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Global sensitivity analysis aims at quantifying and ranking the relative contribution of all the uncertain inputs of a
mathematical model that impact the uncertainty in the output of that model, for any input-output mapping. Motivated
by the limitations of the well-established Sobol’ indices which are variance-based, there has been an interest in the
development of non-moment-based global sensitivity metrics. This paper presents two complementary classes of metrics
(one of which is a generalization of an already existing metric in the literature) which are based on the statistical
distances between probability distributions rather than statistical moments. To alleviate the large computational cost
associated with Monte Carlo sampling of the input-output model to estimate probability distributions, polynomial
chaos surrogate models are proposed to be used. The surrogate models in conjunction with sparse quadrature-based
rules, such as conjugate unscented transforms, permit efficient calculation of the proposed global sensitivity measures.
Three benchmark sensitivity analysis examples are used to illustrate the proposed approach.
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1. INTRODUCTION

In various applications of science, engineering, finance and management we frequently come across functional rela-
tionships of the form

Y = g(X), (1)

where X ∈ Rn is a vector of n inputs (i.e., X = [X1, X2, · · · , Xn]T ), Y ∈ R is a scalar output, and g : X → Y
is a function which maps the inputs to the output. The nature of g largely varies based on the fiel of study and
implementation of the physics of the problem. For example, g could be the output from a dynamic system simulation,
the output from a finit element model (FEM) model, a weather model simulation or even the output of a computer
code emulating complex systems. It is also interesting to note that the inputs X could represent a wide range of
factors. For example, X could represent a simple parameter of the model, an independent input variable, a trigger
indicating the selection of a particular submodel from a finit dictionary of models, or could even decide on the
structure of a model [1]. For any of the above-mentioned cases, it is often desirable to know which of the input
parameters (X) are most important, or which parameters can be said to be most influentia (with respect to some
quantitative metric) in determining the nature of the output Y . All analyses performed to help answer that particular
question fall under the domain of a branch of study referred to as sensitivity analysis (SA).

Referring to George Box’s famous quote “All models are wrong but some are useful,” it is prudent to realize
that models are only an approximation of the true physical process and are, hence, invariably plagued by uncertain-
ties. These uncertainties could be due to variations in the parameters of the model, variations in the variables that
characterize a stochastic input or disturbance, or variations due to measurement errors. It is assumed in our studies
that these uncertainties are reflecte in the inputs (X). It is common practice in SA to consider the inputs as random
variables or variables with finit support [1]. With the said available information about the inputs, the variation in
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the output due to the stochastic nature of the inputs is investigated. A critical assumption is made about the nature of
interdependence of the inputs. For the work in this article, it is universally assumed that all contributing inputs are
independent of each other. The objective is to quantitatively map the variation in output to the contributing inputs.

An SA study of models can provide valuable information to users. For example, an investment portfolio manager
could determine the magnitude of risk of return from individual investments based on the uncertainties and volatility
of the portfolio inputs and make decisions accordingly. A weather station could determine which uncertain variable
contributes most towards uncertainties in outputs leading to extreme weather events (such as storms or severe precip-
itation) and instruct more data collection to reduce uncertainties in that particular variable. Both the aforementioned
scenarios are examples of reliability-oriented SA which are related to events occurring in the tails of the PDFs of
the outputs of interest. In this paper, we look at SA in the context of uncertainty contribution of inputs to the global
uncertainty in the output (instead of just the tails). For example, an operations research engineer could determine
which input parameters are least significan for a particular cost function, and fi them at nominal values while solv-
ing a multivariate optimization problem with reduced model dimensionality (and hence save computational time).
Generally, the benefit of SA are manifold and SA has therefore been an active area of research for many years (see
[1–7] and references therein).

Methods for SA have been largely classifie into two main categories: local sensitivity analysis (LSA) and global
sensitivity analysis (GSA). LSA techniques provide information regarding the effect of inputs on the output only at
a specifi location in the input space. These methods are primarily based on the partial derivatives of the output with
respect to the inputs [i.e., (∂Y /∂Xi)(X = x)]. However, LSA does not provide adequate information about the
nature of variation of Y when the input location is changed or when the inputs are varied simultaneously; i.e., the
LSA metrics do not consider the effect of a joint variation of the inputs over the entire input space. This shortcoming
has been noted in the literature (see [8]) and has thus motivated the development of GSA techniques. GSA methods
observe outputs after considering the variation of inputs over the entire input space to determine quantitative measures.
These measures are assigned to each input. The input factors can then be ranked in terms of importance based on these
measures to determine which factors are most relevant or are consequently irrelevant. A brief review of the available
GSA methods and metrics can be found in a recent review article (see [5]).

Usually determining global sensitivity analysis (GSA) metrics for large number of inputs becomes computation-
ally very expensive. Therefore, as a preliminary test, screening methods such as the method of Morris (see [9]) are
adopted to reduce the dimensionality of the relevant inputs. The methods of GSA are then subsequently applied to
the lower-dimensional space. Consistent with that paradigm, the methods proposed in this article are also addressed
at estimating relative importance of input variables in the lower-dimensional space.

One of the most popular methods for GSA are so-called variance-based methods. In these methods, the idea
is to determine the total variance of the output due to the uncertainty in the inputs and to determine the fractional
contribution of that variance from each input factor and the combination of the input factors. To this end, quantitative
measures such as the Sobol’ indices (Si) and total Sobol’ indices (STi) have been defined Details about these indices
can be found in [8]. However, it has also been recognized in the literature that ranking importance of input variables
based on their variance contribution relies on the fact that the variability in the output Y is completely define via the
second moment which is often untrue for nonlinear transformations (see [10]). Therefore, it might be inadequate to
use variance-based methods to determine relative importance of inputs if moments higher than the second-order ones
are significan in the output. Hence, it is recommended that a metric which is dependent on the output distribution,
instead of particular moments of the output, would better serve the decision maker [11]. Note that the failure to
capture the higher-order influenc between the inputs and the output is not the only identifie limitation of the Sobol’
indices. The indices do not consider the stochastic dependence of inputs and evaluating the indices is computationally
expensive. Although addressing stochastic dependence of the inputs in the proposed metrics of the paper lies beyond
the scope of this work, an efficien process to evaluate them is presented.

With respect to non-moment-based GSA metrics, some work can already be found in the literature. Chun et al. in
[12] described a metric which was based on the output cumulative distribution functions (CDFs) from a base case and
a sensitivity case where the base case considered the standard output CDF while the sensitivity case considered the
output CDF when either the input distribution was changed, uncertainty in the inputs were eliminated, or the uncertain
input domain was changed. The statistical distance between the two CDFs was define as the metric. Another GSA
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measure was proposed by Park and Ahn in [13] where the Kullback-Leibler (KL) divergence between the standard
output probability density function (PDF) and the sensitivity case output PDF was used as the metric. However, it
was shown that the KL divergence metric was not define under circumstances where the PDFs had different finit
supports [14]. Borgonovo in [11] presented a new measure δi based on the PDF of the output Y and the conditional
output Y |Xi. The metric did not require a sensitivity case like [12,13] and was standalone. Finally, motivated by [11],
Gamboa et al. in [15] and Da Veiga in [6] presented a similar GSA metrics based on the Cramér–von Mises distance
and other dissimilarity measures, respectively.

Da Veiga [6] and Rahman [7] synthesize sensitivity indices based on the Csiszár f-divergence which subsumes
many standard dissimilarity measures such as Kullback-Leibler, Hellinger, and total variation distance. Da Veiga [6]
notes that the f-divergence-based sensitivity indices are invariant under any invertible transformation of the random
input variables and are conducive to sensitivity analysis for multi-input multi-output stochastic models. Da Veiga [6]
introduces a new sensitivity index based on distance correlation which easily generalizes for the multivariate case and
another based on the Hilbert-Schmidt independence criterion. Numerous benchmark problems are used to compare
the ranking ability of the proposed metrics in relation to traditional ones such as the Sobol’ first-orde , Sobol’ total,
and total variation.

Recognizing that the computational cost of evaluating the f-sensitivity metric is high, Rahman [7] proposed
using surrogate approximation using polynomial dimensional decomposition (PDD). The ability of PDD to develop
surrogate models for dependent inputs is the motivation for its use in the development of surrogate models relative to
polynomial chaos, or stochastic collocation.

