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CrossMark
Abstract
We construct a class of conserved currents for linearized gravity on a Kerr back-
ground. Our procedure, motivated by the current for scalar fields discovered
by Carter (1977), is given by taking the symplectic product of solutions to the
linearized Einstein equations that are defined by symmetry operators. We con-
sider symmetry operators that are associated with separation of variables in the
Teukolsky equation, as well as those arising due the self-adjoint nature of the
Einstein equations. In the geometric optics limit, the charges associated with
these currents reduce to sums over gravitons of positive powers of their Carter
constants, much like the conserved current for scalar fields. We furthermore
compute the fluxes of these conserved currents through null infinity and the
horizon and identify which are finite.

Keywords: Kerr perturbation theory, Carter constant, conserved currents

1. Introduction and summary

In the Kerr spacetime, freely falling point particles possess a constant of motion, distinct from
the energy E and the z component of angular momentum L, known as the Carter constant K
[1]. Much like E and L,, which are associated with Killing vectors, this constant of motion can
be written in terms of a symmetric rank two Killing tensor K, as [2]

K = Kup'p’, (1.1)

where p” is the four-momentum of the particle and K satisfies

V(al(hc) =0. (12)

*Author to whom any correspondence should be addressed.
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This Killing tensor is not associated with any isometry of the Kerr spacetime, although the
Carter constant reduces to the particle’s total squared angular momentum (which is associ-
ated with spherical symmetry) in the Schwarzschild limit. We fix our conventions for K, in
equation (2.2) below.

In addition to point particles, one can also consider test fields on the Kerr background,
that is, fields whose magnitudes are small enough that their gravitational backreaction can
be neglected. In the Kerr spacetime, scalar, spin-1/2, and electromagnetic test fields possess
conserved charges that generalize the Carter constant:

e For a sourceless complex scalar field ®, the conserved charge is the Klein—Gordon inner
product of ® with ;D& [3]:

1 . —

where Y is any spacelike hypersurface, the differential operator (D is defined by
0D® = V,(K?V, ), (1.4)

and bars denote complex conjugation. The operator ;D commutes with the d’ Alembertian,
and so maps the space of solutions into itself. The charge (K is associated with the Carter
constant in the following sense: for a solution of the form ® o e"/¢, which represents
a collection of scalar quanta with Carter constants {K, }, the charge is given by (in the
geometric optics limit € — 0)

1
ok = %Z K. (1.5)

That is, the charge is proportional to the sum of the Carter constants of each scalar
quantum. In the case of real scalar fields, the charge vanishes in the geometric optics limit.

e A similar result holds for any spin-1/2 field v satisfying the Dirac equation [4]. In Kerr,
there exists an antisymmetric Killing—Yano tensor f,,, which satisfies V(. f,. = 0 and
Kub = facf€p, with our particular choice of K, in equation (2.2). An operator ; /ZD, which
is defined in terms of f,;, and commutes with the Dirac operator, is given by

. a l c
12D = sy (fabe -7 vcfah) , (1.6)

where «“ is the usual gamma matrix and, in terms of the Levi-Civita tensor egpc,
Vs = i€apeay? Y’y 4. The charge which generalizes the charge in equation (1.3) is pro-
portional to the following integral over a spacelike hypersurface >::

12K o /d32a (2D ), DY (1.7
z

As in the scalar field case, this charge is proportional to the sum of the Carter constants of
the individual quanta in the geometric optics limit. This construction works for massive
as well as massless spin-1/2 particles, and even charged spin-1/2 particles in the case of
the Kerr—Newman spacetime [4].

e For electromagnetic fields, there are several conserved charges which satisfy the require-
ment of reducing, in the geometric optics limit, to a sum of (some power) of the Carter
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constants of the photons; some examples are given by [5], which we have considered in
[6] (along with additional examples).

It would be interesting to find similar conserved currents in the case of linearized gravity.

One application of such a conserved current would be to gravitational wave astronomy, in
the form of further advances in the so-called extreme mass-ratio inspiral problem. The grav-
itational waves radiated during the inspiral of compact objects into supermassive black holes
will be an important signal for LISA [7]. There is therefore a major effort currently under-
way to accurately compute gravitational waveforms that these sources would produce (see,
for example [8], and the references therein). As there is a great separation of scales in the
masses of the inspiralling object and the supermassive black hole, this is known as the extreme
mass-ratio inspiral (EMRI) problem. The compact object is treated as a point particle, and
given an orbit, which on short timescales is geodesic, the radiation can be computed using
black hole perturbation theory. However, on long timescales, the orbital parameters change
due to the effects of radiation reaction, and so on these timescales the computed radiation must
be corrected. Special classes of orbits, such as circular or equatorial orbits, can be evolved
in the adiabatic limit by using the fluxes of energy and angular momentum to infinity and
down the horizon to evolve the orbital energy and angular momentum, since for these orbits
the Carter constant is completely determined by the energy and angular momentum (see, for
example, [9]).

Generic orbits require a method of obtaining time-averaged rates of change of an orbit’s
Carter constant. A formula for this quantity to leading adiabatic order has been derived directly
from the self-force [10] (see [11] for recent efforts in this problem, including extensions of this
result to the resonant case). It is qualitatively similar to the formulae for energy and angu-
lar momentum fluxes, having terms corresponding to infinity and to the horizon [12]. There
is, however, no known derivation of this formula from a conserved current. Such a derivation
would provide a unified framework with which to understand these results, and may be neces-
sary to obtain results at higher order. These higher-order results may be necessary for parameter
estimation, or perhaps even simply detection, of signals from EMRIs.

Unfortunately, no conserved currents generalizing the Carter constant for general
stress—energy tensors exist. More precisely, we have shown that, given a general, conserved
stress—energy tensor in Kerr, there is no functional of the stress—energy tensor and its deriva-
tives on a spacelike hypersurface ¥ that (a) reduces to the Carter constant for a point particle
and (b) is independent of the choice of hypersurface > when the stress—energy tensor is of
compact spatial support [13]. This implies that there can be no generic derivation of a flux
formula for a ‘Carter constant’ that applies to arbitrary fields and sources. It is still possible,
however, that such derivations could exist for specific types of fields. In particular, it may be
possible to derive a flux formula for determining the evolution of an orbit’s Carter constant in
linearized gravity from an appropriate conserved current.

Motivated by this possibility, in this paper we construct four conserved currents, denoted
J6J “[5gl, ,pJ “[5g], and ,,j“[0g], that generalize the Carter constant in Kerr, in the sense that
each of their charges reduce to the sum of some positive power of the Carter constants of the
gravitons in the geometric optics limit. Moreover, we show that these currents have the further
property that their fluxes at null infinity and the horizon are finite for well-behaved solutions
that describe radiation. While these currents themselves are new, their construction involves
symmetry operators which have been studied extensively in the literature (see, for example,
[14-16]).

The organization of this paper is as follows. Section 2 is a review of the theory of linearized
gravity in Kerr, using both the spinor and Newman—Penrose formalisms, and fixes conventions
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which we use throughout. It also reviews the Teukolsky formalism and separation of variables
in the Kerr spacetime. Section 3 defines symmetry operators, which are the maps from the space
of solutions into itself, such as the operator (D in equation (1.4) above. We give particular
examples of symmetry operators for linearized gravity in Kerr, and show how they act on
expansions that arise in the Teukolsky formalism. In section 4, we first define the symplectic
product, a generalization of the Klein—Gordon inner product used in the scalar case, which
we then use to generate the conserved currents that we consider in this paper. In section 5, we
review the geometric optics limit of solutions in linearized gravity on a curved background
and use it to deduce the limits of currents defined in section 4. In section 6, we compute fluxes
of these currents through the horizon and null infinity. We conclude in section 7 with general
discussion and a summary of the properties of these currents in table 1. Appendices A and B
contain details of the calculations in section 6.

We use the following conventions in this paper: we follow most texts on spinors by using
the (+, —, —, —) sign convention for the metric and bars to denote complex conjugation.
We denote tensors with indices removed by bold face. For any linear operator Tal,,,ap”l'"b'/
which maps tensors of rank ¢ to those of rank p, we write Talmapbl"'b'/Shl,,,hq as T - S when

indices have been removed. Furthermore, we will leave explicit the soldering forms oM
which form the isomorphism between the tangent vector space and the space of Hermitian
spinors [17].

2. Kerr perturbations: review and definitions

2.1. Spinor formalism

In this paper, we will be using a combination of the spinor and Newman—Penrose formalisms
in order to describe linearized gravity about some arbitrary vacuum solution of the Einstein
equations. In general, we follow the notation of Penrose and Rindler [17, 18]. The spinor for-
malism is particularly convenient in Kerr, since not only is there a rank two Killing tensor K
as discussed in section 1, but also a rank two symmetric spinor (45 which satisfies the Killing
spinor equation [18]:

VA 4Coey = 0. 2.1)

This Killing spinor generates the related conformal Killing tensor ¥, given by

Sap = 06 04 CupCam = %Kab - % Re [CcnC] gas (2.2)
which we use to define our Killing tensor K,, [2]. Note that, given a Killing spinor (p,
equation (2.2) fixes the ambiguity in K,,, which is otherwise only defined only up to terms
of the form \g,,, for constant A, or up to terms that are products of Killing vectors.

Petrov type D spacetimes possess a Killing spinor intimately connected with the Weyl spinor
W4pep [2], the symmetric spinor constructed from the Weyl tensor:

BB o cc' _ pp/ (
C

— AN T
Cabea =04 0y 04”” (easecoYapcop + expecy Yasep) - (2.3)

Since W,pcp is symmetric, it can be written as a symmetric product of four spinors

Wascp = aBBYcOD). (2.4)
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For spacetimes of Petrov type D, there is a choice of these spinors such that ay = 4
and v, = d, (this is one of many equivalent definitions of a type D spacetime). Normalizing
a, and 7, to be a spin basis (o, ¢) (that is, setting 044 = 1), one finds

Yapep = 6W20403Lctp). 2.5)

We are using the following notation for contractions of spinors with a given spin basis [17]:
given a symmetric spinor field Sp, .. g, and a spin basis (0, ¢), we define (for any integer i with
0<i<n

S; = Sp,_p, 51 ... BioPiriohn, (2.6)

Thus, in equation (2.5) ¥, means the Weyl scalar ¥ zcpi*1P0€0P. The spin basis (o, ¢) is

called a principal spin basis for the Weyl spinor if it satisfies equation (2.5). On such a basis,
we define the Killing spinor {5z by

CaB = Coal), 2.7

where ¢/, is constant [2]. For the remainder of the paper, we will restrict ourselves
(generally) to a principal spin basis of the background Weyl spinor.

With these definitions in hand, we turn to the construction of linearized gravity in Kerr. We
fix the background Kerr metric g,,, and consider a one-parameter family of metrics g,,(\),
with g,,(0) = g,,. In general, we will use a notational convention where, for any quantity Q,
O(\) will denote the quantity at an arbitrary value of A\, and Q without an argument will denote
Q(0), the background value. The linearization 5Q of Q()) is defined by

do

0=+ . 2.8)

The linearized Einstein equations take the form
2('c:abcdsgcd _ 8’/T5Tab, (2.9)

where
1 1
2gabcd — v(cgd)(avb) 5(gcdv(avb) gacgbdD) 5gab(gcd|:’ v(cvd)) (210)

is the linearized Einstein operator and 87 is the linearized stress—energy tensor. Here the
covariant derivative V, is that associated with g,,; the covariant derivative associated with
2.,(\) is denoted V,(\). The prepended subscript 2 in 2£9°“? refers to the fact that linearized
gravity is a spin-2 field.

To describe linearized perturbations using spinors, we consider the following quantity:

®g)anpp = O'aAA’UbBB’Sgah- (2.11)

Note that this is not the variation of a spinor; we are performing the variation first, and then
computing a spinor field using the soldering forms 044/ that are associated with the back-
ground spacetime?. In general, the placement of parentheses around a quantity that we are

!'We are using 5, instead of the more conventional §, in order to avoid confusion with the Newman—Penrose operator
J.

2'We note that there have been recent developments on a variational formalism for spinors [19] which we will not be
using. We instead follow the traditional approach of [17].
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varying implies that we take the variation first, and then perform the operation, such as raising
or lowering indices: for example, (5g)* = g“g"?8g,, whereas 5g°> would be the variation of
the raised metric, and in fact g = —(5g)™.

