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1. Introduction. We consider here the scattering of a time–harmonic electro-
magnetic plane wave by a periodically corrugated grating structure [32]. The scat-
tering of linear waves involving periodic layered media plays a crucial role in a wide
range of engineering and physics applications, e.g., materials science [17], nondestruc-
tive testing [38], sensing [19], geophysics [39], imaging [26], oceanography [9], and
nanoplasmonics [34].

A number of computational methods have been developed for problems of scat-
tering by periodic gratings. The most popular approaches to these problems are
volumetric methods such as Finite Differences and Finite/Spectral Element meth-
ods [14, 3] but these methods are greatly disadvantaged with an unnecessarily large
number of unknowns for piecewise homogeneous grating problems [27]. Interfacial
methods based on Integral Equations (IEs) [13, 11, 24] are a natural alternative but
these also face several challenges. First, for periodic problems, the relevant Green
function must be periodized which greatly increases the computational cost. Addi-
tionally, these non–local IEs produce dense, non–symmetric positive definite systems
of linear equations which must be solved with each simulation.

A High–Order Perturbation of Surfaces (HOPS) approach can avoid these con-
cerns, such as the method of Transformed Field Expansions (TFE) [28, 29] which
we study here. These high–order algorithms were first developed by Bruno and Re-
itich for the two–dimensional scalar case [10] and later enhanced and stabilized by
Nicholls and Reitich [28, 29], and Nicholls and Malcolm [25]. HOPS approaches are
compelling as they maintain the advantageous properties of classical IE formulations
(e.g., surface formulation and exact enforcement of far–field boundary conditions)
while avoiding many of their shortcomings. For instance, since HOPS schemes utilize
complex exponentials as basis functions in the lateral variable, the quasi–periodicity

∗This work was funded by the National Science Foundation through grants No. DMS–1522548
and No. DMS–1813033.
†Department of Mathematics and Statistics, San Diego State University, San Diego, CA, 92108

(yhong2@sdsu.edu).
‡Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago,

Chicago, IL 60607 (davidn@uic.edu).

1

mailto:yhong2@sdsu.edu
mailto:davidn@uic.edu


2 Y. HONG AND D.P. NICHOLLS

of solutions does not need to be explicitly enforced. In addition, due to the nature of
the scheme, at every perturbation order one need only invert a single, sparse operator
corresponding to the flat–interface, order–zero approximation of the problem. The
TFE method studied in this contribution was generalized by Nicholls and Shen to the
case of irregular bounded obstacles in two [30] and three dimensions [16]. They later
delivered a rigorous numerical analysis of the method [31] and we follow their strategy
in this contribution. Subsequently, in [18, 21, 20, 22] the algorithms were extended to
the case of periodic gratings separating multiply layered materials, whose solutions
are governed by either Helmholtz equations or the full Maxwell equations.

Of the immense literature (numbering several thousand papers) on the numer-
ical simulation of this layered media problem (which we do not have the space to
review here), we make special reference to the work of G. Bao and his group as it is
particularly relevant to our current approach. We encourage the interested reader to
read the survey paper [6] and survey volume [4] for their efforts up to 2000. Beyond
this, the original results on the weak formulation and Finite Element analysis of the
problem which first appeared in [2, 3] has been extended to the Least–Squares frame-
work [8], and the full vector Maxwell equations [5], including a periodic structure with
perturbed interfaces [1] which we consider here. In addition, this group has done a
great deal of work on the inverse problem of determining the geometrical features of
the structure based upon near–field imaging techniques. The paper [7] considers a
problem particularly close to the one studied here, and the proofs appearing in our
Appendix A use the same technology.

In this paper, we conduct a rigorous numerical analysis of the method developed
by the authors [21, 20, 22] in the case of a doubly layered material with solutions
satisfying a pair of Helmholtz equations coupled via the boundary conditions at the
interface between the two. The TFE algorithm we derived is not only a stable and
high–order numerical scheme, but it can also be used to directly establish the exis-
tence, uniqueness, and analyticity of solutions, as we presently demonstrate. For this
purpose we establish a classical, but non–trivial, elliptic existence, uniqueness, and
regularity theory by using the Green function and a priori estimates. The proof of
our main result is based upon analyticity estimates for the TFE expansions coupled
to the convergence of the Fourier–Legendre–Galerkin method. Our developments il-
lustrate the power and flexibility of the TFE approach for both numerical simulation
and theoretical analysis.

2. Governing equations. To specify the problem and its geometry we consider
the two–dimensional Helmholtz problem which governs the scattering of electromag-
netic waves in Transverse Electric (TE) polarization [32]

∆u+ k2
1u = 0, in z > g(x),(2.1a)

∆v + k2
2v = 0, in z < g(x),(2.1b)

u− v = −uinc, at z = g(x),(2.1c)

∂Nu− ∂Nv = −∂Nuinc, at z = g(x),(2.1d)

OWC[u] = 0, as z −→∞,(2.1e)

OWC[v] = 0, as z −→ −∞,(2.1f)

u(x+ d, z) = eiαdu(x, z),(2.1g)

v(x+ d, z) = eiαdv(x, z),(2.1h)
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where uinc = eiαx−iγz, ∂N is an upward pointing normal derivative, and “OWC”
connotes the Outgoing Wave Condition which we make precise presently.

2.1. Transparent Boundary Conditions. The usual procedure when imple-
menting the TFE method is to truncate (if necessary) the unbounded problem domain
to one of finite extent. For this we introduce artificial boundaries above and be-
low the structure, and enforce transparent boundary conditions to equivalently solve
(2.1). Introducing the planes {z = a > |g|L∞} and {z = b < − |g|L∞} we show that
transparent boundary conditions can be enforced at these with Dirichlet–Neumann
Operators (DNOs) derived from the Rayleigh expansions [32]. These expansions are
relevant as they are the explicit solutions (obtained from Separation of Variables) of
the problems on {z > a} and {z < b} upon specification of Dirichlet data at the
artificial boundaries, {z = a} and {z = b}. More specifically, it is known [32] that

u = u(x, z) =

∞∑
p=−∞

ζ̂pe
iαpxeiγ1,p(z−a), z > a,

v = v(x, z) =

∞∑
p=−∞

ψ̂pe
iαpxeiγ2,p(b−z), z < b,

where

αp := α+
2π

d
p, γl,p =


√
k2
l − α2

p, α2
p ≤ k2

l ,

i
√
α2
p − k2

l , α2
p > k2

l ,

for l = 1, 2. We note that, upon evaluating at the artificial boundaries,

u(x, a) =

∞∑
p=−∞

ζ̂pe
iαpx =: ζ(x), v(x, b) =

∞∑
p=−∞

ψ̂pe
iαpx =: ψ(x),

and from these we can compute the Neumann data at the artificial boundaries,

∂zu(x, a) =

∞∑
p=−∞

(iγ1,p)ζ̂pe
iαpx, ∂zv(x, b) =

∞∑
p=−∞

(−iγ2,p)ψ̂pe
iαpx.