Inspired by the above-mentioned articles, this paper presents two types of non-moment-based GSA measures
dependent on the PDF of the output and the conditional output as a generalization of [6,11,15]. The two types of
measures that are presented in this paper are complementary to each other. For each type of measure, several subtypes
of metrics are also define depending on the choice of statistical distances. All of these metrics are independent of
hypothesizing a sensitivity case and are standalone (similar to [6,11,15]). The paper also investigates the efficien
evaluation of the newly define metrics. The efficien y is improved in two stages. Since Monte Carlo (MC) sampling
is used to determine output PDFs, a high-fidelit surrogate model is developed to increase sampling speed and func-
tion evaluation time. The surrogate model is developed using polynomial chaos (PC), a well established probabilistic
modeling technique. The idea of using PC to do GSA is not new and has been investigated in, e.g., [16–18]. How-
ever, those articles investigated variance-based methods (and not moment-independent algorithms). Other modeling
tools to increase efficien y in evaluating moment-independent GSA have also been studied (see [19]), but to the au-
thors’ best knowledge, it is the firs time PC is being used to evaluate non-moment-based GSA. To determine the
said metrics, it is also required to evaluate certain numerical integrals. These integrals are calculated using efficien
numerical integration techniques such as Gauss quadrature rules and conjugate unscented transform rules [20]. The
proposed approach is numerically illustrated on three benchmark GSA problems (two stationary problems and one
time-dependent problem). Comparisons are also made to the total Sobol’ indices (STi).

The rest of the paper is organized in the following way. In Section 2, we review measures that characterize dispar-
ity between probability density functions and present the definition of the proposed class of metrics. In Section 3, we
summarize the basics of polynomial chaos and sigma-point-based numerical integration. In Section 4, we present the
results of the proposed methods on three illustrative examples before finishin with concluding remarks in Section 5.

2. MOMENT-INDEPENDENT METRICS
Two different classes of metrics are proposed in this section. Both these classes are based on observing the disparity
between the output PDF of the function g(X) and the conditional output PDF evaluated at certain specifi locations
over the input subspace over which the output PDF is conditioned. These disparities are then averaged over that
subspace, to derive the fina value of the metrics.

2.1 Statistical Distance Measures
In probability theory, the disparity between two probability measures is often determined using certain metrics called
statistical distances. These distances present a quantitative value as an answer to questions such as “How different are
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any two probability distributions?” The larger the values of the distance, the more distinct are the PDFs (i.e., the PDFs
are further away from each other) and vice versa. To measure disparity, there are several types of distances available,
and each type of distance has its advantages and disadvantages. The quantitative value (of distance) changes with the
choice of statistical distance used. However, they retain certain basic properties such as non-negativity, symmetry,
and positive definiteness A list of important or popular statistical distances (D) is presented in Table 1. The firs
and second columns present the name and a convenient abbreviation (used in the rest of the paper) of the different
statistical distances, respectively. The fina column presents the mathematical expression, where y is used to represent
a realization of the random variable Y , pY (y), and qY (y) are two distinct PDFs over Y , PY (y), and QY (y) are the
corresponding CDFs, and ΩY is the support of Y (i.e., Y ∈ ΩY ). See [21] for details regarding the Wasserstein,
Hellinger, total variation, and Kolmogorov distance, [22] for details regarding the Bhattacharya distance, and [23] for
details regarding the Cramér–von Mises distance.

Henceforth in this article, DA(p, q) is used to represent the statistical distance with abbreviation A. For example,
DW would refer to the Wasserstein distance.

To illustrate the use of a statistical distance, consider three distinct PDFs pY (y), qY (y), and rY (y) over the same
variable Y in Fig. 1. It is intuitive to us that qY (y) is closer to pY (y) as compared to rY (y). This fact is quantifie via
Ds. For example, by calculating the Wasserstein distance between the PDFs we get

DW (p, q) = 0.2000 and DW (p, r) = 0.9991. (2)

TABLE 1: Statistical distances and their mathematical expressions

Statistical distance (D) Abbreviation Description
Wasserstein W

∫
Ωy
|PY (y)−QY (y)|dy

Hellinger H
[
2
(
1− ∫

Ωy

√
pY (y)qY (y)dy

)](1/2)

Total Variation T 0.5
∫
Ωy
|pY (y)− qY (y)|dy

Kolmogorov K supy∈Ωy
|PY (y)−QY (y)|

Bhattacharya B −log
(∫

Ωy

√
pY (y)qY (y)dy

)

Cramér–von Mises C
[∫

Ωy
|PY (y)−QY (y)|2dy

](1/2)

FIG. 1: Probability density functions pY (y), qY (y), and rY (y)
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In order to understand the variation among the different statistical measures, consider the following exercise.
Figure 2 shows two identical uniform distributions [pY (y) and qY (y)] with their supports separated by a value of α.
For each statistical distance D, we investigate the dependence on the parameter α. The results are shown in Fig. 3.

Figure 3 helps highlight some of the properties of these measures. We see that the metrics DH , DT , and DK

saturate for values of α greater than 1. This is the region in the y space where pY (y) and qY (y) have domains dis-
tinctly separate with no overlap. Although moving the PDFs further apart increases the disparity between them the
effect is not reflecte in the Hellinger distance DH , the total variation distance DT , and the Kolmogorov distance
DK . Consequently, beyond a certain point, distinguishing between PDFs using DH , DT , and DK is infeasible. For
this particular case, we see a linear growth for DT and DK before saturation since the example considers only uni-
form distributions. However, since DH involves nonlinear mapping of the PDFs, we get a nonlinear growth of the
distance with α. The Bhattacharya distance DB is an interesting metric since it is only define for PDFs which have
overlapping domains and does not exist if the domains do not intersect (since the product of the PDFs yields 0 and
evaluation of the metric requires taking a logarithm of the product). However, it increases exponentially with α until
the domains separate. A feature of this metric is that it has a higher penalty for PDFs which are further apart than
the other measures. Hence, the DB is useful for distinguishing two PDFs which are almost equally far from a third
PDF (unlike DH , DT , and DK). It should also be pointed out that in this paper, since the distances are being used

FIG. 2: Probability density functions pY (y) and qY (y) (uniform distributions)

FIG. 3: Variation of D with α for uniform distributions
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to quantify the disparity between output PDFs and conditional output PDFs, there is always an overlap in domain
between them. Hence, the DB always remains relevant and DH , DT , and DK face the saturation issue only in the
limit. The metrics DW and DC belong to a class of Ds of the form

D(p, q) =

[∫

Ωy

|PY (y)−QY (y)|rdy

]1/r

, (3)

which is the rth norm of the difference between the CDFs. The choice r = 1 yields DW while r = 2 yields DC . The
infinit norm (i.e., r → ∞) leads to DK . Values of r between 2 and∞ yield distances with properties ranging from
DK to DC .

Although it appears thatDW varies in a manner identical toDT andDK until α = 1, the result is only an artifact
of the chosen example of uniform distributions. Hence, we present a similar exercise with two Gaussian distributions
[pY (y) and qY (y)] in Fig. 4 whose means are now separated by α. The variation of D with α is shown in Fig. 5.

It is evident from Fig. 5 that DW is no longer identical to DT and DK and is therefore dependent on the distri-
butions. DH , DT , and DK , however, still show saturation in the limit; i.e., sensitivity to change in the mean distance
goes to zero asymptotically. The growth of DW is linear in both the exercises since we do not consider a change in

FIG. 4: Probability density functions pY (y) and qY (y) (normal distributions)

FIG. 5: Variation of D with α for normal distributions
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the shape of the distributions. If the shape of the distributions changes with α, DW would no longer grow linearly.
DB once again increases exponentially and returns very high values of disparity once pY (y) and qY (y) move apart.
Finally, similar to the previous example, note that varying r from 1 to∞ moves the distance curves from DW (dark
blue) to DK (violet).

It is interesting to observe that for both the aforementioned examples, DT and DK yield identical results. This
is once again an artifact of the chosen distributions and is not a property. This fact is illustrated with the following
example (adopted from [24]): Consider two more distributions,

pY (y) = N (0, 1) and (4)

qY (y) = 0.7N (0, 1) + 0.15N (2.35, 1) + 0.15N (−2.35, 1), (5)

where N (a, b) represents the Gaussian distribution with mean a and variance b. It can be shown that for these two
PDFs illustrated in Fig. 6, the metrics are

DT (p, q) = 0.2 and DK(p, q) = 0.1. (6)

Although this paper presents some of the basic properties of Ds, a more detailed description about their proper-
ties, merits, and demerits can be found in [21–25]. We present at least six different measures for GSA. The measures
are different based on the nature of their penalty with disparity, whether the measures saturate and computational
effort is required to compute them. The user is provided a choice to select any one of the listed measures as per
requirement and convenience.

