this 1 MB increase is
just 0.1% of the total memory cost during training. This
is due to our feature map reuse as described in Sec. 3.1.
We compare memory costs for DNAS and DMaskingNAS
as the number of channel options increases (Fig. 7, left).
With only 8 channel options for each convolution, DNAS
fails to fit in memory during training, exceeding the 16GB
memory supported by a Tesla V100 GPU. On the other
hand, DMaskingNAS supports 32-option channel search,
for a 3222 ⇠ 1033 in search space size (given our 22-layer
search space), at nearly constant memory cost. Here, k-

Table 2: Macro-architecture for our largest search space,
describing block type b, block expansion rate e, number of
filters f , number of blocks n, stride of first block s. “TBS”
means layer type needs to be searched. Tuples of three val-
ues represent the lowest value, highest, and steps between
options (low, high, steps). The maximum input resolution
for FBNetV2-P models is 288, for FBNetV2-F is 224, and
for FBNetV2-L is 256. See supplementary material for all
search spaces.

Max. Input b e f n s

2562 ⇥ 3 3x3 1 16 1 2
1282 ⇥ 16 TBS 1 (12, 16, 4) 1 1
1282 ⇥ 16 TBS (0.75, 3.25, 0.5) (16, 28, 4) 1 2
642 ⇥ 28 TBS (0.75, 3.25, 0.5) (16, 28, 4) 2 1
642 ⇥ 28 TBS (0.75, 3.25, 0.5) (16, 40, 8) 1 2
322 ⇥ 40 TBS (0.75, 3.25, 0.5) (16, 40, 8) 2 1
322 ⇥ 40 TBS (0.75, 3.75, 0.5) (48, 96, 8) 1 2
162 ⇥ 96 TBS (0.75, 3.75, 0.5) (48, 96, 8) 2 1
162 ⇥ 96 TBS (0.75, 4.5, 0.75) (72, 128, 8) 4 1
162 ⇥ 128 TBS (0.75, 4.5, 0.75) (112, 216, 8) 1 2
82 ⇥ 216 TBS (0.75, 4.5, 0.75) (112, 216, 8) 3 1
82 ⇥ 216 1x1 - 1984 1 1
82 ⇥ 1984 avgpl - - 1 1
1984 fc - 1000 1 -

Table 3: Micro-architecture search space for block design:
non-linearities, kernel sizes, and Squeeze-and-Excite [13].

block type kernel squeeze-and-excite non-linearity

ir k3 3 N relu
ir k5 5 N relu
ir k3 hs 3 N hswish
ir k5 hs 5 N hswish
ir k3 se 3 Y relu
ir k5 se 5 Y relu
ir k3 se hs 3 Y hswish
ir k5 se hs 5 Y hswish
skip - - -

option channel search means that for each convolution with
c channels, we search over {c/k, 2c/k, ..., c} channels. To
compare larger numbers of channel options, we reduce the
number of blocks options in the search space (Fig. 7, right).
To compute memory cost, we average the maximum mem-
ory allocated during each training step, across 10 epochs.

4.4. Search for ImageNet Models

FLOP-efficient models: We first use DMaskingNAS
to find compact models (Fig. 6) for low computational
budgets, with models ranging from 50 MFLOPs to 300
MFLOPs in Fig. 8. The searched FBNetV2s outperform
all existing networks.

Figure 7: Memory Cost of DNAS vs. DMaskingNAS

(Left) Conventional DNAS does not fit into memory with
just 8 options per block in channel search. On the other
hand, DMaskingNAS’s memory cost remains roughly con-
stant, even with 32 channel options per block. (Right) We
reduce the number of block options in the search space
to fit conventional DNAS into memory. The memory
cost growth, as the search space increases, is significantly
steeper than that of DMaskingNAS; in fact, DMasking-
NAS’s memory cost is nearly constant.

Figure 8: ImageNet Accuracy vs. Model FLOPs. We
refer to these FLOP-efficient FBNetV2s as FBNetV2-F{1,
2, 3, 4} from left to right.

Storage-efficient models: Many real world scenarios
face limited on-device storage space. Thus, we next per-
form searches for models minimizing parameter count, in
Fig. 9. With similar or smaller model size (4M parameters),
FBNetV2 achieves 2.6% and 2.9% absolute accuracy gains
over MobileNetV3 [11] and FBNet [33], respectively.