With these we define the DNOs

T1[ζ] = T1[u(x, a)] :=

∞∑
p=−∞

(iγ1,p)ζ̂pe
iαpx,

T2[ψ] = T2[v(x, b)] :=

∞∑
p=−∞

(−iγ2,p)ψ̂pe
iαpx,
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which are order–one Fourier multipliers. Using these we can state (2.1) equivalently
on the bounded domain {b < z < a} as

∆u+ k2
1u = 0, in g(x) < z < a,(2.2a)

∆v + k2
2v = 0, in b < g(x) < z,(2.2b)

u− v = −uinc, at z = g(x),(2.2c)

∂Nu− ∂Nv = −∂Nuinc, at z = g(x),(2.2d)

∂zu− T1[u] = 0, at z = a,(2.2e)

∂zv − T2[v] = 0, at z = b,(2.2f)

u(x+ d, z) = eiαdu(x, z),(2.2g)

v(x+ d, z) = eiαdv(x, z).(2.2h)

3. Transformed Field Expansions. We now recall the TFE method [28, 29]
which begins with a domain flattening change of variables (also known as σ–coordinates
[33] in the geophysical literature and the C–method [12] in the electromagnetics com-
munity). Subsequently, we make a boundary perturbation expansion which is solved
recursively at each perturbation order.

3.1. The Change of Variables. We define the change of variables x′ = x,

z1 = a

(
z − g
a− g

)
for g < z < a, z2 = b

(
g − z
g − b

)
for b < z < g,

and define

U1(x′, z1) := u(x(x′), z(x′, z1, z2)), U2(x′, z2) := v(x(x′), z(x′, z1, z2)).

Using this change of variables, a long computation (see Section 5) transforms (2.2) to
the following system of equations

∆1U1 + k2
1U1 =

1

G1
(∂x′R

x
1 + ∂z1R

z
1 +R0

1) =: R1, in 0 < z1 < a,(3.1a)

∆2U2 + k2
2U2 =

1

G2
(∂x′R

x
2 + ∂z2R

z
2 +R0

2) =: R2, in b < z2 < 0,(3.1b)

U1 − U2 = ξ1, at z1 = z2 = 0,(3.1c)

∂z1U1 − ∂z2U2 = ξ2, at z1 = z2 = 0,(3.1d)

∂z1U1 − T1[U1] = −g
a
T1[U1] =: J1, at z1 = a,(3.1e)

∂z2U2 − T2[U2] = −g
b
T2[U2] =: J2, at z2 = b,(3.1f)

U1(x′ + d, z1) = eiαdU1(x′, z1),(3.1g)

U2(x′ + d, z2) = eiαdU2(x′, z2),(3.1h)

where the Laplacian operator ∆l is defined by ∆l = ∂2
x′ + ∂2

zl
, for l = 1, 2. We refer

the reader to Section 5 for the specific formulas for Rl and ξl.

3.2. A High–Order Perturbation of Surfaces Method. We now introduce
a boundary perturbation method to solve the transformed governing equations, (3.1).
To begin, we assume that the deformation has the form

g(x′) = εf(x′), f = O(1),



NUMERICAL ANALYSIS OF TWO–LAYER STRUCTURES 5

and expand the fields in power series

{U1, U2} =

∞∑
n=0

{U1,n, U2,n}εn.

As we shall soon see, not only does the interface need to be the graph of a function,
zl = εf(x′), but also it must be sufficiently smooth; in this paper we require f ∈ Cs+2

for s ≥ 0. Inserting these expansion into (3.1) and equating at order O(εn) delivers

∆1U1,n + k2
1U1,n = R1,n, in 0 < z1 < a,(3.2a)

∆2U2,n + k2
2U2,n = R2,n, in b < z2 < 0,(3.2b)

U1,n − U2,n = ξ1,n, at z1 = z2 = 0,(3.2c)

∂z1U1,n − ∂z2U2,n = ξ2,n, at z1 = z2 = 0,(3.2d)

∂z1U1,n − T1[U1,n] = −f
a
T1[U1,n−1] =: J1,n, at z1 = a,(3.2e)

∂z2U2,n − T2[U2,n] = −f
b
T2[U2,n−1] =: J2,n, at z2 = b,(3.2f)

U1,n(x′ + d, z1) = eiαdU1,n(x′, z1),(3.2g)

U2,n(x′ + d, z2) = eiαdU2,n(x′, z2).(3.2h)

Again, we refer the reader to the Section 5 for the specific formulas for the right hand
sides Rl,n and ξl,n.

Considering the quasiperiodicity of solutions, we propose the following generalized
Fourier (Floquet) series expansions

Ul,n(x′, zl) =

∞∑
p=−∞

Û
(p)
l,n (zl)e

iαpx
′
, Rl,n(x′, zl) =

∞∑
p=−∞

R̂
(p)
l,n(zl)e

iαpx
′
,(3.3a)

Jl,n(x′) =

∞∑
p=−∞

Ĵ
(p)
l,n e

iαpx
′
, ξl,n(x′) =

∞∑
p=−∞

ξ̂
(p)
l,n e

iαpx
′
,(3.3b)

for l = 1, 2. Inserting these expansions into (3.2), the governing equations are reduced
to the one–dimensional boundary value problems

∂2
z1Û

(p)
1,n + (k2

1 − α2
p)Û

(p)
1,n = R̂

(p)
1,n, in 0 < z1 < a,(3.4a)

∂2
z2Û

(p)
2,n + (k2

2 − α2
p)Û

(p)
2,n = R̂

(p)
2,n, in b < z2 < 0,(3.4b)

Û
(p)
1,n − Û

(p)
2,n = ξ̂

(p)
1,n, at z1 = z2 = 0,(3.4c)

∂z1Û
(p)
1,n − ∂z2Û

(p)
2,n = ξ̂

(p)
2,n, at z1 = z2 = 0,(3.4d)

∂z1Û
(p)
1,n − iγ1,pÛ

(p)
1,n = −f

a
(iγ1,p)Û

(p)
1,n−1 =: Ĵ

(p)
1,n, at z1 = a,(3.4e)

∂z2Û
(p)
2,n + iγ2,pÛ

(p)
2,n = −f

b
(−iγ2,p)Û

(p)
2,n−1 =: Ĵ

(p)
2,n, at z2 = b.(3.4f)

4. Function Spaces. In order to use these TFE recursions in a direct proof of
the existence, uniqueness, and analyticity of the solutions {u, v} of (2.2), we must
define our function spaces and state properties of these. To start, we recall, for the
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L2 function f = f(x′), the classical Sobolev norm for any real s ≥ 0 [23],

‖f‖2Hs :=

∞∑
p=−∞

〈p〉2s
∣∣∣f̂p∣∣∣2 , 〈p〉2 := 1 + |p|2 , f̂p :=

1

d

∫ d

0

f(x′)e−iαpx
′
dx′.

For the L2 function w = w(x′, z) we require the classical Sobolev norm for any integer
s ≥ 0 [15],

‖w‖2Hs :=

s∑
k=0

∞∑
p=−∞

〈p〉2(s−k)

∫ zu

z`

∣∣∂kz ŵp(z)∣∣2 dz.

With these norms we define the function spaces, for real s ≥ 0,

Hs([0, d]) :=
{
f(x′) ∈ L2([0, d]) | ‖f‖Hs <∞

}
,

and, for integer s ≥ 0,

Hs([0, d]× [z`, zu]) :=
{
w(x′, z) ∈ L2([0, d]× [z`, zu]) | ‖w‖Hs <∞

}
,

and

Hs([0, d]× [a, b]) := {{w1, w2} | w1 ∈ Hs([0, d]× [0, a]), w2 ∈ Hs([0, d]× [b, 0]),

w1(0) = w2(0)} .

