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Nonlocal dispersion cancellation for three or more photons
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The entanglement of quantum systems can produce a variety of nonclassical effects that have practical
applications in quantum information science. One example of this is nonlocal dispersion cancellation, in which
the effects of dispersion on one photon can be canceled out by the dispersion experienced by a second photon at a
distant location. In this paper, we extend the analysis of nonlocal dispersion cancellation to three or more photons.
We find that energy-time entanglement of three or more photons can lead to a complete or partial cancellation
of dispersion depending on the experimental conditions. These results may be useful in implementing quantum

key distribution in networks with three or more nodes.

DOI: 10.1103/PhysRevA.102.013713

I. INTRODUCTION

A short classical pulse of light propagating through a
dispersive medium will become broadened, which can intro-
duce a significant uncertainty in the time at which it will be
detected. Two classical pulses traveling in two different media
will be broadened independently, with a resulting increase in
the uncertainty in their relative detection times. In contrast,
two photons that are entangled in energy and time [1,2] can
propagate through two different media in such a way that
the dispersion experienced in one medium is canceled out by
the dispersion in the other medium [3-23]. In this paper, we
extend the theory of nonlocal dispersion cancellation to three
or more photons and show that complete or partial cancella-
tion of dispersion can occur, depending on the experimental
arrangement.

Nonlocal dispersion cancellation has a number of potential
applications in quantum key distribution (QKD) or quantum
networks, where the data rate can be limited by the effective
pulse width. The reduced timing uncertainties are especially
important for QKD systems based on nonlocal interferometry
[1,2], where the difference in interferometer path lengths must
be larger than the effective width of the wave packets. In
addition, nonlocal dispersion cancellation itself can be used
as the basis for quantum key distribution [24-27]. Roughly
speaking, the presence of an eavesdropper will destroy the
dispersion cancellation, which can be detected by the system.
Nonlocal dispersion cancellation can also be employed for
clock synchronization in a protocol that is resistant to pulse
distortions caused in transit [28-30]. Biomedical imaging
applications have also made use of nonlocal dispersion can-
cellation to improve the quality of the images [31-34]. We
expect that the extension of nonlocal dispersion cancellation
to higher numbers of photons will also have potential appli-
cations, especially for quantum networks with three or more
nodes.

We will consider the tripartite entangled state created by
a x® nonlinear crystal to study nonlocal dispersion cancel-
lation for the three-photon case. A similar approach allows
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us to extend the results to larger photon numbers. Similar
results can also be obtained using two cascaded x® crys-
tals [35]. Three-photon entanglement has previously been
used in other applications, such as nonlocal interferometry
[35-37].

The paper is organized as follows. Section II calculates
the effects of nonlocal dispersion cancellation for the three-
photon entangled state created from a single x® down-
conversion process. Section III calculates the corresponding
dispersion for three classical pulses of light. The classical
and quantum-mechanical results are compared in Sec. IV.
Section V extends the previous results for the three-photon
case to higher photon numbers. Section VI provides a sum-
mary and conclusion. Additional details are provided in
the Appendix.

II. THREE-PHOTON DISPERSION CANCELLATION

The most straightforward method for creating tripartite
energy-time entangled photon states is through parametric
down-conversion [38,39]. In this section, we consider the
generation of three entangled photons using a single down-
conversion process in a x® nonlinear crystal as illustrated
in Fig. 1. This process converts a high-energy pump photon
into three secondary photons with lower energies. From en-
ergy conservation, the sum of the frequencies of the three
secondary photons must equal that of the pump photon, but
in general their frequencies need not be equal. As is the case
for two photons, the resulting three-photon state is entangled
both in energy and time.

In the absence of any dispersion and in the limit of large
bandwidths, the three photons would be detected at the same
time if they travel equal distances to the detectors. That will no
longer be the case in general in the presence of dispersion, and
we calculate the probability distribution for the three photon
detection times. The dispersion coefficients in the three media
where the photons propagate will be denoted B, 8, and B3,
while the propagation distances will be denoted x|, x;, and x3.

©2020 American Physical Society
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FIG. 1. An entangled three-photon source using a x ® nonlinear
crystal pumped by a laser at a frequency of w,. Each photon passes
through a filter with bandwidth o before propagating through
separate media with dispersion coefficients given by S, B,, and ;.