The Ds can now be used to defin certain global sensitivity metrics by comparing disparities between output
PDFs and conditional output PDFs. Depending on the nature of conditional PDFs, the metrics are divided into two
classes. Class 1 considers the conditional output PDF fY |Xi

(y, xi) which is the PDF of the output Y for a given fi ed
input value of Xi = xi. Class 2, on the other hand, considers the complementary conditional PDF fY |X̃i

(y, X̃i)
which is the PDF of the output Y given all fi ed values of Xj = xj , for all j = 1, ..., n with j 6= i, and where
we used the notation X̃i = [X1, ..., Xj , ..., Xn]T for all j 6= i. Details about the metrics will be elaborated in the
following subsections.

2.2 Class 1 Metrics
Consider the averaged statistical distance over the input space ΩXi , define as

1Di :=
∫

ΩXi

D(fY (y), fY |Xi
(y, xi))fXi(xi)dxi, (7)

FIG. 6: Probability density functions pY (y) and qY (y) to show DT -DK disparity
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where ΩXi represents the sample space of the input random variable Xi. In Eq. (7), the output PDF fY is define as

fY (y) :=
∫

ΩX

fX,Y (x, y)dx, (8)

withΩX the sample space ofX and fX,Y (x, y) the joint input-output PDF, and the conditional PDF fY |Xi
is define

as
fY |Xi

(y, xi) :=
∫

ΩX̃i

fY,X̃i|Xi
(x, y)dx̃i, (9)

with ΩX̃i
the sample space of X̃i and fY,X̃i|Xi

(x, y) the joint input-output PDF for a given fi ed value of Xi.
The distance D(fY (y), fY |Xi

(y, xi)) in Eq. (7) quantifie the disparity between the output PDF and the output
PDF conditioned on a single input parameter. If the particular input Xi is unimportant, it would contribute minimally
to the marginalized output PDF, which would mean fY (y) and fY |Xi

(y, xi) are in close proximity, resulting in low
values of D. In contrast, if the input parameter Xi is indeed influential it would contribute significantl to the output
PDF. This means that the conditioned PDF fY |Xi

(y, xi) would be far from the marginalized PDF fY (y) leading to
higher values ofD. Hence, on observing what the values ofD are on average, one can estimate the relative importance
of the inputs.

Considering that the values of D can vary largely depending on the chosen distance measure, a normalization of
1Di is done to derive the fina definitio of the moment-independent sensitivity index of Class 1, denoted by 1NS,
and we defin

1NSi :=
1Di∑n

j=1
1Dj

. (10)

The quantity 1NSi varies inside the interval [0, 1] and can now be used to rank the input parameters. The larger the
values of 1NSi, the more significan is the input variable Xi. It should be noted that the Borgonovo metric δi from
[11] is a specifi instance of 1Di where the statistical distance is chosen as the total variation distance DT . Similarly,
the Gamboa distance in [15] is a specifi instance of 1Di where the statistical distance is the Cramér–von Mises
distance DC .

A value of 1NSi = 0 implies 1Di = 0. Observing Eq. (7), it is evident that this is possible only when the product
of D and fXi is 0 everywhere in ΩXi , since D and fXi are both non-negative quantities. For the subspace where
fXi = 0, it is trivial to note that the output is independent of Xi since Xi does not instance. For the subspace where
D = 0, the implication is that the PDFs fY (y) and fY |Xi

(y, xi) are identical. Identical output and conditional output
PDFs point to the fact that fixin Xi has no impact on the output, suggesting g(X) is independent of Xi. Hence, a
value of 1NSi = 0 or 1Di = 0 immediately suggests that Y is independent of Xi. Similarly, a value of 1NSi = 1
implies 1Dj = 0 for all j 6= i. This indicates that g(X) is independent of all Xj for j 6= i and is solely dependent on
Xi.

2.3 Class 2 Metrics

Similar to Class 1 metrics, consider the averaged statistical distance over the space ΩX̃i
, define as

2Di :=
∫

ΩX̃i

D(fY (y), fY |X̃i
(y, x̃i))fX̃i

(x̃i)dx̃i, (11)

where fY |X̃i
(y, x̃i) is the output PDF for given fi ed values for X̃i, define as

fY |X̃i
(y, x̃i) =

∫

ΩXi

fY,Xi|X̃i
(x, y)dxi, (12)

with fY,Xi|X̃i
(x, y) the joint input-output PDF for given fi ed values for Xi.
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If Xi is an important input variable, then the conditioned PDF fY |X̃i
(y, x̃i) would be close to the output PDF

fY (y) since most of the statistics of Y has been contributed by Xi. This means that D would predict a low disparity
value for the said PDFs. Averaging all the Ds over the input subspace ΩX̃i

would now indicate how close the output
and the conditioned output PDFs are on average. Similarly, for irrelevant inputs, 2Di would give a higher number.
Once again, the 2Di are normalized to obtain the moment-independent sensitivity index of Class 2, denoted by 2NS,
define as

2NSi :=
2Di∑n

j=1
2Dj

. (13)

The quantity 2NSi also varies inside the interval [0, 1]. However, contrary to 1NSi, important variables have values
close to 0 while irrelevant variables have values closer to 1.

Using arguments similar to the previous index, a value of 2NSi = 0 implies that the output and the conditional
output PDFs fY (y) and fY |X̃i

(y, x̃i) are identical. This is possible only if the entire variation in the output is derived
from the variation in Xi and fixin X̃i has no impact on Y . Hence, a value of 2NSi = 0 or 2Di = 0 immediately
suggests that Y is only dependent on Xi. A value of 2NSi = 1 indicates that the sum of all 2Dj for j 6= i is 0. This
is only possible if g(X) is only dependent on Xj where j 6= i. As a result, 2NSi = 1 implies that the output is
independent of Xi.

2.4 Specifi Relations between DT

i , D
K

i , and DH

i

It is well known that the total variation distance, the Kolmogorov distance, and the Hellinger distance can be described
by the following linear relations; see [21]:

DK(P, Q) ≤ DT (P, Q), (14)

DT (P, Q) ≤
√
2DH(P,Q). (15)

Based on these inequalities, we can establish similar inequalities for the Di metric. Following the definitio of
Di, it is evident that

DK

i ≤ DT

i , (16)

and
DT

i ≤
√
2DH

i . (17)

Note that the relationships hold for both classes of metrics. Results obtained in the numerical examples (presented
later) are seen to be consistent with the inequalities (16) and (17).

3. EFFICIENT EVALUATION OF MOMENT-INDEPENDENT SENSITIVITY INDICES

We often encounter problems in engineering where a single function evaluation is itself computationally very ex-
pensive. For those functions, deriving the aforementioned GSA measures can become impractical, especially when
output PDFs and conditioned output PDFs need evaluation. Either analytical expressions for these PDFs do not exist,
or they cannot be evaluated, and hence they must be approximated from a large number of sample realizations. This
makes the calculation of the NS metrics through traditional techniques, such as the Monte Carlo (MC) method, ex-
tremely difficult This section presents methods to reduce the computational burden and provide tractable alternatives
to closely approximate the NS metrics.

3.1 Polynomial Chaos Based Surrogate Model

Polynomial chaos is a probabilistic modeling tool to approximate a stochastic function with a polynomial function
in terms of random variables. First introduced by Norbert Wiener in [26] to expand a Gaussian process in terms of
an infinit series involving Hermite polynomials, PC methods have subsequently been investigated in [27–29]. As
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an uncertainty quantificatio tool, PC has been used extensively in the literature to determine statistics of random
processes as well as to develop surrogate models for complex stochastic systems (static as well as dynamic). In this
paper, we determine a surrogate model Ŷ for the true system Y := g(X) such that instead of sampling Y directly,
which can be expensive, we can sample Ŷ , relatively cheaply.

From PC theory, it is well known that a stochastic function Y can be written as an infinit polynomial series
expansion in the form

Y =
∞∑

i=0

ρiΦi(X), (18)

where Φi is the ith element of a specifi set of orthogonal basis functions in terms of X , and ρi ∈ R are the
corresponding coefficients The shape of the basis functions Φi is determined by the probability measure of X . The
orthogonal bases required for some of the popular random variable types can be found in the Wiener-Askey scheme;
see [29]. For all other distributions, Gram-Schmidt orthogonalization can be used to determine a set of orthogonal
polynomial functions corresponding to the custom distribution. Equation (18) is typically truncated to a finit number
of terms as an approximation to yield the surrogate model

Y ≈ Ŷ =
N∑

i=1

ρ̂iΦi(X). (19)

The objective is to determine the coefficient ρ̂i of the surrogate model Ŷ so that one can have a simple model of the
true stochastic system as a polynomial function of the input stochastic variables.

