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SIMULATION OF LOCALIZED SURFACE PLASMON RESONANCES
IN TWO DIMENSIONS VIA IMPEDANCE-IMPEDANCE
OPERATORS *

DAVID P. NICHOLLS T AND XIN TONGT

Abstract. It is critically important that engineers be able to numerically simulate the scattering
of electromagnetic radiation by bounded obstacles. Additionally, that these simulations be robust
and highly accurate is necessitated by many applications of great interest. High—Order Spectral
algorithms applied to interfacial formulations can rapidly deliver high fidelity approximations with
a modest number of degrees of freedom. The class of High—Order Perturbation of Surfaces methods
have proven to be particularly appropriate for these simulations and in this contribution we con-
sider questions of both practical implementation and rigorous analysis. For the former we generalize
our recent results to utilize the uniformly well-defined Impedance-Impedance Operators rather than
the Dirichlet—-Neumann Operators which occasionally encounter unphysical singularities. For the
latter we utilize this new formulation to establish the existence, uniqueness, and analyticity of solu-
tions in non-resonant configurations. We also include results of numerical simulations based on an
implementation of our new formulation which demonstrates its noteworthy accuracy and robustness.

Key words. High—Order Spectral Methods, Linear Wave Scattering, Bounded Obstacles, High—
Order Perturbation of Surfaces Methods

AMS subject classifications. 65N35, 656N12, 78A45, 7T8M22, 35Q60, 35J05

1. Introduction. It is critically important that engineers be able to numerically
simulate the scattering of electromagnetic radiation by bounded obstacles. Applica-
tions abound, and solely in the field of plasmonics [38, 23] one find surface enhanced
Raman scattering (SERS) biosensing [43], imaging [22], and cancer therapy [10]. For
more details please see one of the many surveys on the topic, e.g., the volume [23]
(Chapters 5, 9, and 10), the article [25], and the publications considering gold nanopar-
ticles [26]. For many reasons, these simulations must be robust and highly accurate,
e.g., due to the very strong plasmonic effect (the field enhancement can be several
orders of magnitude) and its quite sensitive nature (the enhancement is only seen over
a range of tens of nanometers in incident radiation for gold and silver particles).

As in our previous contribution [37], we focus on Localized Surface Plasmon
Resonances (LSPRs) which can be induced in metal (e.g., gold or silver) nanorods
with radiation in the visible range. In particular how these change as the shape
of the cross—section of the rod is varied from perfectly circular. More specifically,
consider a rod with cross—section shaped by {r = g}, composed of a noble metal
with a wavelength—-dependent permittivity, €, = €,,(\) € C, mounted in a dielectric
with constant permittivity, e; € R. If g is sufficiently small an LSPR is excited
with incident radiation of wavelength, Az, that (nearly) satisfies the two-dimensional
“Frohlich condition” [23]

(1.1) Re[em(N)] = —eq.

It is clear, however, that if the cross—section of the rod is specified by r = g + ¢ f (),
where g is the mean radius, for some smooth function f, then the value A\p = Ap(e)
will change. The method we advocate here is well-suited to study the evolution in €.
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2 D. P. NICHOLLS AND X. TONG

Due to the importance of these models, it is not surprising that the full range of
modern numerical methods have been brought to bear upon this problem, including
Finite Difference Methods [21], Finite Element Methods [18], Discontinous Galerkin
Methods [17], Spectral Element Methods [9], and Spectral Methods [13]. We have
recently argued [37] that such volumetric approaches are greatly disadvantaged with
an unnecessarily large number of unknowns for the piecewise homogeneous problems
of relevance here. Interfacial methods based upon Integral Equations (IEs) [6] deliver
a compelling class of algorithms (see, e.g., the recent work of [1, 16] in the context
of plasmonics) but, as we have pointed out, these also face difficulties. Most of these
have been addressed in recent years through the use of sophisticated quadrature rules
to deliver High—Order Spectral accuracy, and the design of preconditioned iterative
solvers with suitable acceleration [14]. Consequently, they specify a method which de-
serves serious consideration (see, e.g., the recent work of [20]), however, two properties
render them non—competitive for the parameterized problems we consider compared
to the methods we outline here:

1. We parameterize our geometry by the real value ¢ (the deviation of the
nanorod cross—section from circular), and an IE solver will compute the scat-
tering data only for one value of € at a time. If this value is changed then the
solver must be run again.

2. The dense, non—symmetric positive definite systems of linear equations which
must be inverted with each simulation.

As we have previously shown [37], a “High-Order Perturbation of Surfaces”
(HOPS) approach can mollify these concerns. In particular, we investigated an im-
plementation of the method of Field Expansions (FE) originating in the low—order
calculations of Rayleigh [39] and Rice [40]. The high—order implementation was de-
veloped by Bruno & Reitich [4] and later enhanced and stabilized by the first author
and Reitich [34], the first author and Nigam [29], and the first author and Shen [35],
resulting in the Method of Transformed Field Expansions (TFE). We point out that
with this latter approach these methods can be shown to be convergent for real e
of arbitrarily large size, up to topological obstruction [33, 34]. These algorithms re-
tain the advantageous properties of classical IE methods (e.g., surface formulation
and exact enforcement of far—field conditions) while avoiding the shortcomings listed
above:

1. Since HOPS algorithms are built upon expansions in the parameter, €, once
the Taylor coeflicients are known for the scattering quantities, it is simply a
matter of summing these (rather than beginning a new simulation) for any
given choice of € to recover the returns.

2. At every Taylor order, the method need only invert a single, sparse operator
corresponding to the cylindrical-interface, order—zero approximation of the
problem.

In this contribution we build upon the work of the authors in [37] by devising,
implementing, and testing a HOPS scheme based not upon Dirichlet—-Neumann Op-
erators (DNOs), but rather upon Impedance-Impedance Operators (ITOs). We do
this for several reasons, principally that our new approach does not suffer from the
artificial “Dirichlet eigenvalues” which plague the relevant DNOs while requiring no
increase in computational effort. In addition, we supply for the first time a rigor-
ous analysis of the existence, uniqueness, and analyticity of solutions to the problem
of scattering of linear waves by a penetrable object of bounded cross-section (see
also the work of Bonnet-Ben Dhia, Carvalho, Chesnel, and Ciarlet [3] who investi-
gated a related problem with a non—perturbative technique). While the technique
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93 of proof is well-established [31, 33, 34, 28] the technical details are rather involved,
94 c.f. [15, 7, 30], and somewhat limited by the complication of rigorously establishing
95 that physical configurations are “non-resonant.” Finally, with an implementation of
96 this algorithm we display the efficiency, robustness, and high—order accuracy one can
97 achieve.
98 The paper is organized as follows: In § 2 we outline the governing equations
99 for linear waves reflected and transmitted by a cylindrical obstacle, with transparent
100 boundary conditions described in § 2.1. We give a boundary formulation of the re-
1 sulting problem in § 3, together with a HOPS algorithm in § 3.1 and a study of the
)2 classical problem of scattering by a rod in § 3.2. For use with our rigorous analysis we
3 define our function spaces in § 4, and we deliver our proof of analyticity of solutions
04 in § 5. The fundamental results required in the proof are the analyticity of the I1Os
5 proven in § 6. Finally, in § 7 we present numerical results followed by concluding
6 remarks in § 8.

