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Abstract

The plasmonics of two–dimensional materials, such as graphene, has became an important field
over the past decade. The active tunability of graphene via electrical gating or chemical doping
has generated a great deal of excitement among engineers seeking sensing devices. Consequently
there is significant demand for robust and highly accurate computational capabilities which can
simulate such materials. The class of High–Order Perturbation of Surfaces methods have proven to
be particularly appropriate for this purpose. In this contribution we describe our recent efforts to
utilize both Dirichlet–Neumann Operators and Impedance–Impedance Operators in these schemes.
In addition, we present detailed numerical results which not only validate our simulations using the
Method of Manufactured Solutions, but we also describe Localized Surface Plasmon Resonances in
graphene nanotubes enclosing rod–shaped dielectric materials.

Keywords: High–Order Spectral Methods, High–Order Perturbation of Surfaces Methods,
Graphene, Two–dimensional materials

1. Introduction

Graphene is a single layer of carbon atoms in a honeycomb lattice which was first isolated
experimentally in 2004 [1] resulting in the 2010 Nobel Prize in Physics to Geim [2] and Novoselov [3].
Graphene’s semimetallic character permits electrostatic biasing which allows one to tune its electrical
properties, unlike the noble metals, which also support plasmons. Plasmons in graphene have been
exploited for a wide range of applications, including optical modulators [4, 5, 6], photodetectors
[7, 8, 9, 10, 11], metasurfaces [12, 13, 14], polarization control devices [15, 16], and sensors [17, 18, 19].
For a complete discussion of graphene including modeling, device design, and particular applications,
we refer the interested reader to the survey article of Bludov, Ferriera, Peres and Vasilevskiy [20]
and the text of Goncalves and Peres [21].

All of the classical numerical algorithms have been utilized to simulate structures featuring two–
dimensional materials numerically, for instance, Finite Difference Methods [22, 23], Finite Element
Methods [24, 25], Discontinous Galerkin Methods [26], Spectral Element Methods [27], and Spectral
Methods [28, 29, 30], but it can be argued [31, 32] that such volumetric approaches are greatly
disadvantaged with an unnecessarily large number of unknowns for the piecewise homogeneous
problems we consider here. Interfacial methods based upon Integral Equations [33] are a natural
alternative but these also face difficulties. One challenge is that an Integral Equation solver will
return the scattering returns only for a specified geometric configuration. For instance, if the interface
shape is changed then the solver must be run again. Another difficulty is the dense and non-
symmetric positive definite systems of linear equations which must be inverted with each simulation.

A “High Order Perturbation of Surfaces” (HOPS) approach [31, 32] can effectively address these
concerns. More specifically, we have in mind the method of Field Expansions (FE) which was intro-
duced to generalize the low–order methods of Rayleigh [34] and Rice [35]. The high-order version of
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FE was first investigated by Bruno and Reitich [36, 37, 38, 39], and later enhanced and stabilized
by Nicholls and Reitich [40, 41] resulting in the Method of Transformed Field Expansions (TFE).
These algorithms maintain the advantageous properties of classical Integral Equation implemen-
tations (e.g., surface formulation and exact enforcement of far–field conditions) while avoiding the
shortcomings stated above. For a description of the TFE approach to the bounded obstacle geometry
see [42].

Our new approach is quite closely related to the work of Bruno and Reitich [39] who studied the
same problem in the three–dimensional context of nanospheres. The current contribution differs in
a number of ways beginning with its two–dimensional character (invariant in the third dimension)
which requires the study of different Hankel functions. In addition we describe formulations in terms
of either Dirichlet–Neumann Operators (DNOs) [43] or Impedance–Impedance Operators (IIOs)
which permit the immediate simulation by other classical HOPS methods [36, 37, 38, 39, 41, 42, 44].
The IIO formulation is considered to avoid “Dirichlet eigenvalues” inherent to DNOs as advocated
by Gillman, Barnett, and Martinsson [45].

The rest of the paper is organized as follows: In Section 2 we discuss the governing equations
of our model for the response of a two–dimensional material mounted between two dielectrics. In
Section 3 we outline our surface formulation of these equations in terms of both DNOs and IIOs.
We present the conditions for a Localized Graphene Surface Plasmon Resonance (LGSPR) in this
configurations in Section 4. In Section 5 we define the IIOs required for our surface formulation, and
we discuss the FE (Section 5.1) and TFE methods (Section 5.2) for their computation. With this
we describe our full HOPS methodology in Section 6. To conclude, we present our numerical results
in Section 7 with a discussion of implementation issues in Section 7.1, validation by the Method of
Manufactured Solutions in Section 7.2, and simulation of graphene nanotubes in Sections 7.3 and
7.4.

2. Governing Equations

Following [46, 47] the structure we consider is displayed in Figure 1, a y–invariant nanotube of
bounded cross–section with interface shaped by r = ḡ + g(θ). This interface separates two domains
filled with materials of permittivities ε(u) in Su := {r > ḡ + g(θ)} and ε(w) in Sw := {r < ḡ + g(θ)},
respectively. The superscripts are chosen to conform to the notation of previous work by the authors

Figure 1: Plot of the cross–section of a graphene nanotube, Γ, enclosing a material (occupying Sw) shaped by
r = ḡ + g(θ) = ḡ + ε cos(4θ) (ε = (3/10)ḡ) housed in a dielectric (occupying Su) under plane–wave illumination with
wavenumber (α,−γu).

