

Article pubs.acs.org/JPCC

Exploring the Role of Vinylene Carbonate in the Passivation and Capacity Retention of Cu₂Sb Thin Film Anodes

Leslie AKraynakJacob DSchneideand Amy LPrieto*

Cite This: J. Phys.Chem.C 2020,124,26083-26093

ACCESS

Metrics & More

Supporting Information

ABSTRACT: Electrolyte additives such as vinylene carbonate (VC) have been demonstrated to improve the VC: capacity retention for many types of Li-ion battery elective description intermetallic alloying anodest, it is still unclear why VC extends the cycle lifetime of copper antimon (another so dramatically. Here, we have studied how VC affects the solid electrolyte interface formed Solon to im film anodes in fluorine-free electrolyte solutions in order to better understand which nonfluorinated species may play an important role in solutions effective CLSb passivations and differential capacity analysis and X-ray photoelectron spectwesbape. found that VC effectively passivates Sb and prevents Cu/Cb oxidation ahigh potentialsCarbonate species from the reduction V/C seem to play an important role in passivationitie inorganic species like LiClO₄ from the F-free supporting electrolyte do not seem to be beneficial.

used in secondary battery technologiesch aslithium-ion batteries. Lithium alloying materials such as silicon, tin, antimony, and intermetallics have garnered interest as alternativeanode materialsto replace graphite, a lithium intercalation anodelue to their large theoretical ravimetric and volumetric capacities. However, these materials suffer from problems such as large irreversible capacities and shorturface and allowing for good bonductiona stable SEI on cycle lifetimes. One contributing factor is the large volume changeassociated with lithiation and delithiation ofthese materials which leads to cracking ulverization and loss of electrical contact of the and deterfacial problems associated with the solid electrolyte interface (SEI) also contribute to the arned about he SEI on metallic and intermetallic alloying issues associated with these anode materials.

The SEI plays an important role in battery performance, affecting the anode irreversible capacitycle lifetime, selfdischargerate capability, and safety, making it a crucial componentin lithium-ion batteries^{5,6} It forms on Li-ion battery anodes due to the instability the liquid electrolyte over the potential window where rechargeablebatteries operate. The heterogeneous morphous ilm, composed of the decomposition products of ganic carbonate solvents and the lithium supporting electrolysedifficult to characterize due to its heterogeneiteactivity to air and moisturend sensitivity to many variables that can influence the SEI formation, composition, and properties include cycling conditions,^{9,10} electrolyte composition,^{11–15} and anode composition and fabrication.22

Much of the battery community's understanding of the SEI Many research efforts in the energy storage field have been comes from studies of the SEI on graphite anodeswever, focused on increasing the energy density of the anode materials conversion anode materials because while the SEI formed on graphite is relatively stable, the large volume changes associated with cycling alloving anodesean that the SEI forms throughout the cycling process as new electrode surfaces are exposed due to cracking. As such the requirements of the SEIs formed on these anode materials are differleant those of graphite. 23 In addition to passivating the electrode high capacity anodes would also be robust enough to accommodate large volume changes Studies of the SEI formed on Sihave contributed to the understanding 8EI formation on alloying anodesbut there is still much to be electrodematerials. For CuSb electrodesin particular, there has been some preliminary characterization of the SEI formed on Cu₂Sb in order to better understand changes in capacity retention and cycle life, but there is still much that is unknown due to the lack comprehensive studies.

> Intermetallic electrodesuch as SnSAISb, and CuSb, are particularly attractive materials for SEI studies not only

Received: May 6,2020 Revised: October 152020 Published: November 182020

because of the dearth of knowledgeof intermetallic SEI formation and composition but lso because these materials have interesting chemistricular could enrich fundamental knowledge of the SEI. The variety of metallic elements oth active and inactive toward lithium alloving, that make up intermetallic anode materials results in varying surface reactivitiesand differentlithiation/delithiation reactionsand potentials. 30-33 Additionally, intermetallic electrodes can be prepared without additives or binders via electrodeposition physical apor deposition methods. 34-36 This makes these anodes ideatandidates for fundamenta El studies because binders and conductive additives an affect SEI formation. complicating studies of SEI formation and composition. 19-21,37,38 Another advantageof electrodepositionin that it enables both 2D and 3D anode morphologies, which a useful synthetic controto have for interfacial tudies where an increased surface area may be desired?

One route to stabilize the SEI is to use smallmounts of and vinylene carbonate(VC).40 Surprisingly even though these additives vere initially found to improve the SEI on graphite anodes, they also result in dramatically improved cycle use. lifetimes for alloving anodes. 5,29,40,41 There are many hypotheseabout why these additiveswork so well for all types of anode materials. The prevailing hypothesis is that the tablished procedure Briefly, Cu₂Sb was electrodeposited behave as a sacrificial mponent that is reduced before the other electrolyte components to help passivate the electrodeCarr) from a solution containing 400 mM citric acid surfaceand prevent excessiv SEI formation, 40,41 although computationalwork suggests that additives like VC may help Cu(NO3)22.5H2O and adjusted to pH 6 by altering the reduction pathways of the carbonate solvents KOH. The Cu2Sb films were electrodeposited at 1.05 V Studies on Sanodes suggest that FEC and VC also improve versusa saturated calomeelectrode(SCE) onto copper the cycling performance afloying anodes by forming crosslinking moieties in the SEI to improve the mechanical stability²⁴⁻²⁶ Other work has suggested thattese additives favor the formation of components such as Lipe, and/ or polycarbonates to help passivate the electrode surface megiduefollowed by electropolishing in a PO4 solution for effectively 5,43-45

Previous work from our group has revealed that and VC effectively stabilize the interface of Cu₂Sb nanowire electrodescycled in a LiPF₆-based carbonate electrolyte, although it is still not entirely clear why these additives exter the cycle lifetime of Cu₂Sb so dramatically especially VC, which resulted in the longest lifetime In the current work, the SEI formed on CbSb over different otential regions in the electrolyte with and without C was characterized using differential capacity analysis and X-ray photoelectron spectros 2 < 1.0 ppm,H₂O < 0.5 ppm). Circular punches (1.27 cm copy (XPS) to better understand whatypes of speciesor functional groups in the SEI formed with VC may be beneficiale Swagelockcell body. Two polypropyleneseparators for Cu,Sb electrodes this study, the SEIs formed on CSb thin film anodes in LiClO₄-based carbonate electrolyte solutions were examined to eliminate some variables associated trolyte or 200 µL of 1 M LiQIO EC/DMC/DEC (1:1:1 with the use of LiPFbased electrolytes that could complicate vol) with 5% (vol) VC addedvere placed between the Star the study. LiPF₆-based electrolytes often contain small amounts of very reactive HF, which can react with the electrolyte and SEI components and affect the SEI composition.convoluting the results. Additionally, while inorganic speciesuch asLiF are thought to passivate the electrode surface, eliminating fluorinated components from the cle lifetime studies were cycled galvanostatically between electrolyte may help revealhat other types of organic and inorganic species are beneficial effectively passivating the surface of intermetallic electrodes^{5,47}

EXPERIMENTAL SECTION

Materials. Citric acid monohydrate(Fisher Scientific, certified ACS), antimony(III) oxide nanopowder(Sb₂O₃, <250 nm, Aldrich ≥99.99%), and copper(II) nitrate hemipentahydrate (Cu(NQ)₂ 2.5H_O, Aldrich ≥99.99%+) were used as receivedaturated potassium hydroxide was prepared from pellets (KOH, Fisher Scientific, Certified ACS). Phosphoric acid (HPO₄, 85% EMD Chemical ACS grade) and was used to make a 2:1 (vol) PO₄:H₂O solution.Ultrapure water (18 M Ω . Millipore) was used for all experiments. Dimethyl carbonate (DMC, anhydrous, ≥99%), diethyl carbonate (DECanhydrous≥99%), VC (99% with 80 ppm butylated hydroxytoluenadded as stabilizer), and lithium perchlorate (LiCIQ battery grad@9.999%) were purchased particular as a fabrication method for intermetallic anodes is from Aldrich and kept in an Ar-filled glove box without further Harification. Ethylene carbonate (EC, anhydrous, Aldrich 99%) was recrystallized from ethandried, and stored in an Arfilled glove box ithium metal was stored in an Ar-filled glove box and cleaned prior to use by manually scraping away any electrolyte additives such as fluoroethylene carbonate (FEC) surface oxide layer present to reveal the metallic Li underneath. Glass fiber separators (Whatman GF/A) were dried in an oven prior to being pumped into an Ar-filled glove box for storage

Anode Preparation. Copper antimonide (Cu₂Sb) was electrodeposited arbom temperature following a previously onto copper substrates (110 Cu foil)02" thick, McMastermonohydrate,25 mM Sb₂O₃ nanopowder,and 40 mM with saturated substratesor 10 min at room temperature using a Gamry Reference 3000 potentiostathe ca. 1" × 1.5" copper foil substrates were cleaned prior to electrodeposition by sonicating in isopropandor 3 min to remove the organic 30 s to remove copper oxide; the substrates were then covered on one side with Kapton tape. After electrodeposition the Cu₂Sb films were rinsed thoroughly with wateollowed by isopropanoland then dried before transferring to an Ar-filled nglove box to minimize native oxide growthe CuSb mass loading for the 10 min electrodepositions was. cang/cm, determined by mass difference.