Traditionally, there have been two broad category of methods to fin those coefficients namely, intrusive methods
and nonintrusive methods; see [30]. Below, we briefl review a method from each of those categories.

3.1.1 Intrusive PC

In intrusive PC, we look for coefficient which minimize the mean value of the square of the model error, i.e., the cost
function is

J =
∫

ΩX

(Y − Ŷ )2fX(x)dx. (20)

Using basic calculus of variation, recognizing that the necessary condition for the minima is given by the equation

−2
∫

ΩX

(Y − Ŷ )
∂Ŷ

∂ρ̂i
fX(x)dx = 0, (21)

where i varies from 1 to N , and citing the orthogonality property of ∂Ŷ /∂ρ̂i = Φi we get the following closed form
expression for the coefficients

ρ̂i =

∫
ΩX

g(x)ΦifX(x)dx∫
ΩX

Φ2
ifX(x)dx

. (22)

This method of evaluating the coefficient is also popularly known as the Galerkin projection method.
Although calculating the denominator of Eq. (22) is trivial, the numerator can be extremely difficul to evaluate

for generic nonlinear functions and places where g is merely a computer code. Hence, in spite of obtaining a clean
expression for the coefficient in Eq. (22), the need for the evaluation of a multivariate integral forms the most
profound limitation of this method.

3.1.2 Nonintrusive PC

In order to circumvent multidimensional integrals, the coefficient can also be determined using function evaluations
and least-squares regression. Consider the expression for the approximation error,
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e :=




Φ1(x(1)) Φ2(x(1)) · · · ΦN (x(1))
Φ1(x(2)) Φ2(x(2)) · · · ΦN (x(2))

...
... · · · ...

Φ1(x(m)) Φ2(x(m)) · · · ΦN (x(m))




︸ ︷︷ ︸
A




Ŷ1
Ŷ2
...

ŶN




︸ ︷︷ ︸
YP C

−




y(x(1))
y(x(2))

...
y(x(m))




︸ ︷︷ ︸
y

, (23)

where x(i) represents the ith sample point from a total ofm samples in the input space,A ∈ Rm×N is a matrix whose
rows represent the basis functions evaluated at x(i), y is a vector assimilated using the transformation g over x(i)

samples, and e is a vector of the approximation errors at each sample point. The coefficient YP C can be determined
by minimizing the 2-norm of e, resulting in

YP C = (AT A)−1AT y, (24)

see [30]. Equation (24) now provides a simple expression to determine the coefficient of the PC surrogate model from
system realizations of the original function. The choice of the sample points x(i) has been studied in the literature at
great length. Choices include randomly sampling the input space, using Gauss quadrature points or smart sampling
methods to judiciously cover the input space with fewer samples; see [31]. Moreover, if the true output realizations are
corrupted by noise or disturbances, regularization methods can also be used while solving the least-squares problem
[30]. It should be noted that for linear systems, it has been shown in [32] that a nonintrusive approach can result in
the exact evaluation of the coefficient given in Eq. (22).

Irrespective of the manner in which the coefficient ρ̂i are determined, the derivation of a surrogate model that em-
ulates the true function greatly reduces computational requirements on sampling the function for subsequent analysis.
The function needs to be sampled numerous times to get accurate estimates of the output PDFs and conditional
PDFs. Since sampling the surrogate is much cheaper than sampling the true system, we now have a tractable way to
determine the computationally expensive PDFs fY (y), fY |Xi

(y, xi) and fY |X̃i
(y, x̃i) using MC methods.

3.2 Efficien Evaluation of the Expectation Integral

Expectation integrals of the form

I :=
∫

ΩX

k(x)fX(x)dx (25)

turn up in numerous applications of basic and applied sciences, ranging from quantum mechanics [33] to filterin
[20,34]. As a result, many researchers over the years have endeavored to efficientl evaluate this integral. Some of the
most popular methods used have been Monte Carlo sampling methods [35], quasi Monte Carlo methods [36], Gauss
quadrature rules [37], sparse quadrature rules [38], and conjugate unscented transform (CUT) rules [20]. In this paper,
we highlight some of these approaches and provide commentary on which method to use for the NS metrics.

In all of these methods, the integral I is approximated by a weighted sum of function evaluations,

I ≈ Î =
Nmethod∑

i=1

wik(x(i)), (26)

where x(i) are certain samples from the input space, Nmethod denotes the number of samples, and wi are specifi
weights. The aforementioned methods primarily differ in the manner by which the location of the sample points x(i)

and their corresponding weights wi are determined. The benefi of representing an integral with function evaluations
lies in the fact that sample realizations are independent of each other and parallel computing techniques can be
adopted to evaluate the system realizations simultaneously.

The objective of discussing expectation integrals has been to highlight the fact that in order to determine the
values of NS, we firs need to evaluate Eqs. (7) and (11) which are expectation integrals such as Eq. (25). The
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metric 1Di is a univariate integral while 2Di is an (n − 1)-dimensional multivariate integral. These integrals can be
approximated as weighted sums of the integrands as

1Di ≈
Nmethod∑

j=1

wjD
(
fŶ (ŷ), fŶ |Xi

(ŷ, x
(j)
i )

)
(27)

and
2Di ≈

Nmethod∑

j=1

wjD
(
fŶ (ŷ), fŶ |X̃i

(ŷ, x̃
(j)
i )

)
, (28)

where x
(j)
i is the jth sample point out of a total of Nmethod samples in the ΩXi space and x̃

(j)
i is the jth sample point

out of a total of Nmethod samples in the ΩX̃i
space. Note that y has been replaced by ŷ in the equations to represent

the surrogate model instead of the true system. In the remainder of this section, we will give a brief overview of
techniques for efficientl computing the integral in Eq. (25).

3.2.1 The Monte Carlo Sampling Method

In this method, the samples x(i) are randomly drawn from the input space ΩX based on the joint density function
fX(x). Each sample point is weighed equally leading to wi = 1/NMC, where NMC is the number of samples drawn.
The fina approximation is given by

ÎMC =
1

NMC

NMC∑

i=1

k
(
x(i)

)
. (29)

Almost sure convergence of ÎMC to I can be shown when NMC tends to infinit . Although the implementation of
MC is simple, convergence is rather slow, as the root-mean-square error decreases as 1/

√
NMC. However, it has

the advantage of being independent of the number of variables (i.e., the dimension of X). Hence, MC has been
popular for evaluating high-dimensional multivariate integrals, where other quadrature rules encounter the curse of
dimensionality [39].

3.2.2 Gauss Quadrature Rules

Gauss quadrature (GQ) is a method which relies on a polynomial approximation of the integrand in Eq. (25). For a
univariate integral, an NGQ-sample point GQ rule can accurately evaluate the integral I when the integrand can be
well approximated by a polynomial of order 2NGQ − 1. Since polynomials can approximate any continuous function
over a finit domain in the limit, increasing the value of NGQ allows GQ to approximate nonlinear integrands. The
location of the sample points and their weights are dependent on the order of the GQ rule and the weighing function
fX(x). The locations are simply given by the roots of the NGQth-order polynomial orthogonal to fX(x) while the
weights are calculated from the coefficient of the orthogonal polynomials.

GQ can also be easily extended to the multivariate case. This is done by taking the tensor product of the sample
point locations as well as the weights in each univariate direction to form an n-dimensional grid. As a result, although
it is simple to determine the grid locations and weights of GQ, it has the shortcoming of suffering from the curse of
dimensionality; i.e., when the number of integration variables become high, the total number of grid points increases
exponentially. A list of the most common distributions, their associated orthogonal polynomials, sample points, and
the weights can be found in [40].

3.2.3 Conjugate Unscented Transform

Conjugate unscented transform is a recently developed set of rules to evaluate multivariate integrals where the weight
function is either a uniform distribution or a Gaussian distribution. Similar to GQ, it is based on a polynomial approx-
imation of the integrand in Eq. (25). It leverages the multidimensional symmetry in the uniform and the Gaussian
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distribution to come up with a total number of sample points that is less than the number of sample points in a
conventional tensor product GQ grid.