107 2. Governing Equations. We consider a y—invariant obstacle of bounded cross—ii
108 section as displayed in Figure 1. Materials of refractive index n* € R and n* € C
109 fill the (unbounded) exterior and (bounded) interior, respectively. The interface be-
110 tween the two domains is described in polar coordinates, {x = r cos(6), z = rsin(6)},
111 by the graph r = g+ ¢g(#) so that the exterior and interior domains are specified
112 by 8% :={r>g+g(0)}, S* = {r <g+g(0)}, respectively. The superscripts are
113 chosen to conform to the notation of previous work by the authors [27, 37]. The
cylindrical geometry demands that the interface be 2r—periodic, g(6+27) = g(6). We

(a? _,.Yu)

SU

Fic. 1. Plot of the cross—section of a nanorod (occupying S*) shaped by r = g + € cos(46)
(e = g/5) housed in a dielectric (occupying S™) under plane—wave illumination with wavenumber

(@, =)
114
115 consider monochromatic plane—wave illumination by incident radiation of frequency
116w and wavenumber k% = n%w/cy = w/c" (¢ is the speed of light) aligned with the
117 corrugations of the obstacle. We denote the reduced illuminating fields of incidence
118 angle ¢

. . . u . . iU
]l() EIDC — Ae’LOéwf’L’Y Z, HlnC(x,Z) — Be’LOﬁE Yy Z,

139 a=k"sin(¢), " =k"cos(¢), |Al=|B|=1;

122 we have factored out time dependence of the form exp(—iwt), and we can write these
123 as B¢ = Aetk"rsin(¢e=0) fyinc — Beik"rsin(6—0) The geometry demands that the
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4 D. P. NICHOLLS AND X. TONG

reduced electric and magnetic fields, {E, H}, be 2r—periodic in 6, and the scattered
radiation is “outgoing” in S* and bounded in S™.

In this two—dimensional setting the time—harmonic Maxwell equations decouple
into two scalar Helmholtz problems which govern the transverse electric (TE) and
transverse magnetic (TM) polarizations [38]. The invariant (y) directions of the scat-
tered (electric or magnetic) fields are denoted by {u(r,0),w(r,0)} in S* and S*,
respectively, and the incident radiation in the outer domain by u™¢(r, 6).

These developments lead us to seek outgoing/bounded, 27—periodic solutions of

(2.1a) Au+ (k*)*u = 0, r>g+g(0),
(2.1b) Aw + (k¥)%w = 0, r<g+y(0),
(2.1¢) w—w=E¢, r=g+y(0),
(2.1d) TOnu — TYONw = TV, r=g+9(9),

where k% = n"w/cy, the Dirichlet data is

e [_,in — _tk"(g+g(0)) sin(¢—0)
(2.1e) £0) = [—u C]T:ﬁgw) = —e™ Telf)s ;
and the Neumann data is

v(6) = [~Onu™] r=g+9(0)

= {(g + g(0))ik" sin(¢ — 0) + <g’jr/(;()9)> cos(¢ — 0)} £(0).

In these dy = 7#(§ + ¢)0» — 6(g'/(g + g))dp, for unit vectors in the radial (#) and
angular () directions, and

m L TE, m € {u,w}
T = ; ;
1/em  TM,

where v = k¥ cos(¢). The case of TM polarization is of fundamental importance
in the study of Localized Surface Plasmon Resonances (LSPRs) [38] and thus we
concentrate our attention on the TM case from here.

2.1. Transparent Boundary Conditions. Regarding the outgoing nature of
u we demand the Sommerfeld Radiation Condition [6], and to enforce both this and
the boundedness of w, we introduce the circles {r = R} and {r = R}, where

R™ >g+gl;e;, 0<R™ <g—|g;w.

We note that we can find periodic solutions of the relevant Helmholtz problems on
the domains {r > R™} and {r < R}, respectively, given generic Dirichlet data,
say u(f) and w(f). These read [6]

> k'r) S, BT v
(2.2)  wu(r,f) = Z I{(I;“R(Z))e ° w(rf) = Z prp(k(wR(?Z))e 0

p=—00 p=—0C

where J, is the p—th Bessel function of the first kind, and H,, is the p—th Hankel
function of the first kind. We note that

“)9 Zueg R(w)ﬁ Zwe

p=—00 p=—00

This manuscript is for review purposes only.
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With these formulas we can compute the outward-pointing Neumann data at the
artificial boundaries

> H'(K*R™)\ .
—0,u(R™,0)= 3 (’“W e = T [u(9)],

p=—00

> J(kYR™Y\
oont.0) = 3 (BT i =710 o]

p=—00

These define the order-one Fourier multipliers {7, T(*)}.
With the operator 7 it is not difficult to see that periodic, outward propagating
solutions to the Helmholtz equation
Au + (k“)zu =0, r>g+g9),
equivalently solve
(2.3a) Au+ (K*)?u =0, g+g0) <r<RW,
(2.3b) Apu + T [u] =0, r=RW,

Similarly, one can show that periodic, bounded solutions to the Helmholtz equation

Aw + (kw)Qw =0, r<g+g9),
equivalently solve

Aw + (k") w =0, R™W) <r < g+g(0),
Opw — T [w] =0, r=RW),
3. Boundary Formulation. At this point we follow the philosophy of [27, 28,
37] and reduce our degrees of freedom to surface unknowns. However, rather than
select the Dirichlet and Neumann traces utilized in these papers, we choose impedance

traces. To motivate our particular choices we focus upon the boundary conditions
(2.1c) and (2.1d) and operate upon this pair by the linear operator

Y —I
=z )

where [ is the identity, and Y and Z are unequal operators to be specified. In the
work of Despres [8] these were chosen to be Fin for a constant n € R™, however,
other choices are also possible. The resulting boundary conditions are

[-7“Onu+ Yu]l + [tYOnw — Yw] = [-T*v + Y¢],
[-T“Onu+ Zu] + [TYOnw — Zw] = [-T"v + ZE],

which inspire the following definitions for impedances

U:=[-m“Onu+ Yu]r:§+g ;o We=[r"Oyw — Zw}r:ﬁg ’
their “conjugates”
U :=[-7%Onu + Zul g W= [r“Onw — Yl _gig

This manuscript is for review purposes only.
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and the interfacial data

Ci=[rv+ YE], W= [+ ZE).