[32, 43, 46, 47]. The cylindrical geometry demands that the interface be 2π–periodic, g(θ+2π) = g(θ).
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We consider monochromatic plane–wave illumination by incident radiation of frequency ω and
wavenumber ku = nuω/c0 = ω/cu (c0 is the speed of light), aligned with the corrugations of the
obstacle. The scattered (electric or magnetic) fields are denoted by {u(r, θ), w(r, θ)} in Su and Sw,
respectively, and the incident radiation in the outer domain by

uinc(r, θ) = eiαx−iγ
uz = eir(α cos(θ)−γu sin(θ)).

The governing equations in this configuration are, for Transverse Electric (TE) and Transverse
Magnetic (TM) polarization, [48, 49]

∆u+ (ku)2u = 0, r > ḡ + g(θ), (2.1a)

∆w + (kw)2w = 0, r < ḡ + g(θ), (2.1b)

u− w +Aτw∂Nw = ξ, r = ḡ + g(θ), (2.1c)

τu∂Nu− τw∂Nw +Bw = τuν, r = ḡ + g(θ), (2.1d)

lim
r→∞

r1/2 (∂ru− ikuu) = 0, (2.1e)

|w|L∞ <∞, r < ḡ + g(θ), (2.1f)

where for m ∈ {u,w}

τm =

{
1, TE,

1/ε(m), TM,
A =

{
0, TE,

σ̂/(|N | (ik0)), TM,
B =

{
|N | (ik0)σ̂, TE,

0, TM,

and
ξ(θ) :=

[
−uinc

]
r=ḡ+g(θ)

, ν(θ) :=
[
−∂Nuinc

]
r=ḡ+g(θ)

.

In these

∂N = r̂(ḡ + g)∂r − θ̂
(

g′

ḡ + g

)
∂θ,

for unit vectors in the radial (r̂) and angular (θ̂) directions, while (2.1e) is the Sommerfeld radiation
condition and (2.1f) expresses boundedness of solutions. Of particular note is σ̂ = σ/(ε0c0), the
dimensionless surface current which models the effects of the graphene deposited at the interface
between the two layers [48, 49].

3. Reformulation via Surface Integral Operators

We now formulate (2.1) in terms of surface integral operators, first with Dirichlet–Neumann
Operators (DNOs) and then with Impedance–Impedance Operators (IIOs). For the former we
define the Dirichlet traces

U(x) := u(ḡ + g(θ), θ), W (x) := w(ḡ + g(θ), θ),

and the outward pointing Neumann traces

Ũ(x) := −(∂Nu)(ḡ + g(θ), θ), W̃ (x) := (∂Nw)(ḡ + g(θ), θ).

In terms of these, the boundary condition (2.1c) and (2.1d) read

U −W +AτwW̃ = ξ, r = ḡ + g(θ), (3.1a)

− τuŨ − τwW̃ +BW = τuν, r = ḡ + g(θ). (3.1b)

These specify two equations for four unknowns which would be problematic save that U and Ũ are
connected, as are W and W̃ . We formalize this with the following definition [46].
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Definition 3.1. Given the unique outgoing solution to the Dirichlet problem

∆u+ (ku)
2
u = 0, r > ḡ + g(θ), (3.2a)

u(ḡ + g(θ), θ) = U(θ), (3.2b)

lim
r→∞

r1/2 (∂ru− ikuu) = 0, (3.2c)

the Neumann data, Ũ(θ), can be computed. The DNO G(u) is defined by

G(u)(g) : U → Ũ .

In addition we require the following definition.

Definition 3.2. If the bounded solution to the Dirichlet problem

∆w + (kw)
2
w = 0, r < ḡ + g(θ), (3.3a)

w(ḡ + g(θ), θ) = W (θ), (3.3b)

|w|L∞ <∞, r < ḡ + g(θ), (3.3c)

is unique, the Neumann data, W̃ (θ), can be computed. The DNO G(w) is defined by

G(w)(g) : W → W̃ .

In terms of these operators, (3.1) can now be written as [48, 49](
I −I +AτwG(w)

τwG(u) τwG(w) −B

)(
U
W

)
=

(
ξ
−τuν

)
. (3.4)

Remark 3.3. As we explicitly accommodate in the definition, the possibility of non–unique solutions
of the Dirichlet problem (3.3) exists. While this is not generic for a given configuration, it does inspire
the IIO formulation given below.

Next, following [47], we formulate (2.1) in terms of IIOs. For this purpose we define the
impedances

I(u) := [−τu∂Nu+ Y u]r=ḡ+g , I(w) := [τw∂Nw − Zw]r=ḡ+g ,

their “conjugates”

Ĩ(u) := [−τu∂Nu+ Zu]r=ḡ+g , Ĩ(w) := [τw∂Nw − Y w]r=ḡ+g ,

and the interfacial data
ζ := [−τuν + Y ξ] , ψ := [−τuν + Zξ] ,

where I is the identity, and Y and Z are unequal operators to be specified.

