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Maximum Spectral Flatness Control of a
Manipulandum for Human Motor System
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Abstract—System identification of a dynamic environment
using a robotic device utilizes physical perturbations in the
form of displacement or force. To obtain an accurate system
model, physical perturbations must be informative, which can
be characterized by their spectral properties. The process of
generating physical perturbations by using a robotic device often
leads to spectral property degradation in the high-frequency
region due to the dynamics of robot motion control and discrete-
time signal processing. Spectral flatness is a metric applicable
to quantifying the fidelity of the robotic system and quality
of physical perturbations on an external object. This paper
introduces a new metric named Band-limited Spectral Flatness
Gain (BLSFG) to evaluate the physical perturbation quality
relative to the input reference over a frequency band of interest.
Motion control of a manipulandum that generates pseudorandom
position perturbations for human sensorimotor system identifi-
cation is considered as a representative example. The closed-
loop system dynamics of the position control is characterized
and optimized based on the BLSFG. Results suggest that a
certain underdamped closed-loop property is advantageous to
improve the spectral flatness of a degraded continuous-time
pseudorandom reference. A high BLSFG is achieved when the
resonance frequency of the closed-loop system is close to the
update frequency of the pseudorandom sequence.

Index Terms—Motion Control, Physical Human-Robot Inter-
action, Spectral Flatness, System Identification

I. INTRODUCTION

SYSTEM identification of a dynamic environment using an
active device is a widely-used methodology in engineering

and science including applications in factory automation [1],
[2] and biomedicine [3], [4]. In human-scale applications,
physical perturbations are generated by a robotic device such
as a manipulator, a mobile platform, or a haptic device,
and applied to the environment of interest in the form of
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force or displacement [5], [6]. While desired properties of
physical perturbations vary depending on the characteristics of
the environment being identified, perturbations should satisfy
the persistent excitation (PE) condition characterized by their
spectral properties - that is, perturbations should contain
sufficient frequency components that excite a sufficient number
of modes in the target systems [7]. A robotic device takes
a perturbation reference command and realizes the physical
perturbation with a motion controller. Since the robotic device
is itself a dynamic system usually controlled by a digital
computer, the process of generating physical perturbations
by using a robotic device often leads to spectral property
degradation in the high-frequency region due to the dynamics
of robot motion control and discrete-time signal processing.
This filtering effect due to the robot dynamics has often been
overlooked. To maintain the desired spectral properties of
physical perturbations, high-fidelity motion control should be
implemented.

In this paper, generating position perturbations with a
manipulandum for human sensorimotor system identification
is considered as a representative example. For human sys-
tem identification, recent work has shown that the human
nervous system is very sensitive to high-frequency signals,
and thus perturbations should contain high-frequency compo-
nents to probe the higher frequency responses of biological
systems that are not simply due to inertia [8]–[10]. Note
that achieving the PE condition by a frequency sweep is
inappropriate due to the predictability of the perturbation
patterns as well as its time-consuming nature. A pseudorandom
ternary sequence (PRTS), which is a three-level deterministic
sequence with white-noise-like properties, is a reasonable
alternative and has been used in human experiments as a
physical perturbation reference for its randomness and flat
spectrum properties [6], [11]–[13]. In previous applications
of PRTS, physical perturbations applied to human subjects
were generated by a certain combination of PRTS integration,
interpolation, discrete-to-continuous-time conversion, realized
in an experimental motion platform with a limited control
bandwidth. Such implementation should have altered the ideal
properties of the original random sequences; however, the
spectral property degradation issues were rarely addressed. A
measure of perturbation quality is needed to quantify such
effects and to guide the motion controller design for improved
perturbation quality.

Spectral flatness is a metric that can be used to quantify
the fidelity of the robotic system and quality of physical
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perturbations on an external object. This paper introduces
a new metric named Band-limited Spectral Flatness Gain
(BLSFG) to evaluate the physical perturbation quality relative
to the input reference over a frequency band of interest.
The closed-loop system dynamics of the position control is
characterized and optimized based on the BLSFG.

