
Improving The Effectiveness of Automatically Generated Test
Suites Using Metamorphic Testing

Prashanta Saha
prashantasaha@montana.edu

School of Computing, Montana State University

Bozeman, Montana, USA

Upulee Kanewala
upulee.kanewala@montana.edu

School of Computing, Montana State University

Bozeman, Montana, USA

ABSTRACT

Automated test generation has helped to reduce the cost of soft-

ware testing. However, developing effective test oracles for these

automatically generated test inputs is a challenging task. There-

fore, most automated test generation tools use trivial oracles that

reduce the fault detection effectiveness of these automatically gen-

erated test cases. In this work, we provide results of an empirical

study showing that utilizing metamorphic relations can increase

the fault detection effectiveness of automatically generated test

cases.

KEYWORDS

Metamorphic testing,metamorphic relation, automated test case

generation

ACM Reference Format:

Prashanta Saha and Upulee Kanewala. 2020. Improving The Effectiveness

of Automatically Generated Test Suites UsingMetamorphic Testing. In IEEE/ACM

42nd International Conference on Software EngineeringWorkshops (ICSEW’20),

May 23–29, 2020, Seoul, Republic of Korea.ACM, Seoul, South Korea, 2 pages.

https://doi.org/10.1145/3387940.3392253

1 INTRODUCTION

Software testing is a costly activity yet essential to detect faults.

Typically in testing, an oracle is used to check whether the output

produced for a given test input is correct or not [6]. Muchwork has

been done on automated test case generation, including the devel-

opment of publicly available tools [3]. The main focus of this work

has been on developing efficient methods to generate test inputs

to achieve a particular target such as coverage and weak mutation

score [5]. However, there has been relatively less attention paid on

utilizing effective oracles to improve the fault detection effective-

ness of these automatically generated test cases.

Metamorphic Testing (MT) is a technique proposed to alleviate

the oracle problem of software under test (SUT) [1]. This is based

on the idea that most of the time it is easier to predict relations be-

tween outputs of a program, than understanding its input-output

behavior. Such a relation is called a Metamorphic Relation (MR) in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392253

MT, and is a necessary property of the SUT that specifies a rela-

tionship between multiple inputs and their outputs [2].

Automatically generated test suites have certain advantages over

manually written test cases, in particular, saving human labor and

time. Some work has shown that it is more effective to use test

cases that are generated based on some coverage criteria rather

than randomly generated test cases [4]. However, due to the auto-

mated generation of test inputs, defining the oracles for these test

inputs is a hard problem and faces the oracle problem. Thus, many

of the automatically generated test cases would contain trivial or-

acles, such as the assert statements that we discussed above. This

reduces the fault detection effectiveness of these test cases. There-

fore, in this work, we investigate whether we can utilize MRs to

improve the fault detection effectiveness of automatically gener-

ated test cases. For example, figure 1a is an EvoSuite generated test

case for Power method. This method powers a matrix of the given

component (i.e. int n) and returns the powered matrix. Though

this test case has a code coverage of 100% but the generated assert

statements are weak to detect critical faults in themethod. Because

of the presence of such trivial oracles, the fault detection effective-

ness of this test case is reduced. With Multiplication MR, we mod-

ified the current test case from figure 1b. We multiplied the source

test case matrix with the same matrix. We ran the test case for the

Power method. Then we expected the resultant matrix from these

two test cases are equal, or the follow-up output is higher than

source output and compared them using assertion statements.

In this paper, we present the initial results of an empirical study

conducted to evaluate the effectiveness of utilizing MRs with auto-

matically generated test inputs. Our preliminary results show that

MRs can help to increase the effectiveness of automatically gener-

ated test suites.

2 EMPIRICAL STUDY

In this experiment we used 4 classes (Matrix.java, LeastSquares-

Solver.java, ForwardBackSubstitutionSolver.java and SquareRootSolver-

.java) from la4j1 (version 0.6.0) open-source Java library. la4j is a

linear algebra library that provides matrix and vector implementa-

tions and algorithms andwas one of the software packages used for

evaluating the performance of automated testing tools. For each

of these 4 classes, we used EvoSuite [3] tool to generate test cases

targeting line, branch, and weak mutation coverage. We have iden-

tified 16 MRs for the above 4 classes. These MRs are created based

on commonmatrix operations (e.g., TransposeMatrix, IdentityMa-

trix).Wemanually verified those input-output relationships ofMRs

with some sample values. Then we ran those MR modified source

test cases (follow-up test cases) with automated source test inputs

1http://la4j.org/

https://doi.org/10.1145/3387940.3392253
https://doi.org/10.1145/3387940.3392253
http://la4j.org/

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Prashanta Saha and Upulee Kanewala

(a)

@Test(timeout = 4000)
public void test042() throws Throwable {

MockRandom mockRandom0 = new
MockRandom();
assertNotNull(mockRandom0);

DenseMatrix denseMatrix0 =
DenseMatrix.randomSymmetric(0,
mockRandom0);
assertEquals(0, denseMatrix0.columns());
assertEquals(0, denseMatrix0.rows());
assertNotNull(denseMatrix0);