Since the integral of a polynomial is simply a weighted sum of the moments of the input variables, the CUT
algorithm establishes constraints to capture a certain number of finit moments while solving for the location of the
sample points and weights. These constraints are also referred to as the moment constraint equations and solving
them yields the desired set of points and weights for varying dimensions. Depending on the order of moments to be
captured, CUT presents three algorithms: CUT4, CUT6, and CUT8, which are capable of capturing moments up to
orders 5, 7, and 9 respectively. Details about the algorithm can be found in [20]. A brief summary of the key concepts
of CUT have also been included in this paper; see Appendix A.

3.3 Remarks on the Use of MC, GQ, and CUT

Since the convergence of MC is slow and requires an enormous number of samples to evaluate Eqs. (27) and (28),
it is never used to determine Di. GQ is always used to evaluate 1Di since it is a univariate integral and GQ provides
the minimal set of points and weights to integrate a polynomial of any order for univariate integrals. For input vectors
X which have a uniform distribution or a Gaussian distribution, CUT is preferred to evaluate 2Di, considering it
requires fewer number of points than GQ. However, if the input variables have distributions which are not uniform or
Gaussian, GQ/quasi-MC/randomized QMC can be employed to evaluate 2Di. Although other sparse quadrature rules
have not been discussed in this article, they can also be used instead of GQ to calculate 2Di.

3.4 Evaluation of the Moment-Independent Sensitivity Indices

This subsection now elaborates the step by step process needed from start to finis to yield the desired NS metrics
using results from all the previous sections. A fl wchart in Fig. 7 is also presented for illustration.

The firs step involves developing the surrogate model Ŷ from the model equation Y = g(X) using PC as
described in Section 3.1.

The second step is to determine the output PDF fŶ (ŷ). This is done by sampling the input space ΩX and
evaluating the surrogate function at each of those samples. For all examples in this paper, kernel density estimation
(KDE) is used to estimate the univariate PDF. The estimate is based on the normal kernel function and is evaluated at
equally spaced ŷ values in the range of the output PDF fŶ (ŷ).

The quantities 1Di as well as 2Di are approximated by a weighted sum of Ds evaluated at strategic points
as represented by Eqs. (27) and (28). The jth sample point for 1Di is denoted by x

(j)
i . For each x

(j)
i we need

D
(
fŶ (ŷ), fŶ |Xi

(ŷ, x
(j)
i )

)
and for each D

(
fŶ (ŷ), fŶ |Xi

(ŷ, x
(j)
i )

)
we need the PDF fŶ |Xi

(
ŷ, x

(j)
i

)
. This PDF is

approximated by sampling the ΩX̃i
space, evaluating the surrogate model at the samples by keeping Xi fi ed at x

(j)
i

and finall plotting the histogram of ŷ. Similar to the output PDF, KDE is used to estimate fŶ |Xi

(
ŷ, x

(j)
i

)
from the

histogram. Each value of D obtained from fŶ |Xi

(
ŷ, x

(j)
i

)
is then stored for assimilation later.

If the user makes the choice of determining 2NSi, then we need the evaluation of 2Di. Note that the jth sample
point for 2Di is given by x̃

(j)
i . For each x̃

(j)
i we needD

(
fŶ (ŷ), fŶ |X̃i

(ŷ, x̃
(j)
i )

)
and for eachD

(
fŶ (ŷ), fŶ |X̃i

(ŷ, x̃
(j)
i )

)

we need the PDF: fŶ |X̃i

(
ŷ, x̃

(j)
i

)
. This PDF, again, is approximated by sampling the ΩXi space, evaluating the sur-

rogate model at the samples by keeping X̃i = x̃
(j)
i and using KDE to obtain fŶ |X̃i

(
ŷ, x̃

(j)
i

)
. Once again, similar to

the previous case, each value of D obtained from fŶ |X̃i

(
ŷ, x̃

(j)
i

)
is stored for assimilation later.

The penultimate step involves obtaining the weighted sum of all the stored Ds to yield 1Di and 2Di. Once 1Di

and 2Di have been determined for all i, 1NSi and 2NSi are finall determined using Eqs. (10) and (13), respectively.
At this point, it is prudent to mention that the user need not evaluate both Class 1 as well as Class 2 metrics since

they are complements of each other and provide similar information. Both classes of metrics have been developed
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FIG. 7: Flowchart depicting the procedure for evaluating NS metrics

and presented in this article for academic purposes. Either one of the metrics can be evaluated. If the choice is made
to evaluate Class 1 metrics, then 1Di needs to be calculated. Otherwise, for Class 2 metrics we only need 2Di.

Note that there exists a trade-off in the computational effort required to evaluate 1Di and 2Di. For evaluating 1Di,
the expectation integral is a 1-D integral. However, while determining the statistical distances for each fi ed value of
Xi, the evaluation of the conditional PDF fY |Xi

requires sampling an (n− 1)-D space to estimate it. For evaluating
2Di, on the other hand, the expectation integral is an (n− 1)-D integral while the estimation of the conditional PDF
fY |X̃i

requires a 1-D sampling. In the opinion of the authors, the exact computational merit of one class over another
is nontrivial and depends on a few factors. One factor is the computational effort required for function evaluation, a
second factor is the number of MC samples required for convergence of the estimation of the conditional PDFs, a
third factor is the number of quadrature points necessary to evaluate the expectation integral, and finall the number of
input parameters being ranked. Since sampling a surrogate model is rather inexpensive, we could potentially consider
the impact of function evaluations negligible. With an increase in the number of input parameters n, the quadrature
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points required to evaluate a (n − 1)-D expectation integral increases for calculating 2Di. However, the growth
in computation is compensated by the fact that the derivation of the conditional PDFs would not require a higher
number of samples since the PDFs are conditioned on X̃i and require a 1-D sampling. For 1Di, with an increase
in n, the computation required to calculate the expectation integral sees no change. However, there is an increase in
the computation required to derive the conditional PDFs which are conditioned on Xi. Consequently, the efficien y
of evaluating 1Di and 2Di entirely depends on the rates of convergence for the expectation integral and the PDF
estimation, both of which are model dependent.

4. NUMERICAL RESULTS

This section presents an illustration of the GSA measures NS on three numerical examples. The firs example is the
Ishigami function. The second example is the Sobol’ G-function with four variables and the fina example is that of a
dynamic epidemic model. For each example, NSi values are determined and compared to rank the importance of the
variables. The ranking is subsequently also compared with the variance-based measure STi.

All numerical examples were coded and simulated in MATLAB (version 9.9). Added dependencies include the
Symbolic Math Toolbox (version 8.6) and the Statistics and Machine Learning Toolbox (version 12.0).

4.1 The Ishigami Function

The Ishigami function
Y = g(X) = sin(X1) + a sin2(X2) + b(X3)4 sin(X1) (30)

is a benchmark problem for global SA algorithmsl see [2,11,12,41]. The input space of the Ishigami function is define
by the hypercube: ΩX = [−π, π]3. It is also assumed that the input variables are independent and are uniformly
distributed [i.e., fX(x) = fX1(x1)fX2(x2)fX3(x3) where fXi(xi) ∼ U([−π, π])]. Parameter values for the function
are chosen to be a = 7 and b = 0.1, similar to [41]. The objective is to calculate estimates of 1NSi and 2NSi.

A PC surrogate model is developed using the Galerkin projection method. The symbolic integrals in Eq. (22)
are solved using MATLAB and are not intractable for the Ishigami function. The basis functions chosen are that of
multivariate Legendre polynomials (as recommended by the Wiener-Askey scheme for uniformly distributed inputs)
where the multivariate bases are derived from the tensor product of univariate Legendre polynomials. The PC order
in each univariate direction is chosen to be NXi = 7. Since the fina set of bases is derived from a tensor product of
the univariate bases set, the total number of bases becomes N = NX1NX2NX3 = 73 = 343. A Galerkin projection
therefore yields 343 coefficient Y1–Y343 to complete the surrogate model:

Ŷ =
343∑

i=1

ρ̂iΦi(X1, X2, X3). (31)

To check the fidelit of the surrogate model, the output PDFs from the true model and the surrogate model [i.e.,
fY (y) and fŶ (ŷ)] are derived and compared. This is done by sampling ΩX 105 times, evaluating the true as well as
the surrogate model at those sample locations, and plotting their histograms/PDFs. Such a plot is shown in Fig. 8. It
is evident from the proximity of the PDFs in the plot that the surrogate model closely approximates the true system
(note the high fidelit of approximation at the tails of the PDF). Note that the use of a surrogate model in this example
is only for illustrative purposes since the computational cost of sampling the original Ishigami function is relatively
cheap. The benefi of using the surrogate is more applicable for examples where sampling the original model is
expensive.