The most general form of the initial state of the three down-
converted photons is given by [35,38]
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Here w, w,, and w3 are the angular frequencies of the photons
while the corresponding photon creation operators will be
denoted by &Zl, 13;;2, and 6}(3 The function g(w, wy, w3) is
determined by the nonlinear crystal and the phase match-
ing conditions. We will assume that the three photons pass
through Gaussian filters whose bandwidths are sufficiently
narrow that the function g(w;, w;, w3) can be approximated
by the product of three Gaussians and a Dirac delta function
for energy conservation. The state of the system after the three
filters can then be written in the form
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where c is a constant and
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Here of represents the bandwidth of the filters, which are all
assumed to be the same with central frequencies wr = wg/3.
Equation (2) makes use of the fact that the sum of the three
frequencies must equal wy.

It will be convenient to introduce three new variables, €,
€, and €3, defined in such a way that

o~ (@i—wr) /207 3)
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w; = — t+ €y,

3
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wy = — + 6,
2 3 2
w,
w3 = 24 €3, 4)
3
where €3 = —e; — €. This leaves two independent variables,

€; and ¢,.
In the Heisenberg picture, the positive frequency compo-
nent of the electric field operator for each photon is given by
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The constant V is the volume corresponding to the use of
periodic boundary conditions while the wave numbers k; are a

function of w; in a dispersive medium. The negative frequency
component of the field operator is the Hermitian conjugate of
the positive frequency component. We can define an effective
wave function ¥ given by

Y(x1, X2, X3, 81, 12, 13)
= (01E* (x1, 1)ET (2, 2)E™ (x3, 13) ). (6)

Inserting the change of variables in Eq. (4) into Eq. (2) and
converting the sums to integrals gives

2w0/3 2w /3—€
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Here ¢’ is a constant and the factors of w; in the electric
field operators have been approximated by the central filter
frequency wp, which is valid when the width of the filters is
sufficiently narrow.

As usual, the wave numbers k; can be expanded in a Taylor
series around the central frequency wp:

ki(w;) = ki, + ai(w; — wp) + Bi(w; — wF)z
= kg, + a6 + ,3,'6,'2. (8)

Here we have assumed that the filters are sufficiently narrow
that third- and higher-order terms can be neglected. The
coefficients «; of the first-order terms are related to the group
velocities whereas the coefficients 8; of the second-order
terms give rise to dispersion.

Substituting Eq. (8) into Eq. (7) and extending the integrals
to infinity under the assumption that the filter bandwidths are
narrow compared to wg/3 gives

w(tl tr t3) — C/ei[kFl.x1+kF2X2+kF3X37(Ct]X1+l¥2X2+0t3X3)(1)()/3]
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We introduce two new variables 7 and 7 defined in such a way
that

h=18+t,

B=h+t+rt=n+T. (10)

Thus ¢ is the delay between the detection of photon 2 and
photon 1, while 7 is the delay between photons 3 and 2. All of
the Gaussian integrals can then be performed by substituting
Egs. (4) and (10) into Eq. (9) and using the identity

o [
/ dx ef(aszrberc) _ = e(b274ac)/4a. (11)
—0 a

Evaluating the integrals gives a coincidence probability den-
sity P(t, T) = ¥* that can be written in the form

N’ N’ N’
u) (12)

P, t)=c"exp (203 5
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FIG. 2. The same entangled three-photon source shown in Fig. 1,
with the addition of a narrow-band filter and detector placed in the
path of photon 3. This allows postselection on the frequency of
photon 3.

Here
Nt = {34+ 407 1(Box2)” + (Box2)(B3xs) + (B3x3)’1},
N> = —t1[3 + 4o {(Bix1)(Bax2) + 2(Box2)’
+(Bax2)(B3x3) — (Bix1)(Bsxs3)].

N'3 = —*{3 + 40 [(Bix1)* + (Bix1)(Bax2) + (Box2)’1},
(13)

and
D =9+ 807{2(Bix1)* + 2(Box2)* + 2(B3x3)*
+ (Bix)(Baxz) + (Bix1)(B3x3) + (Bax2)(Bax3)

+ 202 [(Bix1)(B2x2) + (Br1x1)(B3x3) + (ﬁzxz)(ﬂ3x3)]2}
(14)

We have simplified the form of the equations by making the
substitution #; — ; — a;x;, which subtracts off the effects of
the group velocities. The calculations are discussed in more
detail in the Appendix. These results will be plotted and
discussed in Sec. III.