Via an integral formula these quantities can deliver the scattered field at any point
[11, 6], thus, the governing equations reduce to the boundary conditions

(3.1) U+W=¢ U+W=2.

Now, we have two equations for four unknowns, however, the pairs {U, U } and
{W, W} are not independent and we make this explicit through the introduction of
Impedance-Impedance operators (II0s). However, care is required as a poor choice
of the operators Y or Z may induce a lack of uniqueness in the governing Helmholtz
equation, i.e., (k*)? or (k*)? may be an eigenvalue of the Laplacian (with the imped-
ance boundary conditions) on the domain in question.

As our analysis utilizes a change of variables which transforms the general inter-
face shape, {r = g + ¢g(#)}, to the separable one, {r = g}, our developments focus
on solving Helmholtz problems on the interior of the cylinder {r < g} and its exte-
rior {r > g}. For this reason, in Appendix A we state and briefly prove two results
on the existence, uniqueness, and regularity of solutions to the exterior and interior
Helmholtz problems on these simple domains. For now we note that in order to have
well-defined solutions (and thus IIOs) we demand the following two conditions

wf[((£))ee) o

and

wl[(2)2)=e}on

where I' := {r = g}. The first is required to invoke Rellich’s Lemma [6], while the
sign on the second is necessary if the imaginary part of €(*) is greater than or equal
to zero.

Remark 3.1. We point out that since 7% € R™ the choice of Despres [8], Y = —in
where 7 € R, satisfies (3.2). The situation with Z is more delicate as ¢(*) can be
complex. More specifically, if €(®) = @) 4 ()" and Z = Z' + i7", since

p Z/,, TE’
Im {w} = g, dielectric in TM,
-
W) zim e(“’)”Z’7 metal in TM,

the choice of Despres [8], Z = in where n € R, satisfies (3.3) provided that the
interior is not a metal (¢(*) < 0 and ¢ > 0) in TM polarization. In this case
our choice of Z must be made specific to the material on the interior, e.g., 2 /7’ >
—e() /W) 0 which, of course, can be accommodated.

DEFINITION 3.2. Given Y satisfying (3.2) and a sufficiently smooth and small
deformation g(0), the unique periodic solution of

(3.4a) Au+ (k) u =0, g+g0) <r<RW,
(3.4b) —7%9vu+Yu="U, r=g+g(),
(3.4c) O+ T [u] =0, r=RW),

This manuscript is for review purposes only.
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LSPRS VIA IIOS 7

defines the Impedance—Impedance Operator
(3.5) QU :=T.

DEFINITION 3.3. Given Z satisfying (3.3) and a sufficiently smooth and small
deformation g(0), the unique periodic solution of

(3.6a) Aw + (k)2 w =0, R <r < g+g(0),
(3.6b) TONw — Zw = W, r=g+g(9),
(3.6¢) Bpw — T [w] = 0, r=R",

defines the Impedance—Impedance Operator
(3.7) S[W]:=W.

In terms of these operators the boundary conditions, (3.1), become

U+SW]=¢ QUI+W =1,

or

63 (@ 7)(w)=()

For later use, we write this more compactly as
(3.9) AV =F,

where

510 A= (L) v (L) v ()

3.1. A High—Order Perturbation of Surfaces Method. Our approach to
simulating solutions to (3.9) is perturbative in nature and based upon the assumption
that g(0) = e f(0) where ¢ is sufficiently small. However, this can be relaxed to include
all € € R up to topological obstruction via the method outlined in [33]. As we shall
show in Section 6, provided that f is sufficiently smooth (which we shall make more
precise later), then the IIOs, @ and S, are analytic in the perturbation parameter &
so that the following expansions are strongly convergent in an appropriate Sobolev
space

(3.11) Qef) =D Qu(f)e", Sef) = Sulf)e"
n=0 n=0

Clearly, if this is the case then the operator A will also be analytic, as will F so that

(3.12) {A(ef), F(e)} =D {An(f), Fulf)}e".

We will shortly show that, under certain circumstances, there will be a unique solution,
V, of (3.9) which is also analytic in &

(3.13) Vief) =) Valf)e"
n=0
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8 D. P. NICHOLLS AND X. TONG

Furthermore, it is clear that the V,, must satisfy

n—1
(3.14) V,=A;! {Fn - ZAnzVZ} ,
=0

and one key in the analysis is the invertibility of the operator Ay which we now
investigate.

3.2. The Trivial Configuration: LSPR Condition. To investigate this in-
vertibility question we show how our formulation delivers the classical solution for
plane wave scattering by a cylindrical obstacle. For this we consider (3.8) in the case
9=0,

I So\ (U Co
3.15 = .
(319) (Qo I ) <W> (%
As we shall presently see, the operators Qg and Sy are (order—one) Fourier multipliers.

Recall that a Fourier multiplier m(D) is defined by

oo

m(D)[E(x)] = Y m(p)Epe’,

p=—00

so that, e.g., 9, = ¢D. In this trivial configuration, the solutions to (3.4) and (3.6)
are, (c.f. (2.2)),

u(r,6)= 3 B E—
p=—00 ,Tu(kug)H;)(k.ug) + YpHp(k“g)

w(r,0) = Z — Wfp - — J,(kVr)e’?,
p=—00 Tw(kwg)Jp(kug> - ijp(kwg)

respectively. From these we find for (3.5)

and for (3.7)

p=—00 p=—00
_( w(kwf) /(k, ) YJD(kw

© i» T ( g g )
So[W] = Z (SO)pre ‘= Z <7—w(kw;—]) J! (kv ;)—ZpJp(k“’?])
)
ey~ zieg)) "

which define the order—one Fourier multipliers
(kg )HD(k" )+ ZHp(k"g)
1 =
(3162 0= (mga vy

g :( “(kvg) (k") = Y Jp(k“g)
O\ (kvg)Jy, (kvg) — ZJp(kvg)

(3.16D)
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respectively.
Returning to (3.15) we find the solution at each wavenumber is given by

0,\ _ 1 1 (%), (@),
(317 (Wp> 1- (f?\())p(/c-)o\)p <—(Q0)p 1 ) (Wo)) ’

and it is clear that unique solvability of this system hinges on the determinant function

—

(318) Ap =1- (So)p(Qo)p.
With the notation
J=Jy(k"g), I =7"(k"g)J,(k"g), H=Hy(k"g), H =-7"(k"g)H,(k"g),
we find
Y -2)(JH-JH')

P+ YH) I — 23)

The zeros of this function are the same as those we found in [37], and thus deliver the
same result in the “small radius” (quasi-static) limit [23], k% < 1 and k¥g < 1,

") = _Re {e(w)} —¢Im {e(w)} .