II. PROBLEM STATEMENT

Physical perturbations must have sufficient randomness and
persistence of excitation for effective human motor system
identification. The randomness of a signal can be analyzed by
its autocorrelation function (ACF), which reflects the temporal
self correlation of the signal [14]. A perfectly random signal
exhibits no correlation with time-delayed versions of itself.
Hence, perfect randomness is represented by an ACF of a
(scaled) delta function, with a single peak at zero time delay
and zeros otherwise. For example, a single impulse has an ACF
of a delta function and therefore is unpredictable. The PE con-
dition can be met by using a perturbation with a flat spectrum.
A perfectly flat spectrum not only satisfies the PE condition,
but also ensures an equal power distribution over a range
of frequencies. The flatness of a spectrum can be quantified
by the spectral flatness measure (SFM) [15]. A perfectly flat
spectrum has an SFM of 1 and frequency components of equal
magnitude. A combination of ACF and SFM can quantify
the quality of physical perturbations for human sensorimotor
system identification. Note that a perfectly random signal
has a delta function as its ACF, and a delta function has a
flat spectrum. Therefore, perfect randomness coincides with a
perfect spectral flatness. In the following, the analysis focuses
on the spectral flatness of random perturbations.

PRTS is a suitable perturbation signal for human exper-
iments due to its high autocorrelation and spectral flatness
as shown in Fig. 1(a) (left). Given a PRTS, the process in
Fig. 1(a) will generate physical perturbations from a discrete-
time sequence. In the first step, a zero-order hold (ZOH) (or
other data-holding operation) converts the discrete sequence
into a continuous-time signal (Fig. 1(a) (center)). The signal
spectrum modulated by the ZOH exhibits highly attenuated
components beyond the PRTS update frequency, resulting in
a severe degradation of performance. In the second step, the
continuous-time reference is physically realized by a manip-
ulandum (Fig. 1(a) (right)). The modulation of the spectral
flatness due to the manipulandum dynamics depends on the
implemented motion control. As will be addressed in a later
section, a properly designed motion controller can improve
the SFM with respect to that of the ZOH PRTS over a certain
range of frequency. The objective of this paper is to establish
a motion control design methodology for improved dynamic
system identification based on the SFM.

Section III provides the definition of the SFM. The concept
of BLSFG is introduced to quantify the fidelity of motion
control over a specified frequency band. In Section IV, three
cases of BLSFG are presented. A phase-lead compensator of
a position-controlled manipulandum is tuned and evaluated.

III. SPECTRAL FLATNESS MEASURE

The spectral flatness measure (SFM) quantifies the flatness
of a signal spectrum. It measures how flat a signal spectrum
is as the ratio of its geometric mean to its arithmetic mean.
Given a finite energy time sequence x(n), the spectral flatness
measure is defined as [15]

γ2
x =

exp[ 1
2π

∫ π
−π logSxx(ejθ)dθ]

1
2π

∫ π
−π Sxx(ejθ)dθ

=
η2
x

σ2
x

(1)

where γ2
x ∈ (0, 1] is the SFM, Sxx(ejθ) is the power

spectrum of x(n), and η2
x and σ2

x are the geometric mean and
arithmetic mean of the spectrum, respectively. The arithmetic
mean is equivalent to the autocorrelation function at zero delay,
Rxx(0). The discrete expression of the SFM is given by

γ2
x =

exp[ 1
N

∑N−1
n=0 logSxx(n)]

1
N

∑N−1
n=0 Sxx(n)

. (2)

The spectral flatness measure has a maximum value of 1 and
is lower bounded by 0. The closeness of an autocorrelation
function to a delta function (not uniquely defined) is not
necessarily the flatness of the spectrum; however, perfect
randomness coincides with perfect spectral flatness. Since the
control objective is to achieve both, it is not unreasonable to
lump the two performance measures and use SFM to quantify
the performance of a perturbation.