Additionally, we will require their duals, H−s [15].
We recall the following algebra property of Sobolev spaces (see, e.g., [28]) which

allows us to estimate products of elements in these classes.

Lemma 4.1. Given any integer s ≥ 0 and any σ > 0, there exists a constant
κ = κ(s, σ) such that if f ∈ Cs([0, d]) and w ∈ Hs([0, d]× [b, a]) then

(4.1) ‖fw‖Hs ≤ κ |f |Cs ‖w‖Hs ,

and if f̃ ∈ Cs+1/2+σ([0, d]) and w̃ ∈ Hs+1/2([0, d]) then

(4.2)
∥∥∥f̃ w̃∥∥∥

Hs+1/2
≤ κ

∣∣∣f̃ ∣∣∣
Cs+1/2+σ

‖w̃‖Hs+1/2 .

We also recall an elementary property of Hs.

Lemma 4.2. Given any integer s ≥ 0, if F ∈ Hs([0, d] × [b, a]), then (a − z)F ∈
Hs([0, d]× [b, a]) and there exists a positive constant Za = Za(s) such that

‖(a− z)F‖Hs ≤ Za ‖F‖Hs .

As we shall see, the key tool for establishing our result is the following elliptic
estimate which allows us to show that unique solutions exist to the prototype problem
above, (3.2), in an appropriate Sobolev space.

Theorem 4.3. Given any integer s ≥ 0, if {F1, F2} ∈ Hs−1([0, d] × [b, a]); ξ ∈
Hs+1/2([0, d]); and ν,K1,K2 ∈ Hs−1/2([0, d]) then there exists a unique solution pair
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{u, v} ∈ Hs+1([0, d]× [b, a]) of

∆1u+ k2
1u = F1, 0 < z1 < a,(4.3a)

∆2v + k2
2v = F2, b < z1 < 0,(4.3b)

u− v = ξ, z1 = z2 = 0,(4.3c)

∂z1u− ∂z2v = ν, z1 = z2 = 0,(4.3d)

∂z1u− T1 [u] = K1, z1 = a,(4.3e)

∂z2v − T2 [v] = K2, z2 = b,(4.3f)

u(x′ + d, z) = eiαdu(x′, z),(4.3g)

v(x′ + d, z) = eiαdv(x′, z),(4.3h)

such that, for a universal constant Ke,

max {‖u‖Hs+1 , ‖v‖Hs+1} ≤ Ke {‖F1‖Hs−1 + ‖F2‖Hs−1 + ‖ξ‖Hs+1/2 + ‖ν‖Hs−1/2

+ ‖K1‖Hs−1/2 + ‖K2‖Hs−1/2} .

We give the proof in Appendix A.

5. Existence, Uniqueness, and Analyticity. To study the existence, unique-
ness, and analyticity of solutions we recall (3.2) and present precise expressions for
the terms on the right hand sides. Recalling that Rl,n = ∂x′R

x
l,n + ∂zlR

z
l,n + R0

l,n, it
can be shown that

Rx1,n =
2

a
f∂x′U1,n−1 +

a− z1

a
(∂x′f)∂z1U1,n−1 −

f2

a2
∂x′U1,n−2

− a− z1

a
f(∂x′f)∂z1U1,n−2,

Rz1,n =
a− z1

a
(∂x′f)∂x′U1,n−1 −

a− z1

a2
f(∂x′f)∂x′U1,n−2

− (a− z1)2

a2
(∂x′f)2∂z1U1,n−2,

R0
1,n = −1

a
(∂x′f)U1,n−1 + (k2

1)
2f

a
U1,n−1 +

1

a2
f(∂x′f)∂x′U1,n−2

+
a− z1

a2
(∂x′f)2∂z1U1,n−2 − k2

1

f2

a2
U1,n−2,

similarly for R2,n, and

ξ1,n = (−1)n+1 (iγf)n

n!
eiαx, ξ2,n =

Q1,n +Q2,n

ab
,

where

Q1,n = −iabγξ1,n − iabα(∂x′f)ξ1,n−1 − iγ(a− b)fξ1,n−1

− iα(a− b)f(∂x′f)ξ1,n−2 + iγf2ξ1,n−2 + iα(∂x′f)f2ξ1,n−3,

Q2,n = −af∂z1U1,n−1 + ab(∂x′f)∂x′U1,n−1 + (a− b)f(∂x′f)∂x′U1,n−2

− ab(∂x′f)2∂z1U1,n−2 − (∂x′f)f2∂x′U1,n−3 − a(∂x′f)2f∂z1U1,n−3

− bf∂z2U2,n−1 − ab(∂x′f)∂x′U2,n−1 − (a− b)f(∂x′f)∂x′U2,n−2

+ ab(∂x′f)2∂z2U2,n−2 + (∂x′f)f2∂x′U2,n−3 − bf(∂x′f)2∂z2U2,n−3.

To begin our demonstration we establish the analyticity of the Dirichlet data.
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Lemma 5.1. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]), then

(5.1) ‖ξ1,n‖Hs+3/2 ≤ KξB
n
ξ ,

for constants Kξ, Bξ > 0.

Proof. We note that ξ1,n = −iγfξ1,n−1/n and use induction to prove this lemma.
We begin at n = 0 and set

Kξ := ‖ξ1,0‖Hs+3/2 .

We now assume (5.1) for all n < n̄ and consider n̄ > 1 where we bound

‖ξ1,n̄‖Hs+3/2 ≤ |γ|M |f |Cs+3/2+σ ‖ξ1,n̄−1‖Hs+3/2

≤ |γ|M |f |Cs+2 KξB
n̄−1
ξ .

By choosing Bξ > M |γ| |f |Cs+2 the lemma follows.

We now provide the key inductive lemma which enables the proof of our result.

Lemma 5.2. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and

‖U1,n‖Hs+2 + ‖U2,n‖Hs+2 ≤ KBn, ∀n < n̄,

for constants K,B > 0, there exists a constant C̄ > 0 such that

max
{
‖Rl,n̄‖Hs , ‖Jl,n̄‖Hs+1/2 , ‖ξ2,n̄‖Hs+1/2

}
≤ KC̄

(
Bn̄−1 +Bn̄−2 +Bn̄−3

)
,

for l = 1, 2.