If the Frohlich condition, c.f. (1.1), €®) = —Re {e()} | is verified then it can “almost”
be true. Again, this is different from the three dimensional Frohlich condition for
nanoparticles [23], ) = —2Re {e*)} .

Remark 3.4. At this point we might worry that the function A, could be zero.
However, a good deal is known about the unique solvability of the scattering problem
in this trivial configuration, (3.15). Moiola and Spence [24] provide an excellent
summary of the state—of-the—art and a discussion of known results. Rather than
reproduce their extensive exposition, we simply restrict ourselves to a configuration

(3.19) (k*,k*,3,Y, Z) such that (3.15) admits a unique solution.

4. Interfacial Function Spaces. We begin with a careful mathematical analy-
sis of (3.9) which will help justify the computational results we present in Section 7.
Before describing these rigorous results we specify the interfacial function spaces we
require. For any real s > 0 we recall the classical, periodic, L?-based Sobolev norm
[19]

0 2 . 1 2 )
A1) Ul = Y. 0* 0] . @ =1+, U= [ U@®)? do,

2
p=—00 /o

which gives rise to the periodic Sobolev space [19]

H* ([0, 27]) := {U(x) € L*((0,27]) | U]l . < o0}
We also require the dual space of H*([0,27]) which is characterized by Theorem 8.10

of [19] and is typically denoted H~*([0, 27]).
With this definition it is a simple matter to prove the following Lemma.

This manuscript is for review purposes only.
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10 D. P. NICHOLLS AND X. TONG
LEMMA 4.1. For any s € R there exist constants Cq,Cs > 0 such that

1QoUll e < CqllUllgs s 1SoW llgge < Cs [Wl e
for any U W € H®.

We also recall, for any integer s > 0, the space of s—times continuously differen-
tiable functions with the Holder norm | f|,. = maxo<s<s |O% f| 1~ - For later reference
we recall the following classical result.

LEMMA 4.2. For any integer s > 0, any § > 0, and any set U CR™, if f,u, g, 1 :
U—C, feCU),uec HU), g€ CHTV2HBU), ue HTY2(U), then

I full e < M(my s, U fles llullge s gl gresne < M(m,s,U)lgloerjers 1l gz

for some constant M.
In addition, we require the analogous result valid for any real value of s [12, 30].

LEMMA 4.3. For any s € R and any set U C R™, if p,p : U — C, ¢ €
HISHm+2(U) and o € H5(U), then
el go < M(m, s,U) ol grorsmea 190 g,

for some constant M.

Remark 4.4. Presently we will be required to estimate terms of the form

H(@ef)UHLz(Q) = ||(89f)u”HU(Q)’ ||(89f)1u’||H*1/2([0,27r])’

where © C R?, which feature Sobolev norms too weak for the standard algebra
estimate, Lemma 4.2. For this reason we have introduced Lemma 4.3 which allows us
to compute, for m = 2,

\(30f)u||L2(Q) = ||(30f)u||H0(Q) <M ||69f||H\0|+2+2([0,27r]) ||UHH0(Q)
< M| f s go,2q1) 4l o) »

while, for m =1,

H(aef)MHH—l/u[o,gﬂ) <M ||80f||H\—1/2\+1+2([0,27r]) |‘M||H—1/2([o,27r])
< M fll gpasrrzgo,2m1) 14l zr=1/2(j0,27)) -

In this way, if we require f € H?([0,27]) then we can use the algebra property of
Lemma 4.3 throughout our developments. We note that, by Sobolev embedding, if
f € H5([0,27]) then f € C*([0,27]), and if f € C°(]0,2x]) then f € H>([0,27]).

5. Analyticity of Solutions. We can now take up the rigorous analysis of
(3.13) for which we utilize the general theory of analyticity of solutions of linear
systems of equations. To be more specific, we follow the developments found in [28]
for the solution of (3.9). Given the expansions (3.12) we seek the solution of the form
(3.13) which satisfy (3.14). We restate the main result here for completeness.

THEOREM 5.1 (Nicholls [28]). Given two Banach spaces X and Y, suppose that:
(H1) F,, € Y for all n > 0, and there exist constants Cr > 0, Br > 0 such that

|Fnlly < CrBp™, n>0.
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(H2) A, : X = Y for alln > 0, and there exists constants Cx > 0, B4 > 0 such
that

HAnHX%y < CABZ7 n > 0.
(H3) Ay':Y — X, and there exists a constant C, > 0 such that

1A < Ce.

1||y—>x

Then the equation (3.9) has a unique solution (3.13), and there exist constants Cy > 0
and By > 0 such that

[Velly <CvBy, n=>0,

for any Cy > 2C.Cr, By > max{Bp,2B4,4C.Cs B4}, which implies that, for any
0 <p <1, (3.13) converges for all ¢ such that Bye < p, i.e., € < p/By.

All that remains is to find the forms (3.12), and establish Hypotheses (H1), (H2),
and (H3). For the former it is quite clear from (3.9) that

(1S (0 S,
A0<QO [>7 An<Qn O>7 nzlv

— Un _ gn
e (i) ne (5)

For the spaces X and ), the natural choices for the weak formulation we pursue here
are X =) = H'/2(]0,2nx]) x H='/2([0,27]), so that

)

Hypothesis (H1): We begin by noting that

2
2 2

= U512 + W lg-rs2 -
x

Cn=7"v + Y&, WUn=—-T",+ ZE,,
where
=~ IO () sin(6 — )" Py, F= L
o = (0K sin6 — 0)] € + (1K) [ sin(6 — 0) + (90 ) cos( — 0)] £n1.

Now, if Y : HY/2 — H=Y2 and Z : H'/? — H~/2, then

2 2 2 2 2 2
[Bally = I6allzz-172 + ¥l 12 < 217" wnllg-12 + (Cy + C2) [§nllz/2

and, from the explanation given in Remark 4.4, this will be bounded provided that
f € H3([0,2r)).

Hypothesis (H2): The analyticity estimates for the IIOs @, Theorem 6.4, and S,
Theorem 6.1, show rather directly that Hypothesis (H2) is verified provided that Y
and Z satisfy (3.2) and (3.3), respectively. Indeed, as we have

1QnlUll gr-1/2 < CoBG,  1Sn[Wlllgg-1/> < Cs B,
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it is a straightforward matter to show that || A, ||y, < CaBj, for Ca4 = max{Cq, Cs}j
and B4 = max{Bq, Bs}.

Hypothesis (H3): We now address the existence and invertibility properties of the
linearized operator Ay in the following Lemma.