A. Spectral flatness gain

A pseudorandom sequence, after a data-holding operation,
has a degraded spectral flatness. The spectral flatness may
be further degraded by the closed-loop system dynamics. To
isolate the spectral flatness modulation due to the closed-loop
system dynamics, an output-to-input spectral flatness gain is
defined. Given a discrete-time linear time-invariant system

Y (z) = G(z)X(z) (3)

with the input X(z), transfer function G(z), and output Y (z),
the output SFM γ2

y is a function of the input SFM γ2
x and

transfer function spectral properties. In [16], the relationship
between γ2

y and γ2
x was established with an all-zero filter G(z)

for linear prediction of audio signals. In the following, the
spectral flatness gain is defined for a general transfer function
G(z).

From the definition of SFM, the output spectral flatness is

γ2
y =

exp
[

1
2π
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−π logSyy(ejθ)dθ

]
1

2π
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−π logSyy(ejθ)dθ

.

=
exp

[
1

2π
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−π log [|G(ejθ)|2|X(ejθ)|2]dθ

]
Ryy(0)
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η2
G · η2

x
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y

(4)

where σ2
y is the output spectrum arithmetic mean (also the

output signal energy), η2
x is the geometric mean of the input
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Fig. 1. Physical realization of pseudorandom motion. Changes in signals, spectra, and ACF are shown conceptually. (a) Two-step spectrum modulation. The
first source of spectrum modulation is the ZOH that converts a sequence r(k∆t) into a continuous-time signal r(t). The second source is the closed-loop
manipulandum dynamics which takes r(t) as the reference and generates motion x(t). (b) Block diagram of the system in (a).

spectrum defined in (1), and the geometric mean of the transfer
function spectrum η2

G is

η2
G = exp

[
1

2π

∫ π

−π
log |G(ejθ)|2dθ

]
= exp

[
f(ejθ)

] (5)

Substituting γ2
xσ

2
x for η2

x,

γ2
y =

(
η2
G

σ2
x

σ2
y

)
γ2
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(
η2
G

Rxx(0)

Ryy(0)

)
γ2
x (6)

and the spectral flatness gain is defined by

SFGyx =
γ2
y

γ2
x

= η2
G

Rxx(0)

Ryy(0)
. (7)

That is, the output SFM equals to the input SFM multiplied
by two factors: the geometric mean of the transfer function
spectrum η2

G, and the ratio of the input signal energy to the
output signal energy Rxx(0)/Ryy(0). In the case where the
transfer function G(z) is an all-zero filter of the form G(z) =
1 +

∑M
k=1 akz

−k, η2
G = 1, and the output SFM becomes the

input SFM multiplied by the input-to-output energy ratio [16].
For a general G(z), η2

G given in (5) is generally not equal to
1. Manipulating the exponent of η2

G,

f(ejθ) =
1

2π

∫ π

−π
log |G(ejθ)|2dθ

=
1

2π

∫ π

−π
log |G(e−jθ)|2dθ

=2 Re

[
1

2πj

∮
Γ

logG(z−1)

z
dz

] (8)

where Γ is the unit circle in the z-plane. The function of z
inside the integral has a simple pole at z = 0. Assume that

G(z−1) is analytic on and inside the unit circle, by using the
Residue theorem, the contour integral shown above can be
evaluated as∮

Γ

logG(z−1)

z
dz = 2πj

(
lim
z→0

z
logG(z−1)

z

)
(9)

Substituting the integral evaluation back in (8) yields

f(ejθ) = 2 Re
[

lim
z→0

logG(z−1)
]
. (10)

Now consider a closed-loop system G(z) with all poles and
zeros inside the unit circle,

G(z) =
bmz

m + bm−1z
m−1 + ...+ b0

zn + an−1zn−1 + ...+ a0
. (11)

Assume that the coefficients an and bm are both nonzero,

G(z−1) = z−p
bm + bm−1z + ...+ b0z

m

1 + an−1z + ...+ anzn
(12)

where p = m − n. Then, f(ejθ) = 2 log |bm| and the
geometric mean of the transfer function spectrum becomes
ηG = exp [2 log |bm|] = b2m. Substituting to (7), the input-to-
output spectral flatness gain is given by