Electrochemical Half-Cell Preparation and Cycling. Swagelock hatfells were assembled in an Ar-filled glove box diameter) of the electrodeposited Sab films were sealed in (Celgard 25 µm) and a glass fiber separasonaked in either 200 µL of 1 M LiClO ₄ in EC/DMC/DEC (1:1:1 working electrode and lithium metal counter/pseudo reference electrodeAll potentials in this work are referenced to the Li/ Li⁺ couple unless noted otherwise.

All half cells were cycled using an Arbin BT-2143 battery tester with an 18 h rest step before cycling f cells for the 0.05 and 3.0 V at a C/20 rate (ca. 15 μ A/cm²). For SEI preparation, the CSb half cells were galvanostatically reduced from the open circuit potentia. 2.3 V) at a C/20 rate (ca.

15 μA/cm²) until a particular voltage limit was reachted. the current polarity was switched so that Shuwas oxidized to a higher predetermined potential that point, the cells were cycled galvanostatically over potential range for a total of 20 cycles. Three different potential regions were chosen to study SEI formation alifferentstages of alf-cell cycling: the high potentiægion (HPR) between 1.8 and 3.0 V, the middle potential region (MPR) between 0.9 and 1.8 V and the low potentialegion (LPR) between 0.05 and 0.9 V. For a given potential region, half cells were made using the LiClO₄-based electrolytes with and withou€ using CuSb punches from the same film to minimize variability due to differencesbetween films. After galvanostatic voling was complete the half cells had a 24 h resisted and were then dismantled in an Ar-filled glove box within 1 to 2 daysof cycling completionAll electrodes were washed with1cmL of DMC so that only the components incorporated into the SEI laver adhered to the electrodesurfaceremained for characterization.

Characterization. XPS measurements were performed in order to analyze the chemical bonding and composition of the SEI samples using a Physidalectronics (PHI) 5800 series Multi-Technique ESCA system with a monochromatikoAl (hv = 1486.6 eV) source operating at 350.09A/mples were transferred under vacuum directly from the Ar-filled glovebox to the XPS sample introduction chamber using a custom-bui sample holder so that the SEI samples were never exposed air prior to XPS characterization. Sampleswere pumped down for 30 min prior to characterizatio An electron flood gun operating with a 5 µA emission current, 1.5 V bias voltage and 40.0 V extractor voltage was used for charge neutralization on all SEI samplesHigh-resolution (HRES) spectra foline were collected sequentially with a pass energy of 23.5 eV intag LiClQ-based electrolyte with and without 5% VC added. interval of 0.100 eV/stethe instrument base pressure was 5 × 10⁻⁸ Torr or lower during data acquisitior Spectra were collected from atleast3 areason each sample (area 126.7 mm²) using a 0.6 mm by 2 mm spot size (area 1.2 fi) nto ensure that any lateral heterogeneity in the SEI was accour for. Short HRES scans were collected prior to longer acquisitions so that ny sample damage could be identified, although even the longeHRES scanswere relatively short (20-30 min) to avoid prolonged beam exposure and sample of the binder-and additive-free films that low more of the damage9 In these studies, we were interested in studying relative changes in binding energies and speciation between area 52,53 The good capacity retention the film cycled with samplesrather than obtaining absolute binding energies: thereforeall HRES spectra were shifted so that either the CI 2p_{3/2} peak for CIQ⁻ was located at 208.6 eV or the 2p_{3/2} peak for CI was at 198.6 eV (if no ClOwas detected) based for calibrating binding energies CasaXPS software (Version 2.3.16) wasused for peak fitting and quantification of the HRES spectra. A nonlinear Shirley background and 30% Lorentzian/70% Gaussian lineshapewere used for peak fitting,⁵¹ and PHI relative sensitivity factors corrected for angular distribution were used for quantification based on peakd delithiation are similar for Sb cycled with and without fitting. More details about the peak fitting rationale and constraintsused as well as a discussion ofhow the XPS quantification was used in ournalysis can be found in the Supporting Information.

RESULTS AND DISCUSSION

Previous studies of the effects of additives on the cycling performance of CuSb in a LiPF₆-basedelectrolytehave demonstrated that VC dramatically improves the cycle lifetime of Cu₂Sb nanowires, and we have observed thatit also improves the cycle lifetime ocussb cycled in the LiCIQbased electrolytelinder- and additive-free Sb films ca.1 um thick cycle for about 15 cyclesat a C/20 rate in 1 M LiClO₄ in EC/DEC/DMC (1:1:1 vol) electrolytebefore dropping to 80% ofhe initial capacity However despite the poor performance of the Cu₂Sb films in the LiClO₄-based electrolytethe addition of 5% VC improves the cycle lifetime considerably As shown in Figure 1a ca.1 µm thick Cu₂Sb

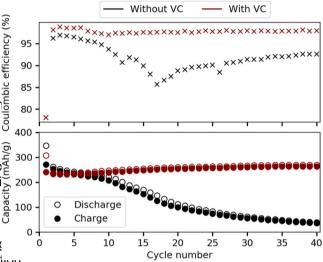


Figure 1. Coulombic efficiency and capacity data forum-thick regions of interest (C 1s, Cl 2p, O 1s/Sb 3d, Li 1s, and Cu 2p) Sb films cycled at a C/20 rate between 0.05 and 3.0 V vs Li/Li

film cycled over an extreme potentialing (0.05-3.0 V) at a C/20 rate shows no capacity fade after 20 cycles when VC is used as an additive; in fatctvcles for about 70 cycles before texhibiting gradual capacity fade (see Figure S1 in the Supporting Information). The Cu₂Sb film cycled with VC actually shows a slight increase in capacity after 10 cycles that is associated with electrochemicathening or pulverization active material to be accessedue to increased surface VC despite electrode roughening or pulverization suggests that the SEI formed with VC has desirable mechanicaberties that enable it to accommodate the large volume changes of Cu₂Sb during cycling and keep the electrode mainering lod on research suggesting that it is preferable to use SEI species. delaminating from the substrate.

> More insights into the failure of Sb cycled in the LiClO based electrolyte and the increased capacity retention associated with VC can be gained from the differential capacity plots shown in Figure The intense features the differentialcapacity plotscorresponding to C₆Sb lithiation VC and are in agreement with the previously reported lithium alloying and dealloying reactions of SD 54,55 Looking at the much lower intensity peaks between 2.75 and 1.0 V corresponding electrolyte reduction and SEI formation

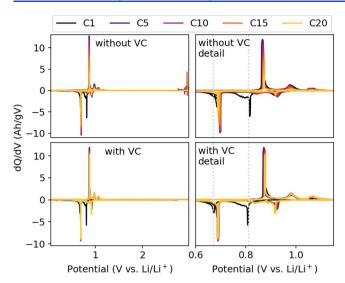


Figure 2. (Left) Full differential capacity plots for the first 20 cycles 1 µm-thick C_bSb films cycled at a C/20 rate between 0.05 and 3.0 vs Li/Li+ in the LiClQ-based electrolyte with (bottom) and without (top) 5% VC added (Right) Zoomed in differentiatapacity plots showing the CSb lithiation/delithiation features from the left plots in more detail.