LEMMA 5.2. If (b € H=Y2([0,27]), Y satsisfies (3.2), and Z satisfies (3.3),
then there exists a unique solution of

(a0 7) ()= ()

1M g-172 < Ce{lICl g1/ + 1l 12}
W12 < Ce liClg-1/2 + [0l gr-172} 5

for some universal constant C, > 0.

c.f. (3.15), satisfying

Proof. The bulk of the proof has already been worked out in Section 3.2. If we
expand

¢(0) = Z épeipea Y(0) = Z 'L/A}peipea

p=—00 p=—00

then we can find solutions of (3.15)

U@)= > U™, W(O)= > Wy,

p=—00 p=—00

(&) - — <1A <SA>> (@)
Wy 1—@\0),;@0\),, —(Qo), 1 (¥0),)

—_—

c.f. (3.17). The key is the analysis of the operators (So),,, (Qo),, and the determinant

function A, =1 — (S/o\)p(Qo)p, c.f. (3.18). For these, given our hypothesis (3.19)
and their asymptotic properties, it is not difficult to show that there exist constants
Kg,Kgs, Ka > 0 such that

where

@), < Koo |G| < & fa.

! <
|Ap|
With these we can estimate

0= 3 070 < 3 1R (\épf + K3 1%!2)

p=—00 p=—00

= K (161512 + 10l3-0r2)

for some K > 0. Proceeding similarly for W we complete the proof. ]

Having established Hypotheses (H1), (H2), and (H3) we can invoke Theorem 5.1
to discover our final result.
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LSPRS VIA IIOS 13

128 THEOREM 5.3. If f € H5([0,27]), Y satisfies (3.2), and Z satisfies (3.3), then
429 there exists a unique solution pair, (3.13), of the problem, (3.9), satisfying

430 HUnHH—l/Q < CUDn7 HWn”Hfl/Z < CWDn; n > 07
431 for any D > || f|| g5, where Cy and Cw are universal constants.

432 6. Analyticity of the Impedance-Impedance Operators. At this point
433 the only remaining task is to establish the analyticity of the I1Os, @ and S. In the
134 exterior this has been accomplished for the DNO in [30] and the results are quite
435 similar. However, the theory for the interior domain is quite different due to the
436 Dirichlet eigenvalues on {r < g} which can render their DNOs non-existent. For this
437 reason we focus on the interior domain.

138 THEOREM 6.1. If f € H®([0,27]), Z satisfies (3.3), and W € H=/2([0,2x]), then
139 the series (3.11) converges strongly as an operator from H=/2([0,2x]) to H=/2([0, 2x]) .}
440 In other words there exist constants Kg > 0 and Bg > 0 such that

o (6.) 1Su ()Wl -1/ < KsBE.

442 We establish this result with the method of Transformed Field Expansions (TFE)
443 [31, 32, 33] which has proven quite successful in establishing analyticity of DNOs
444 in similar settings [29, 30, 36]. The TFE method proceeds by effecting a domain—
445 flattening change of variables prior to perturbation expansion. On the interior domain
146 the relevant change of variables is

447 r = {(Q —R™)r + R(w)g(e)} / {g +9(0) — R(w)} , 0=,

118 which maps the perturbed domain {R(") < r < g+ g(f)} to the separable one
449 Q) 5 = {R™) <" < g}. This transformation changes the field w to

450 v(r’',0") = w({(g+g(¢') = R")r' = R"g(0)}/{g — R}, ),
451 and modifies (A.4) to

152 (6.2a) Av+ (k) v = F(r,0;9), R™ <r<g,
153 (6.2b) TNV — Zv =W (0) +1(6;9), r=g,

434 (6.2¢) v — T [v] = h(b;g), r=RW),

456 where we have dropped the primed notation for clarity. The forms for F, [, and h
457 are not difficult to derive, and they can be deduced from their expansions which we
458  present in (6.5).

159 Upon setting g = ¢ f and expanding
160 (6.3) v(r,0,€) =Y va(r,0)e",
n=0

461 we can show that

162 (6.4a) Av, + (k") v, = F, R™ <r<g,
Z W
463 6.4b ar n — ——Up = 511 — lna = _7
63 ( ) V. ngv 0 o + r=g
44 (6.4c) pvn — T [v,] = hy, r=RW),
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14 D. P. NICHOLLS AND X. TONG

where, d, , is the Kronecker delta, and

(6.5) F, = —m [Fg)) +0,F" + 9, FO]
(6.5b) FO = —(g—R"“)Nf(r — R"Novp_1 + ...,
(6.5¢) F( =2(5— R“)fr(r — R")N)v, 1 + ...,
(6.5d) FO = —ff'(r — R"“Ndwp o+ ...,

(6.5¢) b= —(1/g*) (/)2 Orvn2 + ...

(6.5¢) hy = ?J;WTM [vn_1],

are the n—th order terms in the Taylor series expansions of F', [, and h, respectively.
Furthermore, Fﬁo), Fy), and Fy(le) are, in order, the undifferentiated, radial derivative,
and angular derivative portions of F,.

In addition, the IIO S, (3.7), can be stated in transformed coordinates. If we
then expand S in €, (3.11), the n—th term in the expansion can be expressed as

f()
9(g — R™))

so that, provided with estimates on the {v,}, we can control the terms, {S,}.
Our main result is the following analyticity theorem.

THEOREM 6.2. If f € H®([0,27]), Z satisfies (3.3), and W € H~/2([0,2x)),
then the series (6.3) converges strongly. In other words there exist constants K, > 0
and Bg > 0 such that

(6.6) Su[W] =1 {— agvn_z} T

(6.7) [onll g < Ko Bg.
The proof of Theorem 6.2 proceeds by applying an elliptic estimate, Theorem A.1,

to (6.4) followed by a recursive result, Lemma 6.3. To control the right hand side of
(6.4) we prove the following.

LEMMA 6.3. Suppose that f € H>([0,2n]) and Z satisfies (3.3). Assume that
lonllio,.,, ) < KoBS, Vn <N,
for constants K, > 0 and Bg > 0, then there exists a constant C,, > 0 such that
mase {||Ewll s 2,y oy I8l -7z o 2y s I 173020
< Cul, (s BY ™ + 11 £l B ).
Proof. Note that from (6.5) and the definition of (H')’ [11]

(0) (r)
1Ewllry < B, + |[FY

()
P

2’
. . 0
and, for conciseness, we consider only one term from F ](V),

FO = —ff'(r = R"“)d,un o
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the rest can be treated in a similar fashion. For this we estimate, using Lemma 4.3,
0 w
|7, < |- = BeDoons| |, < ML MU e R on—s
< M2 ||f|[3s RE,BE 2,

where R is defined by H(r — R(w))q}HL2 < R ||v|| 2, and we are done if C, is chosen
appropriately.
For h we conduct the following sequence of steps

M

f w w
Inlive < | =T o o S g Wl [ ]
M MCopw
< m ||f||H5 Crw) HUN—1||H1/2 < g—isz(w) ||fHH5 Ci ||UN—1||H1
MCrpw _
< O | s CuluBY I

where Cp () is the bounding constant for the operator T(*), and C is the bounding
constant for the trace operator [[v]| g1/2((g 247) < Ct ||’U||H1(QR(U)),§) . We are done if we

select C,, large enough.
Regarding the terms [, we once again focus on a single term