Remark 3.4. Before proceeding, we recall an analysis recently presented in [47] where we showed
that the IIO problems (3.6) and (3.7) will each have a unique solution if the following conditions are
met

Im

{∫
r=ḡ

((
Y

τu

)
u

)
ū dθ

}
≤ 0, Im

{∫
r=ḡ

((
Z

τw

)
w

)
w̄ dθ

}
≥ 0. (3.5)

Since τu ∈ R+ the choice of Despres [50, 51], Y = −iη where η ∈ R+, satisfies (3.5). The
situation with τw is more interesting as it can be complex. In particular, if ε(w) = ε(w)′+ iε(w)′′ and
Z = Z ′ + iZ ′′, as

Im

{
Z

τw

}
=


Z ′′, TE,

ε(w)′Z ′′, dielectric in TM,

ε(w)′Z ′′ + ε(w)′′Z ′, metal in TM,
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the Despres choice, Z = iη, satisfies (3.5) provided that the interior is not a metal (ε(w)′ < 0 and
ε(w)′′ > 0) in TM polarization. In this case the choice of Z must be configuration specific, e.g.,

Z ′′

Z ′
>
−ε(w)′

ε(w)′′ > 0,

which can be accommodated.

We now give our two definitions.

Definition 3.5. Given an operator Y satisfying (3.5), the outgoing solution to

∆u+ (ku)
2
u = 0, r > ḡ + g(θ), (3.6a)

− τu∂Nu(ḡ + g(θ), θ) + Y u(ḡ + g(θ), θ) = I(u)(θ), (3.6b)

lim
r→∞

r1/2 (∂ru− ikuu) = 0, (3.6c)

is unique and the impedance, Ĩ(u)(θ), can be computed. The IIO Q is defined by

Q(g) : I(u) → Ĩ(u).

We also require the following definition.

Definition 3.6. Given an operator Z satisfying (3.5), the bounded solution to

∆w + (kw)
2
w = 0, r < ḡ + g(θ), (3.7a)

τw∂Nw(ḡ + g(θ), θ)− Zw(ḡ + g(θ), θ) = I(w)(θ), (3.7b)

|w|L∞ <∞, r < ḡ + g(θ), (3.7c)

is unique and the impedance, Ĩ(w)(θ), can be computed. The IIO S is defined by

S(g) : I(w) → Ĩ(w).

In terms of these, the boundary conditions (2.1c) and (2.1d) read

I(u) + Ĩ(w) + Y A(I + Z(Y − Z)−1(I − S))I(w) −B(Y − Z)−1(I − S)I(w) = Y ξ − τuν,
− τuĨ(u) − τw Ĩ(w) + ZA(I + Z(Y − Z)−1(I − S))I(w) −B(Y − Z)−1(I − S)I(w) = Zξ − τuν.

If we further assume that the operators Y and Z commute, then these equations can be written as(
I S + Y A(Y − Z)−1(Y − ZS)−B(Y − Z)−1(I − S)
Q I + ZA(Y − Z)−1(Y − ZS)−B(Y − Z)−1(I − S)

)(
I(u)

I(w)

)
=

(
ζ
ψ

)
. (3.9)

4. Localized Graphene Surface Plasmon Resonances

We are now in a position to search for the surface waves (the localized surface plasmons) which
deliver field enhancements at the interface of the materials. For noble metals there is a classical
formula to excite a Localized Surface Plasmon Resonance (LSPR) [52] and we seek an analogous
condition here in the presence of graphene. Following [32] the condition for a Localized Graphene
Surface Plasmon Resonance (LGSPR) is the singularity of the linearized operator (about the unper-
turbed, cylindrical, geometry) in the governing equations. More specifically, in terms of IIOs, for a
TE LGSPR we would require that

MTE :=

(
I S0 −B0(Y − Z)−1(I − S0)
Q0 I −B0(Y − Z)−1(I − S0)

)
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be singular, and, for a TM LGSPR we would demand that

MTM :=

(
I S0 + Y A0(I + Z(Y − Z)−1(I − S0))
Q0 I + ZA0(I + Z(Y − Z)−1(I − S0))

)
be not invertible. At this point we follow Despres [50, 51] and choose Y = −Z = iη for a constant
η ∈ R+. This leads us to consider singularities of the operators

MTE =

(
I S0 − (ik0)σ̂

2iη (I − S0)

Q0 I − (ik0)σ̂
2iη (I − S0)

)
,

and

MTM =

(
I S0 + iησ̂

2(ik0) (I + S0)

Q0 I − iησ̂
2(ik0) (I + S0)

)
. (4.1)

In [47] we observed that, for general Y and Z, solutions to (3.6) and (3.7) are given by

u(r, θ) =

∞∑
p=−∞

(Î(u))p

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

Hp(k
ur)eipθ,

w(r, θ) =

∞∑
p=−∞

(Î(w))p

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

Jp(k
wr)eipθ,

where Jp is the p–th Bessel function and Hp is the p–th Hankel function of the first kind. From
these we saw that

Q0[I(u)] =

∞∑
p=−∞

(
Î(u)

)
p

(
−τu(kuḡ)H ′p(k

uḡ) + ẐpHp(k
uḡ)

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

)
eipθ, (4.2a)

S0[I(w)] =

∞∑
p=−∞

(
Î(w)

)
p

(
τw(kwḡ)J ′p(k

wḡ)− ŶpJp(kwḡ)

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

)
eipθ, (4.2b)

which, upon setting Y = −Z = iη, define the order–one Fourier multipliers

Q0 =

(
−τu(kuḡ)H ′D(kuḡ)− iηHD(kuḡ)

−τu(kuḡ)H ′D(kuḡ) + iηHD(kuḡ)

)
, S0 =

(
τw(kwḡ)J ′D(kwḡ)− iηJD(kwḡ)

τw(kwḡ)J ′D(kwḡ) + iηJD(kwḡ)

)
.