processes Figure S2 also reveals imilarities between the samples cycled with and without \\$6\text{wevercomparison of} the differential capacity plots for the first 20 cycles of the failure of the film cycled without VC may be due in part to lossay provide insights into the types species present during of electricalcontact of the active materialdue to volume changesduring lithiation/delithiation because the peaksr Cu₂Sb cycled without VC decrease in intensity with the cyclebut based on the voltage profileome capacity goes toward number, unlike those for Cu₂Sb cycled with VC, suggesting that for the film cycled without VC, less active material is beingduction potential for EC, DMC, and DEC on metallic lithiated and delithiated with continued cycling Again, this suggests that VC may help improve the physioplerties of the SEI formed on C8b, perhaps forming a more robust SEI that is better able to withstand the large volume changes during cycling and preventracking and delamination the film that result in loss of electricadntact Additionally there seems to be a difference in the degree modes sivation of the Cu₂Sb electrodes cycled with and without **√6**e first cycle lithiation peaks shown in black in Figure 2 for Sb cycled with VC are at slightly more negative overpotentials than those med at lower reduction potentials. for Cu₂Sb cycled without VC, especiallyfor the phase transition atca. 0.7 V, as demonstrated by the dotted grey lines on the right side of Figure This suggests that even on the first cycle, the SEI formed on CuSb with VC is thick enough or passivating enough to slightly impediednisport compared to the SEI formed without VC Another striking difference between the differential capacity plots for the Cu representation of the SEI was obtained regions samples cycled with and without are the reduction and oxidation features at potentials above 2.5 V that are seen on pombination of the spectral features and the percent of the spectral features and the percent of the spectral features are seen on the spectral features and the percent of the spectral features are seen on the spectral features and the percent of the spectral features are seen on the spectral features and the spectral features are seen on the spectral features and the spectral features are seen on the spectral features and the spectral features are seen on the spectral features are seen on the spectral features and the spectral features are seen on the spectral features and the spectral features are seen on the spectral features are seen on the spectral features are seen on the spectral features and the spectral features are seen on the spectral features are specifically spectral features. for Cu₂Sb cycled without VC. The differencesin the electrochemistry for G8b cycled without/C suggestome sort of compositional difference between the SEIs formed wittan be found in the Supporting Information. The analysis and without VC that affect the electrochemistry of the electrode material and will be discussed in further detail below spectrafeatures and quantification resultingesting some

In order to learn about the compositiod if erences in the SEI formed from the LiClO₄-basedelectrolytewith and without VC, Cu₂Sb was electrochemically cycled overee different potential regions to target different stages of SEI

formation and growth. The three different regions were chosen based on the characteristicstbe voltage profile for Casb, shown in Figure 3The HPR.cvcled between 1.8 and 3.0 V.

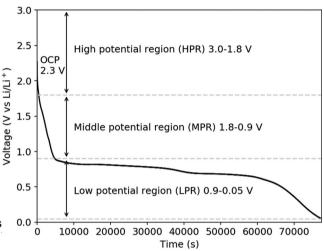


Figure 3. First cycle discharge (lithiation) 66bSb cycled with an applied current of 15 µA/cm he features of the voltage profile were used to determine the potential limits for the three different regions of SEI formation chosen for this study: the HMRR, and LPR.

was chosen because it is wallow the lithiation potentifedr Cu₂Sb, and there is little to no SEI formation expected in this Cu₂Sb half cells cycled with and without VC suggests that the egion so any SEI formed by cycling over this potential region the initial stages of SEI formation the MPR, cycled between 0.9 and 1.8 V, is still higher than the Souithiation potential, SEI formation and lithiation of surface oxides. The reported electrodes is ca.3 V, while VC reduction has been observed around 1.4 $\sqrt[5]{7,58}$ and the reduction of surface oxides on Sbbased electrodes has been reported around 1.55 tudying the SEI formed from cycling overthe MPR is expected to provide insights into the electrolyte reactions that ur and the SEI species that are formed at higher reduction potentials. Finally the LPR cycled between 0.9 and 0.05 Ncompasses Cu₂Sb lithiation and is expected to provide insights into the electrolyte degradation and the typesSell species thatre

> XPS was used to compare the composition and speciation of the SEIs formed over different potential regions with and without VC as an additive. Due to the heterogeneous nature of the SEI, high-resolution (HRES) XPS spectra from at least 3 different regions (1.2 mm analysis area) were collected for each sample (total area 126.72) nto nensure that an accurate for each type of SEI sample were chosen based on a compositions determined from HRES peak fitting and quantification and a more detailed description of this process regions for most of the SEI samples showed some differences lateral heterogeneity of the SEI, and two representative regions are reported for each sample o either reflect the sample heterogeneity or demonstrate the consistency between sample regions In this set of experiments most of the SEI samples

were guite heterogeneous with the exception of the MPR VC SEI sample, which was relatively consistent in terms of spec featuresand the percentatomic composition of the sample surface.

The quantification results from the HRES peak fitting of the different SEI samples are shown in Figure 4 (see Tables S1

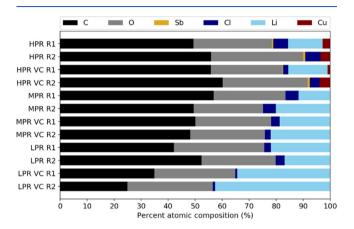


Figure 4.Percent atomic compositions for the representative regions (HPRMPR, and LPR) with and without VC. (R1 and R2) of the SEI samplesformed overdifferent potential regions (HPRMPR, and LPR) with and without/C, determined from XPS HRES peak fitting.

for tabulated quantification results and Figures S3-S8 for all fitted spectra). Both the HPR and HPR VC SEIs are compos primarily of C (ca50-60%) and O (ca27-34%), with only a, small differences composition for the samples with and without VC, which suggests that there is SEI formation at higher potentials even though it is not readily apparent from the samples of the vertices are file in Figure 4 differently apparent. small differences in composition for the samples with and looking at the voltage profile in FigureAdditionally, a small amount of Sb (ca0.3-0.8%) and a slightly higher amount of Cu (ca. 1-4%) were detected in these samples. In Region 15 both the HPR and HPR VC samples, a small amount of Li (c 13-15%) was detectedhile for Region 2 of both samples no Li was detected Finally, the HPR SEI formed without VC tended to be more CI rich (ca. 6%) than the HPR VC SEI (ca 2-4%). Looking at the features of HRES spectra we find more differences between the HPR SEIsformed with and without VC.

The CI 2p HRES spectra are shown in Figure 5 (without fitted data for simplicityAs can be seen for the Cl 2p spectra (Region 1 and Region 2) dhe SEI samples formed over different of the HPR and HPR VC samples on the left of Figuthes, CI $2p_{3/2}$ and $2p_{1/2}$ peaksare around 208.6 and 209.7 eV. respectivelywhich is indicative of a perchloratebinding environment! The CIQ detected at the SEI surface for both binding energies of Sb 3d peaks range from c528 eV for samples cycled over the HPR is from the LiCkSupporting electrolyte; since the samples were rinsed with DMC prior tospectraif Sb is present 1,59,68 However, the overlapping XPS characterization to removeesidualsalt speciesthis suggests that the ClOis being incorporated into the SEI.

Interpretation of the O 1s/Sb 3d HRES spectra shown in Figure 6 (also presented without fitted data for clarity) is more9) show intense Sb 3d and 3d₁₂ peaks around 531.0 and complicated than that of the CI 2p spedtha reported O 1s binding energies for proposed SEI species such as lithium althrufface oxide layeand less intense 3d_{1/2} and 3d_{3/2} peaks carbonates and lithium carbonate (1003) range from 531.7 to 533.8 eV,0.17,33.62-64 and the distinguishing O 1s peak for poly VC is located around 534.5-534.7 eV. The reported eV^{21,61,67} This makes it difficult to distinguish different binding environments for the SE amples even when curve

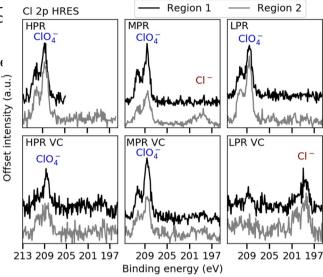


Figure 5. Cl 2p HRES spectrafrom the representativegions (Region 1 and Region 2) dhe SEI samples formed over different

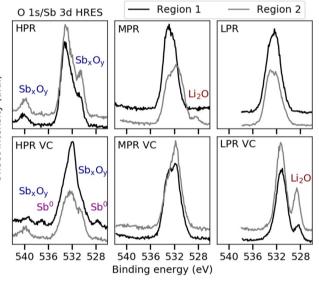
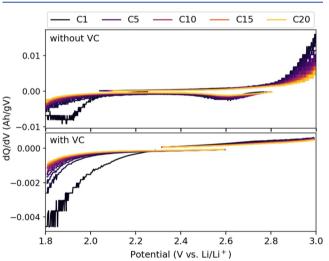


Figure 6.O 1s/Sb 3d HRES spectra from the representative regions potential regions (HPRMPR, and LPR) with and without VC.