We have also considered the situation in which photon 3
is passed through a narrow-band filter before it is detected,
as illustrated in Fig. 2. Postselecting on a specific frequency
w3 = @3 collapses the state of the system and effectively
introduces a Dirac delta function §(w3 — @3) into the inte-
grals. Following a similar process as before, we arrive at a
probability distribution for the detection times of photons 1
and 2 that is given by

_ — 1)
P(t) = cexp |:T}2:| (15)
where
F=(@n —amn)+ (Bn - fr)(5 — o). (16)
and
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We note from Eq. (17) that the effects of dispersion on
photons 1 and 2 can be eliminated if we choose Bjx; =
—Baxy, as in Ref. [3]. In addition, it can be seen from Eq. (16)

that the choice of the postselected frequency @s can be used to
control the relative detection times of the other two photons.
All of these features are due to the entanglement of the third
photon with the other two.

III. CLASSICAL PULSES

We now calculate the analogous results for the case of
three classical pulses of light propagating in three separate
media, such as three optical fibers. The correlated intensity
distribution of the pulses after propagation will be compared
to the results for three entangled photons as given in Eq. (12).

The electric field E;(0, ¢;) of the classical pulses emitted at
the source will be assumed to be Gaussians described by

EO * —(w;—w, )2/202 —iwit;
E,-(O,ti)=—2n e\ er) 20k g0 gy, (18)
—00

After the pulses propagate through their respective media, the
electric fields at the three detectors at x; become

Ey [ Va2
Ei(x;, 1) = —/ e (@imwr) /207
27 J_o
X ei[kl-‘+ai(wi7wlf)+,Bi(wi7w[-' ? ]Xie*iwifidwi’ (19)

where kr = wr /c. Equation (19) can be integrated to give

= aix;)* (od +2i,3ixi) . 20)
4o + (Bixi)]

Ey
Ei(xi, 1;) = 2 12g; P

where
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An irrelevant phase factor has been dropped.
Multiplying the fields in Eq. (20) by their complex conju-
gates give the intensities

Ity = —Eo [_(ti_“ixi)z} 23)
X, 1) = ex )
drlal? P 207
where
0'4 + iXi
o} = (oo + Pi) 2’3 ) (24)
9

If the intensities are sufficiently weak that single-photon
detectors (or their classical equivalent) can be used, the de-
tection probabilities at any given time will be proportional
to the respective local field intensities. Thus the probability
P(t1, 1, t3) of obtaining three detection events at times ¢; is

P(t, 1, 13) = nl (x1, 1)L (x2, t2)3(x3, 13), (25)

where the constant 5 is related to the detection efficiencies.
The probability distribution P(z, T) that pulses 2 and 3 are
measured at time delays ¢ and ¢ 4 7 after pulse 1, respectively,
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FIG. 3. Probability distribution that detectors 2 and 3 will detect
a single photon with a time lag of 7 and 7 + v (dimensionless)
after detector 1, respectively, for a relatively narrow-band filter with
or = 0.10 (arbitrary units). Panels (a,b) correspond to the quantum-
mechanical and classical results, respectively, for no dispersion
(B1 = B2 = B3 = 0). The quantum and classical results are shown in
(c,d) for a set of parameters with wy = 1, f1x; = 100, Brx, = =50,
and Bsx; = —50. Panels (e,f) correspond to Bix; = 200, Brx; =
—100, and B3x3 = —100. It can be seen that the timing uncertainties
are significantly smaller for the quantum-mechanical results in (c,e)
due to nonlocal cancellation of dispersion.

is then given by integrating over #;, which gives
Eg

P, t)=n

(4’ |ar*|azf*|as|?

f _ % [ (tl—a;xl )2 + (1 +t—;2x2)2 + (r1+r+r;a313 )2 ]
o o, o
x | e i 3 3

dty.
(26)

The effects of the group velocities can be ignored by making
a change of variables as in Eq. (10). This simplifies Eq. (26),

which can then be integrated to give

N1+N2+N3)

D 27)

P(t,t)=cexp (20,%
Here
Ny = —2{1 + 202 [(Box2)* + (B3x3)*1},
N, = —t1[1 +4(Box2)0}],
Ny = =t {1 4 207[(B2x2) + (Bix1 1},
D =3+ 80} {(Bix))* + (Box2)® + (B3x3)?

+ 202 [(B1x1)*(B2x2)* + (B2x2)* (B3x3)*
+(Bsx3)2(Bix1)*1}. (28)

These results will also be plotted and compared to the
entangled-photon case in the next section.