Ly =—(1/g*)(f')?0rvn—2,

and make the estimates

1 M?
Ex - = |23 POon-a] < T W IOvon-allyo
g H-1/2 g
2 M3C _
< — 1 Fasare Cellon—allr < —5= I1fll7s Ko BE 2,
g g
and we are done if C,, is chosen well. 0
We can now present the proof of Theorem 6.2.
Proof. (Theorem 6.2). We work by induction and begin with n = 0. The estimate
on vy follows directly from Theorem A.2 with F' and L identically zero. We now
assume that (6.7) holds for all n < N and apply Theorem A.2 which implies that

Jonlles < Ce {1l + 1l + Il }
Using Lemma 6.3 we have
lowlls < Ce8Cu, {17 1s BY " + 11 BY -2} < K,BY,
provided that we choose 3C.C, ||f|| s < Bs/2, 3C.C, Hf||?{5 < B%/2, which can be
ensured by demanding Bg > max {6066’”7 \/GCQCU} £l 5 - O

Finally, we are in a position to establish Theorem 6.1.

Proof. (Theorem 6.1). From (6.6) and applying Theorem 6.2, it is straightforward
to see that

1So(H) W gr-1/2 < 170rv0 — Yol g-1/2 < [T G0rvoll 172 + 1Y V0l 172
<17l gllvoll g2 + Cy llvoll iz < (1771 + Cy) Ci [|lvoll g
<(|7¥|g+Cy)C,K, < Kg,
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538 if Kg > 0 is chosen appropriately.
539 Assuming that (6.1) holds for all n < N we now investigate an estimate of Sy.
540  For simplicity we consider the single term

—ff

541 Sy i=71% <__
g(g — RW)

> OpUN—2

542 and we measure

543 SNl 1o < |7 (‘ch) dgun—2
9(g — R™) H1/2
» < 7| s e V0w
” < 7| s s el
o < 7| s s Gl BY

518 We are done provided that we choose Kg > |7%| M?/(g(g — R™)))C;K,, and Bg >

319 1l 0
550 In an analgous manner, the analyticity of () can be established. The only signifi-
551 cant change is the requirement that Theorem A.1 is required rather than Theorem A.2.
552

553 THEOREM 6.4. If f € H*([0,27]), Y satisfies (3.2), and U € H=/2([0,2x]) then
554 the series (3.11) converges strongly as an operator from H='/%([0,2x]) to H=/%([0, 27]).J]
555 In other words there exist constants Kg > 0 and Bg > 0 such that

556 1Qn (AUl g-1/2 < K@Bg-

57 7. Numerical Results. We now present results of simulations of our imple-
58 mentations of the algorithms outlined above. The schemes are essentially High—Order
59 Spectral (HOS) [13, 9] with nonlinearities approximated by convolutions implemented
60 with the Fast Fourier Transform algorithm.

561 7.1. Implementation Details. The numerical approaches we describe in this
562 section utilize either the Dirichlet—-Neumann operator (DNO) formulation of the prob-
563 lem [37] or its IIO alternative specified in (3.8). The relevant operators (DNO and
564 110, respectively) are simulated using the TFE methodology [31, 33, 34]. The TFE
565 method is a Fourier collocation/Taylor method [32, 34] enhanced by Padé summation
566 [2]. In more detail, for the IIO S we approximate W by

N Ng/2-1
567 WheN(9) .= Z Z W, pePoe™,
n=0p=—Ny/2
568 and insert this into (3.14) for 0 < n < N to determine approximation ve-NN (. )
569 which are used in (6.6) to simulate the I1O. As has been pointed out in [32, 29, 37],
0 the TFE approach requires an additional discretization in the radial direction which
1 we achieve by a Chebyshev collocation approach. We recall that the cost of this
2 approach will be O(Ny log(Ng) N, log(N,.)N?) where the final factor is due to the cost
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of the formation of the right-hand-sides, e.g. F},, which is O(N?) at order n = N.
An important consideration is how the Taylor series in ¢ are summed. The classical
numerical analytic continuation technique of Padé approximation [2] has been used
very successsfully for HOPS methods (see, e.g., [4, 33]), and we will use it here.

7.2. The Method of Manufactured Solutions. Before proceeding to our
simulation of LSPRs, we begin by demonstrating the validity of our algorithm by
conducting experiments using the Method of Manufactured Solutions (MMS) [5] To
be more specific we consider the 2m—periodic, outgoing solutions of the Helmholtz
equation, (2.1a),

ul(r,0) = ALH, (K"r)e'?, qecZ, AlcC,

and their bounded counterparts for (2.1b)

wi(r,0) = AL J,(K“r)e'? qeZ, Al €C.
We select an analytic profile
(7.1) 9(6) = ef (6) = ee@),

and define, for any choice of the radius of the interface g, the Dirichlet and Neumann
traces

u(0) = u(g +9(0),0), a(0) = (=Onu)(g + 9(0),0),

and

w™(0) = w(g +9(0),0), wW(0) = (InwT)(g+9(6),0).

From these we define, for any real n > 0, the impedances

U(0) == 740 4+ inu®™,  U™(0) := 744 — inu™,

and

W(0) := 790 + igw®™, W) := 790> — inw™.

In this case Y = in and Z = —in. We point out that a rather unscientific sampling of
various choices for Y and Z did not yield a clearly superior result. We were somewhat
surprised by this and will investigate further in future work. Consequently we left
Y and Z as these Despres values for all subsequent computations. We select the
following physical parameters

(72) ¢q=2, Al =2 Al =1 n=34, A=045 £Ek"“=13.96, k" =5.136,
and numerical parameters
(7.3) Ng=64, N =16, N, =32.

To demonstrate the behavior of our scheme we studied four choices of ¢ =
0.005,0.01,0.05,0.1. For this we supplied {u®*,w**} to our HOPS algorithm to sim-
ulate DNOs producing, {@®PPr* p*PPr*} " and computed the relative error

e Y

DNO __ ~ex ~ approx
Errorg = = {‘w — Wy, N
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608 In a similar way, we passed {U®*, W} to our HOPS algorithm to approximate 11Os
509 giving, {U?aPProx Jy/approxl i and computed the relative error

610 Error!l — {]Wex — W } / {\Vvex Lm} .
611 7.3. Robust Computation: DNOs versus 1I10s. To begin we chose
612 §g=05 R™ =03, R =028,

613 carried out the MMS simulations with our IIO method, (3.8), and report our results in

614 Figures 2(a) and 2(b). We repeated this with our DNO approach [37] and display the

615 outcomes in Figures 3(a) and 3(b). We see in this generic, non-resonant, configuration

616 that both algorithms display a spectral rate of convergence as N is refined (up to the
conditioning of the algorithm) which improves as ¢ is decreased.