Matrix matrix0 = denseMatrix0.power(1293);
assertNotSame(denseMatrix0, matrix0);
assertNotSame(matrix0, denseMatrix0);
assertEquals(0, denseMatrix0.columns());
assertEquals(0, denseMatrix0.rows());
assertEquals(0, matrix0.rows());
assertEquals(0, matrix0.columns());
assertTrue(matrix0.equals((Object)denseMatrix0));
assertNotNull(matrix0);

}

(b)

@Test(timeout = 4000)
public void test042() throws Throwable {

MockRandom mockRandom0 = new
MockRandom();
assertNotNull(mockRandom0);

DenseMatrix denseMatrix0 =
DenseMatrix.randomSymmetric(0,
mockRandom0);
assertEquals(0, denseMatrix0.columns());
assertEquals(0, denseMatrix0.rows());
assertNotNull(denseMatrix0);

Matrix matrix0 = denseMatrix0.power(1293);

//Matrix Multiplication - MR
Matrix matrix1 =
denseMatrix0.multiply(denseMatrix0);
matrix1 = matrix1 .power(1293);
assertTrue(matrix0.equals((Object)matrix1
));

}

Figure 1: (a) EvoSuite Generated Test Case , (b) Modified Test Case with MR in MT

on the original programs and verified the MR properties again. If

any MR did not hold for any test input, we excluded that MR for

that particular input.

We used mutation testing, in particular, PIT2 tool to generate

mutants, to measure the fault detection effectiveness of the test

cases enhancedwithMRs.We considered amutant as "killed"when

theMR violates the output relation and as "alive" when the relation-

ship holds. We collected all the killed/alive information and calcu-

lated the mutation score and fault detection ratio for automated

test suites and MRs.

3 PRELIMINARY RESULTS AND
CONCLUSIONS

Figure 2 shows the fault detection effectiveness of EvoSuite gener-

ated test cases (orange), and the Evosuite test cases utilizing MRs

(blue). We also show the fault detection effectiveness of developer

written test cases. As shown in the results, there is a significant

increase in the mutation score of when MRs are utilized with the

automatically generated test suite. For two classes, the increase of

the mutation score is 100% higher than the automatically gener-

ated test suite. This preliminary result suggests that utilizing MRs

with automatically generated test cases would improve the fault

detection effectiveness. But for the case of the developer test suite,

there is no additional mutant killed by the MRs except for Matrix.

This needs to be investigated further.

Our preliminary results are promising, and it suggests that MT

can effectively improve the fault detection capability of automati-

cally generated test suites. But we need a large scale implementa-

tion to prove this claim further and to validate the correlation. We

also need to find out the individual performance of MRs compared

to the automatically generated test suites.

4 ACKNOWLEDGMENTS

This work is supported by award number 1656877 from the Na-

tional Science Foundation. AnyOpinions, findings and conclusions

2https://pitest.org/

Figure 2: 4 classes withMutation score of automatically gen-

erated test suites and developer test suites, and increase of

mutation score with Metamorphic Testing. (SRS = Square-

RootSolver, LSS = LeastSquaresSolver, FBSS = ForwardBack-

SubstitutionSolver, E = EvoSuite, D = Developer)

or recommendations expressed in this material are those of the au-

thor(s) and do not necessarily reflect those of the National Science

Foundation.

REFERENCES
[1] Tsong Yueh Chen, S. C. Cheung, and S. W. Yiu. 1998. Metamorphic testing: a new

approach for generating next test cases.
[2] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.

Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges
and Opportunities. ACM Comput. Surv. 51, 1, Article 4 (Jan. 2018), 27 pages.
https://doi.org/10.1145/3143561

[3] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-oriented Software (ESEC/FSE ’11). ACM, New York, NY, USA,
416–419. https://doi.org/10.1145/2025113.2025179

[4] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed
Random Testing for Java (OOPSLA ’07). ACM, New York, NY, USA, 815–816.
https://doi.org/10.1145/1297846.1297902

[5] Prashanta Saha and Upulee Kanewala. 2018. Fault Detection Effectiveness of
Source Test Case Generation Strategies for Metamorphic Testing (MET ’18). ACM,
New York, NY, USA, 2–9. https://doi.org/10.1145/3193977.3193982

[6] Elaine J. Weyuker. 1982. On Testing Non-Testable Programs. Com-
put. J. 25, 4 (11 1982), 465–470. https://doi.org/10.1093/comjnl/25.4.465
arXiv:http://oup.prod.sis.lan/comjnl/article-pdf/25/4/465/1045637/25-4-465.pdf

https://doi.org/10.1145/3143561
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/3193977.3193982
https://doi.org/10.1093/comjnl/25.4.465
http://arxiv.org/abs/http://oup.prod.sis.lan/comjnl/article-pdf/25/4/465/1045637/25-4-465.pdf

	Abstract
	1 Introduction
	2 Empirical Study
	3 Preliminary Results and Conclusions
	4 Acknowledgments
	References