In a similar manner, one can define a spinor (8W)4p¢p that is frequently called the perturbed
Weyl spinor [17] (although it is also not the variation of a spinor), again using the background
soldering forms:

1 u E . F
W) apcp = i 420’8 0cpo?n 8Caped. (2.12)

Using the form of the perturbed Riemann tensor, one finds that [17]

1 ! / 1
@W)apcp = EVA «VZ b apas + Z(Sg)eg\l/ABCD~ (2.13)

The equations of motion for the perturbed Weyl spinor are derived from the Bianchi identity,
and are [17]

! 1 'p! /
VM (W) apcp = 5(58)EFA BN s Verep — Verpc V)
! 1 / !

x (5g)" " — E\I/EF(BCVEB ®2)n™ . (2.14)

Thus, the equations of motion depend explicitly on the metric perturbation as well as the per-
turbed Weyl spinor. Note further that equation (2.14) reduces to the spin-2 massless spinor field
equation VA4 (5W)4pcp = 0 only when the manifold is conformally flat (U zcp = 0).

The perturbed Weyl spinor, moreover, is not gauge invariant: under a gauge transformation
6gab _>Sgab + 2V(tléhb) [17],

@W)apcp — OW)apcp + fEE/ Veu¥sepe + 2V euscVpe fEEl~ (2.15)

For type D spacetimes, however, (W), and (8W)4 are gauge invariant, and they are the pieces
that correspond to gravitational radiation [20]. Moreover, as is well known, the equations of
motion for (5¥)y and (5¥), can be ‘decoupled’ from those for (W), (8W¥),, and (8¥)s, and
each other [21], as we will discuss in section 2.3. It suffices to use either (5W), or (W), to
describe a generic, well-behaved perturbation, up to / = 0, 1 modes [22], and therefore we can
describe such perturbations in terms of gauge invariant variables.

2.2. Newman-Penrose formalism

We will also be using the Newman—Penrose notation: given a spin basis (o, ¢), the null basis
{I*,n*, m,m"} is defined by

Al / ’
1= g%y p0’o”, n® = o, m* = oy po T, (2.16)

such that

8ab = 2(l(ahy) — mainy)). (2.17)
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Using these four vectors, one can define the Newman—Penrose operators by D = I'V,, A =
n“V,, and § = m*V,, as well as the twelve spin coefficients via the following eight equations:

Doy = €op — Ky, Diy = mop — €y,
Aoy = Y04 — Tla, Aty = v0g — YL,
(2.18)
dop = Box — oy, Oty = pog — Bia,
d0p = qop — pla, Olp = Nog — Quig.

The five Weyl scalars Wy, ¥, ¥,, U3, and ¥4, in Newman—Penrose notation, take the
form [23]

EmllEm? i=0
el rEm? i=1
1
U = —Caped El“nb(lcnd — mm?) i=2 (2.19)
“nlintnd i=3
nmnim? i=4

A null tetrad such that ¥y = ¥; = U3 = W, = 0 and ¥, # 0, for a Petrov type D spacetime,
is called a principal tetrad (as it is a tetrad associated with a principal spin basis).

Furthermore, at certain points throughout this paper, we will be using the notion of ” and *
transformations (reviewed in [24]) to simplify the presentation. These are defined by replacing,
in some expression, the members of the spin basis via the following rules:

"ioa > ita, Ly > i0a, Op > —ily, Ly > —i04r,
(2.20)
k104 F> 0p, Lp > oLg, Opr — —Llpry  Lar F> —0pr-.

The’ and * transformations elucidate certain symmetries that appear in Newman—Penrose nota-
tion. The " transformation, which merely switches I +— n® and m® +— m“, is particularly
important in Kerr, since it preserves (o, ¢) as a principal spin basis. As an example, applying
the transformations to equation (2.18) yields

€ = —7, K = —U, ™ = -7,
g =—a, o ==\ i =—p,
) ) ) 2.21)
€ = _ﬂ7 R = —0, ™ = _/J/a
fy* = —aq, 7'* = —p, I/* - —)\

As another example, consider the following equations, in Newman—Penrose notation, that the
scalar ¢ obeys in Kerr:

D(=—Cp,  AC=(p,  6C=—(r, 0 =(m. (2.22)

The second equation can be derived from the first via a’ transformation, and likewise the fourth
from the third, while the third follows from the first via a * transformation. In the future, we
will only list one of the equations, and specify that the others can be obtained by the appropriate
transformations.



Class. Quantum Grav. 38 (2021) 055004 A M Grant and E E Flanagan

2.3. Teukolsky formalism

The Teukolsky formalism is a choice of variables for test fields in Kerr such that the equations
of motion decouple, yielding equations that describe radiation, and furthermore, as we will
discuss later in this section, separate in Boyer—Lindquist coordinates. It builds off of the New-
man—Penrose formalism: in the case of linearized gravity, the variables involve variations of
the Weyl scalars. Note that, taking variations of the Weyl scalars, we find that

Sy = (8Y)o, Sy = (BV)4. (2.23)

On the left-hand sides of these equations, there is a variation of the null tetrad as well as the
Weyl tensor; on the right, only the Weyl tensor is varied, according to equation (2.12). Note
that equation (2.23) only holds for 8¥, and 5W,, and only because the background is type D,
as the tetrad is varied when varying equation (2.19). This result is rather convenient, since we
will have reason to use 3V and (5W),, for example, interchangeably.

The choice of variables that are employed here are the so-called ‘master variables’ (2,
defined by [21]

U, §=-2
N=<0 s=0 . (2.24)
S\If() § =

The value of s is known as the spin-weight of the particular variable. Moreover, for s > 0, one
can write these variables in terms of an operator (M, which maps from the space of gauge fields
(such as the metric perturbation dg,,) to the corresponding master variable (2. For example,
for |s| = 2,

s = MP8g,,. (2.25)

From equations (2.12), (2.24), and (2.25) (see, for example, [15]),

M = —%{(5+7?—35—d)(5+7?—25—2d)l”lh+(D—ﬁ—3e+E)
X (D —p—2e+28mm’ —[(D— p—3e+ &6+ 27 —20)
+(+7—38— D —2p—20)]I'm"}, (2.262)
LM = —%&{(8—%+3a+6)(5—%+2a+26)n“n”+(A+ﬂ+3y—w)
X (A4 o+ 2y = 29)mim” — [(A+ [i+ 3y — N — 27 + 20)
+ (0 — T4 3a+ BA +20+2y)| n'm’} . (2.26b)

In terms of these variables, and in a type D spacetime, the equations of motion for the scalar
field ® (s = 0) and linearized gravity (s = £2) may be written in the form [21]

0,0 = 87,7 - T, (2.27)
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known as the Teukolsky equation. Here, ([] is a second-order differential operator (the
Teukolsky operator) that equals, for s > 0,

O=2{[D-Q2s—De+e—25p—pl(A =25y +p) — [0 —a—Q2s— 1B
— 257 + @ (6 — 2sa + ) — 2(2s — (s — DV}, (2.28a)
SO =2{[A+ @25 — 1)y =7 + p][D + 2s¢ + (25 — 1)p]
—[6+@s—Da+ B =76+ 258+ (25 — D7] —2(2s — D(s — DV, } .
(2.28b)

On the right-hand side of equation (2.27), (7 is an operator which converts ;T the source term
for the equations of motion (for example, , 7" is the stress—energy tensor 57%), into the source
term for the Teukolsky equation (2.27). For example, one choice of 1,7 is given by inspection
of equations (2.13) and (2.15) of [21]:
2T = [0+ T —a—38—4n)l, — (D —3e+€—4p— pm|
X [(D—et+e—pmpy— @ +7—a— Py, (2.29a)
T =C (A +3y—F+4 p+ Ding — (6 — 7+ B+ 3a+ 4m)ng]
X [0 =7+ B+ anp — (A+v— 5+ mmy) . (2.29b)

A freedomin 4,7, is discussed in section 3.3 below. One can also rewrite Teukolsky’s original
result as an operator equation [14], as we will find useful in section 3.2. In terms of M,

sT - 15€ = UM, (2.30)

where, for |s| = 2, € is the linearized Einstein operator (2.10). Applying equation (2.30)
to a metric perturbation and using equation (2.25) and the linearized Einstein equation (2.9)
yields the Teukolsky equation (2.27) for |s| = 2. Since all of the operations just described are
C-linear, equation (2.30) holds for complexified metric perturbations as well.

So far, we have not tied our discussion to a particular coordinate system, nor a particular
tetrad (other than enforcing that we use a principal null tetrad), since we have only required
the background metric to be Petrov type D. We now work in Kerr, and in Boyer—Lindquist
coordinates (z, r, 0, ¢), where the metric takes the form

dr? 2M
ds* =dP - % (g + d92> — (r* + d®)sin® 6d¢? — T’ (a sin* 0dg — dt)z,
2.31)
where A = 12 — 2Mr + a® and ¥ = r* + a® cos® § = |(|*, and where we have chosen

(=r—ia cos 6. (2.32)

This choice of ¢ has the property that # = 0, can be defined in terms of (5 [18]:

M= 2u e (233)
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Using the Kinnersley tetrad (a principal tetrad of the background Weyl tensor), which is
given by

(r* + a*o, + ady (P +a»)d, +ady, A
l - rs T = rs
A +o. m 25 o
| ) (2.34)
L i
= —\/55 (m sin 00, + 9y + —Sineagr)) )
we find that ¥, = —M />, Furthermore, the non-zero spin coefficients are given by
o1 A . r—m
p= C, H = 224’ Y= 22 s
0 . . (2.35)
co = ia ia
=, =a+ = —— sinb, = ———— siné.
b= b= 1e TS

We now review how the source-free version of the Teukolsky equation (2.27) separates in
these coordinates. Consider, for integers s and n, the operators [25, 26]

r +a? a r—M
@n—3r+T8,+Z8¢+2n A N
1 (2.36)
Li=0y— i <a sin 60, + .—8¢> + 5 cotf.
sin
Note that these operators satisfy
AT"D,A" = Dy, sin”" 0.Z; sin” 0 = L. (2.37)

We also define the operators 2, and .Z;", by taking 2,, and Z; and setting 9, — —9, and
0y — —0y; note that c%:r = %, 3. Equations analogous to equations (2.37) hold for @,T
and 2. We will also need a way to express these operators in terms of Newman—Penrose
operators; using equations (2.34) and (2.35), we find

Ly =V2(6+25B),  Du=D+2npu' (v — ),

. 1 (2.38)
D, = —pp [A=2n(y — ).

Note that these formulae are only valid for the Kinnersley tetrad. For real frequencies w and
integers m, we further define operators 9,,,, and £, by the requirement that, for any
function f{(r, 0),

@n [ei(mq‘)—wt) f(l", 9)] = ei(mq’)—wt) @nmwf(ra 9)’
o o (2.39)
‘,%s [el(m@_wt)f(r, 9)] = el(mw_wt)gsmwf(r, 9)

This equation yields the formulae

Ko -M
Dms = Or + lT + 2an’ L smy = 0 + Quu + scot b, (2.40)

3 Note that here, and below, our definition of the complex conjugate O of an operator @ is O(f) = O(f), where fis
the argument of this operator. This is consistent with the standard notation for the Newman—Penrose operator 9.

10
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where
Ko = am — w(r* + a), Oy =m csch — awsin 6 (2.41)

(note that the conventions for K,,, in [21, 26] differ by a sign; here, we use the convention of
[26]).

The operator on the left-hand side of the Teukolsky equation (2.27) takes the following
simple form:

Od=R+,S, (2.42)
where
AD\ DT — 225 — Dro; §=0
R = N : (2.432)
ADT, Do —2(2s+ Dro, s<0
S= LT L+ 2i2s — Da cos 60, 5> o’ (2.43b)
L1 LT+ 2i25 4+ Da cos 00, s<0

where it can be readily shown that either the top or bottom lines of equations (2.43a) and
(2.43b) yield equal results for s = 0; that is, ;1 ¢R = _¢R and ;¢S = _S. Note that (/R is a
differential operator that only depends on r, ¢, and ¢, while (S only depends on @, ¢, and ¢. As
such, it is clear that the sourceless Teukolsky equation (2.27) separates in r and ¢, and so one
can write [21]

Qt,7,60,0) = / ) A0 > (5O (0)e ", (2.44)

T =l it

Inserting this expansion into the sourceless Teukolsky equation (2.27), followed by using
equations (2.42), (2.43), (2.37), and (2.39), one finds that (for s > 0), the functions 4 {2,
and 1,0, satisfy [26]

(L sEmen L s@mw £ 22s — Dwa cos 0]+,
= — 5N =5 Ot (2.45a)

[AD 1 gyimyw Domize £ 2025 — Dwr] A2, Qy,,,

= A2 X ot s s (2.45b)

where 4\ 1S a separation constant. This constant reducesto (/ + s)(I —s+ 1) =I([+ 1) —
s(s — 1) in the Schwarzschild limit [26, 27].