Thus, we can measure the singularity of MTE and MTM by examining the singularity of their actions
at each wavenumber

M̂TE
p =

 1
(
Ŝ0

)
p
− (ik0)σ̂

2iη

[
1−

(
Ŝ0

)
p

]
(
Q̂0

)
p

1− (ik0)σ̂
2iη

[
1−

(
Ŝ0

)
p

]
 ,

and

M̂TM
p =

 1
(
Ŝ0

)
p

+ iησ̂
2(ik0)

[
1 +

(
Ŝ0

)
p

]
(
Q̂0

)
p

1− iησ̂
2(ik0)

[
1 +

(
Ŝ0

)
p

]
 ,

which can, in turn, be characterized by a zero of the determinant functions

∆̃TE
p = 1− (ik0)σ̂

2iη

[
1−

(
Ŝ0

)
p

]
−
(
Q̂0

)
p

(
Ŝ0

)
p
− (ik0)σ̂

2iη

(
Q̂0

)
p

[
1−

(
Ŝ0

)
p

]
, (4.3a)

∆̃TM
p = 1− iησ̂

2(ik0)

[
1 +

(
Ŝ0

)
p

]
−
(
Q̂0

)
p

(
Ŝ0

)
p
− iησ̂

2(ik0)

(
Q̂0

)
p

[
1 +

(
Ŝ0

)
p

]
. (4.3b)

6



With all of these considerations in hand we can investigate the possibility of exciting an LGSPR.
However, there is one last piece of information that we require, namely the surface current model
for the graphene. There are many models available for this purpose [21] and most are derived with
a particular range of illumination frequencies, ω, in mind. In order to test multiple possibilities
without overwhelming the reader, we have selected two models for our simulations. The first we
found in the work of Angelis, Locatelli, Mutti, and Aceves [53, 54] and it is an approximation due
to Stauber, Peres and Neto [55] which accounts for both interband and intraband contributions.
This “full” model is designed to be useful over a wide range of illumination frequencies but its form
is rather opaque (see [20] for full details). By contrast, for lower frequencies, e.g. in the terahertz
regime, the straightforward Drude model

σD = σ0
4EF
π

1

~γ − i~ω
,

is a simple and accurate model which is often employed [20], and so we use this as our second
approximation.

With these models of graphene we now study the determinant functions (4.3) to examine the pos-
sibility of exciting an LGSPR. In order to eliminate the complicated frequency–dependent behavior
of some popular dielectric materials, we consider a free–standing configuration where the inner and
outer layers are filled with vacuum. We further investigate the effects of the size of the nanotube
by considering two radii, ḡ = 0.025 microns and ḡ = 1 microns. Our results for the full model with
ḡ = 0.025 microns are depicted in Figure 2 for TE (left) and TM (right) polarization. These were
repeated in the case ḡ = 1 microns and the output is shown in Figure 3, again in TE (left) and TM
(right) polarization. Each of these experiments was revisited with the Drude model for graphene,
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1

Figure 2: Plot of the determinant function ∆̃p, (4.3), with the full model of graphene in (left) TE and (right) TM
polarization for ḡ = 0.025 microns.

and the results are given for ḡ = 0.025 microns in Figure 4, and for ḡ = 1 microns in Figure 5. The
inescapable conclusion is that an LGSPR can only be excited in TM polarization which matches the
conclusion we reached in [46] in the absence of graphene.

5. Numerical Simulation of the IIOs

Moving beyond this approximate formula to excite an LGSPR, ∆̃TM
p ≈ 0 for some integer p, we

investigate algorithms to simulate the full governing equations (3.9). For this, we now discuss how
to compute the IIOs Q and S. In our previous work [47] we demonstrated the rigorous analyticity
of these IIOs with respect to interface deformation for g sufficiently smooth (e.g., C2 sufficed for our
proof) and small. The proof begins with the assumption

g(θ) = εf(θ), f = O(1), ε� 1,
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Figure 3: Plot of the determinant function ∆̃p, (4.3), with the full model of graphene in (left) TE and (right) TM
polarization for ḡ = 1 microns.
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Figure 4: Plot of the determinant function ∆̃p, (4.3), with the Drude model of graphene in (left) TE and (right) TM
polarization for ḡ = 0.025 microns.

and explicitly justifies the expansions

Q(εf) =

∞∑
n=0

Qn(f)εn, S(εf) =

∞∑
n=0

Sn(f)εn.

The question now becomes, can useful forms for the {Qn, Sn} be derived? We briefly describe two
approaches here: The Method of Field Expansions (FE) due to Bruno and Reitich [56], and the
Method of Transformed Field Expansions (TFE) devised by Nicholls and Reitich [57, 41].

5.1. Field Expansions

The FE approach begins with the supposition that the scattered fields also depend analytically
upon ε (which is later verified). Focusing upon the field in the outer layer, {r > ḡ + g(θ)}, this
implies that

u = u(r, θ; ε) =

∞∑
n=0

un(r, θ)εn.

Upon insertion of this into (3.6) one finds that the un must be outgoing solutions of the boundary
value problem

∆un + (ku)2un = 0, r > ḡ, (5.1a)

− τuḡ∂run + Y un = δn,0I
(u) + Ln, r = ḡ, (5.1b)
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Figure 5: Plot of the determinant function ∆̃p, (4.3), with the Drude model of graphene in (left) TE and (right) TM
polarization for ḡ = 1 microns.

where δn,m is the Kronecker delta function, and

Ln =
f

ḡ
δn,1I

(u) − Y
n−1∑
m=0

∂n−mr umFn−m −
f

ḡ
Y

n−1∑
m=0

∂n−m−1
r umFn−m−1

+ τu

[
ḡ

n−1∑
m=0

∂n−m+1
r umFn−m + 2f

n−1∑
m=0

∂n−mr umFn−m−1

+
f2

ḡ

n−2∑
m=0

∂n−m−1
r umFn−m−2 −

f ′

ḡ
∂θ

n−1∑
m=0

∂n−m−1
r umFn−m−1

]
.