Proof. For l = 1, 2, we recall that Rl,n̄ = ∂x′R
x
l,n̄ +∂zlR

z
l,n̄ +R0

l,n̄, so that one can
deduce

‖Rl,n̄‖Hs .
∥∥Rxl,n̄∥∥Hs+1 +

∥∥Rzl,n̄∥∥Hs+1 +
∥∥R0

l,n̄

∥∥
Hs

,

where ‖A‖ . ‖B‖ means that there exists a constant C, independent of all variables
of importance, such that ‖A‖ ≤ C ‖B‖. With the estimates∥∥Rxl,n̄∥∥Hs+1 . ‖f∂x′Ul,n̄−1‖Hs+1 + ‖∂x′f∂zlUl,n̄−1‖Hs+1

+
∥∥f2∂x′Ul,n̄−2

∥∥
Hs+1 + ‖f(∂x′f)∂zlUl,n̄−2‖Hs+1

. |f |Cs+1 ‖Ul,n̄−1‖Hs+2 + |f |Cs+2 ‖Ul,n̄−1‖Hs+2

+ |f |2Cs+1 ‖Ul,n̄−2‖Hs+2 + |f |2Cs+2 ‖Ul,n̄−2‖Hs+2

. 2 |f |Cs+2 KB
n̄−1 + 2 |f |2Cs+2 KB

n̄−2,

and ∥∥Rzl,n̄∥∥Hs+1 . ‖(∂x′f)∂x′Ul,n̄−1‖Hs+1 + ‖f(∂x′f)∂x′Ul,n̄−2‖Hs+1

+
∥∥(∂x′f)2∂zlUl,n̄−2

∥∥
Hs+1

. |f |Cs+2 KB
n̄−1 + |f |2Cs+2 KB

n̄−2,

and ∥∥R0
l,n̄

∥∥
Hs

. ‖(∂x′f)Ul,n̄−1‖Hs + ‖fUl,n̄−1‖Hs + ‖f(∂x′f)∂x′Ul,n̄−2‖Hs
+
∥∥(∂x′f)2∂zlUl,n̄−2

∥∥
Hs

+
∥∥f2Ul,n̄−2

∥∥
Hs

. 2 |f |Cs+2 KB
n̄−1 + 3 |f |2Cs+2 KB

n̄−2,
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we find that

‖Rl,n̄‖Hs . K
(
|f |Cs+2 B

n̄−1 + |f |2Cs+2 B
n̄−2
)
.

For Jl,n̄ we can show that

‖Jl,n̄‖Hs+1/2 . ‖fTl[Ul,n̄−1]‖Hs+1/2

. |f |Cs+1/2+σ ‖Ul,n̄−1‖Hs+3/2

. |f |Cs+1/2+σ KB
n̄−1.

Hence, we deduce that

max
{
‖Rl,n̄‖Hs , ‖Jl,n̄‖Hs+1/2

}
≤ KC

(
|f |Cs+2 B

n̄−1 + |f |2Cs+2 B
n̄−2
)

. K
(
Bn̄−1 +Bn̄−2

)
.

It remains to estimate ξ2,n̄ and, for this, we use Lemma 5.1 which implies

‖ξ1,n‖Hs+1/2 ≤ KξB
n
ξ ,

hence,

‖Q1,n̄‖Hs+1/2 ≤ KC
(
Bn−1
ξ +Bn−2

ξ +Bn−3
ξ

)
.

In addition, we find, for l = 1, 2,

‖Q2,n̄‖Hs+1/2 . ‖∂zlUl,n̄−1‖Hs+1/2 + ‖∂x′Ul,n̄−1‖Hs+1/2 + ‖∂x′Ul,n̄−2‖Hs+1/2

+ ‖∂zlUl,n̄−2‖Hs+1/2 + ‖∂x′Ul,n̄−3‖Hs+1/2 + ‖∂zlUl,n̄−3‖Hs+1/2

. ‖Ul,n̄−1‖Hs+2 + ‖Ul,n̄−2‖Hs+2 + ‖Ul,n̄−3‖Hs+2

. K
(
Bn̄−1 +Bn̄−2 +Bn̄−3

)
,

and the lemma follows.

We can now state and prove the main theorem of this section.

Theorem 5.3. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and ξ1,n ∈ Hs+3/2([0, d])
such that

‖ξ1,n‖s+3/2 ≤ KξB
n
ξ ,

for constants Kξ, Bξ > 0, then Ul,n ∈ Hs+2([0, d]× [b, a]) for l = 1, 2, and

(5.2) ‖U1,n‖Hs+2 + ‖U2,n‖Hs+2 ≤ KBn,

for some universal constant K.

Proof. We proceed by induction, and at order n = 0 Theorem 4.3 guarantees a
unique solution such that

‖U1,0‖Hs+2 + ‖U2,0‖Hs+2 ≤ Ke ‖ξ1,0‖Hs+3/2 ,

so we choose K ≥ Ke ‖ξ1,0‖Hs+3/2 . We now assume (5.2) holds for all n ≤ n̄ and from
Theorem 4.3 we deduce that

‖U1,n̄‖Hs+2 + ‖U2,n̄‖Hs+2 ≤ C1

(
‖R1,n̄‖Hs + ‖R2,n̄‖Hs

+ ‖J1,n̄‖Hs+1/2 + ‖J2,n̄‖Hs+1/2 + ‖ξ2,n̄‖Hs+1/2

)
+ C2 ‖ξ1,n̄‖Hs+3/2 .
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Appealing to Lemmas 5.1 and 5.2 we find that

‖U1,n̄‖Hs+2 + ‖U2,n̄‖Hs+2 ≤ 5C1KC̄
(
Bn̄−1 +Bn̄−2 +Bn̄−3

)
+ C2KξB

n̄
ξ .

Now, upon choosing K > C2Kξ and

B > max
{
Bξ, 5C1C̄, (5C1C̄)1/2, (5C1C̄)1/3

}
,

the theorem follows.

Remark 5.4. We point out that this result is quite similar to Theorem 2.13 of [7]
which establishes an analogous estimate in the single layer setting.

6. Convergence Analysis. We are now in a position to conduct a numerical
analysis of our TFE approach. We recall the TFE recursions (3.2) and note that,
in practice, we make use of the Floquet series representation, (3.3), and focus our
attention on the reduced problem (3.4). We further specialize by splitting this into

two: A homogeneous Helmholtz problem with inhomogeneous coupling (ξ̂
(p)
j,n 6≡ 0),

see (B.1), and an inhomogeneous Helmholtz problem with homogeneous coupling

(ξ̂
(p)
j,n ≡ 0), see (B.2). Clearly, the solution of (3.4) is the sum of the solutions of these

two problems and, in practical numerical implementations, we need only solve the
latter as (B.1) can be solved explicitly via Separation of Variables, e.g., [18, 21, 20].
For this reason we focus upon (B.2) and, for simplicity, we suppress the index n. The
weak form of this boundary value problem is:

Find Ũ (p) ∈ H1(b, a) such that

B(Ũ (p), ϕ) = R(ϕ), ∀ ϕ ∈ H1(b, a),(6.1)

where

B(Ũ (p), ϕ) := −iγ1,pŨ
(p)
1 (a)ϕ̄1(a)− iγ2,pŨ

(p)
2 (b)ϕ̄2(b)

+

∫ a

b

∂zŨ
(p)∂zϕ̄ dz − γ2

p

∫ a

b

Ũ (p)ϕ̄ dz,

R(ϕ) := Ĵ
(p)
1 ϕ̄(a)− Ĵ (p)

2 ϕ̄(b) +

∫ a

b

(−R̂(p))ϕ̄ dz.

For our numerical analysis we define the discrete function space

XM,p = span
{
u ∈ C(b, a) | u|(0,a), u|(b,0) ∈ PM ,

(∂zu− iγ1,pu)(a) = Ĵ
(p)
1 , (∂zu+ iγ2,pu)(b) = Ĵ

(p)
2

}
,

where PM is the space of all complex valued polynomials of degree less than or equal
to M . The Legendre–Galerkin approximation of (6.1) is as follows:

Find Ũ (p),M ∈ XM,p such that

B(Ũ (p),M , ϕM ) = R(ϕM ), ∀ ϕM ∈ XM,p.(6.2)

To prove the main theorem of this section the following interpolation result [35]
is required for the projection 0Π1

M from H1(b, a) to PM subject to the boundary
conditions of the space XM,p.
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Lemma 6.1. There exists a mapping 0Π1
M : H1(b, a)→ XM,p such that(

∂z(0Π1
MV − V ), ∂zϕM

)
= 0, ∀ ϕM ∈ XM,p.