The functions ;0 are regular solutions to a Sturm—Liouville problem on [0, 7] with eigen-
values ¢\;,,. Thus, there is only one solution for each value of /, m, and w, up to scaling.
Note, moreover, that the differential operator on the left-hand side of equation (2.45a) com-
mutes with the following three operations: complex conjugation, (s, m,w) — (—s, —m, —w),
and (s, 0) — (—s, ™ — 0). As such, we can simultaneously diagonalize this operator with each
of these operations, choosing ;A\, and (O, to be real, as well as choosing

s®lmw(9) = (_1)"1+S7S®l(7m)(7w)(9)’
(2.46)
O = ) = (=) 04,,(6)

1
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(a convention which is used by [28]), as well as
s)\lmw - —s)\lmw - s)\l(—m)(—w)- (247)

Finally, the scaling freedom in ;©,, is fixed by imposing the following normalization
condition [21]

/ sOm(0)sO 1, (0) sin 06 = §;p. (2.48)
0

The functions
sYlmw(e’ t ¢) = ei(m¢7wt)selmw(0) (249)

are the so-called spin-weighted spheroidal harmonics, and are orthogonal for different I, m,
and w.

We now define another expansion for ({2, subtly different from that in equation (2.44),
which results in a convenient way of expanding ;2 as well. To do so, note that the differential
operator on the right-hand side of equation (2.45b) commutes with taking (m, w) — (—m, —w)
followed by complex conjugation. As such, we can construct two linearly independent solu-
tions labelled by p = +1 [their eigenvalue under this operation, multiplied by a conventional
factor of (—1)"*5]:

~ 114 N
SQ[mwp(r) = 5 [SQ[mw(r) + p(—l)m+“SQ[(7m)(7w)(r) 5 (250)

and so

sﬁlmw(r) - Z Sﬁlmwp(r)~ (251)

p==l1

It is occasionally more convenient to re-express the expansion (2.44) in terms of sﬁlmwp(r),
instead of (€2,,..(r):

17,0, 9) = / dw DD D 01 (0) sy (1)- (2.52)
T =8| Im|<Ip==£1
A simple consequence of equations (2.46) and (2.50) is that
Q(1,1,0,9) = / dwd DN p D 040 (), (2.53)
T I=fs| Im|<ip=£1
and so this is a convenient expansion of the complex conjugate of the master variables.

Note, however, that these expansions are different in status from the expansion (2.44), as the
coefficients in this expansion must satisfy

U m () = P 1" Qo). (2.54)

12
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3. Symmetry operators

As defined by Kalnins, McLenaghan, and Williams [29], a symmetry operator is an R-linear
operator that maps the space of solutions to the equations of motion, which must be linear, into
itself. For the space of complexified solutions to real equations of motion, there exists a trivial
symmetry operator mapping solutions to their complex conjugates. In his original paper, Carter
constructed the symmetry operator for scalar fields in equation (1.4), which commutes with the
d’Alembertian [3]. If an operator commutes with the operators in the sourceless equations of
motion, then it must be a symmetry operator: if a field ¢ satisfies L¢p = 0, and [D, L] = 0,
then

LDé = DL =0, 3.1)

and so D¢ is a solution. Lie derivatives with respect to Killing vectors are examples of sym-
metry operators which commute with the equations of motion. Further examples of symmetry
operators can be created by composing symmetry operators associated with Killing vectors,
but these are, in a sense, ‘reducible’.

In this section we review two classes of irreducible symmetry operators that appear in the
Kerr spacetime: those that derive from separation of variables, and those that arise from taking
the adjoint of the Teukolsky equation. Note that, recently, additional symmetry operators have
been discussed in the Kerr spacetime [16], which we do not discuss in this paper.

3.1. Separation of variables

The first class of symmetry operators we consider is associated with the separability of the
underlying equations of motion. To see that there is always a symmetry operator associated
with separability, consider as an example the following partial differential equation (in two
variables x, y):

Lo = [X(x,0x,...)+ V(.0 83, )] e=0, (3.2)

for some differential operators & and ). Since X only depends upon x and ) only depends
upon y, X and Y must commute. Moreover, L = X + ), and so X and )) must both commute
with £, and so A" and ) are symmetry operators. In addition, if there are additional variables
21, .- .,2n, and X and Y only depend on derivatives with respect to these variables, then this
argument still holds.

Irreducible symmetry operators arise in Kerr, similarly, via a separation of variables argu-
ment. As discussed in section 2.3, the Teukolsky equation separates, yielding the two operators
sR and ;S in equations (2.43a) and (2.43b) (respectively). These operators are analogous to the
operators X’ and ) in equation (3.2) above, and depend on derivatives with respect to additional
variables ¢ and ¢. One combination of (R and ;S is particularly interesting, namely

SDE?R—@) (3.3)

One can show that, for s = 0, this is in fact the scalar symmetry operator (1.4) discussed by
Carter [3].

In the case of linearized gravity, ;D is a map from the space of solutions of the homogeneous
Teukolsky equation (2.27) of spin weight s into itself. In section 3.4, we will review a procedure
(a version of Chrzanowski metric reconstruction [15]) which will allow us to construct another
operator ;D from ;D that maps the space of complexified metric perturbations into itself.

13
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The symmetry operator /D, will be more useful than ;D, since the symplectic product for

linearized gravity naturally acts on the space of metric perturbations.

3.2. Adjoint symmetry operators

In Kerr, for spins higher than 0, there is a second set of irreducible symmetry operators that
can be constructed, following an argument due to Wald [14]. This argument holds, as do many
of our equations, for all |s| < 2; however, we will only explicitly use |s| = 2 in this paper.

The argument is as follows. We first define the adjoint of a linear differential operator. Con-
sider a linear differential operator £ that takes tensor fields of rank p to tensor fields of rank
g. We say that an operator which takes tensor fields of rank ¢ to tensor fields of rank p is the
adjoint L' of L if, for all tensor fields ¢ of rank p and tensor fields 1 of rank ¢, there exists a
vector field j*[¢, 1] such that

Y (L-p)—¢- (LT 1h)=V,jp, ). (3.4)

Note that this is not the usual definition of adjoint, which has a complex conjugate acting on )
in the first term and on (Ud)) in the second. Chrzanowski [15] and Gal’tsov [28] use the usual
definition, whereas Wald uses the definition (3.4).

We now give some examples of adjoints of the operators considered in section 2.3. First,
we note that one can easily show that, for two operators £, and L,,

(L1L)! = £he]. (3.5)

Moreover, the adjoints of the various Newman—Penrose operators, using equations (2.16),
(2.18), and (3.4), are given by

Di=—-D—(c+8&+p+p, (3.6)

together with the corresponding expressions obtained via ' and * transformations. Using
equations (3.4) and (2.10), one finds that ,& is self-adjoint:

LET=,E. (3.7)
Similarly, one can show from equations (3.6) and (2.28a) that
Of =0, (3.8)

as was first noted by Cohen and Kegeles [30]. Finally, the adjoint of the operator s7
[equation (2.29a)] that enters into the Teukolsky equation (2.27), for |s| = 2, is given by

s'ab

- {[m(a(D +2¢ = p) = Lia(8 + 28 — Ty (8 + 45 + 37) — mypy(D + 4 + 3p)] s=2
[ (A = 27 + 1) = 1 (6 = 20+ M)y (6 — 4o — 37) — iy (A — 4y — 3 )¢t s=-2
(3.9)
We now take the adjoint of equation (2.30), yielding [from equations (3.8) and (3.7)]
g &y =M 0. (3.10)

Suppose that we have a solution _;?) to the vacuum Teukolsky equation _;[1_?) = 0; note that
_s% 1s not necessarily the master variable _{) associated with 8g,, via equation (2.25). Then,
from equations (3.10),

14
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W& 5T =0. (3.11)

Thus, S‘rT_sw is a complex metric perturbation that solves the vacuum linearized Einstein
equations.

Thus, the operator (7' allows the construction of complex vacuum metric perturbations
from vacuum solutions to the Teukolsky equation. From a single solution _;% to the vacuum
Teukolsky equation (2.27) of spin weight —s, one can therefore apply ¢M (for some other
s', where |s'| = |s|) to either sTT_Sw or ¢71_), both of which yield solutions to the vacuum
Teukolsky equation:

s DS’M . sTT—s¢ =0, s’Ds’M ' sTT—sw =0. (312)
That is, there exist two symmetry operators of the form
v C=M-g7l, C=yM- T, (3.13)

The operator ¢ ;C maps from the space of solutions to the vacuum Teukolsky equation (2.27)
of spin weight —s to the space of solutions to the vacuum Teukolsky equation of spin weight
s'. Similarly, ¢,C maps from the space of solutions to the complex conjugate of the vac-
uum Teukolsky equation (2.27) of spin weight —s into the space of solutions to the vacuum
Teukolsky equation of spin weight s'.

As in section 3.1, these operators act on the master variables, rather than metric perturba-
tions. However, one can also construct the operators (for |s| = 2)

Cap = 7l M, (3.14)

which are symmetry operators for metric perturbations. That is, they are R-linear maps from
the space of complexified solutions to the vacuum linearized Einstein equations into itself. This
follows from the operator identity (derived from equations (3.10) and (3.14))

ME : sc - SMT—SD—SM - SMT—ST . ME; (315)

where the second equality from equation (2.30). Applying this operator identity to (in general)
a complex vacuum metric perturbation, the right-hand side yields zero. Note that the two cases
s = £2in equations (3.9) and (2.26) differ by a’ transformation, along with a factor of ¢ 4 and
80 2Cp and _,C,,°? are related by a’ transformation. Furthermore, the metric perturbations
generated by 1,C,,° are in a trace-free gauge by construction.

Finally, we note that this argument has been used in a fully tetrad-invariant form, using a
spinor form of the Teukolsky equations, to generate symmetry operators for metric perturba-
tions of the sort that we review in this section [16]. For simplicity, we use the Newman—Penrose
form of the Teukolsky equations instead.

3.3. Issues of gauge

Since the operators TaTb map into the space of metric perturbations which are solutions to the

linearized Einstein equation, the solutions which these operators generate will be in a particular
gauge. This gauge freedom can be understood in the following way: the operators 4,7, in
equation (2.27) are only defined up to transformations of the form

ab o Tab + 28 V) (3.16)
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as they act upon the stress—energy tensor, for which V,7% = 0. As such, we find that

ﬁﬂb have the corresponding freedom

ﬁTlh - ﬁTlh + 2V (0&p)- (3.17)
Note here that, in the second term, the covariant derivative acts upon the argument of these
operators in addition to acting on &,. The particular choice (2.29a) of 1,7, fixes this free-
dom, and so the metric perturbations generated by 4,C,,? are in a particular gauge. The gauge
conditions which they satisfy are [15]

gabﬂTaTb =0, lazTaTb =0, na—ZT;b =0. (3.18)

For 2Tafb, this is the ingoing radiation gauge condition, whereas for 727213, this is the ourgoing
radiation gauge condition.

We now show that the solutions ,C - dgand _,C - g do not differ by a gauge transformation,
in the case where 8g,, is real. This is in contrast to the case in electromagnetism [6], where the
analogous solutions do, in fact, differ by a gauge transformation. While the total solutions ,C -
dgand _,C - 5gdo not differ by a gauge transformation, we will also show that the imaginary
parts of each of these two solutions are related by a gauge transformation, and so they represent
the same physical solution.

