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ABSTRACT: Cobalamins are cobalt-centered cyclic tetrapyrrole ring-based molecules
that provide cofactors for exceptional biological processes and possess unique and
synthetically tunable photochemistry. Typical cobalamins are characterized by a visible
absorption spectrum consisting of peaks labeled α, β, and sh. The physical basis of these
peaks as having electronic origin or as a vibronic progression is ambiguous despite much
investigation. Here, for the first time, cobalamin fluorescence is identified in several
derivatives. The fluorescence lifetime is ca. 100−200 fs with quantum yields on the
order of 10−6−10−5 because of rapid population of “dark” excited states. The results are
compared with the fluorescent analogue with zinc replacing the cobalt in the corrin ring.
Analysis of the breadth of the emission spectrum provides evidence that a vibrational
progression in a single excited electronic state makes the dominant contribution to the
visible absorption band.

■ INTRODUCTION

Light is an abundant and versatile energy source, essential as a
basis for all forms of higher life,1,2 and provides a tool for the
manipulation and control of molecular scale devices.3,4 Metal-
coordinating cyclic tetrapyrroles including chlorins, porphyr-
ins, and corrins (in vitamin B12 derivatives) are employed for a
wide range of light-activated applications, from light harvesting
and energy conversion to gene regulation and delivery of
therapeutic agents.3−6 Excitation in the visible or near-UV
region of the spectrum takes advantage of intense ππ*
transitions carrying the oscillator strength for absorption.2,7

Photochemistry of (open shell) transition metal complexes, on
the other hand, is controlled by metal-to-ligand charge transfer
states, ligand-to-metal charge transfer states, and/or metal-
centered states.8 The transitions between these states have
been the subject of many different experimental and theoretical
studies.8−10

Cobalamins (Cbls, Figure 1) comprise a unique class of
cyclic tetrapyrroles with a cobalt ion bonded to a corrin ring, a
lower dimethylbenzimidazole ligand (DMB) covalently teth-
ered to the corrin ring, and a variable upper axial ligand.11−13

The lower axial DMB ligand can be replaced with histidine in
some enzymes14 or by water in a protonated base-off
configuration at low pH15 and is decoordinated without
replacement in some proteins.16−18 B12-dependent enzymes
exploit the distinct reactive pathways of two organometallic
Cbls: 5′-deoxyadenosylcobalamin (coenzyme B12 or AdoCbl)
and methylcobalamin (MeCbl).19−21 These Cbls are also light
sensitive and undergo photoinduced homolysis of their Co−C
bond.8−10 The unique Co−C bond of organometallic Cbls also

provides space for chemical manipulation of both their thermal
and photochemical reactivity.13,22−24 Strong Co−C bonds and
their photochemical stability are exploited in a range of alkynyl
cobalamins23,25,26 designed as potential antivitamins B12.
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Figure 1. Schematic structure of cobalamins (Cbls), with the specific
R groups investigated here, and of the zinc analogue zincobalamin
(Znbl).
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The influence of axial ligation on cobalamin photochemistry
has been the subject of many spectroscopic and theoretical
investigations.8−10,28,29 The vertical electronic transitions to
excited states, the nature of the potential energy surfaces of
cobalt corrins, and the photochemical pathways depend on the
bonding to the axial ligands. Despite extensive study,
significant uncertainty remains regarding the nature of the
electronic excited state or states responsible for the strong
visible absorption band. The α- and β-bands in the visible
absorption spectrum of so-called “typical” cobalamins (Figure
2) along with the shoulder to slightly higher energy are

variously assigned to distinct electronic transitions30−32 or to a
vibrational progression dominated by a single electronic
transition.29,33,34 The structure is less pronounced in the αβ-
band of so-called “atypical” cobalamins, including the bio-
logically active coenzymes AdoCbl and MeCbl (see Figure S1).
The absorption spectrum of the zinc analogue zincobalamin
(Znbl),35 also plotted in Figure 2, is similar to the typical
cobalamins, although blue-shifted by ca. 24 nm (800 cm−1).
The similarity between Znbl and typical cobalamins agrees
with the hypothesis that the spectrum is characteristic of ππ*
transitions of the equatorial corrin. This hypothesis is further
supported by comparison of spectra of the metal free
hydrogenobyric acid (Hby) and zinc-substituted zincobyric
acid (Znby).35,36