The outgoing solutions of (5.1a) are

un(r, θ) =

∞∑
p=−∞

ûn,p
Hp(k

ur)

Hp(kuḡ)
eipθ,

and the ûn,p are determined recursively from the boundary conditions, (5.1b), beginning, at order
zero, with

û0,p =

(
Î(u)

)
p(

−τuḡH
′
p(kuḡ)

Hp(kuḡ) + Yp

) .
From this the IIO, Q, can be computed from

Q = −τu∂Nu+ Zu = τu
[
−(ḡ + εf)∂ru+

εf ′

ḡ + εf
∂θu

]
+ Zu

=

∞∑
n=0

∞∑
p=−∞

{
τu
[
−ku(ḡ + εf)

H ′p(k
u(ḡ + εf))

Hp(kuḡ)
+

εf ′

(ḡ + εf)
(ip)

Hp(k
u(ḡ + εf))

Hp(kuḡ)

]
+Ẑp

Hp(k
u(ḡ + εf))

Hp(kuḡ)

}
ûn,pe

ipθεn.

Expanding the Hankel functions Hp(k
u(ḡ + εf)) and their derivatives in power series in ε, and

equating like powers of ε we can find forms for the Qn [46, 47]. Similar considerations hold for the
IIO S save that the alternate expansion

wn(r, θ) =

∞∑
p=−∞

ŵn,p
Jp(k

wr)

Jp(kwḡ)
eipθ,

must be used.
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5.2. Transformed Field Expansions

The TFE method proceeds in exactly the same manner as the FE approach above save that a
“domain–regularizing” change of variables is affected before the expansion in ε is made. The change
of variables essentially amounts to

r′ = r − g(θ), θ′ = θ,

which not only maps the deformed interface shape {r = ḡ + g(θ)} to the trivial shape {r = ḡ}, but
also results in a greatly stabilized sequence of recursions. For complete details please see [47].

6. High–Order Perturbation of Surfaces method

In light of the developments in the previous section regarding the computation of IIOs, we can
now describe a rapid, highly accurate, and stable algorithm to compute solutions of the surface
equations (3.9). In the interest of brevity we describe our approach for TM polarization (B ≡ 0) as
the TE version (A ≡ 0) is quite similar.

To begin, we make Despres’ choice [50, 51] Y = −Z = iη, η ∈ R, which simplifies (3.9) to |N | |N |S +
(
iη
2

) (
σ̂
ik0

)
(I + S)

|N |Q |N | −
(
iη
2

) (
σ̂
ik0

)
(I + S)

(I(u)

I(w)

)
=

(
|N | ζ
|N |ψ

)
. (6.1)

Again, making the HOPS assumption g(θ) = εf(θ), we suppose not only that the IIOs depend
analytically upon ε but also that the surface fields do as well, so that

I(u) = I(u)(θ; ε) =

∞∑
n=0

I(u)
n (θ)εn, I(w) = I(w)(θ; ε) =

∞∑
n=0

I(w)
n (θ)εn.

Upon insertion of these into (6.1), equating at like orders of ε delivers, at order zero, I S0 +
(
iη
2

) (
σ̂
ik0

)
(I + S0)

Q0 I −
(
iη
2

) (
σ̂
ik0

)
(I + S0)

(I(u)
0

I
(w)
0

)
=

(
ζ0
ψ0

)
. (6.2)

At higher orders we find I S0 +
(
iη
2

) (
σ̂
ik0

)
(I + S0)

Q0 I −
(
iη
2

) (
σ̂
ik0

)
(I + S0)

(I(u)
n

I
(w)
n

)
=

(
Pn
Rn

)
, (6.3)

where

Pn =

n∑
m=0

|N |n−m ζm −
n−1∑
m=0

|N |n−m I
(u)
m −

n−1∑
m=0

Sn−mI
(w)
m −

(
iη

2

)(
σ̂

ik0

) n−1∑
m=0

Sn−mI
(w)
m

−
n−1∑
m=0

|N |n−m
m∑
l=0

Sm−lI
(w)
l ,

Rn =

n∑
m=0

|N |n−m ψm −
n−1∑
m=0

|N |n−m I
(u)
m −

n−1∑
m=0

|N |n−m
m∑
l=0

Qm−lI
(u)
l −

n−1∑
m=0

|N |n−m I
(w)
m

−
(
iη

2

)(
σ̂

ik0

) n−1∑
m=0

Sn−mI
(w)
m ,

and

|N | = |N | (θ; ε) =

∞∑
n=0

|N |n (θ)εn.
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Appealing to our simple formulas for Q0 and S0, (4.2), and using the Fourier expansions

I(u)
n (θ) =

∞∑
p=−∞

(
Î(u)

)
n,p

eipθ, I(w)
n (θ) =

∞∑
p=−∞

(
Î(w)

)
n,p

eipθ,

we realize that (6.3) can be solved rapidly, as the only operator requiring inversion is (block 2× 2)
diagonalized by the Fourier transform.

7. Numerical Results

We now present results of simulations using an implementation of the algorithm outlined above.
The scheme is essentially a High–Order Spectral approach [28, 29, 27] with products approximated
by convolutions implemented by the Fast Fourier Transform.