Moreover, for 1 ≤ l ≤M + 1 we have

∥∥
0Π1

MV − V
∥∥
Hµ

.

√
(M − l + 1)!

M !
(M + l)µ−(l+1)/2

∥∥∂lzV ∥∥L2 ,

where µ = 0, 1.

Proof. We prove this lemma for V1 := V |(0,a). By the straightforward change
of variables x = 2z/a − 1, the domain of V1 ∈ H1(0, a) can be transformed to the
interval (−1, 1). Thus we establish the result for a real valued function v(x) on
Λ = (−1, 1). Let Π1,0

M be the H1
0 –orthogonal projection operator onto PM × PM and,

for any v ∈ H1(Λ), we define v∗(x) by

v(x) = v∗(x) +

(
1 + x

2

)
v(1) +

(
1− x

2

)
v(−1), v∗(x) ∈ H1

0 (Λ).

Similarly, we define ϕ∗(x) by

ϕ(x) = ϕ∗(x) +

(
1 + x

2

)
v(1) +

(
1− x

2

)
v(−1), ϕ∗(x) ∈ H1

0 (Λ),

for any ϕ ∈ PM . Regarding

0Π1
Mv(x) := Π1,0

M v∗(x) +

(
1 + x

2

)
v(1) +

(
1− x

2

)
v(−1),

we observe that(
∂x(0Π1

Mv − v), ∂xϕ
)

Λ
=
(
∂x(Π1,0

M v∗ − v∗), ∂xϕ∗
)

Λ

+

(
v(1)

2
− v(−1)

2

)∫ 1

−1

∂x(Π1,0
M v∗ − v∗)(x) dx

=
(
∂x(Π1,0

M v∗ − v∗), ∂xϕ∗
)

Λ
= 0,

for ϕ ∈ PM . By Theorem 3.39 in [35] we find∥∥
0Π1

Mv(x)− v
∥∥
Hµ

=
∥∥∥Π1,0

M v∗ − v∗
∥∥∥
Hµ

.

√
(M − l + 1)!

M !
(M + l)µ−(l+1)/2

∥∥∂lxv∗∥∥L2 .

For l = 1, by the Poincaré inequality, we derive that

‖∂xv∗‖L2 ≤ ‖∂xv‖L2 + c (|v(1)|+ |v(−1)|) ≤ c ‖∂xv‖L2 .

From this the lemma follows.

Now, we are ready to prove the convergence theorem.
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Theorem 6.2. Let Ũ (p) and Ũ (p),M be the solutions of (6.1) and (6.2), respec-
tively. Then, for 1 ≤ l ≤M + 1, we have∥∥∥Ũ (p) − Ũ (p),M

∥∥∥
H1

+ |γp|
∥∥∥Ũ (p) − Ũ (p),M

∥∥∥
L2

≤ (1 + γ2
pM
−1)

√
(M − l + 1)!

M !
(M + l)(1−l)/2

∥∥∥∂lzU (p)
∥∥∥
L2
.

Proof. Let

eM := Ũ (p),M − 0Π1
M Ũ

(p), ẽM = Ũ (p) − 0Π1
M Ũ

(p).

For ϕM ∈ XM,p, using (6.1) and (6.2), we find

B(Ũ (p) − Ũ (p),M , ϕM ) = 0.

Using Lemma 6.1, we obtain

B(eM , ϕM ) = B(Ũ (p),M − Ũ (p) + Ũ (p) − 0Π1
M Ũ

(p), ϕM )

= B(Ũ (p) − 0Π1
M Ũ

(p), ϕM )

= −γ2
p(ẽM , ϕM )− iγ1,pẽM (a)ϕ̄M (a)− iγ2,pẽM (b)ϕ̄M (b).(6.3)

In view of (6.3), we rewrite (6.1) by replacing {U (p), Ĵ
(p)
1 , Ĵ

(p)
2 , R̂(p)} with

{eM ,−iγ1,pẽM (a), iγ2,pẽM (b), γ2
p ẽM},

respectively. Then, by the regularity result (B.7) from Appendix B we obtain that

‖eM‖2H1 + γ2
p ‖eM‖

2
L2 . γ4

p ‖ẽM‖
2
L2 + γ2

1,p |ẽM (a)|2 + γ2
2,p |ẽM (b)|2 .

By the Gagliardo–Nirenberg interpolation inequality [36] and Lemma 6.1 we find

|ẽ(±1)| . ‖ẽM‖1/2L2 ‖ẽM‖1/2H1

.

√
(M − l + 1)!

M !
(M + l)−l/2

∥∥∥∂lzU (p)
∥∥∥
L2
.

Using Lemma 6.1 again, we deduce that∥∥∥U (p) − U (p),M
∥∥∥
H1

+ |γp|
∥∥∥U (p) − U (p),M

∥∥∥
L2

. (‖eM‖H1 + |γp| ‖eM‖L2 + ‖ẽM‖H1 + |γp| ‖ẽM‖L2)

.
(

1 + γ2
pM
−1 + |γp|M−1/2

)√ (M − l + 1)!

M !
(M + l)(1−l)/2

∥∥∥∂lzU (p)
∥∥∥
L2
.

We now reintroduce the index n and let

U
(P ),M
l,n (x, z) :=

P∑
p=−P

Û
(p),M
l,n (z)eiαpx, l = 0, 1,

be the Fourier–Legendre approximation of the solution Ul,n of (3.2). Using the same
argument as in Theorem 3.3 in [31], we can prove the following estimate.
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Theorem 6.3. For any integer r ≥ 1, if U ∈ Hr then∥∥∥∇(Ul,n − U (P ),M
l,n )

∥∥∥
L2

+ kl

∥∥∥Ul,n − U (P ),M
l,n

∥∥∥
L2

.

(
P 1−r + (1 + k2

lM
−1)

√
(M − r + 1)!

M !
(M + r)(1−r)/2

)
‖Ul,n‖Hr .

Finally if we choose

U
(P ),M
l,N (x, z) :=

N∑
n=0

U
(P ),M
l,n (x, z)εn,

as our approximation to the solution Um of (3.2), then, using Theorem 6.3 and The-
orem 2.1 of [31], we have the final result.

Theorem 6.4. For any integer r ≥ 2 if f ∈ Cr([0, d]), ξ1 ∈ Hr−1/2([0, d]), and
ξ2 ∈ Hr−3/2([0, d]) then we have, for l = 1, 2,∥∥∥∇(Ul − U (P ),M

l,N )
∥∥∥
L2

+ kl

∥∥∥Ul − U (P ),M
l,N

∥∥∥
L2

. (Bε)N+1

+

(
P 1−r + (1 + k2

lM
−1)

√
(M − r + 1)!

M !
(M + r)(1−r)/2

)
× (‖ξ1‖Hr−1/2 + ‖ξ2‖Hr−3/2) .