To proceed, we first note the following identities [note a conventional factor of two dif-
ference with [31], which comes from the difference between their equation (2.21) and our
equation (2.13)]

M- ,C = %(D + € —36)(D + 2¢ — 26)(D + 3¢ — &)(D + 4¢) ,M, (3.19a)
M. ,C= %c"‘(a +3a+ B)(0 +2a+28)(0 +a+36)0 +48) M, (3.19b)
LM -,C = %W[f(é%@) — (A +47) — (D + 48)

+ 70+ 48) + 2] .M

I -
= SO Vo + 4(t5V,0") M, (3.19¢)

where ‘=’ means ‘equality modulo equations of motion’. Moreover, apart from those that occur
in this equation, all other combinations of 1,M and izM acting on ,C and ,C are zero for
vacuum solutions. Here we have used the equation

Dp=(p+e+op (3.20)

(along with its '~ and *-transformed versions) in order to simplify, as well as equation (2.33).
One can furthermore use a’-transformation to write down versions of equation (3.19) involving
_,C, noting that ¥, — ¥, under a’-transformation, and ¢ must flip sign (note that 7 keeps the
same sign).

To determine whether certain linear combinations of izcadeSgcd (and their complex con-
jugates) differ by gauge transformations, we need the following relation, which only holds for
dW, and 8 coming from the same real vacuum metric perturbations:

16
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(D + € — 38)(D + 2¢ — 26)(D + 3¢ — &)(D + 465V,
=0 —a—3B8)0 —2a—28)0 —3a— B)6 —4a)*T,
+ 3CWa [V — 45V 0”15 Ty; (3.21)

we will also need this equation’s '-transform. This relation can be derived using the per-
turbed Bianchi identities and Newman—Penrose equations, as mentioned in [32]; for a more
modern derivation, see for example [33]. Using equations (3.19) and (3.21), along with their
'-transforms, we find that (applied to a real, vacuum metric perturbation),

M- ,C= M- ,C— M- _,C. (3.22)

The '-transform of this equation merely switches 2 — —2. As remarked below equation (3.19),
one has that

M -,C =0 (3.23)
(along with its '-transform), and so one therefore has that
oM -Im [ ,C — ,C]-3g=0, LM -Im[,C— ,C]-3g=0. (3.24)

This equation does not, as it stands, guarantee that Im[,C - 8g] and Im[_,C - 5g] are related
by a gauge transformation, just that the master variables associated with these two metric per-
turbations are equal. This implies that their difference is a metric perturbation that contributes
to dM and da; that is, it only has monopole and dipole terms [22]. One would expect that
Im([12Cu8g.q], as they are constructed wholly from the radiative Weyl scalars 5%, and 504
(which do not have monopole or dipole pieces), would not have non-radiating pieces. This
statement is in fact correct due to arguments in [34]. In conclusion, we find that Im[,C - 3g]
and Im[ _,C - g] differ by a gauge transformation:

Im[2C/88ca) = Im[2Cup“8gcal + 2V () (3.25)

for some vector field £“. The main theorem of [33] provides an alternative proof of this result,
as does the discussion in section 4.3 of [16].

3.4. Action of symmetry operators on expansions

In section 2.3, we showed that the master variables (and their complex conjugates) have conve-
nient expansions [equations (2.52) and (2.53)] in terms of spin-weighted spheroidal harmonics.
We show in this section that the symmetry operators considered in this paper which act on the
master variables are ‘diagonal’, in the sense that they act upon each term in these expansions
by simply multiplying each term by an overall constant. We then construct a similar expansion
for vacuum metric perturbations, and show that the action of the symmetry operators that we
have defined for metric perturbations are also diagonal on this expansion.

First, let us consider the action of the symmetry operator ;D defined in equation (3.3). From
equations (2.43), (2.37), (2.39), and (2.45), it follows that

SDSQ = / Z Z Z \X\Almw ei(m¢7WI)s@lmw(9)s§lmwp(r)~ (326)
= I=|s| |m|<Ip==%1

Later in this section, we will also show that a similar diagonalization occurs for a tensor version
of this operator, which we will define in equation (3.47).
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Next, we consider the symmetry operators s/, sC defined in equation (3.13). We begin by
noting that these symmetry operators simplify with the choice of Boyer—Lindquist coordinates
and the Kinnersley tetrad, yielding the so-called ‘spin-inversion’ operators [15, 28]:

S o1 S
1€ = 3P4, L, C= ?ZAZ(@O*)“A{ (3.27a)
5 oC = ézfl.zgzl*x;, 220 = éz,lgozlgz. (3.27b)

The constant numerical factors here are consistent with those of Wald [14] and Chrzanowski
[15], but disagree with those of other authors (such as [26, 28]) due to normalization
conventions.

These operators are referred to as spin-inversion operators for the following reason. Con-
sidering their action on the terms in the expansion (2.53) of ,, they are either purely radial
[equation (3.27a)] or purely angular [equation (3.27b)]. Due to this fact, along with the
expansions in equations (2.52) and (2.53), it is apparent that, when acting on the terms in
these expansions, the operator 2,2C maps from the space of solutions to the radial Teukolsky
equation (2.45b) with s = —2 to s = 2, and similarly ,2725 maps from solutions with s = 2
to s = —2. Similarly, for the angular operators, due to the fact that the expansion for sQisin
terms of O, 5 _,C maps from the space of solutions to angular Teukolsky equation (2.45a)
with s = 2 to s = —2, and similarly _mamaps froms = —2tos = 2.

We now show that the spin-inversion operators merely multiply each term in the expan-
sion (2.53) by some constant, starting with the angular spin-inversion operators. The angular
Teukolsky equation (2.45a) is a Sturm—Liouville problem, which only has one solution for a
given value of /, m, and w (up to normalization). If the angular spin-inversion operators, when
acting upon individual terms in the expansion (2.53), map between the two spaces of solutions
with s = £2, then these maps can be entirely characterized by two overall constants, which
we denote by 1 Cpyp:

Z —l(im)(iw)g O(im)(iw)g 1(im)(iw)-§/ﬂ 2tm) () 2 Ot
= . Cmsy Ot (3.28)

)

This equation is known as the angular Teukolsky—Starobinsky identity. Since these operators
are entirely real, this constant ,Cy,,, is also real. Moreover, the normalization condition for
sOimw implies that [26]

2Cimes = —2Cimw = Cinss (3.29)
where
Cino = 22X @A +2)° = 8072 s[04, (52 + 6) = 124°] + 144’ e,
(3.30)
and
i, =a —am/w. (3.31)

We now turn to the case of the radial operators in equation (3.27a), which are somewhat
more complicated. This is because there are two solutions to the radial equation (2.45b), as
it is second-order, and not a Sturm—Liouville problem. However, as noted in section 2.3, the
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two solutions can be characterized by their eigenvalues under the transformation (m, w) —
(—m, —w), followed by complex conjugation. Since the radial spin-inversion operator is also
invariant under this transformation, we must therefore have that

2 o4 6£9/2 O
AP, AL

— 6F9/2 O
0GFm(Fw) =22, Gy AT L,0

(3.32)

Imwp Imwp

(the factor of 2*? is purely conventional, and is present only to make our final expressions
simpler). This equation is known as the radial Teukolsky—Starobinsky identity.

To determine the values of the constants 1, Cj.,, we need to use the fact that ., come from
the same real metric perturbation. The values of these constants given by Teukolsky and Press
in their original paper [25] only hold for the p = 1 case (as pointed out by Bardeen [35] *).
The values of 4»Cy,, are found using equation (3.22), since (in terms of ({2) the complex
conjugate of this equation (and its ’-transform) can be written as
CO=_,C_9-_,C Q. (3.33)

—5,—§

Using equations (3.27), (3.28), and (3.32), as well as (3.19¢), we find that

~ 1 [ o ) ~
—s,sc —SQ = g/ dwz Z Z pClmw el(m¢7wt)—s@lmw—slewp, (3343)
T =2 m|<Ip==+1
~ 1 [ ° . ~
_ i(mg—wr)
L= /_ dwd >N pChp €Ot Qi (3.34b)

O =2 |m|<Ip==+1

3iM A . ~
—s,sC—sQ = T Sgn(S)/_oc dwz Z Zw e( ¢ t)fs(almwfslewpa (3340)

1=2 |m|<Ip=+1

and so equation (3.33) implies that
> Cinop = Cimw F 12ipMuw. (3.35)

At this point, we have shown how symmetry operators on the space of master variables act
diagonally on the expansions (2.52) and (2.53). We would like a similar diagonalization for
the operator (C, but (a priori) there does not exist an analogous expansion for the metric per-
turbation. We now construct such an expansion. To begin, if (a) 42 is a solution to the vacuum
Teukolsky equation (2.27), (b) it is the master variable associated with some real solution to
the linearized Einstein equations, and (c)

Q= M Im[7), W], (3.36)

then we call ;30 a Debye potential for g, (for the origin of this terminology, see [30]). The
first of these conditions ensures that 52 and ¢ ~* _,1) satisfy the same relation as (respectively)

4That [25] only considers p =1 can be seen from their equation (3.21), along with the remark below their
equation (3.22) that the quantities S, and S; that appear in this equation are given by ,S;,, and _,S}, (in this chapter,
these are denoted ,0,,, and _,0,,,,). These two statements imply that the radial functions R, discussed in [25] obey

R,(—m, —w) = Ry(m,w).

In this paper, due to differences in notation and the conventions in equation (2.46), this is equivalent to the statement
that s Qi_pmy—wy = (— 1" Q. Which by equation (2.54) implies that p = 1.
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8, and 5P, in equation (3.21). The second of these conditions ensures that Im[STaTb,ﬂ/)]
and (by the first condition) Im[_ST;bS’(/)] are the same as 8g,,, up to gauge and /=0, 1
terms.

The easiest way to satisfy these conditions is as follows. First, note that, by equations (3.14)
and (3.34),

: 1 A
M Im {sca;,“’ Im[,srjdsm} = =M" Re | 7, [ ) dwd SN p

=2 |m|<Ip==1

i(meo—wt A
Xs C[mwp € ‘ )—s@[mw —A'Q[mwp

256/ ZZZ( Cl., + 144M%07)

1=2 |m|<p==£1

X ei(m¢7Wt)s®[mwa[mwp~ (337)

We now define (1), for a given (2, by

“W“>® (6)- iy (1)
_ ab } Imw Imwp’
W =256,M° Tm | 7, /_ . dw§ S BRI

1=2 |m|<Ip==£1

_ l6i/oc dwi Z Z Pel(m¢ wi) @lmw(e)sglmwp(r) (338)

sC
1=2 |m|<Ip==1 Imeop

where the second line comes from equation (3.34), and Xﬁlmwp is given in terms of ({2 by
equations (2.44) and (2.50). Since C7,  + 144M?w? is real, ;1) satisfies the first of the above

requirements, and by equation (3.37) it also satisfies the second. Moreover, the second line
implies that

16lp ~

Swlmw(fp) leWP (339)

C[mw P

where the expansion coefficients Szzlmwp are defined by an expansion analogous to
equation (2.52), together with the behavior under complex conjugation given by
equation (2.54). This condition is satisfied, due to the fact that

SCremcwp = sCimps (3.40)

by equations (2.47), (3.30) and (3.35), as well as by using equation (2.54) for Sﬁlmwp. While

this would also be a perfectly reasonable definition of 1, it is not apparent in this form that ;1)

is generated by a real metric perturbation, which is crucial, and is explicit in equation (3.38).

Finally, note that equations analogous to equation (3.34) also hold for ¢ in terms of s¢;,,,,,.
We can now define an expansion for the metric perturbation. First, we define

Siga = ,Thpr2tl, (3.41)
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which (as remarked above) satisfy
M I[85 gap] = MY Im[3_gu] = Q. (3.42)

These metric perturbations have convenient expansions of the form

848 = / ) dwd N> (B gimuplas (3.43)

O =2 |m|<Ip==1

where
(Bsgimarla = 3Ty (€704, (0) D9 (3.44)

Note that the relationship between 8.g,, and their coefficients is not C-linear, due to the
transformation properties of these coefficients under complex conjugation resulting from
equation (2.54).