fitting is used to deconvolute the O 1s petalesitionally the Sb to 531 eV for Sb oxides further convoluting the O 1s binding energy rangesf the O 1s and Sb 3d spectra also provide a usefular to obtain rough SEI thickness estimates. The O 1s/Sb 3d HRES spectra for pristing Stau(see Figure 540.6 eV, respectively for antimony oxide species from the around 528.3 and 537.6 eVrespectivelycorresponding to metallic antimony from Sb beneath the surface oxide layer. Both the HPR and HPR VC SEI samples are quite thin (<10 O 1s binding energies for perchlorates range from 533.0-536r6 based on the information depth of XPS), as there are peaks corresponding to Sb oxide species from the surface oxide layer of the underlying C26b film for both types of samples.he

HPR VC SEI may be thinner in some regions because metalletected for Region 1 and 48% for Region 2Additionally, Sb peaksare also seen for Region 1 of the HPR VC SEI sample, suggesting that he HPR VC SEI is thin enough in some regions that the metallic Sb from Soucan be detected in addition to the Sb oxide species from the G8b surface oxide laver.

the keys to understanding the differences between the SEIs without VC. Based on the XPS results for the HPR samples formed with and without VCGiven the smallamount ofSb 4%) detected for the HPR and HPR VC samples is cursious, ability are due to differences SEI speciation ratherhan one would expect the Cu amount to be roughly twice that of thicknessor coverageThe featurescorresponding to Cu/ Sb detected if were due to the signafrom the underlying Cu₂Sb film rather 3-5 times the amount as the case here. Based on the data discussed below, it seems that the considerable amount Cu detected is due to Cu diffusion as a result of Cu/Cu₂Sb oxidation. Even though the HPR sample setwas not discharged to low enough potentials lithiate Sb and extrude Cu out of Sb (refer to Figure 3)t was charged to high enough potentials to result in Casta oxidation (in aqueous solutions, Shuoxidation was observed around -0.3 to 0.0 V vs SSCE dependingon solution conditions, which corresponds to c2.5-2.8 V vs Li/Li⁺).35 This could resultin more Cu presentat the surface as its oxidized and reduced when cycling over the HPR. This is moreights into why the SEI formed with VC may be better at pronounced in the HPR sample without **VO**, which about 3-4% Cu was detected for all regions of the sample; 7 (top) shows the onset of an oxidation peak around 2.8 V and

the separators from half cells cycled with VC do not show signs of discoloration due to Cu diffusion. These results suggest that the SEI formed in the presence VoC is better at protecting and passivating the Sb surface as it seems to decrease the amount of Cu/Cu₂Sb oxidation and subsequent Cu diffusion The presence of Cu in the HPR sample set may hold one offen cycling to high potentials compared to the SEI formed with and without VC, both SEIs are quite thin and detected (<1%), the comparatively large amount of Cu (ca. 1nonuniform, which suggests that the differences in passivating Cu₂Sb oxidation were also seen in the differentiadapacity plots of Cu₂Sb cycled over the fu**0**.05–3 V potential range when no VC was present(Figure 2, top left plot), which suggests that ven when the electrode is polarized to lower potentials the SEI that forms does not passivate the surface well enough to prevenCu/Cu₂Sb oxidation unlike the SEI formed in the presence of Which does not show any signs of Cu/Cu₂Sb oxidation (Figure Bottom left plot); however, unlike for the HPR SEI castes unclear at this point whether differences in passivating ability for the SEIs formed over the full voltage range are due to chemigraphysicablifferences.

The C 1s HRES spectra may be able to provide some protecting the CSb surface than the SEI formed without VC since much ofhe SEI surfaces for both typessafmples are differentialcapacity analysis for the HPR SEI sample Figure composed of carboiline C 1s spectra are shown in Figure 8

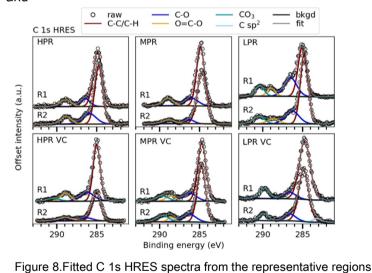


Figure 7. Comparison of the differential capacity analysis plots for the SEI samplesormed overdifferent potential samples cycled without VC and with VC for the HPR SEI sample set.

a reduction peak around 2.6 V that not seen for the first reduction of Curespectively. here is also visual vidence to supportthis hypothesiswhen disassembling hatells cycled up to 3.0 V in the LiClO₄-based electrolyte without Vthe separators are often discolored as shown in Figure S10 due tomponent \$3,62,63,66 Both the HPR and HPR VC samples the presence o€u as confirmed by energy dispersive X-ray also have a peak corresponding to a C-O binding environspectroscopy(EDS) in Figure S11. Differential capacity analysis for the HPR VC SEI sample (Figurebottom) did not show these features could be because there was less carboxylates PEO oligomers and a peak around 289.0 eV Cu oxidation and reduction for this sample not allanalysis regions of the HPR VC SEI were Cu rich (ca.1% Cu was

with the fitted data included to help illustrate differences between the spectral features for the various SEI sarneles. discharge; these peaks are most likely due to the oxidation andst intense peaks in the C 1s spectra for the HPR samples with and without VC correspond to an aliphatic carbon binding environment around 285.0 eV (red peak), which could be due to some adventitious carbon in addition to organic SEI ment around 286.5 eV (blue peakh)ich could be due to the presence of El species such as alkoxidely/carbonates or corresponding to an O□C-O binding environment(gold peak) that could be due to oxalates, alkyl carboxylates, or esterthe SEI formed on CLSb thin film anodes in a LiP Ebased electrolytethese three C 1s binding environments may be duest is Li-rich compared to the HPR and MPR sambutest primarily to carboxylate and ester speicies dition to small amounts of alkoxides. The most notable difference between the HPR and HPR VC SEIs is the presence of a small HPR VC SEI, which is the region where CBb seems to be better passivated based on the lower amountuotletected. The carbonate peak could be due to the presence of the presenc lithium alkyl carbonates₂CO₃, or poly VC but it seems that the presence of arbonates could be beneficial passivation of the CuSb surface during the initiatages of cycling.66It seems most likely that the C 1s carbonate binding environmentation surface contains Liwhile the LPR SEI surface does seen in the HPR VC sample is due to a species like poly VCroot. Compared to Region 2 of the MPR SEI, which also has some other VC reduction product rather than Li alkyl carbonate species Li₂CO₃ since those species ould also be formed from the electrolyte without 40.65,66,7 Because it is difficult to draw any conclusions about the carbonate spechesher binding energies. The presence of a considerable based on the XPS results alone, this warrants further exploration in future work using complementary characterization techniques such as FTIR.7,45

but for the MPR samples the MPR SEI without VC was heterogeneous while the MPR VC SEI was more homogeno6 Lifermed over the LPR with and without VBChth regions Figure 4,the compositions of MPR sample set (with and without VC) are guite similarith C (48-57%) and O (26-28%) making up most dhe SEI surface the MPR VC SEI surface is quite Li rich at 19-22Maile the MPR SEI sample has Li-rich regions (20%) as well as regions with less Li (12%) invironments uggesting that the surfacet be LPR VC SEI The MPR VC SEI surface is made up of a.2-3% CI from CIO₄-, while the MPR SEI surface has about twice the amounthe LPR VC SEI surface may also contain sort@ ap the of Cl at 5%, with a mixture of ClO₄ and Cl seen for MPR Region 2 as shown in Figure 5 (middle columnThe SEIs formed over the MPR both with and without VC are thicker than those formed over the HPR based on the absence of Sbarbonate. In the case of the LPR VC SEI surfait seems peaks in the O 1s/Sb 3d spectra (Figuren6i,ddle column). Again, it is difficult to commenton differences in the O 1s spectra, but one notable feature is the presence of an O 1s parakind 534.5-535 eV that has been reported for poly VC. around 528.3 eV corresponding to Oifor Region 2 of the MPR VC sample. Looking at the C 1s spectra in Figure 8, both the MPR and MPR VC samples have aliphatic, C-O, arealivironments or pecies presented to play an important O□C-O binding environments like the HPR and HPR VC samples. The MPR VC C 1s spectrum has an additional binding environment corresponding to carbonate like RegiontHe SEI formed on CuSb nanowires in LiP. Fbased electroof the HPR VC sample, while no carbonate binding environment was detected at the surfacthefMPR sample to HPR VC Region 1. This seemsto reiterate that one important difference between the SEI formed without VC and species formed from VC reduction as poly VCmay be with VC is the presence of carbonates sibly in the form of poly VC or other species formed from VC reduction.