In order to calculate the values of 1Di, a 30-point GQ rule is employed. Since each input random variable is
uniformly distributed, Gauss–Legendre quadrature rules are used for 1D1, 1D2, and 1D3. However, prior to determin-
ing the statistical distances, the PDFs fŶ |Xi

(ŷ, x
(j)
i ) are calculated at the GQ points x

(j)
i , j = 1, 2, ..., NGQ. This is

done by sampling the input subspace (ΩX̃i
) 105 times while keeping Xi = x

(j)
i where j represents the jth GQ node.

Figures 9(a)–9(c) present the density functions fŶ |X1

(
ŷ, x

(j)
1

)
, fŶ |X2

(
ŷ, x

(j)
2

)
, and fŶ |X3

(
ŷ, x

(j)
3

)
for each of the
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FIG. 8: Comparison of output PDFs from true and surrogate models

(a) (b)

(c)

FIG. 9: Plots showing the variation of (a) fŶ |X1

(
ŷ, x

(j)
1

)
, (b) fŶ |X2

(
ŷ, x

(j)
2

)
, and (c) fŶ |X3

(
ŷ, x

(j)
3

)
for the 30 Gauss–Legendre

nodes (Ishigami)
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30 Gauss–Legendre points, respectively. The output PDF fŶ (ŷ) has also been shown in these plots for comparison
since statistical distances between the output PDF and each of the gray plots in the figure are evaluated to determine
1Di.

The value of the moment-independent sensitivity indices 1Di for each distance measured from Table 1 can be
found in Table 2. The higher the value of the statistical distance, the further away is the conditional PDF from the
output PDF. Hence, just by observing the magnitude of 1Di we can determine the order of importance of the variables.
With that in mind, all theD measures are consistent among themselves in ranking the variables as X2, X1, and finall
X3. In order to more readily make comparisons between the measures, the 1D values are normalized to determine the
1NS metrics. These measures are listed in Table 3 along with the total Sobol’ indices STi. The total Sobol’ indices
STi were calculated using analytical expressions derived in [16].

It is now easier to compare the relative importance predicted by the 1NS metrics. It is interesting to note that the
Sobol’ indices present a different ranking (i.e., a ranking in the order of X1, followed by X2 and X3). This can be
attributed to the fact that Sobol’ does not consider any moment higher than the second moment while the 1NS metrics
are based on the complete PDFs. Hence, the Ishigami function presents a convincing case for adopting a PDF-based
GSA measure over a variance-based one (which could predict a misleading ranking of importance). Similar results
have also been presented previously in [11] where it was shown that importance ranking via δi was different than
STi. It should be pointed out that the metrics 1DT

i or 1NST
i are analogous to the Borgonovo metric δi [11].

For the Ishigami function, a study was done for the choice of a 30-point Gauss quadrature rule for the expectation
integration calculation. Experiments were repeated for 5-, 10-, 15-, 20-, 25-, 30-, and 35-point Gauss–Legendre
quadratures. For each experiment 1NS was evaluated. The evolution of the moment-independent sensitivity indices
with increasing quadrature points is illustrated in Fig. 10(a). It is evident from the plots that the NS metrics have
converged well prior to the 30-point mark motivating the choice for a 30-point GQ rule. The choice of the number
of MC samples was also determined after successive experiments. The convergence of the sensitivity indices for the
Ishigami function with respect to the number of MC samples is presented in Fig. 10(b).

Next, we present results from the evaluation of the Class 2 metrics. In order to evaluate 2Di, the CUT6 uniform
algorithm was used to generate the sample points in the two-dimensional input subspace ΩX̃i

. The algorithm yields
13 sample points and corresponding weights. For the convenience of the reader, sample points and weights for the
evaluation of 2D1 have been plotted in Fig. 11. The locations of the points are shown by the circles while the sizes of
the circles reflec the associated weight.

At each of these sample point locations, ΩX1 is sampled 105 times to determine fŶ |X̃1

(
ŷ, x̃

(j)
1

)
. The PDFs

fŶ |X̃2

(
ŷ, x̃

(j)
2

)
and fŶ |X̃3

(
ŷ, x̃

(j)
3

)
are evaluated in a similar manner and have been shown in Figs. 12(a)–12(c),

respectively.

TABLE 2: 1Di values for different D measures (Ishigami)

D measure 1D1
1D2

1D3
W 2.0114 2.3476 0.9272
H 0.4722 0.4898 0.3567
T 0.2418 0.4206 0.1938
K 0.2179 0.3858 0.0887
B 0.1191 0.1306 0.0685
C 0.5485 0.7595 0.2324

TABLE 3: 1NSi values for different D measures (Ishigami)

Variable 1NSW 1NSH 1NST 1NSK 1NSB 1NSC ST

X1 0.3805 0.3581 0.2824 0.3147 0.3742 0.3561 0.5576
X2 0.4441 0.3714 0.4913 0.5572 0.4105 0.4930 0.4424
X3 0.1754 0.2705 0.2264 0.1281 0.2152 0.1509 0.2437
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(a)

(b)

FIG. 10: Evolution of the Class 1 NS metrics with increasing (a) quadrature points and (b) number of MC samples

The dotted curve in Figs. 12(a)–12(c) is the output PDF fŶ (ŷ). The weighted average of the statistical distances
between the dotted curve and the grey curves lead us to desired values of 2Di. Depending on the type of D measure
used, we get different values of 2Di as listed in Table 4.
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FIG. 11: 2D CUT6 points and weights for uniform distributions

(a) (b)

(c)

FIG. 12: Plots showing the variation of (a) fŶ |X̃1

(
ŷ, x̃

(j)
1

)
, (b) fŶ |X̃2

(
ŷ, x̃

(j)
2

)
, and (c) fŶ |X̃3

(
ŷ, x̃

(j)
3

)
for the 13 CUT6 nodes

(Ishigami)
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TABLE 4: 2Di values for different D measures (Ishigami)

D measure 2D1
2D2

2D3
W 3.5855 1.6159 3.8016
H 0.8700 0.5733 0.9583
T 0.6369 0.3161 0.6972
K 0.5777 0.2322 0.5947
B 0.5377 0.1849 0.7053
C 1.1347 0.4688 1.1803

Since Class 2 metrics are complementary to the Class 1 metrics, one can again simply determine ranking of im-
portance by observing the individual values of 2Di. The closer the output PDF to the averaged output PDF conditioned
on the inputs X̃i, the larger the influenc of the input parameter Xi. This is in contrast to metrics of Class 1, where
an output PDF further away from the averaged output PDF conditioned on the input Xi means a large influenc of
the parameter Xi. Hence, low values of the moment-independent sensitivity index 2Di indicate a high importance of
the input parameter Xi.

The results for 2Di in Table 4 therefore are consistent with the results of 1Di. All theD measures predict the same
ranking in terms of importance: i.e., X2 followed by X1 and X3. In fact, even visually inspecting Figs. 12(a)–12(c)
we can see that the lighter shaded curves are generally most distant from the dashed curve in Figs. 12(a) and 12(c) as
compared to Fig. 12(b), which is quantitatively verifie by the 2Di values.

For easier comparison between D measures, normalized 2NSi metrics are presented in Table 5. STi have also
been included for reference and were calculated using analytical expressions derived in [16].

4.2 The G-Sobol’ Function

The second example chosen is another popular benchmark problem recognized in the literature as the Sobol’ G-
function [2,17,42,43] and is given by

Y = g(X) =
n∏

i=1

|4Xi − 2|+ ai

1+ ai
, (32)

where n represents the number of input variables, Xi are independent and uniformly distributed input variables, and
ai are certain constants. The G-function has an input domain ΩX = [0, 1]n. n is chosen to be 4 and ai is chosen in a
manner similar to [17], where

ai =
i− 1
2

. (33)

The values of ai are directly related to the relative importance of the corresponding inputs Xi. The lower the value
of ai, the more important is Xi. This function is chosen to illustrate the reliability of the proposed metrics owing
to the complexity shown by the function in terms of nonlinearity and nonsmoothness as well as its nonmonotonous
nature. In fact, it has also been documented to be a challenging test for PC as an approximation tool [17] in terms of
convergence. Hence, successfully predicting the relative importance of the input variables via the NSi metrics is a
legitimate test.