In a recent study, triply resonant sum frequency (TRSF)
spectroscopy was used to address the question of electronic
and vibrational contributions to the absorption spectrum of
cyanocobalamin (CNCbl).33 While this and similar approaches
have great potential, the result to date was unable to determine
the nature of the absorption bands unambiguously. The
conclusion, in favor of a vibrational assignment, considered
prior Raman excitation profiles along with the fact that TRSF
measurements did not rule out a vibrational assignment, rather
than strong positive evidence for a vibrational assignment.
Fluorescence provides another means to distinguish

electronic transitions from vibrational sidebands. Fluorescence
from the ππ* state of the corrin ring has been reported for
metal-free corrins.36−38 The fluorescence spectra of metal-free
corrins36,38 and Zn corrins35 exhibit varied vibrational
structure, providing the strongest evidence to date for a
vibrational assignment of the αβ-band absorption of “typical”
cobalamins.34,39 The data on the metal free corrins are
complicated, however, as their strong emission in the visible
features considerable temperature dependence.36,38 The zinc
corrins also exhibit strong fluorescence spectra with a clear
vibrational progression,35 although the rapid decrease in

intensity at longer wavelengths suggests that the entire width
of the αβ-band in the absorption spectrum cannot be
attributed to a vibrational progression in a single electronic
state (see below).
Cobalamins are generally considered nonfluorescent.

Motion along the reactive surface or internal conversion
from the ππ* state proceeds rapidly, preventing the
observation of emission under most conditions.8,40,41 In fact,
an ultrafast X-ray study of cyanocobalamin (CNCbl) suggests
ultrafast motion out of the initial Franck−Condon region from
a “bright” corrin-centered ππ* electronic configuration to a
dark ligand field πσ*(3dz2) configuration occurs within ca. 50
fs, followed by elongation of the axial bonds.42,43 Relaxation
into the excited state minimum is complete within a few
hundred femtoseconds. However, rapid motion out of the
Franck−Condon region only limits the quantum yield of
emission; emission can still occur at early times. Very recently,
we reported the presence of a short-lived (≤200 fs) stimulated
emission signal following excitation of AdoCbl at 575 nm on
the red edge of the absorption spectrum.44 Comparison with
the transient XANES spectrum of AdoCbl again provided
evidence for correlation of the disappearance of the stimulated
emission with elongation of one or both axial bonds. The
initial structural changes involve ring expansion during which
emission is observed; these are followed conversion to a “dark”
electronic configuration and axial expansion ca. 200 fs later.
However, the overlap of excited state absorption with
stimulated emission prevents analysis of the fluorescence
spectrum for AdoCbl from these data.44 The high photolysis
yield of AdoCbl complicates attempts to measure the
fluorescence spectrum by using traditional methods.
Here we report broadband transient absorption and steady

state fluorescence measurements for three photostable
cobalamins, CNCbl, 3-hydroxypropynylcobalamin (HO-
PryCbl),25 and 2[4,6-difluorophenyl]ethynylcobalamin
(F2PhEtyCbl).

26 The results are compared with steady state
fluorescence measurements on the zinc corrin Znbl.35 The
measurements reported here demonstrate that the breadth of
the αβ-band absorption spectrum of typical cobalamins is
dominated by a single electronic transition but must also
contain contributions from unique electronic transitions at
slightly shorter wavelengths.