Both the LPR and LPR VC SEI are also heterogeneous, the compositions of the representative ampleregions are shown in Figure Like the SEIs formed with and without VC over potential regionsmore positive than CuSb lithiation (HPR and MPR), the SEIs formed over the LPR are composied the LiClO ₄-based electrolyte without C. Based on the primarily of C and CBoth the LPR and LPR VC SEI contain peaks at c2.0,1.7,and 1.2 V in the differential capacity plots roughly the same amount of oxygen as the SEIs from the HRR the different potential region samples (see Figures 7 and and MPR sample sets (27-34%) lowever, the LPR SEI is \$12),the carbonate solvents are being reduced for the samples

containing species. 17,33,62-64, Based on a previous study of more C-rich (42-52% C) than the LPR VC SEI (25-35% C), which contains roughly as much Li as C (34-43%). LPR only contains about half the amount of Li as the LPR VC SEI (17-22%).

The CI 2p and O 1s/Sb 3d spectra, shown in Figures 5 and 6 carbonate peak around 290.5 eV (teal peak) in Region 1 of thight columns) reveal more differences between the LPR and LPR VC SEI surface The LPR SEI surface is similar to the HPR and MPR SEIs in the sense that it is composed as ca. CI from CIO₄. In contrast, the LPR VC SEI surfaceis composed of only cat% CI present as CLiCI. 21,67 Like the MPR SEI set, the LPR and LPR VC SEIs are thick, as no Sb 3d peaksare seen. The O 1s spectra reveal hat the LPR VC Li₂O, the LPR VC SEI surface contains moreQ based on the intensity of the LO O 1s peak relative to the intensity of the peak formed by the other O 1s binding environments at amount of LiO on the surface of the LPR VC SEI is likely the reason that the LPR VC SEI surface is so rich in Li compared to all of the other SEI samples.

Both the HPR and HPR VC SEIs were quite heterogeneous, The C 1s HRES spectra in Figure 8 (right column) for the LPR sample set also highlight seveifterences between the in terms of composition and HRES spectral features. As see of ithe LPR SEI sample have four C 1s binding environments corresponding to aliphaticC−O. O□C−O, and carbonate binding environments. The C 1s spectra for both regions of the LPR VC SEI sample are notably different because they do not show a C 1s peak corresponding to an O□C-O binding does not contain any oxalate, alkyl carboxylate, or ester species. C 1s spectrum for Region 2 of the LPR VC sample seems to have a smalllower binding energy peak around 283.0 eV, which could be due to the presence of species such as Li vinyl like poly VC is not contributing to the C 1s carbonate binding environmentbecause there is no corresponding O 1 speak

Carbon speciesmake up a large percentage ofhe SEI MPR SEI that is not seen for the other MPR region or for the surface for the samples formed over all three potential regions, both with and without VC, and the types of carbon binding role in capacity retention for CubSb cycled in LiClQ-based electrolytes, which has been suggested previously in studies of lytes with and without additives and for other alloying anodes such asSn.^{29,44} Based on the difference is the XPS C 1s without VC. The intensity of the carbonate peak relative to the RES spectra for the SEI layers formed with and without VC. other C 1s peaks is higher for the MPR VC sample compareid seems that carbonate species in particular play an important role in SEI passivation for C₃Sb electrodesThe carbonate necessary for passivating the C6b surface during the early stages of ycling (prior to CuSb lithiation) in LiClO4-based electrolytes and may also improve the mechanical properties of the SEI based on changesobserved in the capacityover cycling. The species that form from the reduction of EC, DEC, and DMC do not seem to be sufficient for surface passivation

both with and without VC.57,58 However, no carbonate binding environmentswere detected for the SEI samples formed at higher potentials (HPR and MPR) in the absence of assivation focus belectrodes Chloride species and LO VC; instead, species such ascarboxylate salts sters or Li alkoxides are formed from solvent reduction based on the Calsd without VC but at this point, it is unclear what role Cl HRES spectra of the HPR and MPR SEI samples formed without VC. These differences in speciation for the SEIs formed without and with VC over the HPR and MPR could be reduction of LiClQo form LiCl and LO consumes eight due to differences in favored solvent reduction pathways or topoles of electrons and eight moles of LiThe formation of differencesin SEI reactivity based on electrode surface passivation, 72 In the latter case initial solvent reduction species n the SEI formed without VC such as Li alkyl carbonates may have reacted further to form carboxylate salespecially in the case of of formation. The role of these estersor alkoxides due to poor surface passivation when VCtwo species in the passivation and properties SEI may was not used as an additiven preliminary passivation (or lack thereof) may be particularly important for high capacity possible improvements in surface passivation additional transfer in surface passivation and the lack thereof) may be particularly important for high capacity possible improvements in surface passivation and the lack thereof) may be particularly important for high capacity possible improvements in surface passivation and the lack thereof). anode materials such as 50 that experience large volume changesduring cycling. Even though carbonate speciese incorporatedinto the SEI formed without VC at lower potentials (refer to the LPR C 1s spectra in Figurit 6) pes not seem to be sufficient for passivating the electrode surfactive role of VC, we would be remiss noto also discuss the as there are still signs of Cu/Sb oxidation when the film is cycled over the full voltage range from 0.05 to 3.0 V versus the capacity retention of Cu,Sb. Without VC, charging the Li⁺ (refer to Figure 2). This electrode oxidation could be due in part to new electrode surfaces being exposed due to volumed also some Cu diffusion to other parts the cell. While changes during cyclingut it could also be due in partto continued insufficient passivation because the Cu/Cu₂Sb oxidation features in the differential pacity plot for the VCfree sampleshift to higher overpotentials with increased cycling.suggesting that ontinued SEI growth results in a kinetic limitation of the process but not completely preventinenia and Mn-based cathodes has been found to have it. Therefore, the stage at which the beneficial species are incorporated into the SElmay be importantin addition to what types of speciesare formed, which has also been demonstrated fortin anodes.⁴⁵ However, additional work characterizing the SEI/electrode morphology and passivating without VC in a couple of ways. First, the observed Cu ability using techniquessuch as scanning electron microscopy 5,17,29,73 and redox-probe experiments espectivelys necessary to determine whether electrode volume changes diffusesaway from electrode, some of the conductiveCu the physical properties of the SEI play a role in the difference twork that allows for good electronic conductivity in the full voltage range with and without VC in addition to the typesn some loss of active materiaconductivity and cause the of species present in the SEI.

Inorganic species make up a smaller percentatione SEI an important role in SEI performance and surface passivation to Cu-deficient Cu₂Sb showed good reversibility and although based on the literatures still unclear whether they are beneficialfor alloying anodes. Based on comparisons of the percentatomic composition of at the SEI surface due to the presence of Cland/or Cl species. the SEIs formed without VC over the HPMPR, and LPR were more rich in Cl-containing inorganic spediesile the inorganic SEI species such as LiF that are formed from electrolytes containing fluorinated components such as LiPFlifetimes. Research on metalissolution and transportor or FEC are believed to be beneficiaSEI componentsthat passivatethe electrode surface 45,47,75 the presence of perchlorate in the SEIon Cu₂Sb films when LiClO₄-based electrolytes are used does not seem to be benefittialigh the SEI layersformed without VC over different potential regions are quite rich in ClO₄ comparedto their VC counterpartsthe SEI layers formed without VC do not passivate the Sb surface well and Sb oxidation has been observed when charging to 3.0 This suggests thatot all

inorganic SEI components are beneficial, the presence of ClO₄ in the SEI does not appear to help with surface were also detected at the surface of SEIs formesbrw@b species and D play in the properties and performance of the SEI. The formation of both species may be undesirable since LiCl and LiO from LiClO reduction results in a more Li-rich SEI based on the percentatomic composition of for the LPR VC SEI sample hich may be beneficial for diffusion. warrant further investigation to better understand whether the due to LiCl and Li₂O formation outweigh the unfavorable decrease in Linventory. While we have discussed the oxidation of CabCand Cu

diffusion in the context of the passivating ability of the SEI and possible implications of these observations for SEI health and Cu₂Sb to high potentials results in the oxidation of C₂86u metal oxidation and transport are not typically discussed in the context of alloying anodesit is a very important area of research for cathode materials. has previously been found to help prevent Co oxidation in lithium cobalt oxide cathode materials. Additionally, metal transport in systems containing detrimental effects for the anode SEI layer, affecting the passivatingbility of the SEI and exacerbatingelectrolyte degradation. At 19,80 t is possible that Cu in the SEI could also play a role in the poor cycling performance observed 5br Cu diffusion could be playing a role in a short lifetime and rapid capacity fade of the Sb thin film cycled without VOI. Cu in electrochemistry observed for the electrodes cycled over the lated Sb phases may no longer be present and could result observed capacity fade in addition to the delamination that has been observed for Sb cycled without V. Howeverthis surface in the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in this study but may also particle to the samples examined in the sample to the samples examined in the sample to the sam cycling stability. Secondit is possible that the Cu species in the SEI formed without VC could be reacting with the SEI and electrolyte components hich could be anothe explanation for why the HPR and MPR SEI samples without VC did not contain carbonate binding environments explanation is more consistent with our previous observations in which Curich CuSb showed large irreversible capacities and short cycle cathode materials has revealed that the degreetomental effects on the anode SEI depends on the transition write tal, Mn being the most harmfufor SEI health,but it is possible that Cu could also prevent effective SEI passivation here is precedence foCu reactivity in other chemistry fieldsas some enzymes known to reaofth small organic molecules contain Cu active sites. This area is worth exploring further with redox probe experiments to determine the role of Cu in SEI passivation. Metal transport could be an important

consideration for other intermetallic anode materials as well, especially when Cua fast solid state diffuseris used asa volume buffering component in alloving anodes.