This procedure, which allowed us to construct a metric perturbation Im[d.g,,] from (2
such that the master variables associated with this metric perturbation are 4,2, is similar to the
one laid out in [15], which is referred to in the literature as Chrzanowski metric reconstruction.
We now provide an operator form of this procedure: define

00 > imp—wn @, Q)
— cd T € s lmws? &lmwp
0 =256 tm | o, [ awds 3030 E L

O =2 milp=£1 e

= 16i,7), / ) dwi DI D O L, (3.45)

—sClmw
—o0 =2 |m|<Ip==1 sCimwp

which satisfies
M@ Im[IT,,Q] = M Im[_IT, Q]=Q. (3.46)

Note that the operator (II,, is non-local, since it requires an expansion in spin-weighted
spheroidal harmonics for its definition. This operator allows us to define a version of the oper-
ator D defined in section 3.1 that maps to the space of complexified solutions of the linearized
Einstein equations, much like Cops

sDade = sHabSDSMCd' (347)
We also define a version of this operator without the intermediate factor of ;D:

sXade = sHahSMCd' (348)

Now that we have both a definition of an expansion for the metric perturbation, along with a
variety of symmetry operators defined which map the space of metric perturbations into itself,
we can proceed to show that these symmetry operators act diagonally on these expansions.
Note, again, that there is no convenient notion of an expansion of the form (3.43) for a general
384> and so we only compute the action of our various symmetry operators on d1g,,. The
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simplest case is ;C,;“, which satisfies [by equation (3.34)]°

Car 8 8ea = o TJ};;EZ,:QC 20
1

. / T3S S 6 g (3.49)

=2 |m|<Ip==*1
izcathSJFgc‘d — TJ};;EL;EZC E
o
_! / 3 S S P Cos e (3.490)
=2 |m|<I p==*1
CapB48ea = ﬂTJb;z,ﬁCﬁdJ

=:|:31—M dw Z Z ZUJ(Siglmwp)ah (3.49c¢)

T I=2 |m|<I p==1

These equations demonstrate that the action on the expansion (3.43) is diagonal, up to mappings

from (8+8imwp)ab — (O+&imwplap and (85&umwp)an, as well as mappings from (8-+gimop)ab —
(O3 8imwp)ab- More useful later in this paper will be the action of Cap™ on Im[3.g,,]:

12Cp " Tm[84geal = 12Cap™ TM[3_gea]

= L dwz Z Zpizclmwp(giglmwp)ab (3.50)

T =2 |m|<I p==%1

Similarly, we will consider the action of (D, and 4 on Im[3.g,,]. We have that [by
equation (3.42)]
T = X5 Im[Bgeql, (3.51)

along with [by equations (3.41) and (3.45)]

2120 = 01 8ups (3.52)
and so we find that

22X I8y geg] = 12Xap™ Im[8_geal = 8:gaps (3.53)

Similarly, by the R-linearity of equation (3.52), we find that [from equation (3.26)]

3 Note that, as mentioned above below equation (3.44), the relationship between 5..g,, and their coefficients is not C-
linear. This explains the apparent contradiction of the left-hand side of equations (3.49a) and (3.49b) being C-antilinear,
but the right-hand sides appearing to be C-linear.
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2D T[S geal = 22Dy TM[S_gea]

Z/ dwz Z Z Almw(Siglmwp)ah (354)

=2 |m|<I p==%1
3.5. Projection operators

The final set of symmetry operators that we introduce are projection operators acting on the
space of master variables ({2. Before we introduce these operators, however, it is relevant to
discuss the asymptotic properties of the master variables. First, define the tortoise coordinate
r* by

dr = A

dr* 2 2
r_rta (3.55)

This coordinate satisfies r* — oo as r — oo and r* — —oo as r — r4, where r_ is the location
of the horizon, satisfying A|,—,, = 0.

Now, the vacuum Teukolsky radial equation (2.45b) is a second-order ordinary differential
equation in 7, and so its solution space is spanned by two solutions (for given values of s, , m,
and w) that are characterized by their asymptotic behavior at either r = r. or r = co. One can
show, from the asymptotic form of the vacuum Teukolsky radial equation (2.45b), that one can
choose two independent solutions (Ri" (r) and (RS™ (r) with the following asymptotic forms
as r* — —oo [25]:

Imw

R (1) — e Hmor SN RO () el (3.56)
where
kpw = w — am/(2Mry). (3.57)
Similarly, at ¥* — oo, one can choose two independent solutions SR?,;;g"(r) and R,mw(r), which
have the following asymptotic forms:
R — e [, R (1) — e AT (3.58)
A general solution can therefore be expanded in terms of these solutions as
Qs (r) = sﬁ?,z:v% RIS + Qi Ry (1)
= QinssRina (1) + QR (1), (3.59)
Moreover, from the asymptotic behavior in equations (3.56) and (3.58), we have
W —. R};/zut/down/up ), (3.60)
and so, from the definition (2.50),
sﬁlmwp(r) = sﬁ?ﬂ;s o (r) + lewps ime (1)
= s Rin (1) + SO0 RO (), (3.61)
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where

Imwp 2

1 I
Qm/out/down/up |: Q;;;/gut/down/up + p(_l)m—i-s Q;?/Onli;/(dox)n/up ) (362)

‘We now define projection operators associated with this expansion as follows: for example,
define ;P by

S’PinSQ = Spin/oc dwi Z el(mo_wt)j‘@[mw(e)

I=|s| |m|<!

out RO t
X |: lmu,S lmw(r)+ anliws lr:;u,(r)]

/ Z D 0D 04, (0) 2, R (7). (3.63)

O I=|s| m|<t

Analogous definitions can be given for (P, (P%" and ;P"P. Since these operators require
an expansion in spin-weighted spheroidal harmonics, they are necessarily non-local.
The reason we introduce these projection operators is that, as we show in appendix B,

whether sTab S falls off as 1/r (that is, whether it is an asymptotically flat metric pertur-

bation) depends on the values _ Q"0 This was first remarked by Chrzanowsk1 in [15]. As
such, we define a projected version of (7,,, which we call X%Zb, such that STab ;8 is always
well-behaved as r — oo:

Py = aTh PO, Lt = TP (3.64)
Using this operator, we can define

Cap = 31, M, (3.65)

which allows for the definition of

sﬁadesQ = 256sccab0d

l(m¢ “]) Gmst mw
x Im | 7}, /_ mde > Z +14[14Mzo[ﬂp

=2 |m|<I p==+1 Cln

(3.66)

Finally, this last operator allows for the definitions

cd

s’l)cade = sﬁabsDxMCda s)o(ab = sﬁabsMCd~ (367)

4. Conserved currents

We next turn to conserved currents that can be constructed using these symmetry operators.
First, we review the general theory of symplectic products, which are bilinear currents con-
structed from the Lagrangian formulation of a given classical field theory. We then select a
handful of conserved currents that can be constructed using symplectic products and symmetry
operators, whose properties we discuss throughout the rest of this paper.
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4.1. Symplectic product

Given a theory that possesses a Lagrangian formulation with Lagrangian density £, one method
of generating conserved quantities is to use the symplectic product defined in this section.
Following Burnett and Wald [36], we start with a general Lagrangian four-form L[¢]="L[¢]
that is locally constructed from dynamical fields ¢, where * denotes the Hodge dual. It then
follows that

OL[¢] = E[9] - 3¢ — dO[¢;59], 4.1

where the three-form ®[¢;0¢] is the symplectic potential, and E[¢] is a tensor-valued differ-
ential form® that encodes the equations of motion; that is, E[¢] = 0 on shell. Thus, on shell,
the integral of SL[¢] is just a boundary term, which we use to define ®[¢;5¢]. We can then
define the symplectic product by taking a second, independent variation:

w[P;810,0:0] =5:O[h; 5] — 5:0[ ;51 ). (4.2)
Thus, we have that
dw[;810,0,0] = J1E[@] - 820 — OE[P] - 819, (4.3)

which vanishes if 8¢ and 8,¢ are both solutions to the linearized equations of motion. We
define the corresponding vector current by

si*[@;019,8:0] = (xw [¢; 510, 5:0])". (4.4)

We now turn to two different Lagrangians whose symplectic products are particularly inter-
esting. First, we consider the symplectic product for the Einstein—Hilbert Lagrangian four-form
by Lgu[g] = Re/(16m). For this Lagrangian, we find (following [36], for example; note the
difference in sign due to using a different sign convention for R;.,)

1 .
(O anclg: 08l = _geahcdgfgad[eéch]g’ 4.5)

where 5C%,. is the variation of the connection coefficients for V,(\):

1
5C ), = Egad(vhsgcd + Vd8bd — Vadghe)- (4.6)

Thus, the symplectic (vector) current is given by
a 1 a b cd 1 e .cd
sJenl018 0281 = Q(S 1131C7c1a | (328)" — 5(828)°8" | =12

1 .
= ——81C"(528)" + v[5181(529)",,
167

+ w31 g1Vy(528) — 1 2, 4.7

6 Some of the indices of E[¢] are contracted with those of §¢, yielding a four-form E[¢]-5¢.
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for some tensor fields v“[8g] and w®[5g] which are unimportant for the discussion of
this paper, as we only consider metric perturbations which are trace-free. Here, for simplicity,
the dependence on the background metric g, is implicit. This symplectic product provides a
bilinear current on the space of metric perturbations which is conserved for vacuum solutions
to the linearized Einstein equations.

Somewhat unexpectedly, one can also define a symplectic product for the master variables
themselves. In order to do so, we need a Lagrangian formulation for the Teukolsky equation.
Such a Lagrangian formulation was recently used to generate Noether currents for the master
variables in [37]. As noted by Bini, Cherubini, Jantzen, and Ruffini [38], the Teukolsky operator
can be rewritten as a modified wave operator:

O = (V44 5TV, + sTy) — 45705, (4.8)
where
I = =2 [yl + (e + p)n® — am® — (B + T)in"] . (4.9)

Since the equations of motion are now in the form of a modified wave equation, one can write
down a Lagrangian four-form of the form (for s > 0)

Lecirl,Q Q1= “(d+ sT)Q A (d—sT)_,Q — 96525, Qe. (4.10)

Note that, in this expression, the metric and I'* are non-dynamical fields, and therefore do not
get varied. Varying this Lagrangian four-form results in the Teukolsky equations for spins s
and —s. One can easily show that

Opcr[2, _2;8,0,5_ Q] =5,Q2°(d —sI')_ Q+5_,Q°(d + sT),2, (4.11)
and so

s/t [0152.81 % 8,,Q,5,_,Q]
= 51,V — ST, Q + 81 AV + sT)80,Q — 1 2. (4.12)

Here, we are dropping any dependence on the background values of ;{2 and _£2, since they
do not appear on the right-hand side.

Although this current is bilinear on the space of variations of the master variables, it can be
regarded as a bilinear current on the space of master variables themselves, since their equations
of motion are linear. Note further that this symplectic product is not the physical symplectic
product for linearized gravity.

4.2. Currents of interest

Using the results of sections 3 and 4.1, we now define the following currents, for which we
will be computing the geometric optics limit and the fluxes at the horizon and null infinity. The
first of these currents is a rescaled version of the symplectic product of ;C - dg and its complex
conjugate:

58] = 8isjiy [C - 5g.,C - Bg], (4.13)

in terms of the symplectic product (4.7) and the symmetry operator (3.14). The normalization
here is chosen to give a nicer limit in geometric optics; similarly, this current is simpler in
the limit of geometric optics than other currents that can be constructed from ;C. The currents
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defined in equation (4.13) are entirely local, but they generally diverge at null infinity, as we
will show in section 6. The divergences can be removed by using ;C instead of ;C. We therefore

define
I8 =81 sjtu |,C 38, O] (4.14)

s=+2

where 2& is defined in equationc (3.65). :Fhe motivation for including the sum over s in this
definition is due to the fact that ,C and _,C are only nonzero for ingoing and outgoing solutions
at null infinity, respectively. The sum therefore ensures that the total current is nonzero for both
types of solutions.

We next define similar currents involving (X and ;D:

Y] — i “a T o
pJ[dgl = 165/En (X 8g,D-dg, 4.15)
ca . i “ o 5
57°1581= 12 > sk {SX.Sg,SD-Sg . (4.16)
s=42

Unlike the currents (4.13) and (4.14), both of these currents are nonlocal. We will see below
that the geometric optics limits of these currents are proportional to the Carter constants K of
the gravitons, as opposed to K* for the currents (4.13) and (4.14).

Finally, we define the currents

.ija[Sg] = %mS]‘%CJR SQ’ 7sQ;s,xC —sQ’ 7s,sc 7XQj| > (417)
in terms of the symplectic product for the master variables in equation (4.12) and the symmetry
operator (3.13). Note that 1,£2 are functions of 8g,,,, by equation (2.25). These currents are very
similar to the currents ¢ j“[5g], having the same geometric optics limit, and also being local;
however, these currents have the advantage of also having finite fluxes at null infinity.