IV. COMPARISON OF THE CLASSICAL
AND QUANTUM RESULTS

Figure 3 compares the classical and quantum-mechanical
timing distributions as calculated in Secs. II and III for an
arbitrary choice of the relevant parameters where the filter
bandwidth was relatively narrow (o = 0.10). It can be seen
that the effects of dispersion have not been completely can-
celed out in the quantum-mechanical results. Nevertheless, the
timing uncertainties are significantly less than in the classical
case due to dispersion cancellation.

Figure 4 shows similar timing distributions as in Fig. 3 but
with a relatively large filter bandwidth of o = 0.50 and a dif-
ferent set of dispersion coefficients. The differences between
the quantum-mechanical and classical cases are significantly
larger than was the case for the smaller filter bandwidths in
Fig. 3. As one might expect, the effects of dispersion and
dispersion cancellation are larger for larger bandwidths.

The analytic calculations of Sec. II assumed that the
bandwidth or of the filters was much smaller than wg. This
condition is satisfied reasonably well in Fig. 3, where op =
0.10 and wy = 1.0, but not as well in Fig. 4 where o = 0.50.
In order to assess the validity of this approximation, the
analytic results based on the assumption that o < wy were
compared with the results of a numerical calculation where the
range of integration was not extended to —oo. The numerical
results are shown in Fig. 5. It can be seen that the width
of the probability distribution is somewhat underestimated in
the analytic calculations, but that effect is much smaller than
the difference between the classical and quantum-mechanical
results in Fig. 4.

In the original case of two entangled photons [3],
the quantum-mechanical dispersion was proportional to
(Bix1 + Baxy )2 while the classical dispersion was proportional
to (B1x1)* + (B2x2)>. This allowed the quantum-mechanical
dispersion to be canceled nonlocally by choosing Six; =
—Box;, which has no effect on the classical dispersion. Com-
plete dispersion cancellation would be possible for three
entangled photons as well if the dispersion were simply
proportional to (Bix; + Baxs + B3x3)?, but it can be seen
from Eq. (13) that the quantum-mechanical dispersion also
depends on terms such as (8;x)?, which makes it impossible
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FIG. 4. Probability distribution that detectors 2 and 3 will detect
a single photon with a time lag of # and ¢ + t (dimensionless) after
detector 1, respectively, for a broader filter bandwidth (o = 0.50)
than in Fig. 3 (arbitrary units). The quantum-mechanical results are
once again shown on the left-hand side while the corresponding
classical results are on the right. Panels (a,b) correspond to no
dispersion as before, while (c,d) correspond to wy = 1, Bix; = 12.5,
Boxy = =25, and Bsxz = —37.5. Panels (e,f) correspond to f1x; =
50, Box, = —100, and Bsx; = —150. The differences between the
quantum-mechanical and classical results are more pronounced for a
wider filter bandwidth.

to cancel out all of the effects of dispersion nonlocally for
three photons.

Some of the terms can still be made to cancel in such
a way that the quantum-mechanical dispersion is less than
the corresponding classical dispersion, as can be seen in
Figs. 3 and 4. This partial cancellation of dispersion may
have useful applications in QKD, where the presence of an
eavesdropper would increase the amount of dispersion. In
addition, complete cancellation of dispersion can be obtained
if we postselect on a specific value of the frequency of one

-40-20 0 20 40
T T

-40-20 0 20 40

FIG. 5. Comparison of the analytic and numerical calculations of
the quantum-mechanical timing probability distribution as a function
of the time delays # and 7 (dimensionless). (a) Analytic calculations
using the narrow-band-filter approximation. (b) Exact results from a
numerical calculation. Both of these results correspond to the same
parameters as in Fig. 4(c). It can be seen that the width is somewhat
larger in the numerical results but it is still much smaller than the
corresponding classical results in Fig. 4.

of the photons as in Fig. 2, which may also have useful
applications in quantum networks.