7.1. Implementation Details

The numerical algorithm we analyze in this section utilizes the IIO formulation of the problem,
(3.9), and the IIOs are simulated using the FE and TFE methods (see Section 5 and [46, 47]). In
order to approximate solutions of (6.1) we define

{
I(u), I(w)

}
≈
{
I

(u)
Nθ,N

, I
(w)
Nθ,N

}
:=

N∑
n=0

Nθ/2−1∑
p=−Nθ/2

{(
Î(u)

)
n,p

,
(
Î(w)

)
n,p

}
eipθεn.

An important consideration is how the series in ε are summed. For this, the classical numerical
analytic continuation technique of Padé approximation [58] has been used very successfully for
HOPS methods in the past (see, e.g., [37, 59]) and we will use it here.

7.2. Validation by the Method of Manufactured Solutions

Before proceeding to our numerical simulations, we validated our code using the Method of
Manufactured Solutions (MMS) [60, 61, 62]. To summarize the MMS, when solving a system of
partial differential equations subject to boundary conditions for an unknown, v, say

Pv = 0, in Ω, (7.1a)

Bv = 0, at ∂Ω, (7.1b)

it is typically just as easy to implement an algorithm to solve the “inhomogeneous” version of the
above,

Pv = F , in Ω, (7.2a)

Bv = J , at ∂Ω. (7.2b)

In order to test an implementation, one begins with the “manufactured solution,” ṽ, and sets

Fṽ := P ṽ, Jṽ := Bṽ.

Now, given this pair {Fṽ,Jṽ} we have an exact solution to (7.2) against which we can compare our
numerical simulation. While this provides no guarantee of a correct implementation, with a careful
choice of ṽ, e.g., one which displays the same qualitative behavior as solutions of (7.1), the approach
can give great confidence in the accuracy of a scheme.

For the implementation in question we considered the 2π–periodic, outgoing solutions of the
Helmholtz equation, (2.1a),

uq(r, θ) = AquHq(k
ur)eiqθ, q ∈ Z, Aqu ∈ C,
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and the bounded counterpart for (2.1b)

wq(r, θ) = AqwJq(k
wr)eiqθ, q ∈ Z, Aqw ∈ C.

We selected an analytic profile
g(θ) = εf(θ) = εecos(θ), (7.3)

and defined, for a choice of the base radius of the interface ḡ, the Dirichlet and Neumann traces

uexact(θ) := uq(ḡ + g(θ), θ), ũexact(θ) := (−∂Nuq)(ḡ + g(θ), θ),

and
wexact(θ) := wq(ḡ + g(θ), θ), w̃exact(θ) := (∂Nw

q)(ḡ + g(θ), θ).

From these we computed the exact inner impedance

Ĩ(w),exact(θ) = τww̃exact − iηwexact,

made the physical parameter choices

q = 2, Aqu = 2, Aqw = 1, η = 3.4, λ = 0.45, (7.4a)

the numerical parameter choices

Nθ = 64, Nr = 32, N = 16, (7.4b)

and computed the approximation to Ĩ(w),exact by the FE and TFE algorithms delivering Ĩ
(w),FE
Nθ,N

and Ĩ
(w),TFE
Nθ,N

, respectively. We point out that despite the fact that we chose η > 0, the algorithm
delivered consistently accurate and stable results indicating that conditions (3.5) are sufficient but
not necessary to ensure uniqueness of solutions. We measured the relative errors

ErrorFE
rel =

∣∣∣Ĩ(w),exact − Ĩ(w),FE
Nθ,N

∣∣∣
L∞∣∣∣Ĩ(w),exact

∣∣∣
L∞

, ErrorTFE
rel =

∣∣∣Ĩ(w),exact − Ĩ(w),TFE
Nθ,N

∣∣∣
L∞∣∣∣Ĩ(w),exact

∣∣∣
L∞

, (7.5)

and display our results in Figure 6. From these we learn a number of important facts. First,
from Figure 6 (left), we see that if ε is sufficiently small (here ε = ḡ/100) then either HOPS
approach (FE or TFE) with either summation mechanism (Taylor or Padé) will deliver excellent
results (essentially machine precision) with a very modest choice of parameters. Here we see that with
only 4–6 perturbation orders one fully resolves the exact MMS target, behavior that is consistent
with that exhibited by HOPS schemes in other contexts [36, 63, 41, 64].

However, as displayed in Figure 6 (right), when the deformation size is large (here ε = (2/5)ḡ)
the behavior of both the HOPS algorithms and the summation techniques diverge significantly.
Here we see that the FE algorithm delivers excellent results through 8 perturbation orders, however,
beyond this the Taylor summation algorithm produces divergent results while Padé approximants
deliver consistent approximations. The TFE algorithm also produces robust simulations through
8 perturbation orders with a similar divergence of Taylor and Padé results at this point. As it
has been not only proven [57, 40, 65] but also demonstrated numerically [63, 41, 64], the TFE
approach produces accurate approximations of the Taylor coefficients in a stable fashion throughout
all perturbation orders. Thus, we conclude that this value of ε is outside the disk of convergence of
the relevant Taylor series. The fact that Padé summation of the TFE coefficients delivers the best
results seen in Figure 6 (right) indicates that not only does the domain of analyticity extend beyond
this disk [59], but also that Padé summation is able to access this region of extended analyticity.

We repeated this convergence study with the more challenging profile

g(θ) = εf(θ) = ε cos(4θ),

c.f., (7.8). Provided that we further refined the angular discretization to Nθ = 128, we found results
nearly identical to those depicted in Figure 6.