Large models: We finally use DMaskingNAS to explore
larger models for high-end devices. We compare FBNetV2-
Large with networks of 300+ MFLOPs in Fig. 10.

5. Conclusions

We propose a memory-efficient algorithm, drastically
expanding the search space for DNAS by supporting
searches over spatial and channel dimensions. These contri-
butions target the main bottleneck for DNAS – high mem-
ory cost that induces constraints on the search space size –
and yield state-of-the-art performance.

Model Search FLOPs Top-1

Method Space Cost (GPU hours) Acc (%)

MobileNetV2-0.35⇥ [26] manual - - 59M 60.3
ShuffleNetV2-0.5⇥ [23] manual - - 41M 60.3
MnasNet-0.35⇥ [29] RL stage-wise 91K⇤ 63M 64.1
ChamNet-E [3] EA stage-wise 28K† 54M 64.2
FBNet-0.35⇥ [33] gradient layer-wise 0.2K 72M 65.3
MobileNetV3-Small [11] RL/NetAdapt stage-wise >91K‡ 66M 67.4
FBNetV2-F1 (ours) gradient layer-wise 0.2K 56M 68.3

MobileNetV2-1.0⇥ [26] manual - - 300M 72.0
ShuffleNetV2-1.5⇥ [23] manual - - 299M 72.6
DARTS [20] gradient cell 0.3K 595M 73.1
FBNetV2-F3 (ours) gradient layer-wise 0.2K 126M 73.2

ChamNet-B [3] EA stage-wise 28K† 323M 73.8
FBNet-B [33] gradient layer-wise 0.2K 295M 74.1
One-Shot NAS [6] EA layer-wise 0.3K 295M 74.2
ProxylessNAS [2] gradient/RL layer-wise 0.2K 320M 74.6
MobileNetV3-Large [11] RL/NetAdapt stage-wise >91K‡ 219M 75.2
MnasNet-A1 [29] RL stage-wise 91K⇤ 312M 75.2
FBNetV2-F4 (ours) gradient layer-wise 0.2K 238M 76.0

ResNet-50 [9] manual - - 4.1B 76.0
DenseNet-169 [14] manual - - 3.5B 76.2
EfficientNet-B0 [30] RL/scaling stage-wise >91K‡ 390M 77.3
FBNetV2-L1 (ours) gradient layer-wise 0.6K 325M 77.2

Table 4: ImageNet classification performance: For baselines, we cite statistics on ImageNet from the original papers. Our results are
bolded. ⇤: The search cost is estimated based on the experimental setup in [29]. †: [3] discovers 5 models with the cost of training 240
networks. ‡: The cost estimation is a lower bound. [11] and [30] combines the approach proposed in [29] with [37] and compound scaling.

Figure 9: ImageNet Accuracy vs. Model Size. We refer to
these as parameter-efficient FBNetV2s as FBNetV2-P{1, 2,
3} from left to right.

Acknowledgements In addition to NSF CISE Expe-
ditions Award CCF-1730628, UC Berkeley research is
supported by gifts from Alibaba, Amazon Web Services,
Ant Financial, CapitalOne, Ericsson, Facebook, Futurewei,

Figure 10: ImageNet Accuracy vs. Model FLOPs for

Large Models. We refer to these large FBNetV2s as
FBNetV2-L{1, 2} from left to right.

Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk and
VMware. This material is based upon work supported by
the National Science Foundation Graduate Research Fel-
lowship under Grant No. DGE 1752814.

References

[1] Deep learning performance guide. https:

//docs.nvidia.com/deeplearning/sdk/

dl-performance-guide/index.html.
[2] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018.

[3] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei
Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming
Wu, Yangqing Jia, et al. Chamnet: Towards efficient network
design through platform-aware model adaptation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 11398–11407, 2019.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[5] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. arXiv preprint
arXiv:1808.05377, 2018.

[6] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. arXiv
preprint arXiv:1904.00420, 2019.

[7] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and Huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[8] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Proc. Advances in Neural Information Processing Systems,
pages 1135–1143, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pages 770–
778, 2016.

[10] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. arXiv preprint arXiv:1808.06866, 2018.

[11] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. arXiv preprint arXiv:1905.02244, 2019.

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[13] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018.

[14] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.

SqueezeNet: AlexNet-level accuracy with 50x fewer pa-
rameters and <0.5 MB model size. arXiv preprint
arXiv:1602.07360, 2016.