TABLE 5: 2NSi values for different D measures (Ishigami)

Variable 2NSW 2NSH 2NST 2NSK 2NSB 2NSC ST

X1 0.3983 0.3623 0.3860 0.4123 0.3766 0.4076 0.5576
X2 0.1795 0.2387 0.1915 0.1653 0.1295 0.1684 0.4424
X3 0.4223 0.3990 0.4225 0.4234 0.4940 0.4240 0.2437
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For this example as well, a PC surrogate model is developed using the Galerkin projection method since the
multivariate integrals indicated by Eq. (22) are readily solvable. Since the input variables are once again uniformly
distributed, the basis functions are dictated to be Legendre polynomials. The PC order in each univariate direction is
chosen to be NXi = 7. As the fina set of bases is derived from a tensor product of the individual univariate bases,
the total number of bases becomes N = NX1NX2NX3NX4 = 2401. Similar to the previous example, the surrogate
model is obtained as

Ŷ =
2401∑

i=1

ρ̂iΦi(X1, X2, X3, X4), (34)

where the coefficient Y1–Y2401 are determined using Galerkin projection.
Following the derivation of the surrogate model, a 30-point Gauss–Legendre quadrature rule is used to evaluate

1Di. The output PDF fŶ (ŷ) is determined by taking 104 samples from ΩX , and evaluating the surrogate model Ŷ

for each sample. The conditional PDFs [fŶ |Xi
(ŷ, x

(j)
i )] required at each of the GQ node points are also determined

by randomly sampling the input subspace (ΩX̃i
) 104 times and transforming them through the surrogate model. The

conditional PDFs are presented in Figs. 13(a)–13(d).

(a) (b)

(c) (d)

FIG. 13: Plots showing the variation of (a) fŶ |X1

(
ŷ, x

(j)
1

)
, (b) fŶ |X2

(
ŷ, x

(j)
2

)
, (c) fŶ |X3

(
ŷ, x

(j)
3

)
, and (d) fŶ |X4

(
ŷ, x

(j)
4

)
for

the 30 Gauss–Legendre nodes (G-function)
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Once the statistical distances are measured between the output PDF [shown in blue in Figs. 13(a)–13(d)] and
the conditional PDFs (shown in gray), they are averaged and the respective values of 1Di are calculated (listed in
Table 6).

Since ai was chosen to be increasing with i, the importance of the input variables wanes with i. It is visually
somewhat observable from Figs. 13(a)–13(d) where we see that the gray lines keep getting closer to the blue curve for
higher values ofXi. This is exactly what is seen from the 1Di measures in Table 6 as well as normalized 1NSi metrics
in Table 7. The total Sobol’ indices have also been included in the terminal column of Table 7. For this particular
example, we see that the Sobol’ indices are also able to predict the order of importance.

For determining 2Di, once again we use the CUT6 algorithm to generate sample points in the n − 1 = 3
dimensional space ΩX̃i

. CUT6 yields a total of 35 points and weights. At each of these points, ΩXi is sampled 104
times to determine the PDFs fŶ |X̃i

(ŷ, x̃i). Figures 14(a)–14(d) present these PDFs in gray along with the output
PDF fŶ (ŷ) in blue. It is evident from these figure that the gray PDFs keep getting further away from the output PDF
when conditioned over x̃i as i increases.

On measuring the distances between the output PDFs and the conditional output PDFs, D is averaged to obtain
the metrics 2Di. Their values have been listed in Table 8. We see that the distances keep ascending with Xi for all the
measures consistently, thereby successfully ranking the inputs in descending order of importance. The corresponding
normalized metrics 2NSi are presented in Table 9.

4.3 The SIR Model

The third example illustrated is that of a dynamical system. The system represents a four-parameter SIR epidemic
model and has also been considered for GSA analysis before in the literature [44]. The model is characterized by a
set of three differential equations given by

dS

dt
= δN − δS − γkIS, (35)

dI

dt
= γkIS − (r + δ)I, (36)

dR

dt
= rI − δR, (37)

where S, I , and R represent the number of susceptible, infected, and recovered people from a disease in a population
of sizeN . The parameter δ represents the birth and death rate (assumed to be equal), γ is the infection coefficient k is

TABLE 6: 1Di values for different D measures (G-function)

D measure 1D1
1D2

1D3
1D4

W 0.5451 0.3513 0.2582 0.2075
H 0.5474 0.2730 0.1898 0.1475
T 0.3818 0.1857 0.1187 0.0941
K 0.3512 0.1783 0.1149 0.0911
B 0.1977 0.0474 0.0224 0.0132
C 0.3507 0.2084 0.1464 0.1153

TABLE 7: 1NSi values for different D measures (G-function)

Variable 1NSW 1NSH 1NST 1NSK 1NSB 1NSC ST

X1 0.4002 0.4728 0.4893 0.4775 0.7043 0.4273 0.5847
X2 0.2579 0.2358 0.2380 0.2425 0.1689 0.2538 0.3018
X3 0.1896 0.1640 0.1522 0.1562 0.0799 0.1784 0.1799
X4 0.1523 0.1274 0.1206 0.1238 0.0469 0.1405 0.1184

International Journal for Uncertainty Quantificatio



GSA Statistical Distance 23

(a) (b)
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FIG. 14: Plots showing the variation of (a) fŶ |X̃1
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for the 35 CUT6 nodes (G-function)

TABLE 8: 2Di values for different D measures (G-function)

D measure 2D1
2D2

2D3
2D4

W 0.5314 0.7069 0.7731 0.8070
H 0.5136 0.8221 0.9493 1.0173
T 0.3677 0.5765 0.6882 0.7529
K 0.3424 0.5249 0.6164 0.6675
B 0.1931 0.5397 0.7379 0.8733
C 0.3416 0.4755 0.5297 0.5604

the interaction coefficien quantifying the probability of interaction between individuals, and r is the rate of recovery.
The reason γk is not considered a single variable even though it always appears as a product is because γ is a property
of the disease and varies from disease to disease, while k is a parameter which influence contact between people and
can be controlled through policies and arrangements such as quarantine or isolation [44].

All the parameters are assumed to be uncertain and independent, and can be represented as
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TABLE 9: 2NSi values for different D measures (G-function)

Variable 2NSW 2NSH 2NST 2NSK 2NSB 2NSC ST

X1 0.1885 0.1555 0.1541 0.1592 0.0824 0.1791 0.5847
X2 0.2508 0.2490 0.2417 0.2440 0.2302 0.2493 0.3018
X3 0.2743 0.2875 0.2885 0.2866 0.3148 0.2777 0.1799
X4 0.2863 0.3081 0.3156 0.3103 0.3726 0.2938 0.1184

X = [X1, X2, X3, X4]T = [γ, k, r, δ]T , (38)

with their respective distributions given by

γ ∼ U([0, 1]), k ∼ Beta(2, 7), r ∼ U([0, 1]), and δ ∼ U([0, 1]). (39)

The output of interest is the number of infected individuals, i.e., I(t). The initial conditions are taken to be S(0) =
900, I(0) = 100, and R(t) = 0 with a total population size of N = 1000. A more detailed description of the model
and the parameters can be found in [44].

In this example, since the distributions of the parameters are not the same, the PC basis functions are derived
from a tensor product of univariate Legendre polynomials (in X1, X3, and X4) and univariate Jacobi polynomials (in
X2) as suggested by the Wiener-Askey scheme. The number of bases considered in each direction was NXi = 5,
leading to a total of N = 625 bases. The coefficient [ρ̂i(t)] of the surrogate model

Î(t) = Ŷ (t) =
625∑

i=1

ρ̂i(t)Φi(X1, X2, X3, X4) (40)

are determined using the least-squares nonintrusive technique presented in Section 3.1.2. For this case the number
of samples was considered to be m = 104. It should be noted that the coefficient are a function of time and need
to be solved for, at each time instant. However, the pseudo-inverse operation of the matrix A needs only to be done
once since it is time independent. Therefore, solving for ρ̂i(t) at different times essentially becomes weighing the m
realizations of the model appropriately.

For this example, a 15-point GQ rule is implemented to calculate the sensitivity indices 1NSi(t). A Gauss–
Legendre set is used to determine 1NS1(t), 1NS3(t), and 1NS4(t) while a Gauss–Jacobi set is used to determine
1NS2(t) due to the nature of their distributions. The output PDFs and the class 1 conditional PDFs are evaluated at
every time instant from 104 MC samples from ΩX̃i

. This results in 1Di(t) and correspondingly 1NSi(t) at every time
instant. 1NSi(t) values have been plotted in Figs. 15(a)–15(f) for various Ds. The total time of simulation has been
considered to be f ve units. We observe consistent results from all the Ds. We see that, initially, the variables can be
ordered as X1, X2, X3, X4. At time t = 0.5 the variables are ordered as X3, X1, X2, X4 before eventually settling at
X3, X4, X1, X2 after t = 2. It is evident from the plots that X2 is least significan while X3 becomes most significan
after the transients are over.