We now derive various properties of these currents in sections 5 and 6. For convenience,
these properties are summarized at the end of this paper in table 1.

5. Geometric optics

Using the symmetry operators in section 3 and the symplectic products in section 4.1, one could
define a multitude of currents that are conserved for vacuum solutions to the linearized Einstein
equations. In this section, we provide the motivation for the particular currents highlighted in
section 4.2. This is accomplished by taking the geometric optics limit, in which solutions to
the linearized Einstein equations represent null fluids of gravitons. We express the associated
currents in terms of the gravitons’ constants of motion.

5.1. Geometric optics on general backgrounds

The starting point for geometric optics is a harmonic ansatz for the metric perturbation:
8u = Re {[azmuy + 011 e/}, (5.1)

where a and ¥ are real, w,;, the polarization tensor, is a complex, symmetric tensor that is
normalized to satisfy o, = 1, and ¢ is a dimensionless parameter whose limit is taken to
zero. Inserting this ansatz into the linearized Einstein equations and the Lorenz gauge condition
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and equating coefficients of powers of ¢ yields the following results (see, for example, Misner,
Thorne, and Wheeler [39]):

(a) The wavevector k defined by
ke = V0 (5.2)
is tangent to a congruence of null geodesics:
KV k=0, k.k* = 0. (5.3)

(b) The polarization tensor w,;, is orthogonal to k” and parallel-transported along these
geodesics:

k' = 0, k°V g = 0. (5.4)
(c) The amplitude a evolves along these geodesics according to
Va(@k*) = 0. (5.5)
We now consider this formalism in terms of spinors. First, as £ is null, we can write
A = kAR (5.6)

for some spinor k4. We choose a second spinor X* such that (x, ) form a spin basis. The
conditions (5.4) and the normalization of w,, imply that

Wab = kiaCby + €rRGaqp + €1.GaGb» (5.7)

where g, = k4 Ay and o is an arbitrary vector satisfying ok, = 0. Because of the gauge free-
dom g, —0g,, + 2V (4&,), the first term can be removed by a gauge transformation (which
preserves the Lorenz gauge condition), and so we can safely set a“ = 0.

The last two terms in equation (5.7) are physically measurable. The complex coefficients
er and er, correspond to right and left circular polarization. By the normalization of w;, we
have that |eg|> + |er|* = 1. Moreover, these factors of eg and er appear in the expansion for
@W)apcp:

1 . _
(8W)apcp = ——akrakpkckp <€R e Vet 6”9/5) +0(1/e). (5.8)
€

5.2. Conserved currents

When considering nonlinear quantities in geometric optics, such as conserved currents, we will
discard rapidly oscillating terms. This effectively takes a spacetime average of these quantities
over a scale that is large compared to €, but small compared to the radius of curvature of the
background spacetime (see, for example, [40], or [41] for rigorous treatments of this averaging
procedure via weak limits). Such an average we will denote by (-).

We start with a few simple results. First, if a conserved current reduces in the limit of
geometric optics to

1
(j*) = =[a*Qk" + O(e)], (5.9)

6”
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for some quantity Q and integer 7, then Q is a conserved quantity along the integral curves of
k“. To see this, note that the leading order term in the conservation equation V,(j*) = 0 yields

0 = d’k“V,0 + OV, (a*k%) = a*k“V,0, (5.10)

from equation (5.5). All currents that we consider in this paper will be of the form (5.9) in the
geometric optics limit..

The second result is that, under the assumption (5.9), the conserved charge associated with
the current j* reduces to a sum over all gravitons of the conserved quantity Q for each graviton.
This result means that equation (5.9) is a physically appealing assumption. The proof proceeds
as follows [39]: first, we note that the effective stress—energy tensor appropriate to gravitational
radiation in the geometric optics regime is given by [40]

a?

€ 1 Ct
(Toh) = 55 ((VaBge)[V9) 1) + 01 /) = 25— [kaky + O] (5.11)

On the other hand, the stress—energy tensor for a collection of gravitons with number-flux N,
and momentum p, = hk, /€ is given by [39]

TS = PN, (5.12)
and so we find that
a*ky = 327he N,[1 + O(e)]. (5.13)

Upon integrating a current j* given by equation (5.9) over a hypersurface 3, one finds the
charge

32rh
/E<j“>d32a = 6,,7_r1 > 0ull + 0. (5.14)

where « labels the gravitons passing through the hypersurface. That is, the charge is propor-
tional to the sum of the conserved quantities over all of the gravitons passing through the
surface.

5.3. Computations

We now turn to computations of geometric optics limits for the conserved currents discussed
in this paper. For these calculations, we first define the quantities xg, 1, 4, and s,:

_ Al _ Al
Ko = oak”, K1 = 1k, = o0 R, Y=o ARY . (5.15)

These quantities are constructed from the spinor x4 (which is related to the wavevector k) and
the principal spin basis (o, ¢). They satisfy

2

2 € a a a a
Kok1|” = =—=K rar® = 85,8 = rgk* = s,k =0
|< 0 1‘ 2h2 s a a a a s (516)
r ¢ = ‘/ﬁo‘z, 5,5¢ = |/{1|2, 78" = —KoRj,

where K = h*K ,,k°k” / €% is the Carter constant for the gravitons. The factors of A arise in
this classical computation as part of converting from the wavevectors of the gravitons to their
momenta, and hence their conserved quantities.
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We now begin calculating the conserved currents defined in section 4.2. Since, to leading
order in geometric optics, the differential operators present in this paper become c-numbers, a
straightforward calculation starting from equations (2.26) and (3.9) shows that

1 a + 0 — 2
Ty = “jr "o T (5.17a)
C R1SaSp + O(e) s= -2
w1 [rgrr + 0 s=2 5.17b)
K 262 C4I€250Sb + O(e) § = _27
and [starting from equation (5.8)] that
4
. ) + 0 =2
0= L e e gy @iy 0 OO T (5.18)
€ ¢kt + 0Ce) s=-2

As such, we find that

rarb/i% + O(e) s=2

a —i/e = /e
Car8gea = == CH(miko) (er e/ + & ") ; :
€ SaSpkg + O(e) s=-=2

(5.19)
This implies that
((Coe 8840V 4B ) = — K ex P — |ec IV + 0@ (5:20)
Thus, we find that the current ¢ j“[3g] is given in this limit by
e't381) = 5 (Im [(CocS2a0 VCRoBg® | ) 11 + 00
%K“ (ler|* — le|”) N°[1 + O(e)]. (5.21)

As such, these currents are a generalization of the Carter constant for point particles to
linearized gravity in the Kerr spacetime, at least in the limit of geometric optics.
We now turn to the current pj“[dg]. First, note that, from equations (3.3) and (2.43),

1
D = 6—2|gmom 12:Q[1 + O(e)], (5.22)
and so
K
s ab Sng ths ah Sgcd[l + O(o)]. (5.23)

Now, note that (X Sgcd, by equations (3.48) and (3.45), can be written (in the limit of geo-
metric optics, where differential operators commute to leading order) as a product of the form

. =\ —1 _—
X 5 ge = 4(s,sc_s,_xc) CarCodTBgu[1 + OO, (5.24)
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=\ —1

where the operator (M(f,s,,xc> is a nonlocal operator having the effect of multiplying
each coefficient of the expansion (2.52) by 64/(C2,  + 144M>w?). This operator is a nonlocal

inverse to MC~ ,S,,X(,:, by equation (3.34). For its geometric optics limit, note that
~ |
22020 = ¢ (ChoF1) 201 + 0(e)],
~ 1 -
220 29 = S5 (CRor))* 2001 + 0(@)], (5.252)
~ 1 N
22C 20 = ﬁ|n0|8,29[1 + 0(e)],

2 5C a0 = ¢k 5901 + 0], (5.25b)

1
264

and so

. 48
(€€ -

)715,9 — Q[+ 0. (5.26)
|Croki]

Moreover, we have that [from equations (5.17a) and (5.17b)]

a

scade—chdengef =— 4—8\CH0H1|8(ER e’c 4 ep e/
€
2
a +0 =2
" Talp/ K (€) s ’ (527)
Sasp/ K3 + O(€) s = =2
from which it follows that
2
) ) “ (0]
X 8goq = —daler €7/ +ep e /)" 7o/ Ho + O(9) (5.28)
Sa8p/ KT+ O(€) s=-2
The current in question is then given by
¥l 1 2 2 a
(0j[88l) = 2K (lex|* = [erl”) N*[1 + O(O)]. (5.29)

This therefore provides another, entirely non-local notion of the Carter constant for linearized
gravity in the Kerr spacetime.

There are, of course, other currents whose charges reduce to the Carter constant in the geo-
metric optics limit. Another class of currents come from the symplectic product for the master
variables, instead of the metric perturbation. One current of interest from this class is given by
equation (4.17), which has a limit in geometric optics given by [from equations (4.12), (5.25),
and (5.18)]

1
(2Jj[38]) = ﬁK4(‘€R‘2 = leL HINVU1 + OCe)l. (5.30)
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The results of this section [equations (5.21), (5.29), and (5.30)] give the geometric optics
limits for the currents that do not involve projection operators. We now consider the two remain-
ing currents, 20 Jj[0g] and B J“[0g]. For simplicity, we first consider .0 J“[0g] (the exact same
argument holds for B J“[0g]). This current is the sum of two terms, the first of which is equal
to ,cj“[5gl, except that it contains a projection which eliminates the ingoing modes at null
infinity. Similarly, the second term is equal to ,¢ j“[d g, except it eliminates all outgoing modes.
Consider the case where 8g,, represents a null fluid of gravitons where the gravitons are purely
outgoing at future null infinity; that is, k* is tangent to an outgoing null congruence. The geo-
metric optics limit in this case would be the same as that of ¢ j“[5g]. Similarly, if k& is an
ingoing null congruence, the geometric optics limit would be the same as that of ,¢ j“[6 g]. Since
these geometric optics limits are equal by equation (5.21), we recover the following result:

) 1
(,ci1ogl) = K (Jewl” = len ) VL1 + O, (5.31)
when dg,, represents an ingoing or outgoing null fluid of gravitons. A similar argument gives
a similar result for D j“[0g]. However, the geometric optics limits for 6 j“[6g] and B Jj[ogl
are only given by simple expressions when k¢ is either tangent to an ingoing or outgoing null
congruence, but not for general geometric optics solutions 3g,,.

We conclude this discussion with a brief review of a classification scheme for conserved
currents in geometric optics that we used in [6]. In the limit of geometric optics, one often
finds that conserved currents depend on the quantities egr and er, in one of the following four
ways; depending on this dependence, we call such currents energy, zilch, chiral, and antichiral
currents:

14 O(e) energy currents
2 2 .
erl” — le + 0 zilch currents
(joy = g  (erl” —le) 0 . . (5.32)
erer. + O(e) chiral currents
erer. + O(e) antichiral currents

This classification scheme is a specialization of that of [42]. For conserved currents that are
R-bilinear functionals of (8W)4pcp (a property which is satisfied by all currents considered in
this paper), there is a relationship between Q and the type of current in this classification: for
energy and zilch currents,

Q=0u.a, 0" . P", (5.33)

where Q. 4, 18 a rank n Killing tensor and n is odd for energy currents and even for zilch
currents. Moreover, for chiral and antichiral currents, Q cannot be written in the above form.
Since we wanted to construct conserved currents which were related to the Carter constant,
which is a conserved quantity arising from a rank two Killing tensor, it is unsurprising that all
currents which we considered were zilch currents.

Another interesting result of this classification scheme is an odd result for the symplectic
product for the master variables. The symplectic product for linearized gravity, when applied
to dg,, and £:3g,,, gives an energy current in geometric optics, and the associated conserved
quantity is proportional to £“ p, (which would be proportional to the energy in the case £* = 1).
This current is known as the canonical energy current. However, using the symplectic product
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for the master variables, one finds that a similar current, obtained by using 1{2 and £,
gives a chiral current. In this sense, the symplectic product for the master variables cannot be
used to construct a current whose geometric optics limit behaves like energy.