CONCLUSIONS

The SEI formed on Csb thin film anodes with and without VC as an electrolyte additive was studied in order to better understand the role that VC plays in stabilizing the SEI and extendingthe cycle lifetime of Cu₂Sb. The cycling data (capacity vs cycle numbered differential capacity analysis) suggesthat some of the improvement capacity retention observedfor Cu₂Sb with VC is due to improved SEI mechanicabroperties as the film cycled with VC showed evidence of lectrochemica bughening but not delamination from the substrate, unlike the film cycled without VC. The SEThe authors declare no competing financial rest. formed with VC also seemed to passivate the Susurface more effectively as no evidence ocu/Cu2Sb oxidation and diffusion was observed for CubSb films cycled to oxidizing potentials with VC as an additive. The differences in the passivating ability of he SEI formed with and without VC seems to be due in part to differences in the SEI speciation

passivating ability and stability the SEI on alloying anode materials s unclear Studying the SElformation on CuSb without fluorinated electrolytecomponentsallowed us to better understand whatther types oforganic and inorganic species may be beneficial good SEI performanc@uring the initial stagesof SEI formation at higher reduction potentials the surface of the SEI formed on CuSb without VC does not contain any carbonate speciesereas the SEI surface formed with VC doesC reduction products such as poly VC or other polycarbonatespeciesseem to play an important role in the passivating ability of the SEI. The surface 16 of the SEI formed without VC tended to contain more inorganic LiCIQ-containing species which do not seem to passivate G8b very effectively.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04064.

> Long term cycling data for C&b films in the LiCIQbased electrolyte; additional differential capacity analysis LiBatteries Z. Phys Chem 2009, 223, 1395–1406. for Cu₂Sb cycled over the full voltage range; XPS fitting (6) Verma,P.; Maire,P.; Novak, P. A Review of the Features and fitted HRES XPS spectra for all SEI samples; HRES XPS sectrochinActa 201055,6332-6341. spectra for pristine CSb; photographs and EDS data showing evidence of u diffusion; differential capacity sample setsand XRD of the electrodeposited G8b film (PDF)

AUTHOR INFORMATION

Corresponding Author

Amy L. Prieto - Department @hemistryColorado State UniversityFort CollinsColorado 80528Inited States;

orcid.org/0000-0001-9235-185X; Email: amy.prieto@ colostate.edu

Authors

Leslie A. Kraynak - Department of Cher@storado State UniversityFort CollinsColorado 80528Inited States

Jacob DSchneider - Department@fiemistryColorado State Universityort CollinsColorado 80528Inited States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.0c04064

Author Contributions

The manuscriptwas written through contributions of all authors All authors have given approval to the final version of the manuscript.

Fundina

NSF SSMC (SSMC-1710672).

This work was supported by the NSF SSMC program (SSMC-1710672). The authors would also like to thank the Central Instrument Facility staff at Colorado State University.in The role that inorganic SEI components like LiF play in the particular Dr.Patrick McCurdyfor assistance with XPWe would also like to thank Dr. Timothy S. Arthur and Dr. Matthew T. Rawls for their contributions to initial SEI potentialregion studies in the group Finally, we would also like to thank DrMaxwell CSchulze, DDaniel BAgocs, and Nathan Gimble for the helpftedback on earlier versions of this manuscript.

REFERENCES

- (1) Choi, J.W.; AurbachD. Promise and Reality & St-Lithium-Ion Batteries with High Energy Densitilat. Rev Mater. 2016, 1,
- (2) Obrovac, M. N.; Chevrier, V. L. Alloy Negative Electrodes for Li-Ion BatteriesChemRev2014,114,11444-11502.
- (3) Zhang, W.-J.Review of the Electrochemica Performance of Alloy Anodes for Lithium-Ion Batteries Power Sources 20196.
- (4) ThackerayM. M.; VaugheyJ.T.; JohnsonC. S.; KropfA. J.; BenedekR.; FranssonL. M. L.; Edstron, K. StructuralConsiderationsof Intermetallic Electrodes Lithium Batteries J. Power Sources 200313,124-130.
- (5) Winter, M. The Solid ElectrolyteInterphase-The Most Important and the Least Understood Solid Electrolyte in Recharge-
- procedure and parameters; tabulated XPS fitting resultanalyses the Solid ElectrolyteInterphase Li-Ion Batteries.
 - (7) Goodenough, J. B.; Kim, Y. Challengesor Rechargeable Li BatteriesChemMater.2010,22,587-603.
- analysis for the first discharge of the MPR and LPR SEI(8) Xu, K. Nonaqueous iquid Electrolytesfor Lithium-Based Rechargeable Batter@hemRev2004,104,4303-4418.
 - (9) Tokranov, A.; Kumar, R.; Li, C.; Minne, S.; Xiao, X.; Sheldon, B. W. Control and Optimization of the Electrochemical and Mechanical Properties of the Solid Electrolyte Interphase on Silicon Electrodes in Lithium Ion BatteriesAdv. Energy Mate2016,6, 1502302-12.
 - (10) Schroder, K. W.; Celio, H.; Webb, L. J.; Stevensork, J. ExaminingSolid ElectrolyteInterphaseFormation on Crystalline Silicon ElectrodesInfluenceof ElectrochemicaPreparation and Ambient Exposure Conditions Phys Chem C 2012, 116, 19737-19747.
 - (11) Nie.M.: Lucht.B.L. Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries. Electroches 60c2014,161,A1001-A1006.
 - (12) Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L. Effect of Electrolyte on the Nanostructuretbé Solid Electrolyte Interphase