The determination of Class 2 metrics for the epidemic model is slightly different than the previous examples.
This is because the PDFs of the input variables are all not the same, and not all the PDFs are uniform or Gaussian.
Hence in order to evaluate 2Di and 2NSi, we require a set of points other than CUT and rely on GQ to average D
over the ΩX̃i

space. For the moment-independent sensitivity indices 2D1, 2D3, and 2D4, the variables over which the
average is evaluated have one Beta distributed variable and two uniformly distributed ones. Hence, a GQ set of sigma
points are derived for their evaluation from a tensor product of two uniform GQ set of points and one Beta GQ set
of points. For this example, a 5-point GQ rule is used in each direction leading to a total of 53 = 125 GQ points.
However, for 2D2, we need to calculate the average of D over ΩX̃2

which has three uniformly distributed variables.
Hence, for this particular average, CUT6 is adopted to derive a set of 35 sigma points in the 3D ΩX̃2

subspace. Using
these sigma points 2Di and consequently 2NSi at each time instant is calculated and presented in Figs. 16(a)–16(f)
(where each figur corresponds to a distinct measure).
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(a) (b)

(c) (d)

(e) (f)

FIG. 15: Variation of (a) 1NSW
i , (b) 1NSH

i , (c) 1NST
i , (d) 1NSK

i , (e) 1NSB
i , and (f) 1NSC

i with time
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(a) (b)

(c) (d)

(e) (f)

FIG. 16: Variation of (a) 2NSW
i , (b) 2NSH

i , (c) 2NST
i , (d) 2NSK

i , (e) 2NSB
i , and (f) 2NSC

i with time
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Consistent with the variation of the Class 1 metrics, we observe from Figs. 16(a)–16(f) that, with time the order
of ranking changes. Once again, we see that, initially the ranking starts in the order of X1, X2, X3, X4, followed by a
transition to the order X3, X1, X2, X4, before eventually settling at X3, X4, X1, X2 at fina time. It should be noted
that the order of importance is measured in a reverse manner for Class 2 metrics in comparison to Class 1 metrics.
This is why we see a reversal in the magnitude of the curves in Figs. 16(a)–16(f) when compared to Figs. 15(a)–15(f).

To compare the results with the traditional Sobol’ indices, we present the variation of the total Sobol’ indices
(STi) with time for each input variable in Fig. 17. The indices are efficientl calculated using the PC coefficient
as proposed by Sudret in [16]. It is interesting to note that for this example as well, we observe the same ranking
of influenc from Sobol’ as estimated by the non-moment-based NS metrics. This can be attributed to the fact that
a majority of the uncertainty in the output quantity of interest can be quantifie by the second moment (variance).
Hence, Sobol’ indices perform reasonably well.

It should be pointed out here that Figs. 15(a)–15(f) are plotted without data at t = 0. This is because the initial
value of the output of interest [i.e., I(t)] is already given and is a constant irrespective of the value of the parameters.
Hence, the uncertainty in the parameters does not influenc the value of the output at t = 0.

5. CONCLUSION

The main motivation behind moment-independent sensitivity analysis measures stems from the fact that variance by
itself is not sufficien to characterize all the uncertainty associated with an output of interest. To this end, the research
community has endeavored to develop methods which are more dependent on the entire probability distribution of
the outputs and the conditional outputs since that comprehensively quantifie the entire uncertainty.

In this article, we propose a generalization of the Borgonovo metric as a class of metrics where the statistical
distance between the output and the conditional output could be the choice of the user depending on requirement and
convenience. Furthermore, we also present a complementary class of measure (also based on the statistical distances
between output and conditional distributions). In order to compute the measures efficientl , a surrogate model using
PC is proposed to ease the sampling time. It has been identifie in the literature that PC could become prohibitive when
the number of inputs increases due to the curse of dimensionality. However, as mentioned previously, if a screening
method (such as the method of Morris) is used to reduce dimensionality of the problem prior to the application of
PC, PC still remains relevant. Moreover, there is a report in the literature on PC [18] which can deal with higher
uncertainties by smartly selecting its basis functions commonly known as sparse PC.

The proposed class of metrics eventually requires the computation of an average statistical distance. This aver-
age is evaluated using numerical integration schemes such as Gauss quadrature and conjugate unscented transform

FIG. 17: Variation of the total Sobol’ indices with time

Volume 11, Issue 6, 2021



28 Nandi & Singh

to further reduce computation. Both sets of classes are then illustrated on numerical examples. Results present con-
sistent rankings between the classes of measures and, for the Ishigami function case, also highlight the drawbacks of
variance-based methods.
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APPENDIX A. CONJUGATE UNSCENTED TRANSFORM

Consider the multivariate expectation integral:

E[g(X)] =
∫ ∫

. . .

∫
g(X)fX(x) dx1 dx1 . . . dxn, (A.1)

where we assume without loss of generality that the mean of the pdf fX(x) is 0. The discrete approximation of the
expectation integral is

E[g(X)] ≈
N∑

i=1

wig(xi), (A.2)
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where xi =
[
x(i,1), x(i,2), · · · , x(i,n)

]T is a quadrature point with an associated weight wi.
Taylor series or Maclaurin series expansion of the analytic function g(X) about the mean 0 results in Eq. (A.1)

reducing to

E[g(X)] ≈
∞∑

i1=0

∞∑

i2=0

· · ·
∞∑

in=0

E
[
xi1
1 xi2

2 · · ·xin
n

]

i1!i2! · · · in!
∂i1+i2+···+ing

∂xi1
1 ∂xi2

2 · · · ∂xin
n

(0) (A.3)

and Eq. (A.2) resulting in

E[g(X)] ≈
∞∑

i1=0

∞∑

i2=0

· · ·
∞∑

in=0

(∑N
i=1 wi

{
xi1

(i,1)x
i2
(i,2) · · ·xin

(i,n)

})

i1!i2! · · · in!
∂i1+i2+···+ing

∂xi1
1 ∂xi2

2 · · · ∂xin
n

(0). (A.4)

Comparing Eqs. (A.3) and (A.4) results in the moment constraint equation:

N∑

i=1

wi

{
xi1

(i,1)x
i2
(i,2) · · ·xin

(i,n)

}
= E

[
xi1
1 xi2

2 · · ·xin
n

]
, (A.5)

where i1 + i2 + . . . + in = d corresponds to the order of the moment.
Conjugate unscented transform (CUT) is an approach for identificatio of a sparse set of quadrature points

for Gaussian and uniform distributions to match a specifie order of moments. For example, for a standard multi-
variate Gaussian distribution, all the odd-order moments are zero and the firs few even-order moments are shown
in Table A1, where the moment constraint equations are determined for all possible permutations of the indices
{i, j, k} ∈ {1, 2, 3, . . . , n}, for the nth-dimensional Gaussian distributions. The solution to the moment constraint
equations which capture the fourth-order moments is referred to as CUT-4. Assuming a symmetric distribution of
the quadrature points about the origin along the principal axis σi at a distance r1 and a second set of points lying
symmetrically along the bisector axis c of all possible principal axis taken two at a time at a distance of r2. For
multivariate Gaussian distributions of dimension greater than 2, the closed form solution to the quadrature points and
corresponding weights are shown in Table A2, where the total number of quadrature points N = 2n + 2n + 1 and

r1 =

√
n + 1
2

, r1 =

√
n + 2
n− 2

, (A.6)

w1 =
1
r41

=
4

(n + 1)2
, w2 =

1
2nr42

=
(n− 2)2

2n(n + 2)2
. (A.7)

Similarly quadrature points and associated weights for CUT-6 and CUT-8 points are determined by identifying
points symmetric about the origin which satisfy all moments until the sixth and eighth orders, respectively. Details
can be found in [20].

TABLE A1: First few even moments of standard Normal PDF
Moment E[X2

i ] E[X2
i X2

j ] E[X4
i ] E[X2

i X4
j ] E[X6

i ] E[X2
i X2

jX2
k]

Value 1 1 3 3 15 1

TABLE A2: Quadrature points and weights for CUT-4
Position Weights

1 ≤ i ≤ 2n Xi = r1σi Wi = w1
1 ≤ i ≤ 2n Xi+2n = r2c

n
i Wi+2n = w2

Central weight X0 = 0 W0 = w0
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