[16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[18] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L. Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for semantic
image segmentation. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[19] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia
Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Mur-
phy. Progressive neural architecture search. arXiv preprint
arXiv:1712.00559, 2017.

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[21] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yetang Wang, Jian
Tang, and Jieping Ye. Autoslim: An automatic dnn struc-
tured pruning framework for ultra-high compression rates,
07 2019.

[22] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2736–2744, 2017.

[23] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
ShuffleNet V2: Practical guidelines for efficient CNN archi-
tecture design. arXiv preprint arXiv:1807.11164, 2018.

[24] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268, 2018.

[25] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-
ena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey
Kurakin. Large-scale evolution of image classifiers. In Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2902–2911. JMLR. org, 2017.

[26] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Inverted residuals and lin-
ear bottlenecks: Mobile networks for classification, detec-
tion and segmentation. arXiv preprint arXiv:1801.04381,
2018.

[27] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios
Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-
culescu. Single-path nas: Designing hardware-efficient con-
vnets in less than 4 hours. arXiv preprint arXiv:1904.02877,
2019.

[28] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios
Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-
culescu. Single-path nas: Device-aware efficient convnet de-
sign, 05 2019.

[29] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
and Quoc V Le. MnasNet: Platform-aware neural architec-

ture search for mobile. arXiv preprint arXiv:1807.11626,
2018.

[30] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019.

[31] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 8612–8620,
2019.

[32] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
In Proc. Advances in Neural Information Processing Sys-
tems, pages 2074–2082, 2016.

[33] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 10734–10742, 2019.

[34] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer.
Squeezedet: ified, small, low power fully convolutional neu-
ral networks for real-time object detection for autonomous
driving. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 129–
137, 2017.

[35] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
SNAS: Stochastic neural architecture search. arXiv preprint
arXiv:1812.09926, 2018.

[36] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing
energy-efficient convolutional neural networks using energy-
aware pruning. arXiv preprint arXiv:1611.05128, 2016.

[37] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec
Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. Ne-
tAdapt: Platform-aware neural network adaptation for mo-
bile applications. In Proc. European Conf. Computer Vision,
volume 41, page 46, 2018.

[38] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. In Interna-
tional Conference on Learning Representations, 2019.

[39] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

[40] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc
Le. Learning transferable architectures for scalable image
recognition. pages 8697–8710, 06 2018.

FBNetV2 Supplementary Materials

Model Input Flops Top-1 (%)

FBNetV2-F1 128 56M 68.3
FBNetV2-F2 160 85M 71.1
FBNetV2-F3 192 126M 73.2
FBNetV2-F4 224 238M 76.0
FBNetV2-L1 224 325M 77.2
FBNetV2-L2 256 422M 78.1

Table 1: ImageNet FLOP-efficient classification: These are the
FBNetV2 models yielded by DMaskingNAS optimizing for FLOP
count and accuracy.

Model Input Params Top-1 (%)

FBNetV2-P1 288 2.64M 73.9
FBNetV2-P2 288 2.99M 74.8
FBNetV2-P3 288 4.00M 75.9

Table 2: ImageNet parameter-efficient classification: These
are the FBNetV2 models yielded by DMaskingNAS optimizing
for parameter count and accuracy.

1. FBNetV2 on ImageNet

We include numeric results for all three categories of FB-
NetV2s, optimized for various resource constraints: FLOP-
efficient FBNetV2-F and large FBNetV2-L in Table 1,
parameter-efficient FBNetV2-P in Table 2. See the main
manuscript for comparison with previously state-of-the-art
results.

2. Macro-architecture Search Spaces

We list the DMaskingNAS macro-architecture search
spaces for all three categories of FBNetV2s, optimized for
various resource constraints: FLOP-efficient FBNetV2-F
in Table 4, parameter-efficient FBNetV2-P in Table 5, and
large FBNetV2-L in Table 3. Note that in all classes of mod-
els, the micro-architecture search space over blocks remains
the same.

Table 3: Macro-architecture for our largest search space for
FBNetV2-L, describing block type b, block expansion rate
e, number of filters f , number of blocks n. “TBS” means
layer type needs to be searched. Tuples of three values addi-
tionally represent steps between options (low, high, steps).
The maximum input resolution for FBNetV2-L is 256.