- (SEI) and Performance of Lithium Metal And Education Environment (SEI) and Performance of Lithium Metal And Education (SEI) and Performance of Lithium (SEI) and Performance of Lithium (SEI) a 2018,11,2600-2608
- (13) Leroy, S.; Martinez, H.; Dedryvèe, R.; Lemordant, D.; GonbeauD. Influence of the Lithium Salt Nature over the Surface Film Formation on a Graphite Electrode in Li-lon Batteries: An XP\$7-98,194-197. Study Appl. Surf. Sci 2007, 253, 4895-4905.
- (14) Yoon, T.; Chapman, N.; Seo, D. M.; Lucht, B. L. Lithium Salt Effects on Silicon ElectrodePerformanceand Solid Electrolyte Interphase(SEI) Structure, Role of Solution Structureon SEI Formation J. Electroche Soc 2017, 164, A2082 - A2088
- (15) Nguyen, C. C.; Lucht, B. L. Comparative Study of FluoroethyleneCarbonateand Vinylene Carbonatefor Silicon Anodesin Lithium Ion Batteries. J. Electrocher&oc.2014, 161, A1933-A1938
- (16) WagnerM. R.; RaimanrP. R.; TrifonovaA.; Moeller K.-C.; Besenhard, O.; Winter, M. Electrolyte Decomposition Reactions on Tin- and Graphite-Based AnodAse Different. ElectrocherSolid-State Let 2004.7. A201-A205.
- (17) Chan, C. K.; Ruffo, R.; Hong, S.S.; Cui, Y. Surface Chemistry and Morphology of the Solid ElectrolyteInterphaseon Silicon Nanowire Lithium-Ion Battery Anodels Power Sourc 2609, 189, 1132-1140
- (18) Vogl, U. S.; Lux S. F.; Das P.; Weber A.; Placke T.; Kostecki, R.; Winter, M. The Mechanism of El Formation on Single Crystal Si(100), Si(110) and Si(111) Electrodes. Electrocheracc 2015, 162,A2281-A2288.
- (19) Fransson,L.; Eriksson,T.; Edstron, K.; Gustafsson,T.; Thomas, J. O. Influence of Carbon Black and Binderon Li-Ion Batteries J. Power Sources 20001, 1-9.
- (20) JaumannT.; BalachJ.; KloseM.; OswaldS.; LangklotzJ.; MichaelisA.; Eckert J.; Giebeler L. SEI-Component Formation on MichaelisA.; Eckert J.; Giebeler L. SEI-Component Formation on 64 Sub 5 Nm Sized Silicon Nanoparticles in Li-lon Batteries: The Role (38) Michan, A. L.; Leskes, M.; Grey, C. P. Voltage Dependent Solid Electrode PreparationEC Addition and BindershysChemChem. Phys2015,17,24956-24967.
- (21) Bodenes ...; Darwiche A.; Monconduit L.; Martinez H. The Solid Electrolyte Interphase a Key ParametelneofHigh Performance of Sb in Sodium-Ion Batteries ComparativeX-Ray Photoelectron Spectroscopy Study of Sb/Na-lon and Sb/Li-lon Baltteries Power Sources 20273,14-24.
- (22) Bryngelssorl, ; Stjerndahl M.; Gustafsson T.; Edströn, K. How Dynamic Is the SEI? Hower Sources 20074,970-975.
- (23) Winter, M.; Appel, W. K.; Evers B.; Hodal, T.; Moller, K.-C.; SchneiderJ.; Wachtler,M.; Wagner,M. R.; Wrodnigg,G. H.; BesenhardJ. O. Studieson the Anode/Electrolytenterfacein Lithium Ion BatteriesMonatshChem2001,132,473-486
- (24) Jin, Y.; Kneusels, N.-J.H.; Magusin, P. C. M. M.; Kim, G.; Castillo-Martínez,; Marbella,L. E.; Kerber,R. N.; Howe, D. J.; Paul, S.; Liu, T.; et al. Identifying the StructuralBasisfor the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbon Atte. Chem Soc. 2017.139.14992-15004.
- Magusin, P. C. M. M.; Weatherup, R. Sssdo, E.; Liu, T.; Paul, S.; Grey, C. P. Understanding Fluoroethylene Carbonate and Vinylene Sources 201268,645-657. Carbonate Based Electrolytes for Bides in Lithium Ion Batteries with NMR Spectroscopy.Am. ChemSoc2018,140,9854-9867.
- (26) Shkrob, I. A.; Wishart, J. F.; Abraham D. P. What Makes Fluoroethylene Carbonate Different? Phys. Chem. C 2015, 119, 14954-14964.
- (27) Song, S.-W.; Reade, R. P.; Cairns, E. J.; Vaughey, J. T.; Thackeray, M. M.; Striebel, K. A. Cu2Sb Thin-Film Electrodes Preparedby Pulsed Laser Deposition for Lithium Batteries. J. Electroches 60c2004, 151, A1012-A1019.
- (28) Allcorn, E.; Manthiram, A. Thermal Stability of Sb and Cu2Sb Anodesin Lithium-Ion Batteries. J. Electrocher&oc.2015, 162. A1778-A1786
- (29) Jackson E. D.; Prieto, A. L. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additiaes Appl.Mater.Interfaces 2018, 30379-30386.

- (30) Vaughey, J. T.; Johnson, C. S.; Kropf, A. J.; Benedek, R.; ThackerayM. M.: Tostmann.H.: SarakonsriT.: Hackney.S.: FranssorL.; Edströn, K.; et al. Structural Mechanistic Features of Intermetallic Materials for Lithium Batteries.wer Sources 2001.
- (31) Ehinon, K. K. D.; Naille, S.; Dedryvee, R.; Lippens, P.-E.; JumasJ.-C.; GonbeaD, Ni3Sn4 Electrodes for Li-lon Batteries: Li-Sn Alloying Process and Electrode/Electrolyte Interface Phenomena. ChemMater.2008,20,5388-5398.
- (32) Naille, S.; Dedryvie, R.; Martinez H.; Leroy, S.; Lippens P.-E.; Jumas J.-C.; Gonbeau D. XPS Study of Electrode/Electrolyte Interfaces of η-Cu6Sn5 Electrodes in Li-Ion Batteriesed Sources 2007,174,1086-1090.
- (33) Stjerndahl, M.; Bryngelsson, H.; Gustafsson, T.; Vaughey, J. T.; ThackerayM. M.; Edstron, K. Surface Chemistry differmetallic AlSb-Anodes for Li-Ion Batteri Esectrochin Acta 200752,4947-4955
- (34) Lahiri, A.; Endres, F. Review

 Electrodeposition of Nanostructured Materials from AqueoOsganic and Ionic Liquid Electrolytes for Li-Ion and Na-Ion Batteries: A Comparative Review. J.Electroches6oc2017,164,D597-D612.
- (35) Mosby J. M.: Prieto A. L. Direct Electrodeposition of Cu2Sb for Lithium-Ion Battery Anodes And Chem Soc 2008, 130, 10656-10661.
- (36) Kim, I.-S.; Vaughey, T.; Auciello O. Thin-Film Cu(6)Sn(5) Electrodes: Synthes soperties and Current Collector Interactions. J.Electroches0cc2008,155,A448-A451.
- (37) Chusid, O. Y.; Ely, Y. E.; Aurbach D.; Babai, M.; Carmeli, Y. Electrochemicalnd Spectroscopic Studies Oxfrbon Electrodes in Lithium Battery Electrolyte System 9: ower Sources 1943, 47-
- Electrolyte Interphase Formation in Silicon Electrolytesnitoring the Formation of Organic Decomposition ProductShemMater. 2016,28,385-398.
- (39) Perre E.; Taberna P. L.; Mazouzi D.; Poizot P.; Gustafsson, T.; Edstron, K.; Simon, P. Electrodeposite Cu2Sb as Anode Material for 3-Dimensional Li-Ion Microbatte lies ater Res 2010, 25, 1485-1491.
- (40) ZhangS.S. A Review on Electrolyte Additives for Lithium-Ion Batteries J. Power Sources 20062, 1379-1394.
- (41) Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J. Electrolyte Additives for Lithium Ion Battery Electrodes: Progress and Perspective Energy Enviroaci 2016,9, 1955-1988.
- (42) Ushirogata K.; Sodeyama K.; Okuno, Y.; Tateyama, Y. Additive Effect on Reductive Decomposition and Binding of Carbonate-Base Solvent toward Solid Electrolyte Interphase Formation in Lithium-Ion Battery J. Am. Chem. Soc. 2013, 135, 11967-11974.
- (43) Zhang, W.; Ghamouss F.; Darwiche, A.; Monconduit, L.: (25) Jin, Y.; Kneusels, N.-J. H.; Marbella, L. E.; Castillo-Martínez, Lemordant D.; Dedryvèe, R.; Martinez H. Surface Film Formation on TiSnSb ElectrodesImpact of ElectrolyteAdditives.J. Power
 - (44) Park S.; Heon Ryul.; Oh.S.M. Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Eledtrode. Electroches 60c2011,158,A498-A503.
 - (45) Seo, D. M.; Nguyen, C. C.; Young, B. T.; Heskett, D. R.; Woicik, J.C.; Lucht, B.L. Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery. Electrocher 30c2015, 162, A7091-A7095
 - (46) Aurbach D.; Markovsky B.; Shechter A.; Ein-Eli, Y.; Cohen, H. A Comparative Study of Synthetic Graphite articlectrodes in Electrolyte Solutions Based on Ethylene Carbonate Dimethyl Carbonate Mixtures. Electrocher Soc. 1996, 143, 3809 – 3820.
 - (47) Chan, A. K.; Tatara, R.; Feng, S.; Karayaylal P.; Lopez, J.; Stephens, E. L.; Shao-Horn, Y. Concentrated Electrolytessr Enhanced Stability of Al-Alloy Negative Electrodes in Li-Ion Batteries. J.Electroches 0c2019,166,A1867-A1874.