Remark 6.5. A similar result appears in Theorem 3.6 of [7]. The difference is that
our new theorem concerns convergence of the fields as discretization parameters are
refined, while [7] estimate errors in the interface reconstruction.

7. Conclusions. In this paper we have provided a rigorous numerical analy-
sis of a High–Order Perturbation of Surfaces (HOPS) algorithm for electromagnetic
scattering. Introducing Dirichlet–Neumann operators at artificial boundaries placed
above the top and below the bottom of the structure, we equivalently reformulated
the governing Helmholtz equations for the doubly layered medium on a bounded do-
main. Using a suitable change of variables, the governing equations on a separable
geometry with flat interfaces were derived. Introducing boundary perturbations, we
described the scattered field in a Taylor series, more precisely, we derived a sequence
of linear boundary value problems to be solved at each perturbation order resulting
in the Transformed Field Expansions (TFE) algorithm. Our approach to establishing
the convergence and accuracy of the TFE methodology is to combine analyticity the-
orems with results on Legendre–Galerkin methods. Our developments clearly point
towards several extensions of great importance. In particular, our approach must be
generalized to the three dimensional vector wave equations of electromagnetics and
linear elastodynamics. These extensions are not straightforward as more complicated
boundary conditions between layers are required. Hence the algorithmic differences
will be significant and we will describe them in a future publication.

Appendix A. Proof of the Elliptic Estimate: Theorem 4.3.
To begin our proof of Theorem 4.3 we state two classic results [29] on solutions

of Helmholtz problems on each of the two layers separately.
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Theorem A.1. Given any integer s ≥ 0, if F1 ∈ Hs−1([0, d] × [0, a]), U ∈
Hs+1/2([0, d]), K1 ∈ Hs−1/2([0, d]), then there exists a unique solution u ∈ Hs+1([0, d]×
[0, a]) of

∆1u+ k2
1u = F1, 0 < z1 < a,(A.1a)

u = U, z1 = 0,(A.1b)

∂z1u− T1[u] = K1, z1 = a,(A.1c)

such that

‖u‖Hs+1 ≤ Cu {‖F1‖Hs−1 + ‖U‖Hs+1/2 + ‖K1‖Hs−1/2} .

In addition, if Ũ = [−∂z1u]z1=0 , and we define the Dirichlet–Neumann Operator
(DNO)

G : (U,K1, F1)→ Ũ , G[U,K1, F1] = G(0)[U ] +G(a)[K1] +G([0,a])[F1],

then ∥∥∥G(0)[U ]
∥∥∥
Hs−1/2

≤ CG(0) ‖U‖Hs+1/2 ,∥∥∥G(a)[K1]
∥∥∥
Hs−1/2

≤ CG(a) ‖K1‖Hs−1/2 ,∥∥∥G([0,a])[F1]
∥∥∥
Hs−1/2

≤ CG([0,a]) ‖F1‖Hs−1 .

Proof. For clarity of presentation we drop the “1” subscript on all variables. Due
to the quasiperiodic boundary conditions we posit expansions

{u, F}(x, z) =

∞∑
p=−∞

{ûp, F̂p}(z)eiαpx, {U,K}(x) =

∞∑
p=−∞

{Ûp, K̂p}eiαpx,

and (A.1) delivers the two–point boundary value problem

∂2
z ûp + γ2

p ûp = F̂p, 0 < z < a,

ûp(0) = Ûp,

∂zûp(a)− (iγp)ûp(a) = K̂p,

where

γp =


γ′p :=

√
k2 − α2

p, α2
p < k2,

0, α2
p = k2,

iγ′′p := i
√
α2
p − k2, α2

p > k2,

γ′p, γ
′′
p ∈ R, γ′p, γ

′′
p > 0.

It is not difficult to show that the unique solution of this problem is given by

ûp(z) = ÛpΦ0(z; p) + K̂pe
iγpaΦa(z; p)− I0[F̂p](z)− Ia[F̂p](z),

where

Φ0(z; p) = eiγpz :=


eiγ
′
pz, α2

p < k2,

1, α2
p = k2,

e−γ
′′
p z, α2

p > k2,
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and

Φa(z; p) =
sinh(γpz)

γp
:=


sin(γ′pz)

γ′p
, α2

p < k2,

z, α2
p = k2,

sinh(γ′′p z)

γ′′p
, α2

p > k2,

and

I0[F̂p](z) :=

∫ z

0

Φ0(z; p)Φa(s; p)F̂p(s) ds,

Ia[F̂p](z) :=

∫ a

z

Φ0(s; p)Φa(z; p)F̂p(s) ds.

It is straightforward to compute that

∂zI0[F̂p](z) = Φ0(z; p)Φa(z; p)F̂p(z) +

∫ z

0

(∂zΦ0(z; p))Φa(s; p)F̂p(s) ds,

∂zIa[F̂p](z) = −Φ0(z; p)Φa(z; p)F̂p(z) +

∫ a

z

Φ0(s; p)(∂zΦa(z; p))F̂p(s) ds.

Noting the cancellation in the sum of the terms ∂zI0 and ∂zIa we realize

∂zûp(z) = Ûp∂zΦ0(z; p) + K̂pe
iγpa∂zΦa(z; p)− Ĩ0[F̂p](z)− Ĩa[F̂p](z),

where

Ĩ0[F̂p](z) :=

∫ z

0

(∂zΦ0(z; p))Φa(s; p)F̂p(s) ds,

Ĩa[F̂p](z) :=

∫ a

z

Φ0(s; p)(∂zΦa(z; p))F̂p(s) ds.

If we evaluate this at z = 0 we find

−∂zûp(0) = −Ûp∂zΦ0(0; p)− K̂pe
iγpa∂zΦa(0; p) + Ĩ0[F̂p](0) + Ĩa[F̂p](0)

= −Ûp(iγp)− K̂pe
iγpa +

∫ a

0

eiγps cosh(γpz)F̂p(s) ds.

With these it is easy to see that

G(0)[U ] = −
∞∑

p=−∞
(∂zΦ0)(0; p)Ûpe

iαpx =

∞∑
p=−∞

(−iγp)Ûpeiαpx,

and

G(a)[K] = −
∞∑

p=−∞
eiγpa(∂zΦa)(0; p)K̂pe

iαpx =

∞∑
p=−∞

(−eiγpa)K̂pe
iαpx,

and

G([0,a])[F ] =

∞∑
p=−∞

∫ a

0

(
eiγps cosh(γpz)F̂p(s) ds

)
eiαpx.
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Regarding the estimates, these follow from the asymptotic estimates of ‖Φ0‖L2(dz),

‖Φa‖L2(dz), ‖I0[F ]‖L2(dz), ‖Ia[F ]‖L2(dz),
∥∥∥Ĩ0[F ]

∥∥∥
L2(dz)

, and
∥∥∥Ĩa[F ]

∥∥∥
L2(dz)

.

The analogue in the lower layer is the following result. It is established in an
almost identical fashion as Theorem A.1.

Theorem A.2. Given any integer s ≥ 0, if F2 ∈ Hs−1([0, d] × [b, 0]), V ∈
Hs+1/2([0, d]), K2 ∈ Hs−1/2([0, d]), then there exists a unique solution v ∈ Hs+1([0, d]×
[b, 0]) of

∆2v + k2
2v = F2, b < z2 < 0,(A.2a)

v = V, z2 = 0,(A.2b)

∂z2v − T2[v] = K2, z2 = b,(A.2c)

such that

‖v‖Hs+1 ≤ Cv {‖F2‖Hs−1 + ‖V ‖Hs+1/2 + ‖K2‖Hs−1/2} .