V. EXTENSION TO LARGER PHOTON NUMBERS

The previous results for three photons in a x @ medium
can be extended to N photons in a x ) medium in a straight-
forward way, since the calculations are based on a sequence
of Gaussian integrals. To generalize from three photons to N,
we define the frequencies in terms of a set of parameters ¢;
defined in such a way that

w; = ﬁ + €;. 29)
The energy conservation condition then becomes

N-1

EN = —Zéi. (30)

i=1

Choosing filter functions with identical widths and making
the approximation of narrow-band filters as before, we get an
effective wave function of the form

0o [N-1

¢:C[w 1!:[1‘1617

This can be simplified to give

N

. N
qu =t kexp—opt)] 31
g=1

oo [N-1

Y= c’f 1_[ de,
o \

ei {e7 (Byxq+Brxn+ é )—€ql(tg—0yxg) =ty —anxy)])

. N—1 i
% et[(2 > omen emfn)(ﬂNxN"’ﬂ)] (32)
The integrals can all be performed but the results are
lengthy. Nevertheless, it can be seen from Eq. (32) that the
presence of the cross terms as before will prevent perfect
cancellation of dispersion for N > 2. The dispersion cannot
be completely canceled for more than two entangled photons
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unless we postselect on the frequencies of all but two of the
photons.

VI. SUMMARY AND CONCLUSIONS

In summary, we have investigated the effects of nonlocal
dispersion cancellation for three or more entangled photons.
The analysis was based on a tripartite energy-time entangled
state created directly by a single down-conversion process in
a nonlinear x ® crystal. It can be shown that the same results
can be obtained using two cascaded x ® crystals if we ignore
any dispersion between the first and second down-conversion
crystals. The equations are identical in that case for narrow-
band filters.

Our results show that nonlocal dispersion cancellation
can reduce the width of the probability distribution for the
coincidence events from a three-photon state as compared
to the corresponding classical pulses. However, in general,
complete dispersion cancellation cannot occur as it does for
the two-photon case. This is a result of the fact that the disper-
sion is not simply proportional to (81x; + Bax + B3x3)?. The
presence of other terms such as (8;x;)> makes it impossible
to completely cancel out all of the effects of dispersion
nonlocally.

We also showed that postselecting on the frequency of one
of the three photons does allow complete nonlocal dispersion
cancellation for the remaining pair of photons. This effect is
similar to the original two-photon case [3], except that the
choice of the frequency in the postselection process can effec-
tively control the difference in arrival times of the remaining
pair of photons.

These effects may have practical applications in quantum
communication protocols. The reduction in the timing uncer-
tainties would allow the use of a smaller spacing between
time bin qubits, with a corresponding increase in the data
transmission rate. Quantum key distribution based on nonlocal
dispersion cancellation between pairs of photons has already
been proposed [24-27], and it may be possible to extend
these techniques to larger numbers of photons in a network
configuration. Dispersion cancellation has also been proposed
as a means of increasing the imaging quality in biomedical
applications [31-34] and for quantum clock synchronization
[28-30].

Nonlocal dispersion cancellation for three or more photons
is of fundamental scientific interest in addition to its potential
applications, and these results will allow for future experimen-
tal investigations.
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APPENDIX

The Gaussian integrals in Eq. (9) can be evaluated by
repeated use of Eq. (11). In order to simplify the results in
the text, the effects of the group velocities were removed by
making the substitution #; — #; — o;x;. The more general re-
sults including the group velocity are given in this Appendix.

In that case the coincidence probability is given by

N; + Ny 4+ N3 + Ny + Ns + N

P, t)="exp (203 )

(Al)
The value of D is the same as in the text, while

Ny = 1*[-3 — 40 (B; + B2B3 + B3) ],

N> = tt[-3 — 40} (B1B> + 2B5 — B|B; + B»B3)].

Ny = ©°[=3 — 40/ (B} + B1B: + BY)],

Ny = 1(A3{3 + 407 [B2(B) + 2B>) + (—B1 + B2)Bs1}
— 24,3 + 407 (B3 + B2B3 + B3) |
+A2{3 + 404 [—B\By + (B) + B2)Bs + 2B3}).

Ns = 7(2A3[3 + 407 (B} + B1B, + B3)
—Ax{3 +40[2B] — B,B; + B1 (B> + B3)]}
—A{3 4+ 40}[B1(By — B3) + B2(2B; + B3)]}),

N = —A3[3 + 40 (B} + B1B> + B3) ]
+A>A3{3 + 40£[B1(2B) + By) + (B| — B»)B3]}
—A3[3 + 40 (B} + BiBs + B3)]
—Aj[3+40}(B; + B,Bs + B3) |
+A1(A3{3 + 402 (B2(B1 +2B2) + (=Bi + B2)Bs1}
+A>{3 + 40 [ BBy + (B1 + B,)B; + 2B3]}). (A2)

In order to shorten these expressions, we have used the
notation that B; = B;x; and A; = «;x;. These results include
the effects of the group velocities.
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