6. Fluxes at null infinity and the horizon

Another desirable property for a conserved current is that its flux through the horizon (H) and
through null infinity (.#) be finite. In this section, we provide formulae for these fluxes, using
results for the asymptotic falloffs in appendix B. More details on the definitions of these fluxes
are given in appendix A.

‘We begin with some notation: first, the Boyer—Lindquist coordinate system is not well suited
to working at the horizon or null infinity. Instead, one uses the ingoing and outgoing coordinate
systems (v, r, 8,1) and (u, r, 0, x), defined in terms of Boyer—Lindquist coordinates and the
tortoise coordinate (3.55) by

v+, p=¢+ [ (6.12)
u=t-—r", X:qb—/%dr. (6.1b)

The ingoing coordinate system is relevant near the future horizon (H™) and past null infinity
(#7), while the outgoing coordinate system is relevant near the past horizon (H ) and future
null infinity (#*). When dealing with a generic surface S, we will write w and « instead of
either v and ¢ or u and x:

(6.2)

v atHT, # W o atHT, &~
w= , = .
u atH -, T x atH , "

This greatly simplifies definitions. For example, we will write the flux of a current. . . j* through
a surface S as d*. .. Q/dwd()|s, which we will define more explicitly in equation (A.1), where
the differential solid angle is defined by

dQ2 = sin6df da. (6.3)

We next remark that, in this paper, we compute fluxes of the conserved currents
(4.13)—(4.16) only when acting upon the metric perturbations Im[d,g,,]. We are free to do
S0, as these metric perturbations are related by a gauge transformation to any / > 2 metric per-
turbation 8g,,. Moreover, this specialization allows us to use equations (3.49) and (3.54) in
order to write the fluxes in terms of the fluxes of the currents

izj;?’mwpp' = Sj](ijl-[ [(Sig)lmwpa (Sig)[’mwp’] 5 (64)

assuming that we average over w and «. These currents are functions of the Debye potentials
121, instead of the metric perturbation. In particular, they are functions of the coefficients
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Sw,,;?u/);m/ 9OV I terms of the fluxes of the currents (6.4), we have that (averaging over w

and «)

L0) 2wy ¥ %
dwd/,, rv

T =2 |m|< min(l) ppy/==+1

dzv ' mwp,
45 Qwmeopy (6.52)

X sClmwpsCl’mwp’ dw dQ >

d> pQ j
(i) =16 Y T % e

LI'=2 |m|< min(L,l') pp/==1

dzs Qll’mwpp/
—. 6.5b
dw dQ ( )

As these quantities are all R-bilinear, it is convenient to define

in/out/down/up __  7in/out/down/up 1n/0ul/d0wn/up

Tll’mwpp’ - Swlmwp /(/)[ ' mwp! (66)

Moreover, the fluxes will each have a nontrivial angular dependence. To determine this,

we define, for some quantity g[,], with coefficients g,,,,,[s¢] in an expansion, the angular
in/out/down/up(a) by

Imwp

dependences ;S

lemwp 1(mt) wv) S[mwp(e)Anq + Swoul ei(mx—wu) Sou,[ (9)An2m r s ry

qlmwp(ta r, 9, ¢) = [mwp 47 lmeop up 5
Or's  r— oo

down

‘¢d0wn el(mz;)—u,z/)qsdown(a)rn Y¢[mw]; 1(mX wut) Sup

Imwp Imwp Imwp

(6.7)

for some integers n /™" Assuming appropriate smoothness conditions, equation (6.7)
simplifies further if we specialize to the various surfaces at which we are computing these
quantities:

Y¢lmwp 1(mz) ww) Sl?nwp(e)Ani’n S — H+
“out 1(mX wu) gout ngtt oy
), e s (@) A S=H
qlme(t’ " 9’ ¢)|S ¢down i(my—wv) Sdown(e)rnduwn S— 7 . (68)
s lmu,p Imwp -
R R N () S= .+

In other words, only ‘in” modes contribute at H + ‘out’ modes at H™, etc. The various quan-
tities ¢ which we will be considering will be components of metric perturbations and per-
turbed connection coefficients. The relevant integers nj’*"d**"P are (effectively) given in
table B.1. Moreover, the various angular dependences are given by equations (B.6) and (B.7),
and computed in appendix B.

Using table B.1 and equations (A.5a) and (A.5b), we find that

2 down
d +2 Qll’mwpp’

40 =0, (6.92)

N
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d2 Qdown H T cdown
M _ 1 Tdown Sdown Sdown
0 = —6471'72 Wmwpp' 8+ Crain® Imwp8 4 & I mew p/
2 down ;
S 2Oy | _ Yin S Sph
dv dQ2 - 64 =2 4 W mwpp' 84 Ciain® lmw p(S 4 O I'mw pl
Ht
+m’ (690)
2 down :
Sr2Qmapy | _ 24 om SO 5 eSS
T = 3or =22 imwpp’ \ 3+ Cuimin Imw pd + G ' mew p!
H-
out _ cout 7{—>
o SO S g ;/) +Lpe—1.p. (69

where the superscript ‘down’ indicates that we have performed a projection such that

Jup
Wipep = 0, and
2 up .
d *ZQll’mwpp’ 1 »-rup Sup Sup
du dQ - 327T2 [[’mwpp/s—cnmm [mwps—gmm [’mwp’
N
Ty m— (6.10a)
2 up
E2my | _ (6.10b)
dv dQ ’
Ve
2 up .
d ‘2Qll’mwpp’ _ !~ gin T gin
d'U dQ . - _647T2 ll,mwpp/ 5 Cim lmwps—gmm Z’mwp’

— 5 G S sty ) T 1P o7 (6.100)

2 u R
d 72QII]’mepp/ o 124_ out Sout gout
du dQ - 327_[_2 ll’mwpp’sfcnmm ImwpS —gmm U'mwp
Yy (6.10d)

o~

and the superscript ‘up’ denotes the fact that we have performed a projection to set Sw?”‘;x; =0.
If these projections are not performed, then the respective fluxes diverge, as is evident from
table B.1 and equation (A.5). Since the fluxes of ¢j“ and pj¢ can be written in terms of those
of g Tl mappt® there are issues with these currents as well.

These divergences motivated the introduction of the projection operators in section 3.5.
With these projection operators, we have sacrificed locality (which we had already sacrificed
in pj¢) in order to obtain finite fluxes. As mentioned at the end of section 5.3, the geometric

optics limits are similar to those of the currents ¢j“ and p;j“. We also have that
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2
d ) Qdown

d2 CQ i E i )
mwpr
< de dQ2 dw Z E PP 2C[mwp2 G "mwp! W

LI'=2 |m|< min(Ll') p,p/=+1

20 ' mw
+ —2Clmwp2C[/mwp/déll§2ppl} 5 (61 1a)

Y ACD) S S o
dw dOQ - 2\ ' mw

LI'=2 |m|< min(Ll') p,p/=+1

dZZQ(lilown d 72QUP
"mwpp/ W'mwpp 6.11b
. { dwdQ | dwdQ [ (0.116)

Using equations (6.9)—(6.11), we have completely determined the fluxes of the charges ,pJ¢
and 5 j“.

Using the symplectic product for linearized gravity, we have not been able to construct
a local current with finite fluxes which reduces to the Carter constant in geometric optics.
However, we can do so using the symplectic product we defined in equation (4.12) for the
master variables. We find that the fluxes for ¢ j¢, averaged over w and «, are given by an
expansion of the form

dZXQQ XQQll’mwn’
<dwdQ> / dwz 2. 2 Tqwda 6.12)

LI=2 |m|<Ll pp==1

where
dQOQll/ wpp' w T
— =P C’mwse mwx@ ' mw |:s sWy
dudQ |, 321 { s OOt |-V oy
+ l, psS <— l/, P/, _SJ + sCl’mwp’ —s@lmw—S@l’mw
X [ty + Tps e T =s] } (6.130)
&0 Qumapy ——
s mw _ C’mwse mws(—)’mw {S down s dlown
dvdQ |, 32« { s Otmes Ot |sVlpwp—sV iy
+ l, psS <— l/, P/, _SJ + sCl’mwp’ —s@lmw—S@l’mw
{_aﬁi‘”‘iﬁ;s down 4 T pos —— 1, 1, —s} } . (6.13b)
and
d2 VQQll’mwpp’ MrJrkmw
— - -, C’mwxe mwfe ,mUJ
dv dQ |4 Tor {CrmosOumusOs

|:q nmswlmwp ﬂ/)l’lmwp/ + la p.Ss < l/, P', _Sj| + sCl’mwpffs@lmw

—sel’mw |:—s"fmw—AS'QZ};wI,As'@}]me/ + l,p, S < l/,p/, —S:| } , (6143.)
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Table 1. Summary of the properties of the conserved currents considered in this paper.
For convenience, we give the equation numbers (within section 4.2) in which these cur-
rents are defined. We then give the limit of the corresponding charges in geometric optics,
where K is the Carter constant of a graviton (see section 5 for the definitions of the polar-
ization coefficients er and ey, as well as the justification of the factors of /). The next
column indicates whether the fluxes of these currents through future and past null infin-
ity (& i) and the future and past horizons (H*) are finite. We finally indicate which of
these currents are local functionals of the metric perturbation.

Geometric optics limit of Finite fluxes?
C t Definiti ti Local?
urren efinition (equation) charge (per graviton) T oca

,cj5g] x v v v

(4.13) K*(ler|> — |eL|?)/n
e 108l v ooxo v vV
LI “18g] (4.14) K*(lex|* = lec|?)/n" ® v vooox
,0j[5g] x v v v x

(4.15) K(|er|? — leL|®) /R
,0Jj[0g] v X v X
,J“[88] (4.16) K(ler* = le)/n* v v vvx
,0J'[5g]

(4.17) K*(ler|? — |er|»)/R v v v v v
_,0j'[8g]

2This result only holds, if the null fluid of gravitons is either completely ingoing or outgoing at null infinity; see the
discussion near the end of section 5.3 for more details.

d2 vQQll/mwpp/ Mr+kmw
R -, C/mws@ mw&‘@ /mw
dudQ |, lem | et
X [anleqzlonlin—SQZ?;:wp/ + la 25} < ? l/a P/, —S:|
+ Cl/mwp’ — 5O —sOrmy
x {_mm_@;‘;ps s+ ps < 177, —s] } : (6.14b)
where
is(ry — M)
,=1—-——" 6.15
simo 2Mr— o, (©.15)

7. Discussion

In this paper, we have constructed a class of conserved currents for linearized gravity whose
conserved charges reduce to the sum of the Carter constants (to some positive power) for a
null fluid of gravitons in the geometric optics limit. These conserved currents are constructed
from symplectic products of two solutions constructed via the method of symmetry operators.
Moreover, some of these currents yield finite fluxes at the horizon and null infinity, although
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most that are finite at null infinity are not local. A full summary of their properties is given in
table 1. Note that only the currents o j* are both local and possess finite fluxes.

That some of these currents possess diverging fluxes at null infinity is not ideal. It may be
possible to find a symmetry operator, differing from those that appear in this paper by a gauge
transformation, that is both local and maps to a solution with a non-divergent symplectic prod-
uct. In the absence of a clear example of such a symmetry operator, we have instead decided
to consider nonlocal symmetry operators which are easier to define. We have also shown that
there exists a symplectic product for the master variables (instead of the metric perturbation)
which yields finite fluxes. This symplectic product can also be used to construct a current which
gives (positive powers of ) the Carter constant in the limit of geometric optics. However, note
that this is not the physical symplectic product for linearized gravity.