■ EXPERIMENTAL METHODS
Transient absorption measurements were performed by using
two Ti:sapphire laser systems producing 808−810 nm pulses at
a 1 kHz repetition rate with duration <100 fs. The ca. 405 nm
excitation pulse was generated via 810 nm second harmonic
generation in a thin β-barium borate crystal. The 550 nm
excitation pulse was produced via a NOPA (home-built or
commercial TOPAS White, Light Conversion) which was
attenuated to 500 nJ to ensure linear absorbance. Broadband
continua were generated by focusing 404 or 808 nm pulses (ca.
500 nJ) into a 5 mm CaF2 plate. The continuum produced
using 404 nm excitation spans ∼270−625 nm and was
attenuated by a combination of nickel(II) sulfate, cobalt(II)
sulfate, and neutral density filter. The continuum produced by
using 808 nm excitation spans ∼325−800 nm and was
attenuated by a KG5 filter (Schott) and neutral density filter.
The 15 nJ continuum was focused to a spot size of 70 μm at
the sample, while the excitation spot size was 150 μm. The
continuum was detected by a Horiba Job Yvon spectrometer
(iHR320) coupled to a CCD (Pixis, Princeton Instruments) or

Figure 2. Comparison of the absorption spectrum of a typical
cobalamin, cyanocobalamin (CNCbl), and zincobalamin (Znbl). The
pertinent band labels are also indicated.
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an Avantes spectrometer. The excitation-detection time delays
were set by retroreflector and translation stage. The excitation
pulses were modulated at 500 Hz by an optical chopper to
measure the absorbance difference. Most samples were
measured at a concentration of 1 mg/mL in a 1 mm path
length cuvette. Cyanocobalamin measurements used a 300 μm
wire guided flow to eliminate contributions from the cell
windows.
Integrated fluorescence measurements on HOPryCbl,

F2PhEtyCbl, and CNCbl were performed via a Horiba Quanta
Master instrument equipped with a xenon arc lamp and
photomultiplier tube detector as excitation scans and emission
scans. Samples were prepared at concentrations ranging from 5
to 40 μM in a 1 cm quartz cuvette. Slit widths were set to 5 nm
for both detection and excitation slits, and the integration time
was 1 s. An automated photodiode correction was employed.

■ RESULTS

The transient absorption spectra for all three Cbls obtained
with 550 nm excitation over the first 500 fs are summarized in
Figure 3. Line-outs averaged around key time delays are
presented in Figure 3b. These transient spectra demonstrate
clear evidence for stimulated emission from the initial excited
state, evidenced by negative signals at wavelengths between
590 and 650 nm. The stimulated emission contribution has
vanished within ∼500 fs, leaving only contributions from
excited state absorption and the bleaching of the ground state
absorption. Thus, evolution out of the Franck−Condon region
is complete within a few hundred femtoseconds. If the data are
fit to a model consisting of a sum of exponentials, the
fluorescence lifetime is ∼200 fs for both HOPryCbl and
F2PhEtyCbl but somewhat shorter, ca. 50 fs, for CNCbl.43

Stimulated emission is also observed for the PhEtyCbl
antivitamin studied earlier following 550 nm excitation.45

The absence of significant intensity for wavelengths >590 nm
in the broadband probe used in most of the measurements of
PhEtyCbl prevented the identification of stimulated emission
in the prior study,45 but a stimulated emission contribution is
apparent in one data set where the continuum extended to 610
nm (see Figure S2). These data represent clear evidence for
fluorescence from the lowest optically allowed ππ* excited
state of cobalt-containing corrins. A stimulated emission signal
is not apparent following ca. 400 nm excitation for any of these
molecules (see Figures S2 and S3), suggesting that internal
conversion from the higher electronic states does not populate
the Franck−Condon region of the state responsible for the αβ-
band absorption. For longer time delays, the transient
absorption signal is independent of excitation wavelength.
Although stimulated emission is clearly observed in the

transient absorption measurements, analysis of the shape of the
fluorescence spectrum from these data is complicated by the
overlapping contributions of ground state bleach, stimulated
emission, and excited state absorption. To analyze the spectral
shape, we turn to integrated fluorescence measurements. The
Strickler−Berg formula46 can be used to estimate the
fluorescence quantum yield. Given an excited state lifetime
of 200 fs, an estimated peak extinction coefficient at λmax = 550
nm of ca. (8.5 ± 1.5) × 103 M−1 cm−1, a peak fluorescence
near 580 nm, and assuming the αβ absorption band from 465
to 600 nm is assigned to one electronic transition, the
fluorescence quantum yield is estimated to fall between 5 ×
10−6 and 8 × 10−6. The emission lifetime for CNCbl is closer
to 50 fs, and the fluorescence quantum yield is estimated to be
somewhat lower (ca. (1−2) × 10−6). A separate estimate of the
quantum yield can be obtained from recent fluorescence
lifetime measurements and quantum yield determinations for
the natural cobalt-free corrin Hby36 and its zinc complex
Znby,35 with fluorescence lifetimes τfl of 3.3 and <0.4 ns,