In addition, if Ṽ = [∂z2v]z2=0 , and we define the Dirichlet–Neumann Operator (DNO)

J : (V,K2, F2)→ Ṽ , J [V,K2, F2] = J (0)[V ] + J (b)[K2] + J ([b,0])[F2],

then ∥∥∥J (0)[V ]
∥∥∥
Hs−1/2

≤ CJ(0) ‖V ‖Hs+1/2 ,∥∥∥J (b)[K2]
∥∥∥
Hs−1/2

≤ CJ(b) ‖K2‖Hs−1/2 ,∥∥∥J ([b,0])[F2]
∥∥∥
Hs−1/2

≤ CJ([b,0]) ‖F2‖Hs−1 .

In addition we require the following result on the boundary conditions which
couple u and v at the interface z1 = z2 = 0.

Theorem A.3. Given any integer s ≥ 0, if Q ∈ Hs+1/2([0, d]) and R ∈ Hs−1/2([0, d]),
then there exists a unique solution pair U, V ∈ Hs+1/2([0, d]) of

U − V = Q,(A.3a)

G(0)[U ] + J (0)[V ] = R,(A.3b)

such that

max {‖U‖Hs+1/2 , ‖V ‖Hs1/2} ≤ C0 {‖Q‖Hs+1/2 + ‖R‖Hs−1/2} .

Proof. The result follows simply from the well–known expressions for the flat–
interface DNOs

G(0)[U ] = G(0)

[ ∞∑
p=−∞

Ûpe
iαpx

]
=

∞∑
p=−∞

(−iγ1,p)Ûpe
iαpx,

J (0)[U ] = J (0)

[ ∞∑
p=−∞

V̂pe
iαpx

]
=

∞∑
p=−∞

(−iγ2,p)V̂pe
iαpx,
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so that the governing equations become(
1 −1

(−iγ1,p) (−iγ2,p)

)(
Ûp
V̂p

)
=

(
Q̂p
R̂p

)
, ∀ p ∈ Z.

These are readily solved(
Ûp
V̂p

)
=

1

(iγ1,p) + (iγ2,p)

(
(−iγ2,p) 1
(iγ1,p) 1

)(
Q̂p
R̂p

)
,

and the {Ûp, V̂p} have the right decay to verify the conclusions of the theorem.

We can now proceed to our principal result, Theorem 4.3.

Proof. [Theorem 4.3] We begin by rewriting (4.3) as

∆1u+ k2
1u = F1, 0 < z1 < a,(A.4a)

u = U, z1 = 0,(A.4b)

∂z1u− T1 [u] = K1, z1 = a,(A.4c)

∆2v + k2
2v = F2, b < z2 < 0,(A.4d)

v = V, z2 = 0,(A.4e)

∂z2v − T2 [v] = K2, z2 = b,(A.4f)

U − V = ξ, z1 = z2 = 0,(A.4g)

Ũ + Ṽ = −ν, z1 = z2 = 0.(A.4h)

From Theorem A.1 we see that, provided that F1 ∈ Hs−1, K1 ∈ Hs−1/2, U ∈ Hs+1/2

then (A.4a)–(A.4c) delivers a unique solution u ∈ Hs+1 as desired. The functions F1

and K1 in the correct spaces are provided so we merely need show that U is in Hs+1/2.
In a similar fashion, Theorem A.2 guarantees that, if F2 ∈ Hs−1, K2 ∈ Hs−1/2,
V ∈ Hs+1/2 then (A.4d)–(A.4f) provides a unique solution v ∈ Hs+1. As before, the
functions F2 and K2 in the correct spaces are provided so we are left to show that V
is in Hs+1/2.

Thus, all that remains is to consider (A.4g)–(A.4h) which we write in terms of
DNOs as

U − V = ξ,(
G(0)[U ] +G(a)[K1] +G([0,a])[F1]

)
+
(
J (0)[V ] + J (b)[K2] + J ([b,0])[F2]

)
= −ν,

or

U − V = ξ,

G(0)[U ] + J (0)[V ] = −ν −G(a)[K1]−G([0,a])[F1]− J (b)[K2]− J ([b,0])[F2].

Theorem A.3 delivers the required solutions U, V ∈ H1/2 provided that

Q = ξ ∈ Hs+1/2,

R = −ν −G(a)[K1]−G([0,a])[F1]− J (b)[K2]− J ([b,0])[F2] ∈ Hs−1/2,

both of which are true from (i.) our hypotheses on ξ, ν, K1, K2, F1, and F2; and (ii.)
the mapping properties of G(a), G([0,a]), J (b), and J ([b,0]) established in Theorems A.1
and A.2.
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Appendix B. Regularity of Solutions of the Weak Formulation.
We now produce an elliptic regularity theory for solutions of the boundary value

problem (3.4). (For the sake of simplicity, we drop the indices {p, n}.) Noting that
γ2
l,p = k2

l − α2
p we split (3.4) into two BVPs: One with inhomogeneous coupling

(which, due to the homogeneous Helmholtz equations, we can solve explicitly with
Fourier analysis),

∂2
z1Ǔ1 + γ2

1 Ǔ1 = 0, 0 < z1 < a,(B.1a)

∂2
z2Ǔ2 + γ2

2 Ǔ2 = 0, b < z2 < 0,(B.1b)

Ǔ1 − Ǔ2 = ξ̂1, z1 = z2 = 0,(B.1c)

∂z1Ǔ1 − ∂z2Ǔ2 = ξ̂2, z1 = z2 = 0,(B.1d)

∂z1Ǔ1 − iγ1Ǔ1 = 0, z1 = a,(B.1e)

∂z2Ǔ2 + iγ2Ǔ2 = 0, z2 = b,(B.1f)

and one with homogeneous coupling (but inhomogeneous Helmholtz equations)

∂2
z1Ũ1 + γ2

1 Ũ1 = R̂1, 0 < z1 < a,(B.2a)

∂2
z2Ũ2 + γ2

2 Ũ2 = R̂2, b < z2 < 0,(B.2b)

Ũ1 − Ũ2 = 0, z1 = z2 = 0,(B.2c)

∂z1Ũ1 − ∂z2Ũ2 = 0, z1 = z2 = 0,(B.2d)

∂z1Ũ1 − iγ1Ũ1 = Ĵ1, z1 = a,(B.2e)

∂z2Ũ2 + iγ2Ũ2 = Ĵ2, z2 = b.(B.2f)

To study the regularity of solutions of (B.2) we find the variational formulation as in
[36, 37],

(B.3)

∫ a

b

∂zŨ∂zϕ̄− γ2

∫ a

b

Ũ ϕ̄− iγ1Ũ1(a)ϕ̄1(a) + iγ2Ũ2(b)ϕ̄2(b)

= Ĵ1ϕ̄1(a)− Ĵ2ϕ̄(b) +

∫ a

b

(−R̂)ϕ̄,

take ϕ = Ũ , and consider the imaginary and real parts, respectively. For the imaginary
part we find

−γ1

∣∣∣Ũ1(a)
∣∣∣2 − γ2

∣∣∣Ũ2(b)
∣∣∣2 = Im

{
(−R̂, Ũ)

}
+ Im

{
Ĵ1Ũ1(a)

}
− Im

{
Ĵ2Ũ2(b)

}
.