SFGyx =
γ2
y

γ2
x

= b2m
Rxx(0)

Ryy(0)
(13)

Compared with (7), the first multiplier of the SFG is replaced
by b2m, the squared leading coefficient of the numerator. It
can be interpreted as the extent to which the new output is
influenced by the latest input. Note that although G(z) repre-
sents the dynamics of a closed-loop manipulandum system in
the current context, the derived SFG expression holds for any
transfer function satisfying the stability and leading coefficient
assumption. In other contexts, G(z) may represent a digital
filter or a discrete-time plant model.
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B. Band-limited spectral flatness measure

The discrete-time description of a system or signal specifies
spectrum information up to the Nyquist frequency. When a
high sampling rate is used, the Nyquist frequency could be
much greater than the system bandwidth and the maximum
frequency of interest. Evaluating the SFM up to the Nyquist
frequency may not be appropriate anymore. Instead, evaluating
over a limited frequency band would yield representative
results. In particular, due to band-limited human motor re-
sponses, it is reasonable to analyze the SFM of applied
perturbations within a limited frequency band that matches that
of the human responses. Given a finite energy time sequence
x(n), the band-limited spectral flatness measure (band-limited
SFM) is defined as

γ2
x(fub) =

exp[ 1
2θub

∫ θub

−θub
logSxx(ejθ)dθ]

1
2θub

∫ θub

−θub
Sxx(ejθ)dθ

(14)

with θub =
(
fub

fs/2

)
π where fub is the upper bound of the

frequency band and fs is the sampling frequency. Without
further specification, the lower bound of the frequency band
is 0 Hz. The discrete version of the band-limited SFM is

γ2
x(fub) =

exp[ 1
Nub

∑Nub−1
n=0 logSxx(n)]

1
Nub

∑Nub−1
n=0 Sxx(n)

(15)

where Nub is the index of the upper-bound frequency. Except
for the perfectly flat spectrum, which has a SFM of 1 regard-
less of the chosen frequency band, the band-limited SFM is a
function of frequency band. Figure 2(a) shows the spectrum
of a PRTS r(k∆t) (top) and the spectrum of the sampled
ZOH PRTS r(nT ) (bottom) with zero magnitude components
removed. The sampling period of the sampled ZOH PRTS is
set to T = 0.02 s, 10 times smaller than the PRTS update
period ∆t = 0.2 s. The spectrum of r(k∆t) has a SFM of 1.
The band-limited SFM of r(nT ) is shown in the top figure
in Fig. 2(b). When the spectral flatness is evaluated for a
2.5 Hz frequency band, the band-limited SFM is greater than
0.95. As the frequency band increases, the band-limited SFM
drops significantly. The drop is contributed by the inclusion of
smaller magnitude spectrum components at higher frequencies.

For a given signal, its band-limited SFM may vary signif-
icantly for different frequency bands. Therefore, the value of
the band-limited SFM should be interpreted relatively given a
frequency band. Comparison of band-limited SFM of different
frequency bands should be avoided. Direct comparison with
the perfect SFM of 1 is typically not reasonable unless a low
frequency band upper bound (about the Nyquist frequency of
the r(k∆t) in this example) is applied.

By setting a frequency band, high-frequency information
is ignored. Whether or not a frequency band is reasonable
can be checked by the ratio of signal energy contained in
it. Using the sampled ZOH PRTS as an example, the ratio
of the signal energy contained in the frequency band to
the total energy is plotted in Fig. 2(b) (bottom). A 2.5 Hz
frequency band contains over 80% of the total signal energy,
and a 5 Hz frequency band contains over 90% of the total
signal energy. In industrial systems, system bandwidth is
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Fig. 2. (a) Spectra of a PRTS (top) and sampled ZOH PRTS (bottom). (b)
Band-limited SFM of the sampled ZOH PRTS (top) and the ratio of signal
energy contained in the frequency band (bottom).

typically 1/5 to 1/20 of the Nyquist frequency [17]. Using
a maximum achievable pass band as the frequency band for
band-limited SFM evaluation can effectively reduce the impact
of unimportant spectrum components.