Figure 3. (a) Top: visible absorption spectra of CNCbl, F2PhEtyCbl, and HOPryCbl in water. The intensity scale represents the extinction
coefficient of CNCbl/1000. The other two compounds have been scaled to approximately the same intensity in the visible band. Bottom: surface
plots of the transient absorption signal observed over the first 500 fs following excitation of each compound at 550 nm. The stimulated emission is
indicated by the transient negative signal ca. 600 nm. (b) Transient difference spectra of CNCbl, F2PhEtyCbl, and HOPryCbl averaged around the
indicated time delays. There is a clear stimulated emission signal to the red of the ground state bleach between 590 and 650 nm at the earliest
times. The steady state spectrum is repeated in the top panel for comparison.
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respectively. If the intrinsic radiative lifetimes of HOPryCbl,
F2PhEtyCbl, and CNCbl are similar to Hby (τr = τfl/φfl = 3.3
ns/0.18 = 18 ns)36 and Znby (τr = τfl/φfl = 0.4 ns/0.025 = 16
ns),35 the lifetime for stimulated emission of 200 fs in
HOPryCbl and F2PhEtyCbl corresponds to a slightly higher
quantum yield of 1.2 × 10−5. These yields of 10−6−10−5 are
small but expected to provide a measurable signal.
The emission spectra of HOPryCbl and CNCbl were probed

directly by measuring the time-integrated fluorescence signal as
a function of excitation wavelength by using a sensitive steady
state fluorometer. The HOPryCbl signal is weak, but varying
the excitation wavelength permits separation of Raman
scattering, predominantly from the solvent, and cobalamin
fluorescence (see Figure S4a). The signal is easily observed and
the amplitude scales with sample concentration (see Figure
S4c). Emission spectra obtained for three excitation wave-
lengths at three concentrations are plotted in Figure 4 (see also

Figures S4 and S5). The CNCbl fluorescence is approximately
a factor of 8 weaker than the HOPryCbl fluorescence, making
it harder to separate from the strong Raman bands and making
it difficult to determine the short wavelength edge of the
spectrum accurately (see Figure S6). Fluorescence is also
observed for F2PhEtyCbl (see Figure S7).

■ DISCUSSION
The averaged fluorescence spectra of HOPryCbl and CNCbl
are plotted in Figure 5 and compared with the fluorescence
spectrum of Znbl reported previously.35 Analysis of the
cobalamin absorption spectrum by us and by others has
typically involved fitting the spectrum to a sum of Gaussian
bands with the α, β, and sh peaks assigned to distinct
electronic states or to a vibrational progression in νLA, the long
axis CC stretching mode of the corrin ring, within a single
state.29,40 This mode is observed at ca. 1500 cm−1 in resonance
Raman measurements of cobalt corrins, with the expectation
that the frequency is somewhat lower in the excited state, ca.
1300 cm−1 if the peaks in the absorption spectrum represent a
vibrational progression.29,33 The fluorescence spectrum can