12



0 2 4 6 8 10 12 14 16

10
-10

10
-5

10
0

0 2 4 6 8 10 12 14 16
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 6: Relative error (7.5) versus perturbation order for configuration (7.4) with (left) ε = ḡ/100 and (right)
ε = (2/5)ḡ; FE and TFE schemes with Taylor and Padé summation.

7.3. Graphene Nanotubes with Elliptically Shaped Cross–Section

Having verified our code we proceeded to simulate bounded structures (nanorods) encased in
graphene with cross–section shapes that are perturbations of a ring. A most natural such profile is
given by

f(θ) = cos(2θ), (7.6)

which resembles an ellipse, see Figure 7. Our experiments consisted of illuminating this structure

Figure 7: Plot of the cross–section of a graphene nanotube, Γ, enclosing a material (occupying Sw) shaped by
r = ḡ+ ε cos(2θ) (ε = (1/5)ḡ) housed in a dielectric (occupying Su) under plane–wave illumination with wavenumber
(α,−γu). The dash–dot blue line depicts the unperturbed geometry, the circle r = ḡ.

over a range of Nλ–many incident wavelengths λmin ≤ λ ≤ λmax. For this initial simulation we
considered the following physical parameters

ḡ = 0.025, 0.1, 1, λmin = 35, λmax = 40, ε = ḡ/5. (7.7a)

In addition, our FE algorithm required the following numerical discretization parameters

Nλ = 101, Nθ = 64, N = 16. (7.7b)
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There are many outputs to this experiment that one could consider, each of which would indicate
the presence or absence of an LGSPR. We chose to measure the L2 norm of the output impedances,
Ĩ(u) and Ĩ(w), which are produced as the outputs of the maps Q and S respectively. While these
do not have obvious physical interpretations, they are readily computed Quantities of Interest (QoI)
which will not only grow precipitously near an LGSPR, but also vary continuously as the interface
shape is deformed by ε.

We began with the full model of graphene [55, 53, 54] and report our results in Figure 8. Here we
have plotted the QoI (the L2 norms of Q (left column) and S (right column)) as ḡ is varied among
0.025, 0.1, and 1 microns. From these figures we learn a number of things. First, regardless of the
value of ε, there is a pronounced enhancement in the magnitude of the QoI at a particular value
of λ indicating the excitation of an LGSPR. This enhancement is not only significant in magnitude
but also quite sensitive in its response (its excitation range can be less than a nanometer). Beyond
this, both the strength and sensitivity are significantly enhanced as the ring radius is decreased
from 1 micron down to 0.025 microns. Finally, for all three radii, one sees a pronounced and easily
identified shift in the LGSPR as the perfect ring is perturbed to an elliptically shaped one.

We repeated these experiments with the Drude model of graphene [20] and display our findings
in Figure 9. As before, we plotted the QoI (the L2 norms of Q (left column) and S (right column))
as ḡ is varied among 0.025 (top row), 0.1 (middle row), and 1 microns (bottom row). In order to
properly observe all relevant effects we modified the range of λ in (7.7) to λmin = 32 and λmax = 37.
The results here share similarities with our previous ones with the full graphene model. There is a
decided enhancement regardless of ε and the range of wavelengths is still somewhat narrow. Also,
there is still a shift as the interface shape is perturbed from circular to elliptical. However, it should
be noted that each of these effects are significantly mollified in comparison to our results for the full
graphene model. More specifically, the response range is much wider, the enhancement is not as
pronounced, and the shift is much smaller when compared with the excitement spread in λ.

7.4. Graphene Nanotubes with Clover Shaped Cross–Section

After studying graphene nanotubes with elliptically shaped cross–section we proceeded to con-
sider clover shaped cross–sections of the form

f(θ) = cos(4θ), (7.8)

see Figure 10. We conducted the same experiments as in the past section with the same parameters,
(7.7), and our results for the full model of graphene are shown in Figure 11. As in the case of
the elliptically shaped graphene nanotube, there are several common features of these plots among
all radii and perturbation sizes ε. First, an LGSPR is always excited which is indicated by an
enhancement in the QoI (the L2 norm of either Q or S). Furthermore, the response is always strong
(though stronger for smaller radius ḡ) and quite narrow (though narrower for smaller ḡ). As above,
in all cases there is a readily identified shift in the location of the LGSPR as a function of λ as the
ring is deformed to a clover shape.

Our results for the Drude model of graphene are shown in Figure 12. Once again, this classical
model smears the rather “sharp” results for the full current model of graphene. However, there are,
once again significant shifts in the LGSPR location for all configurations as the graphene geometry
is deformed.

As we have seen, in every instance reported above, the location of the LGSPR changes as the
shape of the cross–section of the graphene nanotube is deformed. We closed our investigations with
a quantitative study of how this shift varied as the base radius was changed. The shift was defined
as the (absolute value of) the difference in incident wavelength of the LGSPR for a perfectly circular
cross–section (ε = 0) and the incident wavelength of the LGSPR excited by the perturbed geometry
(ε = ḡ/5). We have plotted this shift versus base radius ḡ in Figure 13 over values

ḡ = 0.025, 0.05, 0.1, 0.2, 0.5, 1.