C. Band-limited spectral flatness gain

Similar to (13), the Band-limited Spectral Flatness Gain
(BLSFG) can be defined by

SFGyx(fub) =
γ2
y(fub)

γ2
x(fub)

(16)

where γ2
x(fub) and γ2

y(fub) are defined in (14) and fub
specifies the frequency band upper bound. Both γ2

y(fub) and
γ2
x(fub) have a maximum value of 1. When the input signal

has a degraded band-limited SFM, that is γ2
x(fub) < 1,

SFGyx(fub) can be greater, equal to, or smaller than 1
depending on the value of γ2

y(fub). When SFGyx(fub) < 1,
the closed-loop system is a source of flatness degradation.
When SFGyx(fub) > 1, the closed-loop system dynamics
compensates for the flatness degradation within the frequency
band. When SFGyx(fub) = 1, the closed-loop system has
a constant gain within the frequency band. Note that the
three cases of SFGyx(fub) also apply to SFGyx where the
frequency band upper bound is the Nyquist frequency.

IV. SIMULATION

A. Three cases of BLSFG

Given a SFM-degraded input reference and a closed-loop
system dynamics, the BLSFG could be greater, equal to, or
smaller than 1 depending on the frequency band. This can be
demonstrated by a sampled ZOH PRTS input and a standard
second-order system.

In Fig. 3, the spectra of the sampled ZOH PRTS and three
system outputs are plotted (top). The output spectra (blue,
red, and yellow) are the results of the input spectrum (black)
modulated by three second-order systems with specified damp-
ing ratio ζ and natural frequency fn. For each spectrum, the
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Fig. 3. Spectra of sampled ZOH PRTS and system outputs (top) and their
band-limited SFM (bottom). The update period of the PRTS is ∆t = 0.20 s.
The sampling period of the discrete-time system is T = 0.02 s.

corresponding band-limited SFM are plotted in the bottom
figure of Fig. 3. For a specific frequency band, if the output
band-limited SFM plot is above the input’s, the BLSFG is
greater than 1, and vice versa.

The blue plot in Fig. 3 corresponds to the closed-loop
system with ζ = 1.2 and fn = 5 Hz. It is an overdamped
system in which the output spectrum is always below the input
spectrum shown in black. The shape of the output spectrum is
observed to be less flat than the input spectrum regardless of
the frequency band considered. This observation is confirmed
by the band-limited SFM plots where the blue curve is always
below the black curve. In this case, the BLSFG does not
exceed 1 anywhere. The red plot corresponds to the second
closed-loop system with ζ = 0.2 and fn = 5 Hz. It has the
same natural frequency as the previous system (blue) but is
lightly damped. The output spectrum has greater magnitude
between 0 and 5 Hz due to the resonance at 4.8 Hz, leading
to a BLSFG greater than 1 in this frequency range. The third
system has the same damping ratio as the second system but a
higher natural frequency. It has a major spectrum gain between
5 − 10 Hz. Its band-limited SFM is roughly the same as the
input’s between 0−5 Hz, higher between 5−20 Hz, and lower
beyond 20 Hz, corresponding to a BLSFG equal to, greater,
and smaller than 1 respectively. If a frequency band up to 8
Hz is considered, the second system (red) is preferred.

B. Case study: generating position perturbation with a linear
drive manipulandum

The manipulandum shown in Fig. 4 has been constructed
to enable overground human-robot partnered stepping. It also
functions as a platform for human motor system identification.
The manipulandum can implement a position control as in Fig.
1(b) to provide position perturbations to human subjects. For
maximum perturbation quality, the motion control should be
designed for maximum achievable spectral flatness.