also be fit to a sum of Gaussians with the constraint that the
ground state frequency νLA is fixed to 1500 cm−1. The fitting
procedure is described in more detail in the Supporting
Information. As indicated in Figure 5, the breadth of the
emission spectra for all three compounds is consistent with a
progression in νLA. The relative intensities of the 0−0 and 0−1
transitions suggest a dimensionless displacement between the
ground and excited state of ca. Δ = 1.03 for HOPryCbl and
∼1.00 for Znbl. See the Supporting Information for details of
the analysis.29,47−50 These values for the displacement are
somewhat lower than 1.28 derived previously for CNCbl and
1.45 obtained for MeCbl29 but large enough to account for the
strong enhancement of this mode in resonance Raman spectra.
As illustrated in Figure 5, vibronic structure consistent with a
progression in νLA alone is not sufficient to account for the
entire emission spectrum. An additional band, B, between the
0−0 and 0−1 transitions is used in the fits to approximate the
combined effect of lower frequency vibrational modes. The
best fit for this band is at ∼760 cm−1 for HOPryCbl and ∼960
cm−1 for Znbl. A contribution in this frequency range is also
identified in the 77 K excitation and emission spectra of Znby
(see Figure S8 and discussion in the Supporting Information).
An estimate of the breadth of the absorption spectrum from

the ground state to the fluorescent excited state that is
consistent with the fit to the fluorescence is also plotted in
Figure 5 (see the Supporting Information for details). The
measurements reported here demonstrate that the breadth of

Figure 4. HOPryCbl integrated emission for three excitation
wavelengths and three solute concentrations. The strong water
Raman band has been subtracted out along with the cell background
(see Figure S4). This region around 660 nm has been omitted from
535 nm data as subtraction here left a small artifact. The region of the
weaker water Raman band near the peak of the fluorescence spectrum
has been removed from the data to avoid artifacts in this region. The
spectral shape is independent of excitation wavelength and solvent
concentration over this range. In particular, the intensity tracks
linearly with concentration.

Figure 5. Steady state emission spectra of HOPryCbl (top), CNCbl
(middle), and Znbl (bottom)35 compared with the absorption spectra
and with a fit of the fluorescence spectra to a sum of four Gaussian
bands. The bands designated 0−0 and 0−1 are held at the ground
state separation of ca. 1500 cm−1 for the corrin ring CC stretching
mode νLA implicated in resonance Raman measurements of
cobalamins, while the other two bands, B and D, are allowed to
vary freely in center wavenumber. See the text and Supporting
Information for more details of the fitting. No fit is shown for CNCbl
because of uncertainties in the fluorescence peak introduced by
reabsorption and by subtraction of the background contribution for
these very small signals (see Figure S6).
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the αβ-band absorption spectrum of typical cobalamins is
dominated by a single electronic transition but must also
contain contributions from unique electronic transitions at
shorter wavelengths. No attempt is made to fit the absorption
spectrum because of the ambiguity introduced by these
additional electronic transitions. The visible absorption
spectrum is dominated by the ππ* transitions of the corrin
ring and is similar for typical cobalamins, zinc-substituted
analogues,35 and metal-free Hby.36 The presence of a Co atom
opens a rapid channel for depopulation of the “bright” state.
This precipitates the changes in the axial bonding that are
observed in time-resolved XANES measurements.42,43

■ CONCLUSIONS
The measurements reported here demonstrate the presence of
short-lived fluorescence from the lowest Franck−Condon
active excited state of four typical cobalamins: CNCbl,
PhEtyCbl, F2PhEtyCbl, and HOPryCbl. This fluorescence
disappears as changes in electronic configuration and atomic
motions coupled to axial bond elongation move the population
out of the bright state into a dark region of the excited state
potential energy surface. The breadth of the fluorescence
spectrum demonstrates that the visible absorption band is
dominated by a single electronic transition, although additional
electronic states also contribute. Detailed analysis of the
electronic and vibronic structure of cobalamins will require
time-resolved measurements of the fluorescence spectrum as a
function of excitation wavelength. We have also observed
short-lived stimulated emission in transient absorption
measurements of AdoCbl, suggesting that this is a common
feature of cobalamins excited into the lowest allowed excited
state and that rapid motion out of the Franck−Condon region
involves changes in the axial bonds.44 Femtosecond broadband
fluorescence measurements will provide additional insight into
the factors that differentiate the electronic structure, and thus
the structured absorption bands, of “typical” cobalamins such
as CNCbl, F2PhEtyCbl, and HOPryCbl from the less
structured absorption bands of organocobalamins such as the
coenzymes MeCbl and AdoCbl.
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