Relative Error versus N Relative Error versus e

10?
N-0 i
N=4
o —--N=38 H
——N =12 3
102 A-N=16
5 5
g E
st SIS
B e
£ 2
£ £ e
ol cl
= &
10°®
1010
R i
2 4 6 8 10 12 14 16 102 10"
N €
(a) Error in ITIO formulation versus per-  (b) Error in IIO formulation versus per-
turbation order, N. turbation size, €.

F1G. 2. Plot of relative error with five choices of N = 0,4,8,12,16 for a non-resonant config-
uration using the I1O formulation.

Relative Error versus N

Relative Error versus e

Relative Error
Relative Error

10?2 107!

N €
(a) Error in DNO formulation versus per-  (b) Error in DNO formulation versus per-
turbation order, N. turbation size, €.

0 2 4 6

Fic. 3. Plot of relative error with five choices of N = 0,4,8,12,16 for a non—resonant config-
uration using the DNO formulation.

617
618 Before proceeding, we note that the choice of radius g = 1, will induce a singularity
619 in the interior DNO resulting in a lack of uniqueness. To test performance of our
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methods near this scenario we selected
(7.4) g=1—7, R™ =06, R™ =1.6,

for two choices of 7. With the same choices of geometrical, (7.1), physical, (7.2),
and numerical, (7.3), parameters as before, we selected 7 = 10~!2 resulting in § =
1 — 107!2. Once again, we conducted simulations with the IIO method, (3.8), and
display our results in Figures 4(a) and 4(b). We revisited these computations with
our DNO approach [37] and show our results in Figures 5(a) and 5(b). We see in this
nearly resonant configuration, that while the IIO methodology continues to display a
spectral rate of convergence as N is refined (improving as ¢ is decreased), the DNO
approach does not provide results of the same quality.

Relative Error versus N Relative Error versus &

Relative Error
Relative Error

0 2 4 6 ] 10 12 14 16 102 107

N €

(a) Error in ITIO formulation versus per-  (b) Error in IIO formulation versus per-
turbation order, N. turbation size, €.

Fi1G. 4. Plot of relative error with five choices of N = 0,4,8,12,16 for a nearly resonant
configuration using the I10 formulation.

Relative Error versus N ) Relative Error versus &
10" T T T T T T 10 T i
s —2
B
o PR
5 v 5
s =
® ©
= =
5 b=
< <
e e
& o & ot
102 L L L L L L L 102
0 2 4 6 8 10 12 14 16 102 10"
N 5
(a) Error in DNO formulation versus per-  (b) Error in DNO formulation versus per-
turbation order, N. turbation size, €.

Fic. 5. Plot of relative error with five choices of N = 0,4,8,12,16 for a nearly resonant
configuration using the DNO formulation.

To close, we chose 7 = 10716 in (7.4) resulting in § = 1 — 10715, After running
simulations with the ITO method, (3.8), we display our results in Figures 6(a) and 6(b).
We revisited these computations with our DNO approach [37] and show our results in
Figures 7(a) and 7(b). We see in this resonant (to machine precision) configuration,
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the ITO again displays a spectral rate of convergence as N is refined (improving as
is decreased), while the DNO approach delivers completely unacceptable results.

Relative Error versus N Relative Error versus e
N=0 3

Relative Error
Relative Error

1071

12 1012

1 L L L L L L L i 101
0 2 4 6

10?2 107

N €

(a) Error in ITIO formulation versus per-  (b) Error in IIO formulation versus per-
turbation order, N. turbation size, €.

FiG. 6. Plot of relative error with five choices of N = 0,4,8,12,16 for a resonant configuration
using the 110 formulation.

Relative Error versus N Relative Error versus

Relative Error
Relative Error

2 4 6 8 10 12 14 16 107 107

N 5

(a) Error in DNO formulation versus per-  (b) Error in DNO formulation versus per-
turbation order, N. turbation size, e.

Fic. 7. Plot of relative error with five choices of N = 0,4,8,12,16 for a resonant configuration
using the DNO formulation.

7.4. Simulation of Nanorods. We close by returning to the problem of scatter-
ing of plane-wave incident radiation u"® = exp(iax —iy“z) by a nanorod (which de-
mands the Dirichlet and Neumann conditions, (2.1¢) and (2.1d), respectively). More
specifically, we considered metallic nanorods housed in a dielectric with outer inter-
face shaped by r = g+ g(0) = g+ef(0). We illuminated this structure over a range of
incident wavelengths Apin < A < Apax and perturbation sizes enin < € < €max, and
computed the magnitudes of the reflected and transmitted surface currents, u and
w. These we term the “Reflection Map” and “Transmission Map” in analogy with
similar quantities of interest in the study of metallic gratings [38, 23] Our study of
the Frohlich condition, (1.1), indicates that there should be a sizable enhancement in
each at an LSPR. In the case of a nanorod with a perfectly circular cross—section we
computed the value as the Ap satisfying (1.1), and in subsequent plots this is depicted
by a dashed red line.
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649 Using the TFE approach to compute the I10s, we studied the periodic sinusoidal
650 profile

651 (7.5) f(6) = cos(46),

see Figure 8. With this we considered the following physical configuration

Fic. 8. Plot of the cross—section of a metallic nanorod (occupying S¥) shaped by r =
g+ ecos(40) (e = g/5) housed in a dielectric (occupying S*) under plane—wave illumination with
wavenumber (a, —y*). The dash—dot blue line depicts the unperturbed geometry, the circle r = g.

652
653 G =0.025, R™ =g/10, R™W =107, n"=nVecuum nv_pie
(54 Amin = 0.300,  Amax = 0.800, emin =0, Emax = §/5,

656 so that a silver (Ag) nanorod sits in vacuum, with numerical parameters
657 Ny =201, N,=201, Ny=32, N,=16, N =8.

658 Plots of the Reflection Map and Transmission Map are displayed in Figure 9. In
659 Figure 10 we show the final slice (¢ = epax) of each of these, together with the
Frohlich value of the LSPR, (1.1), as a dashed red line. Here we see how even a

|Qul» versus A and €

0? |Sw|, versus A and e
5

05 055 06 06 07 075 08 05 085 06 08 07 075 08

Fi1c. 9. Reflection Map and Transmission Map for a silver nanorod shaped by the sinusoidal
profile, (7.5), in vacuum. Here emaz = §/5, § = 0.025, Apmin = 0.300, and Amaz = 0.800.
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|Qu|, and |Sw|, versus A

——lQul,

IS, |
——A
C

|Quls and |Swl>

Fic. 10. Final Slice of Reflection and Transmission Maps at € = €maax for a silver nanorod
shaped by the analytic profile, (7.5), in vacuum.