Here we see how the shift increases, essentially monotonically, as ḡ is increased.
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8. Conclusion

In this contribution we have taken up the questions of the existence and properties of Localized
Graphene Surface Plasmon Resonances (LGSPRs). Using a generalization of our interfacial formu-
lation of the problem of scattering of electromagnetic radiation by a nanorod (which accounts for the
presence of graphene with a surface current), we were able to investigate these questions in a careful
and rigorous fashion. Using two popular surface current models for graphene we gave evidence that
LGSPRs can only be observed in Transverse Magnetic polarization akin to the same conclusion in
the absence of this two–dimensional material. Beyond this we used a rapid, robust, and high–order
accurate numerical scheme to investigate the effects of perturbing the shape of a perfectly cylindrical
(circular cross–section) nanotube upon the appearance and characteristics of LGSPRs. We found
these LGSPRs exist for any perturbation size, but that they can be significantly “moved,” with
quite modest shape deformation, in that they occur for values of incident illumination wavelength
quite different than for the zero–deformation case. This interesting phenomena (also observed for
periodic gratings) suggests a novel mechanism for sensing in the nanoscale regime.
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Am. A 10 (11) (1993) 2307–2316.

[38] O. Bruno, F. Reitich, Numerical solution of diffraction problems: A method of variation of
boundaries. III. Doubly periodic gratings, J. Opt. Soc. Am. A 10 (12) (1993) 2551–2562.

[39] O. P. Bruno, F. Reitich, Boundary–variation solutions for bounded–obstacle scattering problems
in three dimensions, J. Acoust. Soc. Am. 104 (5) (1998) 2579–2583.

[40] D. P. Nicholls, F. Reitich, Shape Deformations in Rough Surface Scattering: Cancellations,
Conditioning, and Convergence, J. Opt. Soc. Am. A 21 (4) (2004) 590–605.

[41] D. P. Nicholls, F. Reitich, Shape Deformations in Rough Surface Scattering: Improved Algo-
rithms, J. Opt. Soc. Am. A 21 (4) (2004) 606–621.

[42] D. P. Nicholls, N. Nigam, Exact Non-Reflecting Boundary Conditions on General Domains, J.
Comput. Phys. 194 (1) (2004) 278–303.

[43] D. P. Nicholls, Three–Dimensional Acoustic Scattering by Layered Media: A Novel Surface
Formulation with Operator Expansions Implementation, Proceedings of the Royal Society of
London, A 468 (2012) 731–758.

[44] D. P. Nicholls, J. Shen, A Stable, High–Order Method for Two–Dimensional Bounded–Obstacle
Scattering, SIAM J. Sci. Comput. 28 (4) (2006) 1398–1419.

[45] A. Gillman, A. Barnett, P. Martinsson, A spectrally accurate direct solution technique for
frequency-domain scattering problems with variable media, BIT Numer. Math. 55 (1) (2015)
141–170.

[46] D. P. Nicholls, X. Tong, A High–Order Perturbation of Surfaces Algorithm for the Simulation
of Localized Surface Plasmon Resonances in Two Dimensions, J. Sci. Comput. 76 (2018) 1370–
1395.

[47] D. P. Nicholls, X. Tong, Simulation of Localized Surface Plasmon Resonances in Two Dimen-
sions via Impedance–Impedance Operators, SIAM Journal on Applied Mathematics (submitted)
.

17



[48] D. P. Nicholls, Numerical Simulation of Grating Structures Incorporating Two–Dimensional
Materials: A High–Order Perturbation of Surfaces Framework, SIAM Journal on Applied Math-
ematics 78 (1) (2018) 19–44.

[49] D. P. Nicholls, High–Order Spectral Simulation of Graphene Ribbons, Comm. Comput. Phys.
26 (2019) 1575–1596.
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Figure 8: Plot of the L2 norms ofQ (left column) and S (right column) for ḡ = 0.025 microns (top row), ḡ = 0.1 microns
(middle row), and 1 micron (bottom row). The responses for a perfectly circular ring and the perturbed (elliptically
shaped) ring are plotted in red and blue, respectively. The full model for graphene was utilized.
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Figure 9: Plot of the L2 norms ofQ (left column) and S (right column) for ḡ = 0.025 microns (top row), ḡ = 0.1 microns
(middle row), and 1 micron (bottom row). The responses for a perfectly circular ring and the perturbed (elliptically
shaped) ring are plotted in red and blue, respectively. The Drude model for graphene was utilized.
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Figure 10: Plot of the cross–section of a graphene nanotube, Γ, enclosing a material (occupying Sw) shaped by
r = ḡ+ ε cos(4θ) (ε = (1/5)ḡ) housed in a dielectric (occupying Su) under plane–wave illumination with wavenumber
(α,−γu). The dash–dot blue line depicts the unperturbed geometry, the circle r = ḡ.
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Figure 11: Plot of the L2 norms of Q (left column) and S (right column) for ḡ = 0.025 microns (top row), ḡ =
0.1 microns (middle row), and 1 micron (bottom row). The responses for a perfectly circular ring and the perturbed
(clover shaped) ring are plotted in red and blue, respectively. The full model for graphene was utilized.
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Figure 12: Plot of the L2 norms of Q (left column) and S (right column) for ḡ = 0.025 microns (top row), ḡ =
0.1 microns (middle row), and 1 micron (bottom row). The responses for a perfectly circular ring and the perturbed
(clover shaped) ring are plotted in red and blue, respectively. The Drude model for graphene was utilized.
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Figure 13: Shift in excitation wavelength (in microns) of LGSPR as nanotube is deformed from ε = 0 to ε = ḡ/5
versus base radius, ḡ, for (a.) full model and (b.) Drude model of graphene.
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