The manipulandum plant can be model as a mass-damper
system, P (s) = 1/

(
ms2 + cs

)
, with mass m and damping

Linear 
Drive

Force 
Sensor

Fig. 4. One degree-of-freedom linear manipulandum: a long-stroke linear
drive is mounted on a surface at about waist-height. An extrusion structure
with handles extends sideways allows hand interactions.

coefficient c. The system input (position reference), r(t), is
provided by a ZOH PRTS with an update period of ∆t. The
discrete-time controller, operating with a sampling period of T ,
takes the input reference and generates position perturbation,
x(t), as the system output. In the following simulation results,
these system parameters are used unless otherwise specified:
m = 10 kg, c = 50 Ns/m, ∆t = 0.2 s, T = 0.001 s, and r(t)
is obtained by a maximum-length 5th order PRTS with ZOH.

C. Controller design for optimal BLSFG

As observed in Fig. 3, band-limited SFM can be improved
by amplifying the system output spectrum over a certain
frequency range. A properly designed phase-lead compensator
of the form C(s) = Kp(s + 2πfz)/(s + 2πfp) has such
capability and is considered here to study the association
between the control system properties and the BLSFG. Of
the three design parameters, fz and fp specify the corner
frequencies of 20 dB/dec and −20 dB/dec gain, while Kp

scales the overall gain. By choosing positive Kp, fz and fp, the
closed-loop stability is guaranteed. The discretized controller
CD(z) can be obtained by the bilinear transformation as

CD(z) = Kp

(
2/T+2πfz
2/T+2πfp

)
z +

(
−2/T+2πfz
2/T+2πfp

)
z +

(
−2/T+2πfp
2/T+2πfp

) .

When fz = fp, the controller reduces to a proportional
controller. The closed-loop system is a second-order system
given by

G(z) =
X(z)

R(z)
=

CD(z)P0(z)

1 + CD(z)P0(z)

=
Kp(β1z + β2)

z2 + (Kpβ1 − e−bT − 1)z + (Kpβ2 + e−bT )

(17)

where b = c/m, P0(z) = Z[G0h(s)P (s)] is the pulse transfer
function of the plant and the ZOH and

β1 =
m

c2
(e−bT − 1) +

T

c

β2 =
m

c2
(1− e−bT )− T

c
e−bT

(18)

are parameters of the ZOH plant model. The controller gain
Kp appears in the last two terms of the denominator which
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affects both the damping ratio and natural frequency of the po-
sition control system. The leading coefficient of the numerator
is Kpβ1, a function of the controller gain and the mass and
damping coefficient of the plant. Providing a sampled ZOH
PRTS as the input, which has band-limited SFM of γ2

r (5) =
0.3896 and γ2

r (10) = 0.1921, the BLSFG can be computed
using (16). The results of a 5 Hz frequency band (SFGxr(5))
and a 10 Hz frequency band (SFGxr(10)) are plotted in Figs.
5(a) and 5(b) as a function of the controller gain Kp (top). A
BLSFG greater than 1 means that the output band-limited SFM
is improved by the closed-loop sytem, and vice versa. It has
been shown that the ZOH effect appears on the spectrum as
notches at the integer multiples of the sampling frequency and
attenuation over the spectrum. To compensate for the flatness
degradation due to ZOH, the closed-loop system needs to
amplify the frequency components that are attenuated by ZOH.
By locating the peaks of SFGxr(5) and SFGxr(10) in Figs.
5(a) and 5(b) and finding their corresponding proportional gain
(top), it can be observed that their resonance frequencies are
close to fub, the upper bound of the frequency band (bottom).

When fz 6= fp, the controller has two additional degrees of
freedom to shape the closed-loop spectrum. Selection of fz
and fp highly depends on the frequency band considered and
system capacity. fp can be set to the desired bandwidth so
that spectrum components beyond the desired bandwidth are
further attenuated. Typically, the desired bandwidth should be
at least 10 times the reference update rate. After fixing fp,
fz and Kp can then be varied to achieve high BLSFG given
a frequency band. Figure 5(c) plots 5 Hz BLSFG of several
fz as a function of Kp. For each curve, the peak (if it exists)
occurs when the closed-loop system has a resonance frequency
close to 5 Hz. When the BLSFG is evaluated over a 10 Hz
frequency band, the results are shown in Fig. 5(d). Similar to
the previous result, systems with peak BLSFG have resonance
frequencies close to 10 Hz.

