
MRpredT: Using Text Mining for Metamorphic Relation
Prediction

Karishma Rahman
karishma.rahman@student.montana.edu

Montana State University
Bozeman, MT

Indika Kahanda
indika.kahanda@montana.edu

Montana State University
Bozeman, MT

Upulee Kanewala
upulee.kanewala@montana.edu

Montana State University
Bozeman, MT

ABSTRACT
Metamorphic relations (MRs) are an essential component of meta-
morphic testing (MT) that highly affects its fault detection effective-
ness. MRs are usually identified with the help of a domain expert,
which is a labor-intensive task. In this work, we explore the feasi-
bility of a text classification-based machine learning approach to
predict MRs using their program documentation as the sole input.
We compare our method to our previously developed graph kernel-
based machine learning approach and demonstrate that textual
features extracted from program documentation are highly effec-
tive for predicting metamorphic relations for matrix calculation
programs.

KEYWORDS
Metamorphic relations, Metamorphic testing, Text classification
ACM Reference Format:
Karishma Rahman, Indika Kahanda, and Upulee Kanewala. 2020. MRpredT:
Using Text Mining for Metamorphic Relation Prediction. In Proceedings
of May 23–29, 2020 (ICSEW’20). ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3387940.3392250

1 INTRODUCTION
Since its first introduction in 1998, Metamorphic testing (MT) has
evolved as an effective testing technique for testing programs that
face the oracle problem. Further, MT has led to revealing previ-
ously unknown faults in diverse applications such as compilers [14],
search engines [17], and Google map navigation [16]. At the center
of MT are metamorphic relations (MRs), which are necessary prop-
erties of the program under test (PUT) and specify relationships
between multiple inputs and their corresponding outputs.

For example, consider a program that accepts a list of real num-
bers and sorts them in ascending order. Imagine that this program is
provided with a list of 50,000 numbers. How do you determine the
output produced by the sorting program is correct? Even though
it is hard to determine whether the produced output is correct in
this instance, we can develop relationships between the outputs
of some related inputs. For example, from our knowledge about
sorting, we know that if we permute the original input and supply

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, Seoul, Republic of Korea,
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392250

Figure 1: Overview of the approach.

it to the sorting program, it should produce the same ordering as
before. This property of sorting can be used as an MR to test the
sorting program. In MT, the original list of inputs is known as the
source test case, and the list obtained by randomly permuting the
original list is known as the follow-up test case. After executing
the source and follow-up test cases on the sorting program, the
produced outputs are checked against the MR; in this case, to verify
the produced outputs have the same ordering. If they are not, there
is a fault in the sorting program.

Often, MR identification is performed manually and requires
interaction with domain experts, especially when testing scientific
programs. Therefore, this process can be a labor-intensive task that
is often error prone [6]. Thus, developing automated methods for
identifying MRs can improve the efficiency and effectiveness of MT.
To this end, in this paper, we investigate utilizing text mining to
extract information from various documentation sources associated
with a program and use machine learning techniques to predict
MRs for unseen programs automatically.

Text mining techniques are often used to explore and analyze a
vast amount of unstructured text data and identify patterns infor-
mative for a given task [2]. This study presents the development
of a method for automatically predicting MRs for a given program
function through categorizing text data associated with those pro-
grams (see Figure 1). In particular, the text data used are collected
from the Javadocs of the Java programs. Javadoc contains the appli-
cation programming interface documentation from the Java source
code [15]. We hypothesis that due to the close relationship of the
Javadocs contents with the program functionality, textual features
extracted from the documentation is highly informative for pre-
dicting MRs associated with those programs. Therefore, this study

https://doi.org/10.1145/3387940.3392250
https://doi.org/10.1145/3387940.3392250
https://doi.org/10.1145/3387940.3392250

ICSEW’20, Seoul, Republic of Korea,
Karishma Rahman, Indika Kahanda, and Upulee Kanewala

aims to demonstrate the effectiveness of using text mined features
generated from program documentation to predict MRs.