660
661 relatively moderate value of the deformation parameter (one fifth of the rod radius)

662 can produce a sizable shift (about 40 nm from roughly 340 nm to 380 nm) in the
663 LSPR location which our novel approach can accurately capture.

664 8. Conclusion. In this paper we have investigated a High—Order Perturbation
665 of Surfaces (HOPS) algorithm for the numerical simulation of a novel formulation
666 of the problem of scattering of linear waves by a nanorod in terms of Impedance—
667 Impedance Operators (IIOs). Not only does our new methodology enjoy the same
668 advantages of our previous implementation in terms of Dirichlet—-Neumann Opera-
669 tors (e.g., surface formulation, exact enforcement of Sommerfeld radiation conditions,
670 High-Order Spectral accuracy), but it is also immune to the Dirichlet eigenvalues
671  which cause artificial singularities in our previous approach. In addition, our new
672 formulation enables us to establish the existence, uniqueness, and analyticity of solu-
673  tions to this problem, which we have taken pains to deliver. Finally, we have given a
674 detailed description of our algorithm, and not only validated it but also demonstrated
675 its efficiency, fidelity, and high—order accuracy.

676 The authors would like to thank P. Monk for an extensive correspondence on the
677 conditions (3.2) and (3.3) which was very useful to the authors.

678 Appendix A. Existence, Uniqueness, and Regularity Theory.

679 In this appendix we state, and briefly prove, two existence, uniqueness, and reg-
680 ularity results for solutions of Helmholtz problems on simple interior and exterior
681 domains.

682 A.1. The Exterior Problem. We begin by considering the Helmholtz problem
683  posed on the exterior of a cylinder. For this we define

684 QW .={g<r<RW} T:={r=3}), ¥:={r=RW},
685 where X is an artificial boundary. With these we can state our result.

636 THEOREM A.l. Given an integer s > 0, if F € H*~Y(QW), U € H* (I,
687 K € HS*I/Q(E), and Y is at most an order—one Fourier multiplier, there exists a
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unique solution of

(A.la) Au+ eWE2u = F, in QW
(A.1Db) —71"0u+Yu="U, at T,
(A.1c) Ou+TW [u] = K, at 3.

where ™) € RY, satisfying
(A.2) lull govs < CE (I F N groms + Ul gre-rs2 + 1K | go-/2}

where Cé“) > 0 is a universal constant, provided that

wl [ (£)-)s} o0

Proof. Following [15, 7, 30] we consider the weak formulation

AW (u, ¢) + D (u, ¢) + £ (u, ¢) = L™ (9),

where

AW (y, ¢) = Vu-Vé+ugpdV
Qw)

—Re{/z(ﬁru)qb ds} +Re{/F ((f) u) ¢ds}

D (u, ¢) ;=—<e<“>k§+1)/ ug dv,

Q)

£ (y, ) = —Im{/z(ﬁru)gé ds} +Im{/F ((;) u) ¢ds},
£ () ::—/m) F@dV+/EK$ds—/F (Z)(bds.

In order to resolve the uniqueness of solutions, we study this formulation when F =
U = K =0 and prove that u = 0. For this we choose ¢ = u and recall that ¢(*) € R,
so that it is clear that the imaginary part of the weak formulation is simply &),
Enforcing that this be zero demands

o fimea -t [ () )

Rellich’s Lemma [6] tells us that « = 0 provided that

/(&u)ﬂ ds <0, R™ — oo,
)

so that a condition for uniqueness of solutions is (A.3).

Regarding existence of solutions and the estimate (A.2), we follow [15, 7, 30] and
note that, for V.= H'(Q™), A™ is a continuous, sesquilinear form from V x V to
C which induces a bounded operator A : V — V' (see Lemma 2.1.38 of [41]). While
the first two terms are standard the fourth requires that Y be at most a bounded,
order—one Fourier multiplier. The third can be addressed by noting that

J@owidas= [ (<10u) 3,
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c.f., (2.3b), and using the fact that T(*) is an order-one Fourier multiplier [15, 7, 30].
Furthermore, A is V—elliptic [41], i.e., there is a v > 0 such that

Re {A(v,v)} <7 o] .

The first two terms are the V-norm causing no problem. The second two terms

wed [ ((£) o) a0 nef [ (-ron)aas) <o

However, as T(") = —H;(k;“R(“))/Hp(k“R(“)) and Shen and Wang [42] have shown
that

Re {—T(“)} <0,

we have the V-ellipticity of A. By the Lax-Milgram Lemma (see Lemma 2.1.51 of
[41]) the operator A satisfies

1 1
HV&V’ =

A !

It is not difficult to show that D and £ induce bounded operators D and E from
L2(Q™) to L2(Q™) which are compact as V embeds compactly into L?(Q") [41].
Fredholm’s theory [15, 7, 30] delivers a solution with the appropriate estimates pro-
vided that the solution is unique (which we have just established). |

A.2. The Interior Problem. The other Helmholtz problem which arises in our
developments is stated on the interior of a cylinder. Here we denote

QW .= {r<g}, I:={r=g},

and we can now state our result.

THEOREM A.2. Given an integer s > 0, if F € H~1(QW) W ¢ H*~Y(T), Z
is at most an order—one Fourier multiplier, there exists a unique bounded solution of

Ada Aw + e k2w = F, in Q)
0
(A.4b) V0w — Zw =W, at T.

where Im {e(“’)} >0, satisfying
(A.5) )l gresr < CE{NE N prees + Wl gga-s2}

where Céw) > 0 is a universal constant, provided that

wf[((£))os)

Proof. As before, we imitate [15, 7, 30] and study the following weak formulation

A (w, ) + D (w, ¢) + Dy (w, §) + €@ (w, ¢) = L) (¢),
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where,

AW (w,6) = [ Vw-Vé+wsdV — Re / ((f>w>¢ds ,
F.q

Qw)

D) (w, ¢) = — (Re {6(“’)} kg + 1) / we dV,

Dy (w, ¢) == — (T { )} 12) /Q b,

et n{] ((2) )5}

L) (¢) = Go dv + / Ewa ds.
Qw) rT

As before, to study uniqueness we consider G = W = 0 and establish that w = 0. If
we choose ¢ = w then it is clear that the imaginary part of the weak formulation is
simply portions of Déw) + £() and enforcing that this be zero demands

(Im{e(w)} k;g) /Q(w) lw|? dV = f/r <<Im{7_1w} Z> w> w ds.

If we consider Im{e(w)} > 0, then [, |w|2 dV < 0, implies w = 0 if (A.6) is
verified.

The existence of solutions and the estimate (A.5) are proven in analogous fashion
to Theorem A.1 and we leave the details to the motivated reader. ]
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