D. Disturbance suppression analysis
Human interaction can be modeled as an input disturbance.

The designed motion controller not only needs to achieve high
spectral flatness but also needs to have sufficient disturbance
suppression. Let r(t), d(t), and x(t) respectively denote the
input reference, disturbance (due to human interaction), and
output, C(z) and P (z) respectively denote the controller
and system plant, and a negative feedback control system,
x = (C(r−x)+d)P . With a lead compensator, the sensitivity
of the system output to a disturbance force acting on the
plant is S(z)P (z) where S(z) is the sensitivity function.
Without assuming knowledge of the disturbance, the peak
magnitude of S(z)P (z), or ||SP ||∞, indicates the disturbance
suppression performance in the worst case. For the systems in
Figs. 5(c) and (d) with BLSFG greater than 1, their disturbance
suppression characteristics in terms of ||SP ||∞ are shown in
Figs. 5 (e) and (f).

The control systems that achieve greater than 1 BLSFG have
||SP ||∞ of the order of 10−4 or lower. This means that the
disturbance force due to human interaction can be effectively
suppressed while a high BLSFG is achieved.

V. DISCUSSION

Properly designed motion controls can compensate for
the SFM degradation of a ZOH PRTS. When a phase-lead
compensator is assumed, such controllers lead to a resonance
frequency fr close to 1/∆t Hz, the update frequency of the
original PRTS. The existence of a resonance frequency implies
that the closed-loop systems are underdamped. The enhanced
BLSFG can be explained by the amplification of the signifi-
cantly attenuated spectrum components around the resonance
frequency. For human system identification, the amplification
of higher frequency components enables higher frequency
responses of the sensorimotor system to be probed. Controllers
of other forms that have properly placed resonance frequency
are expected to achieve similar BLSFG enhancement as well.
Furthermore, higher order controllers, such as cascaded phase-
lead compensators, may be applied to create multiple res-
onances to increase the maximum achievable BLSFG for a
wider frequency band. For a reference signal other than a ZOH
PRTS, the optimal controller design may vary; however, the
approach of spectrum shape manipulation remains the same.

For controllers with high BLSFG, their disturbance sup-
pression performance has been shown to be satisfactory. The
performance was evaluated by the H∞-norm of the output-to-
disturbance sensitivity function, which does not require prior
information of force disturbance due to human interaction.
In the future, a disturbance observer can be integrated to
improve the disturbance suppression performance. The impact
of human dynamics on the BLSFG will be studied, and the
motion control will be designed with the human interaction
dynamics considered.

Besides perturbation quality, safety is an important consid-
eration in human experiments. A flat spectrum perturbation
containing high-frequency components may deliver excessive
power to human subjects. In addition to the stability analysis
of closed-loop systems, energy analysis will be conducted in
the future to ensure safety of subjects.

VI. CONCLUSION

A spectral flatness metric, named the BLSFG, was proposed
to quantify the fidelity of the robot motion control and quality
of physical perturbations. Closed-loop position control of a
manipulandum interacting with a subject at the hand was per-
formed as a case study. The spectral flatness of pseudorandom
perturbations was improved with a BLSFG greater than 1 by
properly placing the resonance frequency of the closed-loop
system. Controller design based on the BLSFG may be applied
to a broad class of robotic devices to realize application-
specific perturbations in the frequency domain.