This paper is organized as follows: Section 2 provides the back-
ground knowledge of the methods and techniques used for the
experiment. Section 3 explains the methodology of the Text Mining
based machine learning approach to identify MRs for a function.
Section 4 discusses the results obtained by using the approach in-
troduced in the study. Section 5 concludes the paper by pointing
out future works.

2 RELATEDWORK
Several automated methods have been developed for MR prediction
in previous work. Kanewala et al. [6] introduced MRpred, a method
that uses a graph kernel-based machine learning approach to pre-
dict metamorphic relations for programs that perform numerical
calculations. The initial step of this approach is to transform a func-
tion into its graph representation modeling the control flow and
the data dependency information of the program [6]. Then they
use a graph kernel function to compute a similarity score between
two programs represented in the graph representation mentioned
above. The computed graph kernel values are then provided to a
support vector machine (SVM) classification algorithm to create
the predictive model, which is used for binary classification [6].

They used a code corpus containing 100 functions that take
numerical inputs and produce numerical outputs, to evaluate the
effectiveness of their proposed methods [6]. Six MRs are identi-
fied; Permutative, Additive, Multiplicative, Invertive, Inclusive, and
Exclusive. Their results show that graph kernels improve the pre-
diction accuracy of MRs when compared with explicitly extracted
features. Their results also show that control flow information of a
program is more effective than data dependency information for
predicting MRs, but sometimes, both of them can contribute to
increasing the accuracy.

In one of our previous studies [11], we applied MRpred for pre-
dicting three high-level categories of MRs (i. e. , Permutative, Ad-
ditive, and Multiplicative) for matrix-based programs. Our results
show that the random walk kernel can effectively predict these
MRs [11]. This study motivated us to use matrix-based programs as
the subject programs for the experiments described in this paper.

Further, in several past studies, researches have used different
text analysis techniques. They have investigated many ways to
improve the software testing process using text analysis techniques.
In [13], the authors have conducted a mapping study where they
listed the activities of software testing, which are improved by
using text analysis techniques. They are static black-box test-case
prioritization, robustness testing, test case generation, and test case
prioritization [13].

Our work described in this paper also focuses on the automated
identification of MRs for programs but using a different source of
data, which is the various documentation sources associated with
the program. In particular, we use text mining techniques to classify
the Javadoc associated with a program and use machine learning
to predict MRs for previously unseen programs. To the best of our
knowledge, this is the first such study.

3 METHODOLOGY
In this work, we model the task of predicting MRs for a given
program as a supervised classification problem. In particular, we
treat each MR independently and apply a separate binary classifier
for each MR. Binary class labels correspond to the existence of a
specific MR, and the input feature representing each program is
generated solely using its documentation.

The following subsections describe the text corpus and the MRs
used in this study. The overview of the text classification approach
for predicting MRs of the dataset is also discussed here. Moreover,
the details of the experimental setup are mentioned, as well.

3.1 Data
3.1.1 Text Corpus. A total of 93 program’s Javadocs, which handle
matrix operations, are used for this study. They are collected from
Apache Commons Math Library31, la4j (Linear Algebra for Java)2,
and JAMA (Java Matrix package)3, which are open-source projects.
These programs perform a variety of operations on matrices such as
addition, multiplication, subtraction, and searching. Figure 2 shows
the raw data example of the Javadocs of a program.

3.1.2 Metamorphic Relations. For this study, we identified ten MRs
manually that are generally applicable to matrix calculations. These
MRs are shown in Table 1 with the change made to the input and
their expected output change. These MRs are used as class labels
for the supervised classification model.

3.2 Models
Javadoc contains the information of a program’s operation, inputs
(parameters) and outputs (returns) that are directly related to the
MRs satisfied by a given program. Our method solely uses Javadoc
information to predict MRs for Java programs. Figure 3 shows an
overview of our method. We implemented our models using the
scikit-learn4 python library.