Max. Input b e f n s

2562 ⇥ 3 3x3 1 16 1 2
1282 ⇥ 16 TBS 1 (12, 16, 4) 1 1
1282 ⇥ 16 TBS (0.75, 3.25, 0.5) (16, 28, 4) 1 2
642 ⇥ 28 TBS (0.75, 3.25, 0.5) (16, 28, 4) 2 1
642 ⇥ 28 TBS (0.75, 3.25, 0.5) (16, 40, 8) 1 2
322 ⇥ 40 TBS (0.75, 3.25, 0.5) (16, 40, 8) 2 1
322 ⇥ 40 TBS (0.75, 3.75, 0.5) (48, 96, 8) 1 2
162 ⇥ 96 TBS (0.75, 3.75, 0.5) (48, 96, 8) 2 1
162 ⇥ 96 TBS (0.75, 4.5, 0.75) (72, 128, 8) 4 1
162 ⇥ 128 TBS (0.75, 4.5, 0.75) (112, 216, 8) 1 2
82 ⇥ 216 TBS (0.75, 4.5, 0.75) (112, 216, 8) 3 1
82 ⇥ 216 1x1 - 1984 1 1
82 ⇥ 1984 avgpl - - 1 1
1984 fc - 1000 1 -

Table 4: Macro-architecture for our FLOP-efficient search
space for FBNetV2-F. The maximum input resolution for
FBNetV2-F is 224. See Table 3 for column names.

Max. Input b e f n s

2242 ⇥ 3 3x3 1 16 1 2
1122 ⇥ 16 TBS 1 (12, 16, 4) 1 1
1122 ⇥ 16 TBS (0.75, 4.5, 0.75) (16, 24, 4) 1 2
562 ⇥ 24 TBS (0.75, 4.5, 0.75) (16, 24, 4) 2 1
562 ⇥ 24 TBS (0.75, 4.5, 0.75) (16, 40, 8) 1 2
282 ⇥ 40 TBS (0.75, 4.5, 0.75) (16, 40, 8) 2 1
282 ⇥ 40 TBS (0.75, 4.5, 0.75) (48, 80, 8) 1 2
142 ⇥ 80 TBS (0.75, 4.5, 0.75) (48, 80, 8) 2 1
142 ⇥ 80 TBS (0.75, 4.5, 0.75) (72, 112, 8) 3 1
142 ⇥ 112 TBS (0.75, 4.5, 0.75) (112, 184, 8) 1 2
72 ⇥ 184 TBS (0.75, 4.5, 0.75) (112, 184, 8) 3 1
72 ⇥ 184 1x1 - 1984 1 1
72 ⇥ 1984 avgpl - - 1 1
1984 fc - 1000 1 -

1

ar
X

iv
:2

00
4.

05
56

5v
1

 [c
s.C

V
]

12
 A

pr
 2

02
0

Table 5: Macro-architecture for our parameter-efficient
search space for FBNetV2-P. The maximum input resolu-
tion for FBNetV2-P is 288. See Table 3 for column names.

Max. Input b e f n s

2882 ⇥ 3 3x3 1 32 1 2
1442 ⇥ 16 TBS 1 (16, 28, 4) 1 1
1442 ⇥ 28 TBS (0.75, 4.5, 0.75) (16, 40, 4) 1 2
722 ⇥ 40 TBS (0.75, 4.5, 0.75) (16, 40, 4) 2 1
722 ⇥ 40 TBS (0.75, 4.5, 0.75) (16, 48, 8) 1 2
362 ⇥ 48 TBS (0.75, 4.5, 0.75) (16, 48, 8) 2 1
362 ⇥ 48 TBS (0.75, 4.5, 0.75) (48, 96, 8) 1 2
182 ⇥ 96 TBS (0.75, 4.5, 0.75) (48, 96, 8) 2 1
182 ⇥ 96 TBS (0.75, 4.5, 0.75) (72, 128, 8) 4 1
182 ⇥ 128 TBS (0.75, 4.5, 0.75) (112, 216, 8) 1 2
92 ⇥ 216 TBS (0.75, 4.5, 0.75) (112, 216, 8) 3 1
92 ⇥ 216 TBS (0.75, 4.5, 0.75) (112, 216, 8) 1 1
92 ⇥ 216 1x1 - 1280 1 1
92 ⇥ 1280 avgpl - - 1 1
1280 fc - 1000 1 -