APPENDIX
DERIVATION OF SPECTRAL FLATNESS MEASURE

Given a finite energy time sequence x(n), the spectral
flatness measure (SFM) is defined as [15]

γ2
x =

exp
[

1
2π

∫ π
−π logSxx(ejθ)dθ

]
1

2π

∫ π
−π Sxx(ejθ)dθ

=
η2
x

σ2
x

(19)
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Fig. 5. Phase-lead compensator design based on BLSFG. (a) and (b): 5 Hz and 10 Hz BLSFG (top) and resonance frequency (bottom) of systems with
varying proportional gain Kp. (c) and (d): 5 Hz and 10 Hz BLSFG (top) and resonance frequency (bottom) of systems with a phase-lead compensator with a
zero at −2πfz . (e) and (f): Disturbance suppression characteristics of systems with (e) SFGxr(5) > 1 and (f) SFGxr(10) > 1. Performance is evaluated
by the H∞-norm of the sensitivity function S(z)P (z).

where Sxx(ejθ) is the power spectrum of the time sequence
x(n), and η2

x and σ2
x denote the geometric mean and arithmetic

mean of the spectrum. The spectral flatness measure has a
maximum value of 1 when the spectrum is perfectly flat.
The spectral flatness measure is extensively applied to linear
prediction analysis of speech. The derivation of the SFM [16]
provides insights into realizing pseudorandom motion in a
physical system.

Consider a finite energy time sequence x(n) and let Rxx(τ)
denote its autocorrelation and X(z) denote the Z-transform of
x(n). The signal energy equals to the autocorrelation with zero
delay and can be computed as

Rxx(0) =
∞∑

n=−∞
x(n)2 =

1

2π

∫ π

−π
|X(ejθ)|2dθ. (20)

The last equality means that the signal energy is also the mean
of the signal power spectrum. The normalized log spectrum is
defined as

V (θ) = log

(
|X(ejθ)|2

Rxx(0)

)
(21)

where the power spectrum is normalized by the signal energy
(i.e., the spectrum mean) and the logarithm is taken. With
normalization shown in (21), a perfectly flat (or constant)
spectrum yields a value of zero. For a spectrum that is
not perfectly flat, the normalized log spectrum indicates the
amount of deviation. One method of measuring the total
deviation from the flat spectrum is to take the sum of squared
deviation as

1

2π

∫ π

−π

1

2
V 2(θ)dθ. (22)

This measure penalizes large deviations, but treats positive and
negative deviations equally. It is often preferable in practice

to assign greater weights to large positive deviations in order
to suppress resonance. One of such asymmetric weighted sum
that was statistically optimized for speech analysis is given by
[18]

µX =
1

2π

∫ π

−π
exp[V (θ)]− 1− V (θ)dθ. (23)

Substituting (21) into (23), the integral of the first term turns
out to be 1 and cancels out the second term, yielding:

µX = − 1

2π

∫ π

−π
V (θ)dθ

= − 1

2π

∫ π

−π
log

(
|X(ejθ)|2

Rxx(0)

)
dθ.

(24)

The simple sum of squared deviations in (22) has an integrand
of quadratic form of V (θ). Since V (θ) is already a quadratic
expression of the signal magnitude spectrum |X(ejθ)|, the
integrand in (22) is in fact 4th order in terms of the |X(ejθ)|.
On the other hand, due to the cancellation, the integrand of
(24) is quadratic in terms of |X(ejθ)|. Equation (24) returns
non-positive values, where a value of 0 corresponds to a
perfectly flat spectrum. The spectral flatness measure is then
defined as

γ2
x = exp(−µX)

= exp

[
1

2π

∫ π

−π
log

(
|X(ejθ)|2

Rxx(0)

)
dθ

]
.

(25)
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Expanding the fraction inside the log function,

γ2
x =

exp
[

1
2π

∫ π
−π log |X(ejθ)|2dθ

]
exp

[
1

2π

∫ π
−π logRxx(0)dθ

]
=

exp
[

1
2π

∫ π
−π logSxx(ejθ)dθ

]
1

2π

∫ π
−π Sxx(ejθ)dθ

=
η2
x

σ2
x

.

(26)

This gives the definition of the spectral flatness measure in the
same form as (19).
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