The first step of this method is to extract the Javadoc documen-
tation from the source code using Java Parser5 and pre-processes
them using the lemmatization [10] technique. Then, text feature
extraction methods are applied to those pre-processed Javadocs
to obtain the feature vectors. Bag of words (BoW) model [10], is
used as the feature representation. To make the text learnable by
machines, they must be converted to numerical vectors, and the
BoW model is a standard technique to obtain such a structure [10].
In this representation, the features (𝑓𝑖 , see Figure 3) are the tokens
extracted from the source and feature-values are the frequency
of their occurrence within each program documentation. These
feature vectors of the programs are then supplied into the machine
learning classification algorithm with their associated MR labels.
Here, MR labels are identified manually for all the programs, where
the label is ’1’ if an MR is satisfied by the program, and ’0’ otherwise.

We used two popularmachine learning algorithms, Naive Bayes [7]
and Support Vector Machines (SVMs) [3], as the underlying classi-
fication algorithms. In many other domains, these two algorithms

1http://commons.apache.org/proper/commons-math/javadocs/api-3.6/
2http://la4j.org/apidocs/
3https://math.nist.gov/javanumerics/jama/doc/
4https://scikit-learn.org/stable/
5https://javaparser.org/

https://javaparser.org/

MRpredT: Using Text Mining for Metamorphic Relation Prediction
ICSEW’20, Seoul, Republic of Korea,

Figure 2: Raw data of a program which adds a value to the matrix elements.

Table 1: The Metamorphic Relations used in the study

Metamorphic Relation Change made to the input Expected change in the output
MR1: Permutation of row Change the row order of the a matrix Output size will remain same
MR2: Permutation of column Change the column order of the matrix Output size will remain same
MR3: Permutation of elements Change the element position of the ma-

trix
Output size will remain same

MR4: Matrix addition Adding another matrix to the input ma-
trix

Elements value will increase or remain
same.

MR5: Scalar addition Adding a value to the matrix Element values will increase or remain
same

MR6: Addition with the Identity matrix Adding Identity matrix to the input ma-
trix

Only diagonal element value will
change or output will increase

MR7: Matrix multiplication Multiplying another matrix to the input
matrix

Elements value will increase.

MR8: Scalar multiplication Multiplying a value to the matrix Elements value will increase or remain
same.

MR9: Element by element multiplica-
tion with the Identity matrix

Multiplying Identity matrix element by
element to the input matrix

Diagonal element will be same or out-
put will remain same

MR10: Transpose Transpose the input matrix Diagonal element will be same or out-
put will remain same

are historically found to be very effective for text classification
tasks [1, 5, 9, 12]. We implement both using the default parameters
available in scikit-learn. The trained predictive model is then used
to predict the labels (i.e. MR) for the unseen program by supplying
the corresponding feature vector generated solely from its Javadoc
documentation text, as shown in Figure 3.

3.3 Experimental Setup
In this experiment, 10-times stratified 10-fold cross-validation is
used to evaluate the effectiveness of themodels. It is a cross-validation
technique where each fold contains roughly the same percentage
of data belonging to each class compared to the full dataset [8].

Also, in the case of prediction problems, the mean response value
is maintained relatively equal in all the folds [8]. This process is
repeated ten times to negate any selection-bias. This approach is
not only useful for the fair assessment of the models but also helps
to alleviate over-fitting [8]. We compare our models to MRpred [6].

The evaluation measure used in this study is Area Under the
receiver operating characteristic Curve (AUC). AUC measures the
probability that a randomly chosen positive example (i.e. a program
labeled with a certain MR) will be ranked higher by the predic-
tive model than a randomly chosen negative example [4]. AUC
takes values ranged in [0, 1] where higher values indicate better
performance, but a value of 0.5 is equivalent to a random classifier.