One motivation for seeking conserved currents is the hope to derive, for the dynamical
system of a point particle coupled to linearized gravity in the Kerr spacetime, a ‘unified con-
servation law’ that would generalize the conservation of the Carter constant for a point particle
by itself. The local currents considered in this paper could be relevant for such a conservation
law, but the potential relevance of the nonlocal currents is less obvious. We plan to further
explore these currents, particularly their applications, in future work.
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Appendix A. Integration along the horizon and null infinity

The flux of a current . . . j* through a surface S of constant r (such as the horizon or null infinity)
is defined by

R = lim(** 4+ d?) ... j°N,, (A.1)
dw d€2 |¢ =S

where N, is the surface normal, and the factor of 72 4+ a2 comes from the fact that the determi-

nant of the induced metric on surfaces of constant r is (> 4+ a?) sin §. The surface normals are
proportional to (dr),,

A
N, dr), = n, — —1,, A2
o (dr) n > (A.2)
and the usual scaling freedom is fixed by requiring’ that either N*V,u = 1 (for H~ and .#71)
or N°V,v =1 (for H" and .#7). It turns out, however, that these requirements are the same,
and fix the normalization such that

1 A
A = A.
N r2+a2<” 2l> (A9

7 Note that, if one were integrating these currents on a finite portion of these surfaces, the normalization of N, would
not matter. However, for equation (A.1) to hold—that is, when integrating over an infinitesimal portion dw, for w = u
or v, we must normalize N, appropriately.
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As such, we find that

d2

dv dQ2 H+ B rﬂr}:%xed > (]n B _]l> (A4a)
d? .

dud|, Hrf,%xed (J" - ﬂ) (A.4b)
5 .

waa|, = dm 7 (Jn Jz) (A.dc)

e r—oo,vfixe
d’0 .
du dQ) s o r—>olcl,£rf}xed (]n N 2Jl> (A4d)

From this discussion, for the calculations in section 6, we need the components of
symplectic products along /, and n,:

_— 1 P ——

sith [8+g,8+g] =~ T lon Im |:(8+C)lﬁ1ﬁz(8+g)mm ) (A.5a)
_— 1 o —— e

iy [04805.8 = “Tor Im {(5+C)nm(5+8)mm— (5+C)n(1ﬁz)(5+g)("m} ,

(A.5b)

where [, n, m, and m subscripts denote contraction on an index with the corresponding null
tetrad vector, and where the non-zero perturbed connection coefficients are

1

@4 O = _E[D +2(e — &) — pl(0 48> (A.6a)
1 1

O+ Oy = _Z(D +2e + p)(O4 &) uim) — 57(54—8)@71, (A.6Db)

1 1
O+ COinin = —Z(CS + 20)(0+ &) nim) — E[A +2(y =) — 2 pl@+ )i

(A.60)

One can obtain the analogous expressions for 3_ by performing a ’ transformation. For the
symplectic product defined using the master variables, we find that

5 fBCR [SlsQ, 51 ,Q: 85,9, Sz_SQ]
=51,D — sT)8,_ Q2+ 5, QD + sT)55,Q — 1 +— 2, (A.7a)
IR [81,00, 81,238,008, Q)]
=51, A — sT',)8,_ Q481 QA + sT,)82,Q — 1 +— 2.
(A.7b)
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Appendix B. Asymptotic behavior

In order to determine fluxes at null infinity and the horizon, we also need to know the asymptotic
behavior of the quantities that appear in equation (A.5) and its ’ transform. These are given in
table B.1. To determine these falloff rates, we write the quantities that appear in (A.5) and its ’
transform in terms of differential operators acting upon the Debye potential, using the operators
defined in equation (2.36): the perturbed metric satisfies

1 2 3ia sinf
54 2o 4 _ Blasind
®+8)om = ﬂK@”c c)("% ¢ )

N <$;+la 51n9+21a sm9> <@0_§>] . (B.12)

¢ ¢ ¢
1 3
B+ Qmm = — (90 + Z) (90 - Z) —2%), (B.1b)
S ia sinf  2ia sinf + 3

(®-&am) = IVAA [(iﬂz + c + z ) (90 C)

T (@g +1- %) (zz _Jasing ;ina)] A%, (B.1c)

2 1 3

(3-8 = 4C<2 (@* c) (@J - Z) A%, (B.1d)

whereas the relevant perturbed connection coefficients are given by

@+ O = — (90 + C) (34 8)imins (B.2a)
1 ia sinf
O+ Oy = 7 (90 C) (04+-8)um) + eV (6+&)mm> (B.2b)
1 2 0
(5+ C)nimin = _W <o§/ﬂi_1 la?n) (5+g)(nm)
A 2 2
42 <@(—)~_ C C) (8+g)mma (BZC)
A 1 2
1 0
6O = g5 (@* c) AG-g)am + ’;’}22 (-8 (B.2¢)
5. C = ! £ 1 ! D 2 5 B.2f
O-C)im = —W 10— m) — 5 0 —E (O &)mm- (B.2f)

In order to compute the asymptotic behavior of these quantities, one needs to determine
the asymptotic behavior of derivatives of the master variables. However, applying the naive
approach, which uses the asymptotic expansions given by equations (3.56) and (3.58), along
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Table B.1. Asymptotic behavior of the solutions for linearized gravity.

Ingoing [/ ~“" x]  Outgoing [e!"X~“* x|

r— r4 r— 00 r— ry r— 00
(8+glmwp)m?l A 1/7’2 1 r
(8+glmwp)rﬂﬁl 1 1/1’ 1 1
(nglmwp)lm I/A r 1 1/7‘2
(nglmwp)mm 1 1 1 1/}’
(8+ Clmwp)lﬁuﬂ I/A l/r 1 1/}"
(8+ Clmwp)n(lﬁl) 1 1/}"2 1 1/7‘2
(8+ Clmwp)mﬂr?l A 1/7’2 1 1
(87 Clmwp)nmm A l/r 1 1/}"
(87 Clmwp)l(nm) 1 1/}"2 1 1/7‘2
(87 Clmwp)lmm I/A 1 1 1/}’2
with
iwr* df iwr*
Docemyzaf (r Je T = Eeil
r — oo,

iwr d ' iwr®
Domyray f ()e™ = {d—]: F 2lwf(r)] et

. K d 3 o
Doemyw f (r)eHm’™ = d—{eilkmw'
rF— —o0
: * df 4Mr+ . : * ’
Fikmwr — | ’ Fikmwr
Domyw) [ (He [ T A ik, f (r )] e
(B.3)

results in cancellations in the leading-order behavior. Instead, we use the radial Teukol-
sky—Starobinsky identity (3.32), which provides a differential equation that is independent of
the radial Teukolsky equation (2.45b). Using the radial Teukolsky equation, one can reduce the
radial Teukolsky—Starobinsky identity to the following expression for derivatives of (§2.,,(r)
[26]:

24+2)/2 O
Doemizin D2 Qi

- = 242)/2 O 272)/2 O
= i2\:lmpr( )/ iZQ[mwp + i2HImpr( 72/ ¥2lewpa (B4)

where this equation defines the coefficients 4=, and +11;,,,,. These equations also clearly

hold for s (r).

Plugging equation (B.4) [for s%mwp(”)] into equations (B.1) and (B.2), and then taking the
limits ¥ — oo and r — r, yields the asymptotic forms given in table B.1. Using this same
calculation, we can determine the angular dependences of the quantities in (B.1) and (B.2).
Defining, for s > 0,

b = 2025 — Dwrs — 5\ s = 4225 — Dwa sinf + 5,
(B.5)
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they are given by

ik /M1y K

5+gnmszmp s L m)(—w)—2O s (B.6a)
(o + SMr ik K

7S0ut' _ 2 M S+ +Hmw —1 mwg o o ’ B.6b

81 guin®limwp MM ) ik P C2 2(—m)(~w)~2Otmuw (B.6b)

5 anSimap = 2V 20 L2 my(-0) 2Ol e
5 g Sy = — V2L mi ) 2O

5+gmm }:lnwp = 4(2Mr+)3/2ky2nw72"£mw71Kfmw—2@lmwa (B6d)

24Mr+iwkmw71/£mw(+ + [lC+(2 —lnlmw) + 8Mr+kmw] anmw

77s0ut' —
Ol 4ik2,, M7 ) it
X 2O, (B.6e)
Siovn = 4,0 s, = 2l g B.6f
54 giminlmwp — W 29w, Sy gmimlmwp — w —2%91Imw» ( . )
in 2771me+ 8Mr+ikmwl”fmw$ o B.6
S_gim lmwp — 8(M7+)3/2ikmw1/€mw 2mw?2 I lmw > ( . g)
ngzmsfrt,‘;p = 2/ Mr ikmnw2 KmoCt L 2mw2 Ol (B.6h)
down _ <L ome up \/_ .
Sﬂ?/m*s‘lmwp = 20, 5—8lmslmwp = V2iwL 2m2Otms (B.61)
V2
S 24Mr+iwkmw 1 K}meJ,. + [ZCJ’_(Z lnlmw) 8Mr+kmw]277[<;w &)
S—gmmlmwp — l6ik,%w(2Mr+)5/21/{me+ 2%%Imw >
(B.6j)
S—gmm ?nL;Llup = _(ZMr+)3/2k51w2”fmwl"fmw2@lmwa (B6k)
iome
ngmmsggz;)l = %2911/”@', 5_ gmmS[mqu —W 2®lmu,, (B61)
w
and
5+Clr71r71Sil:’1nwp = 4(2Mr+)5/2ik§nw72”imw71ﬁmw—zelmw, (B.7a)
84 Conn Sty = LAMT i Ko [24Mry i0Kips  Fom
2 = i) 5l
- CJr {SMr+ikaw[371/‘5mw(2 - 177;:1&,) - 4—277;:11;.;]
iyl it + 4GAms + DI}
(ST
-2 (B.7b)

16k, M) P o P
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-
8+c,mmS§i,,(,’x; = 4i® 2O S+CIMS}1,5W, = —%,2@1%,
8.+ Cotiy }pr = —4Mr )k e e

X ((+ L2 my—w) — la sinB)_2O,,,
5.4 Cum Sty = € {RAMr ik Koo + 12 — _ 1) oMb 104

X ((+Lr-my-w) — ia sin0) + 8Mr ik 1t

X (2C4+ L 2—my—w) — la sinfh)

+ 6(4Mr Y ik, 1 o Loy |

2O
64(Mr+ Y/ 2ik2 Ko

5.+ Cuimy Simmom = =V 260° L2y —)—2O s
5.+ Coamy Siop = — 1 [4w’@(2 cos® 0 — 3) — 12i0(M + iam) + y A

X (2)\lmw + 2)] $2(—m)(—w)

_zelmw

8v2w?’

+4aw sinf(12aw sinf + )}

5+C,,,71,;TS}2MP = Mr+ikmw_2/fmwc_;4 {Ci [(2 - _1771:;&;)

— Lm0 L myw)| + 16Mr
X ikmw73/2’{mw<+ + 2612 SiIl2 0

2 elmw
V2

+ ia sin 9<+c£/ﬂ2(—m)(—w)} —

4 . .
84 ComnSimp = S A oM [CGa sin0 — 4 L1 my—w)

5 =+ Cnmm

X gZ(—m)(—w) — 8Mr+ikme+ + 2(12 sin2 9]
- 8Mr+ikmw_1Hmw(<+$(,1)(,m)(,w) — ia sin 9)

X gZ(—m)(—w) + [24Mr+wkmw_ 1 Rmw

©
2 YImw
+ 2 - k ,
( _1771mw) znlm] C+} (8Mr )3/ ik | Ko
down 1
S+CnmmSlmL~p - _Sw —2Imws
w2l = L DEm0L 2 miw)

—2@lmw,

Imwp

4
5. CnmmSlmw]) {4Mr_~_zk,m | Ko [24Mr+lwkmmm

+ 1(2 - lnlmw)anmw] + C+ {8Mr+ikaw
X [315’"“](2 - —177[—:_nw) - 4277[—:_nw]
+ il M + 4GAms + D1} }

2@lmw
k3, (8Mry )2 |2
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(2Mr+ )S/ZikanZ Rmw 1 Kmw

t
S Crmm S;)muwp = ZCZ 201 (B.71)
+
down i—2n?njw up iw?
8—Cnmmslmwp = 16w 2®lmwa S,C,,m,,,S[mwp = _72®lmwa (B7m)

5 ClomSimop = G {[2AMriwhinist Ky + i}, (2 — 11 1G4
X ((4 Lo + ia sinf) — 8Mr+kmw277;,rm
X (204 Lomo + ia sin0) + 6(4Mry) ikn, 1 KmeLome }
2@lmw

X s B.7
256(Mr Y /2ik2, | Ko (B.7n)
5 Cium) ?nL;Llup - _(Mr+)3/2k51w2’€mwl”ime;z(C—Fmew +ia sin 9)2@lmw,
(B.70)
5_ Clom Simrn = — { [4w?a*(2 cos® 6 — 3) + 12iw(M — iam)
+ QAImw(zklmw + 2)] mew
+4aw sinf(12aw sind + onpe)} 2Oimy , (B.7p)
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