- (48) Schneided, D.; AgocsD. B.; PrietoA. L. Design of a Sample Transfer Holder to Enable Air-Free X-Ray Photoelectron Spectros-Photoelectron Spectroscopy of the Alkali Metal Habidels Iransfer copy.ChemMater.2020,32,8091.
- (49) Philippe, B.; Hahlin, M.; Editrok.; Gustafsson, T.; Siegbahn, 755 H.: Rensmo.H. Photoelectron Spectroscopy fbithium Battery Interface Studies. Electroche Soc 2016, 163, A178 - A191
- (50) LindgrenF.; RehnlundD.; Kaliquist,I.; Nyholm,L.; Edstren, K.; Hahlin, M.; Maibach, J. Breaking Down a Complex System: Interpreting PES Peak Positions for Cycled Li-Ion Battery Electrode 7.0) Ota, H.; Sakata, Y.; Inoue, A.; Yamaguchi S. Analysisof J.PhysChemC 2017,121,27303-27312.
- (51) Sherwood, P. M. A. The Use and Misuse of Curve Fitting in tElectroches oc 2004, 151, A1659-A1669. Analysisof Core X-Ray Photoelectron Spectroscoplata. Surf. Interface Ana2019,51,589-610.
- (52) Antitomaso P.; Fraisse B.; Stievano L.; Biscaglia S.; Ayme Perrot, D.; Girard, P.; Sougrati, M. T.; Monconduit, L. SnSb Electrodes for Li-Ion Batteries: The Electroche Miccalianism and Capacity Fading Origins Elucidated by Using Operando Technique odel Systems for Li-Ion Battery Anodes Electroche occ2012, J.Mater.ChemA 2017.5. 6546-6555.
- (53) SchulzeM. C.; SchulzeR. K.; Prieto, A. L. Electrodeposited Thin-Film CuxSb Anodes for Li-Ion Batteries: Enhancement of Cydectrochemica roperties of Crystalline Coppe Antimonide Thin Life via Tuning of Film Composition and Engineering to Film-Substrate InterfaceMater.ChemA 2018,6, 12708-12717
- M. Construction of the Ternary Phase Diagram for Li-Cu-Sb System as Anode Materia for a Lithium Ion Battery. J. Phys. ChemC 2007,111,7548-7553.
- (55) Franssorl, M. L.; Vaugheyl, T.; Benedek,R.; Edstren, K.; Thomas, J. O.; Thackeray, M. Phase Transition in Lithiated Cu2Sb Anodes for Lithium Batteriesn in Situ X-Ray Diffraction Study.Electroche@ommur2001,3, 317-323.
- (56) Smith A. J.; Dahn J.R. Delta Differential Capacity Analysis. Electrocher 60c2012, 159, A290-A293.
- (57) HaregewoinA. M.; LeggessE, G.; JiangJ.-C.; WangF,-M.; Hwang, B.-J.; Lin, S.D. Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithiu FlectrolyteInterphase from Density Functional Theory Study. J. PhysChemC 2011,115,7044–7049. Ion BatteryElectrochinActa 2014;136,274-285.
- (58) ZhangX.; KosteckR.; Richardsoff, J.; PughJ.K.; RossP. N. Electrochemicand Infrared Studies of the Reduction of Organic Yamamotdk.; KoyamaY.; Minato,T.; Hirano,T.; TanidaH.; Arai, Carbonatesl. Electroches ac 2001, 148, A1341-A1345.
- (59) Bryngelssorl,; Eskhult,J.; Nyholm,L.; Herranen,M.; Alm, O.; Edstron, K. Electrodeposited Sb and Sb/Sb2O3 Nanoparticle Coatings as Anode Materials for Li-Ion Batt@hesnMater2007, 19,1170-1180.
- (60) Bryngelsson, H.; Eskhult, J.; Nyholm, L.; Edstrom, K. Thin ElectrochinActa 200853,7226-7234.
- PerchlorateXPS Comparison Spec&arf.SciSpectra 1992,97-
- (62) Dedryvee, R.; Laruelle, Grugeon, Gireaud, Tarascon, J.-M. M.: Gonbeau.D. XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Form on a Metallic Cathode. Electroche Soc 2005, 152, A689-A696.
- (63) Dedryvee, R.; Gireaud,..; Grugeon, S.; Laruell, Tarascon, J.-M.; Gonbeal. Characterization of Lithium Alloarbonates by X-Ray Photoelectron Spectroscorexperimental Theoretical Study J. PhysChemB 2005,109,15868-15875.
- (64) Li, J.-T.; Swiatowskal,; SeyeuxA.; Huang, L.; Maurice, V.; Sun, S.-G.; Marcus P. XPS and ToF-SIMS Study 8f - Co Alloy Thin Films as Anode for Lithium Ion Batter Power Sources 2010, 195,8251-8257.
- (65) El Ouatani L.; Dedryviè, R.; Siret C.; Biensar P.; Gonbeau, D. Effect of Vinylene CarbonateAdditive in Li-lon Batteries: Comparison ofLiCoO2/C, LiFePO4/C, and LiCoO2/Li4Ti5O12 Systems I. Electroche Soc 2009, 156 A468-A477.
- (66) El Ouatani, Dedryvèe, R.; Siret, C.; Biensar, Reynaud, S.; Iratçabal, P.; Gonbeau D. The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion BatteriesJ. Electrocheracc2009, 156, A103-A113.

- (67) Morgan, W. E.; Van Wazer J. R.; Stec, W. J. Inner-Orbital Phosphateand PyrophosphatesAm. ChemSoc.1973,95,751-
- (68) GarbassiF. XPS and AES Study of Antimony OxidesSurf. Interface Anal 980, 2, 165-169.
- (69) JamesT. L. Photoelectron Spectroscob@hemEduc.1971, 48,712-718.
- Vinylene Carbonate Derived SEI Layerson Graphite Anode. J.
- (71) Shiraishi,S.; Kanamura,K.; Takehara, I. Influence of Initial Surface Condition of Lithium Metalodes on Surface Modification with HF. J. Appl. Electrocher 1999, 29, 869-881.
- (72) Tavassol, Buthker, J. W.; Ferguson, G. A.; Curtiss, L. A.; Gewirth, A. A. SolventOligomerization during S⊞ormation on 159,A730-A738
- (73) Jackson E. D.; Mosby, J. M.; Prieto, A. L. Evaluation of he Film Anodesfor Lithium Ion Batteries Produced by Single Step Electrodepositio Electrochin Acta 2016214,253-264.
- (54) Matsuno, S.; Noji, M.; Kashiwagi, T.; Nakayama, M.; Wakihara (74) Harris, O. C.; Tang, M. H. Molecular Probes Reveal Chemical Selectivity of the Solid-Electrolyte InterpblashysChemC 2018, 122,20632-20641.
 - (75) Qiao,R.; Lucas, T.; Karim,A.; Syzdekl,.; Liu,X.; Chen,W.; Persson,K.; Kostecki, R.; Yang, W. Distinct Solid-Electrolyte-Interphases on Sn (100) and (001) Electrodes Studied by Soft Ray Spectroscop Adv. Mater. Interfaces 2014, 1300115.
 - (76) Ulus, A.; RosenbergY.; Burstein, L.; Peled, E. Tin Alloy-Graphite Composite Anode for Lithium-Ion Batteliesectrochem. Soc2002,149,A635-A643.
 - (77) Chen, Y. C.; Ouyang, C. Y.; Song, L. J.; Sun, Z. L. Electrical and Lithium Ion Dynamics in Three Main Components of Solid
 - (78) TakamatsuD.; Orikasa,Y.; Mori, S.; Nakatsutsumi,T.; H.; et al. Effect of an Electrolyte Additive of Vinylene Carbonate on the Electronic Structure ahe Surface of Lithium Cobalt Oxide Electrode under Battery Operating Condition sysChemC 2015, 119,9791-9797.
- (79) Solchenbach,; Hong, G.; Freiberg, A. T. S.; Jung, R.; GasteigerH. A. Electrolyte and SEDecomposition Reactions Films of Cu2Sb and Cu9Sb2 as Anode Materials in Li-Ion Batteries Transition Metal Ions Investigated by On-Line Electrochemical Mass Spectrometryl. Electrochemical 200853, 7226–7234
- (61) Beard, B. C. Sodium Salts of Chlorine Oxyacid Anions, Cl(+7)(80) Joshi, T.; Eom, K.; Yushin, G.; Fuller, T. F. Effects of Dissolved Transition Metalson the ElectrochemicaPerformanceand SEI Growth in Lithium-Ion Batteries. J. Electrocher Soc. 2014, 161, A1915-A1921.
 - (81) Trahey, L.; Kung, H. H.; Thackeray, M. M.; Vaughey, J. T. Effect of Electrode Dimensionality and Morphology on the Performance of Cu2Sb Thin Film Electrodes for Lithium-Ion Batteries. Inorg.Chem2011,2011,3984-3988.
 - (82) Doerrer, L. H. Cu in Biology: Unleashed by O-2 and Now Irreplaceablenorg.Chim.Acta.2018,481,4-24.