ICSEW’20, Seoul, Republic of Korea,
Karishma Rahman, Indika Kahanda, and Upulee Kanewala

Figure 3: Text classification approach for predicting MRs for Java programs.

Figure 4: AUC scores of Naive Bayes and SVMmodels using text classification (MRpredT-NB and MRpredT-SVM), and for the
SVMmodel using RandomWalk Graph Kernel (MRpred). AUC: Area Under the Receiver Operatng Characteristic Curve. MR:
Metamorphic Relations.

AUC is used as the evaluation metric in this experiment as it does
not depend on the discrimination threshold of the classifier and
is considered a better measure for analyzing learning algorithms
(compared to metrics such as accuracy) [4].

4 RESULTS AND DISCUSSION
In Figure 4, the AUC scores of our metamorphic relation prediction
models (MRpredT-NB: Naive Bayes, and MRpredT-SVM: SVM clas-
sification model) are compared to MRpred (i.e., classification model

using random walk graph kernel with SVMs). For 4/10 MRs (i.e.,
MR1, MR2, MR3, and MR10), MRpredT-NB outperforms its SVM
counterpart (i.e. MRpredT-SVM).

For 6/10MRs,MRpredT-SVMmodel performs better thanMRpredT-
NB. Among the above 6 MRs, the highest possible AUC score (1.0)
could be observed when predicting the addition with Identity ma-
trix (MR6) MR. The other MRs also reported AUC values higher
than 0.87, indicating that our text-based approach generated effec-
tive predictive models when using SVM for all the MRs. However,

MRpredT: Using Text Mining for Metamorphic Relation Prediction
ICSEW’20, Seoul, Republic of Korea,

the prediction scores achieved by the NB is also promising. The
highest score is 0.99 when predicting transpose (MR10) MR.

Furthermore, for 2/10 MRs (MR7 and MR9), one of the two MR-
predTmodels outperformMRpred providing ample evidence for the
effectiveness of using text data for MR prediction. Interestingly, for
MR7 and MR9, both MRpredT models perform better than MRpred,
warranting further investigation. One the other hand, MRpred is
still the clear winner for MR1, MR3, MR5, and MR8.

5 CONCLUSION AND FUTUREWORK
The metamorphic testing technique is beneficial to test programs
that do not have a test oracle. The effectiveness of this technique
highly depends on the set of MRs used for testing. But the identifi-
cation process of MRs is mostly performed manually. This study
proposes to use a text classification method to predict MRs for
functions that perform matrix calculations using their documen-
tation. The results show that for these types of programs, the text
classification-based machine learning approach can be effective in
predicting MRs, especially when using the SVM model. However,
there are many avenues for future investigation, as described below.

First, we would like to investigate the effectiveness of hetero-
geneous features by combining MRpredT’s text features with the
program features used in MRpred. In addition, text features ex-
tracted from the source code itself could be a fruitful Addition.
Another aspect worth investigating is exploring the text features
(i.e., tokens) identified as the most effective for each MR by our
MRpredT models. This may provide valuable information for going
beyond the standard BoW model and developing domain-specif
features.

With the recent popularity of deep learning, we intend to uti-
lize recurrent neural networks as the underlying machine learn-
ing model, which will also negate the need for hand-engineering
features. This will also provide the opportunity for exploring the
effectiveness of more sophisticated features based on semantic sim-
ilarity (i.e., word and BERT embeddings). However, this will require
obtaining much larger datasets as these models are known to be
data-hungry. Considering the highly resource-consuming nature of
the manual labeling process, a semi-supervised learning technique
that allows the use of unlabeled data may be a viable alternative.

REFERENCES
[1] Saleh Alsaleem. 2011. Automated Arabic Text Categorization Using SVM and

NB. Int. Arab J. e-Technol. 2 (01 2011), 124–128.
[2] Michael W. Berry. 2003. Survey of Text Mining. Springer-Verlag, Berlin, Heidel-

berg.
[3] Theodoros Evgeniou and Massimiliano Pontil. 2001. Support Vector Machines:

Theory and Applications, Vol. 2049. 249–257. https://doi.org/10.1007/3-540-
44673-7_12

[4] David J Hand and Christoforos Anagnostopoulos. 2013. When is the area under
the receiver operating characteristic curve an appropriate measure of classifier
performance? Pattern Recognition Letters 34, 5 (2013), 492–495.