With this we estimate

γ1

∣∣∣Ũ1(a)
∣∣∣2 + γ2

∣∣∣Ũ2(b)
∣∣∣2 ≤ κMδ1

2

∥∥∥Ũ∥∥∥2

L2
+

1

2δ1κM

∥∥∥R̂∥∥∥2

L2

+
γ1

2

∣∣∣Ũ1(a)
∣∣∣2 +

γ2

2

∣∣∣Ũ2(b)
∣∣∣2 +

1

2γ1

∣∣∣Ĵ1

∣∣∣2 +
1

2γ2

∣∣∣Ĵ2

∣∣∣2 ,(B.4)

where κM := max(|γ1| , |γ2|) and δ1 > 0 will be chosen later. For the real part we
deduce that∥∥∥∂zŨ∥∥∥2

L2
− γ2

∥∥∥Ũ∥∥∥2

L2
= Re

{
(−R̂, Ũ)

}
+ Re

{
Ĵ1Ũ1(a)

}
− Re

{
Ĵ2Ũ2(b)

}
,
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and this implies

∥∥∥∂zŨ∥∥∥2

L2
≤ κ2

M

∥∥∥Ũ∥∥∥2

L2
+ δ2κ

2
M

∣∣∣Ũ1(a)
∣∣∣2 + δ2κ

2
M

∣∣∣Ũ2(b)
∣∣∣2

+
1

4δ2κ2
M

∣∣∣Ĵ1

∣∣∣2 +
1

4δ2κ2
M

∣∣∣Ĵ2

∣∣∣2 +
δ3κ

2
M

2

∥∥∥Ũ∥∥∥2

L2
+

1

2δ3κ2
M

∥∥∥R̂∥∥∥2

L2
,(B.5)

where δ2, δ3 > 0 will also be chosen later. Using (B.4) we deduce that

κm

(∣∣∣Ũ1(a)
∣∣∣2 +

∣∣∣Ũ2(b)
∣∣∣2) ≤ κMδ1 ∥∥∥Ũ∥∥∥2

L2
+

1

δ1κM

∥∥∥R̂∥∥∥2

L2
+

1

γ1

∣∣∣Ĵ1

∣∣∣2 +
1

γ2

∣∣∣Ĵ2

∣∣∣2 ,
where κm := min(γ1, γ2), and this implies

(B.6)
∣∣∣Ũ1(a)

∣∣∣2+
∣∣∣Ũ2(b)

∣∣∣2 ≤ τδ1 ∥∥∥Ũ∥∥∥2

L2
+

1

δ1κMκm

∥∥∥R̂∥∥∥2

L2
+

1

γ1κm

∣∣∣Ĵ1

∣∣∣2+
1

γ2κm

∣∣∣Ĵ2

∣∣∣2 ,
where τ = κM/κm. Using (B.6) and (B.5), we derive that

∥∥∥∂zŨ∥∥∥
L2
≤
(
κ2
M + δ2κ

2
Mτδ1 +

δ3κ
2
M

2

)∥∥∥Ũ∥∥∥2

L2
+

(
δ2
δ1
τ2 +

1

2δ3κ2
M

)∥∥∥R̂∥∥∥2

L2

+

(
δ2τ

2 +
1

rδ2κ2
M

)(∣∣∣Ĵ1

∣∣∣2 +
∣∣∣Ĵ2

∣∣∣2) .
Setting δ2 = δ3/(2δ1τ), we obtain

∥∥∥∂zŨ∥∥∥2

L2
≤
(
κ2
M + δ3κ

2
M

) ∥∥∥Ũ∥∥∥2

L2
+

(
δ3τ

2δ2
1

+
1

2δ3κ2
M

)∥∥∥R̂∥∥∥2

L2

+

(
δ2τ

2 +
1

rδ2κ2
M

)(∣∣∣Ĵ1

∣∣∣2 +
∣∣∣Ĵ2

∣∣∣2) .
Regarding (B.3) again, we now take the test function

ϕ = 2z∂zŨ =

{
2z∂zŨ1, z ∈ (0, a) =: I1,

2z∂zŨ2, z ∈ (b, 0) =: I2.

Then, the weak form (B.3) becomes

∥∥∥∂zŨ1

∥∥∥2

L2(I1)
+
∥∥∥∂zŨ2

∥∥∥2

L2(I2)
+ a

∣∣∣∂zŨ1(a)
∣∣∣2 − b ∣∣∣∂̃zU2(b)

∣∣∣2
+ γ2

1

∥∥∥Ũ1

∥∥∥2

L2(I1)
+ γ2

2

∥∥∥Ũ2

∥∥∥2

L2(I2)

≤ κ2
MM

(∣∣∣Ũ1(a)
∣∣∣2 +

∣∣∣Ũ2(b)
∣∣∣2)+

1

2

∥∥∥∂zŨ∥∥∥2

L2
+ 8M2

∥∥∥R̂∥∥∥2

L2

+

(
m

2
+

8

m
4M2κ2

M

)(∣∣∣∂zŨ1(a)
∣∣∣2 +

∣∣∣∂zŨ2(b)
∣∣∣2)+

32M2

m

(∣∣∣Ĵ1

∣∣∣2 +
∣∣∣Ĵ2

∣∣∣2) ,
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where M := max(|a|, |b|) and m := min(|a|, |b|). Hence, we deduce that

1

2

∥∥∥∂zŨ∥∥∥2

L2
+
m

2

(∣∣∣∂zŨ1(a)
∣∣∣2 +

∣∣∣∂zŨ2(b)
∣∣∣2)+ κ2

m

∥∥∥Ũ∥∥∥2

L2

≤
(
κ2
MM +

32M2κ2
M

m

)(
τδ1

∥∥∥Ũ∥∥∥2

L2
+

1

δ1κMκm

∥∥∥R̂∥∥∥2

L2
+

1

κ2
m

(∣∣∣Ĵ1

∣∣∣2 +
∣∣∣Ĵ2

∣∣∣2))
+ 8M2

∥∥∥R̂∥∥∥2

L2
+

32M2

m

(∣∣∣Ĵ1

∣∣∣2 +
∣∣∣Ĵ2

∣∣∣2) ,
and this implies

1

2

∥∥∥∂zŨ∥∥∥2

L2
+
m

2
(
∣∣∣∂zŨ1(a)

∣∣∣2 +
∣∣∣∂zŨ2(b)

∣∣∣2)

+

(
κ2
m −

(
κ2
MM +

32M2κ2
M

m

)
τδ1

)∥∥∥Ũ∥∥∥2

L2

≤ C
(∥∥∥R̂∥∥∥2

L2
+
∣∣∣Ĵ1

∣∣∣2 +
∣∣∣Ĵ2

∣∣∣2) .
By choosing δ1 < (1/(2τ3))(M + 32M2/m)−1, we derive our required estimate

(B.7)
∥∥∥∂zŨ∥∥∥2

L2
+ κm

∥∥∥Ũ∥∥∥2

L2
≤ C

(∥∥∥R̂∥∥∥2

L2
+
∣∣∣Ĵ1

∣∣∣2 +
∣∣∣Ĵ2

∣∣∣2) .
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