[5] S. Hassan, M. Rafi, and M. S. Shaikh. 2011. Comparing SVM and naïve Bayes
classifiers for text categorization with Wikitology as knowledge enrichment. In
2011 IEEE 14th International Multitopic Conference. 31–34. https://doi.org/10.
1109/INMIC.2011.6151495

[6] Upulee Kanewala, James M. Bieman, and Asa Ben-Hur. 2016. Pre-
dicting metamorphic relations for testing scientific software: a machine
learning approach using graph kernels. Software Testing, Verification
and Reliability 26, 3 (2016), 245–269. https://doi.org/10.1002/stvr.1594
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1594

[7] Pouria Kaviani and Sunita Dhotre. 2017. Short Survey on Naive Bayes Algorithm.
International Journal of Advance Research in Computer Science and Management

04 (11 2017).
[8] Ron Kohavi. 1995. A study of cross-validation and bootstrap for accuracy estima-

tion and model selection. In Proceedings of the 14th international joint conference
on Artificial intelligence-Volume 2. 1137–1143.

[9] Xiaoli Li and Bing Liu. 2003. Learning to Classify Texts Using Positive and
Unlabeled Data. Proceedings of Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI-03): 2003; Acapulco, Mexico, 587–594.

[10] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to information retrieval. Cambridge university press.

[11] Karishma Rahman and Upulee Kanewala. 2018. PredictingMetamorphic Relations
for Matrix Calculation Programs. In Proceedings of the 3rd International Workshop
on Metamorphic Testing (MET ’18). ACM, New York, NY, USA, 10–13. https:
//doi.org/10.1145/3193977.3193983

[12] Monica Rogati and Yiming Yang. 2002. High-Performing Feature Selection for
Text Classification. In Proceedings of the Eleventh International Conference on
Information and Knowledge Management (CIKM ’02). Association for Computing
Machinery, New York, NY, USA, 659–661. https://doi.org/10.1145/584792.584911

[13] Faiz Ali Shah and Dietmar Pfahl. 2016. Evaluating and Improving Software
Quality Using Text Analysis Techniques - A Mapping Study. (2016).

[14] Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. 2010. An automatic testing
approach for compiler based on metamorphic testing technique. In 2010 Asia
Pacific Software Engineering Conference. IEEE, 270–279.

[15] Wikipedia contributors. 2019. Javadoc — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Javadoc&oldid=914403859 [Online;
accessed 10-September-2019].

[16] Zhi Quan Zhou, Liqun Sun, Tsong Yueh Chen, and Dave Towey. 2018. Metamor-
phic relations for enhancing system understanding and use. IEEE Transactions
on Software Engineering (2018).

[17] Zhi Quan Zhou, Shaowen Xiang, and Tsong Yueh Chen. 2015. Metamorphic test-
ing for software quality assessment: A study of search engines. IEEE Transactions
on Software Engineering 42, 3 (2015), 264–284.

https://doi.org/10.1007/3-540-44673-7_12
https://doi.org/10.1007/3-540-44673-7_12
https://doi.org/10.1109/INMIC.2011.6151495
https://doi.org/10.1109/INMIC.2011.6151495
https://doi.org/10.1002/stvr.1594
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1594
https://doi.org/10.1145/3193977.3193983
https://doi.org/10.1145/3193977.3193983
https://doi.org/10.1145/584792.584911
https://en.wikipedia.org/w/index.php?title=Javadoc&oldid=914403859

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data
	3.2 Models
	3.3 Experimental Setup

	4 Results and Discussion
	5 Conclusion and Future work
	References

