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ABSTRACT

Compact white dwarf (WD) binaries are important sources for space-based gravitational-wave (GW) observatories, and an

increasing number of them are being identified by surveys like Extremely Low Mass (ELM) and Zwicky Transient Facility

(ZTF). We study the effects of non-linear dynamical tides in such binaries. We focus on the global three-mode parametric

instability and show that it has a much lower threshold energy than the local wave-breaking condition studied previously. By

integrating networks of coupled modes, we calculate the tidal dissipation rate as a function of orbital period. We construct

phenomenological models that match these numerical results and use them to evaluate the spin and luminosity evolution of a

WD binary. While in linear theory the WD’s spin frequency can lock to the orbital frequency, we find that such a lock cannot

be maintained when non-linear effects are taken into account. Instead, as the orbit decays, the spin and orbit go in and out of

synchronization. Each time they go out of synchronization, there is a brief but significant dip in the tidal heating rate. While most

WDs in compact binaries should have luminosities that are similar to previous traveling-wave estimates, a few per cent should

be about 10 times dimmer because they reside in heating rate dips. This offers a potential explanation for the low luminosity of

the CO WD in J0651. Lastly, we consider the impact of tides on the GW signal and show that the Laser Interferometer Space

Antenna (LISA) and TianGO can constrain the WD’s moment of inertia to better than 1 per cent for centi-Hz systems.

Key words: gravitational waves – instabilities – (stars:) binaries (including multiple): close – stars: oscillations – white dwarfs.

1 IN T RO D U C T I O N

As binary white dwarfs (WDs) with short orbital periods inspiral due

to the emission of gravitational waves (GWs), they can evolve into a

variety of interesting systems, including AM CVn stars (Nelemans

et al. 2001), R Cor Bor stars (Clayton 2012), and rapidly rotating

magnetic WDs (Ferrario, de Martino & Gänsicke 2015). Merging

WDs may also explode as Type Ia supernovae (Iben & Tutukov

1984; Webbink 1984; Toonen, Nelemans & Portegies Zwart 2012;

Polin, Nugent & Kasen 2019b) or in other types of luminous

thermonuclear events (Shen et al. 2018; Polin, Nugent & Kasen

2019a). Compact WD binaries emit GWs with frequencies of ≈1–

100 mHz, which makes them prominent sources for proposed space-

based GW observatories such as the Laser Interferometer Space

Antenna (LISA; Amaro-Seoane et al. 2017), TianQin (Luo et al.

2016), and TianGO (Kuns et al. 2019).

The tidal interaction between the binary components spins them

up and heats their interiors. As they inspiral, the tide becomes pro-

gressively stronger and eventually their spin frequency nearly equals

the orbital frequency. However, they never become perfectly syn-

chronous because of the continual GW-induced orbital decay. The de-

gree of spin asynchronicity affects the tidal heating rate and luminos-

ity of the WDs (Iben, Tutukov & Fedorova 1998; Fuller & Lai 2012a,

2013; Piro 2019) and the outcome of their potential merger (Raskin

et al. 2012; Dan et al. 2014; Fenn, Plewa & Gawryszczak 2016).

� E-mail: hangyu@caltech.edu

The dominant mechanism of tidal dissipation is most likely the

excitation of internal gravity waves, either in the form of standing

waves (i.e. g-modes; Fuller & Lai 2011; Burkart et al. 2013), or

traveling waves (Fuller & Lai 2012a,b, 2013, 2014). As we will

show, for orbital periods between approximately 10 and 150 min,

which describe many of the observed WD binaries, the resonant g-

modes excited by the tide have such large amplitudes that they cannot

be considered small, linear perturbations to the background star. On

the other hand, the amplitudes are not so large that the modes break

due to strong non-linearities. The tidal dynamics and dissipation

in this intermediate, weakly non-linear regime are complicated and

depend on details of the non-linear coupling between g-modes driven

directly by the tide and the sea of secondary modes they excite.

In this paper, we apply the weakly non-linear tidal formalism

developed in Weinberg et al. (2012) to study tides in WD binaries.

Our study fills the gap between those that assume the excited modes

are linear standing waves (e.g. Fuller & Lai 2011; Burkart et al.

2013) and those that assume they break and form strongly non-linear

traveling waves (Fuller & Lai 2012a,b, 2013, 2014). In Section 2,

we present the background WD model we use throughout much of

our analysis. In Section 3, we describe the mode coupling and tidal

driving equations that govern the mode dynamics, and in Section 4,

we describe our numerical method for solving these equations. In

Section 5, we present our solutions of the mode dynamics and show

how tidal dissipation and synchronization varies with orbital period

in the weakly non-linear regime. We also compare our results with

the previous studies that assumed the tide was either linear or strongly

non-linear. In Section 6, we describe the observable electromagnetic
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Non-linear tides in white dwarf binaries 5483

Table 1. The mass M, radius R, effective temperature Teff,

and moment of inertia IWD of our WD model. We will often

express results in terms of the primary’s natural units of

energy E0 ≡ GM2/R = 1.10 × 1050 erg and frequency

ω0≡
√

GM/R3 = 0.346 rad s−1.

M R Teff IWD

0.6 M� 8.75 × 108 cm 9000 K 0.257MR2

Figure 1. Propagation diagram (top panel) and composition profile (bottom

panel) of our WD model from the centre to the surface. Note that we have

oriented the bottom x-axis such that the radius increases to the right.

and GW signatures of the tidal interaction, including the tidal heating

luminosities, GW phase shifts, and projected constraints on the WD

moment of inertia. In Section 7, we summarize our key results and

conclude.

2 BAC K G RO U N D M O D E L

We use MESA (version 10398; Paxton et al. 2011, 2013, 2015, 2018)

to construct a WD model, whose key parameters are summarized

in Table 1. To construct this model, we adopt parameters similar to

those used by Timmes et al. (2018). Specifically, we start with a pre-

main-sequence star with an initial mass of 2.8 M� and metallicity

Z = 0.02 and let it evolve to a CO WD with mass M = 0.6 M� and

effective temperature Teff = 9000 K. We include element diffusion,

semiconvection, and thermohaline mixing throughout the evolution.

We use GYRE (Townsend & Teitler 2013; Townsend, Goldstein &

Zweibel 2018) to compute the model’s eigenmodes and construct

our mode networks.

In the upper panel of Fig. 1, we show the propagation diagram of

our WD model. The solid line is the buoyancy frequency N , where

N 2 = g2

(

1

c2
e

−
1

c2
s

)

, (1)

c2
e = dP/dρ is the equilibrium sound speed squared, c2

s = �1P/ρ

is the adiabatic sound speed squared, and �1 is the adiabatic index.

All other quantities have their usual meaning. The dashed line is the

Lamb frequency Sl for l = 2, where

S2
l =

l(l + 1)c2
s

r2
. (2)

For the short-wavelength g-modes that comprise the dynamical tide,

the square of the radial wavenumber,

k2
r =

ω2

c2
s

(

S2
l

ω2
− 1

)(

N 2

ω2
− 1

)

, (3)

where ω is the angular eigenfrequency of the mode. A g-mode

propagates where k2
r > 0, i.e. in regions where ω < N and ω <

Sl, and is evanescent where k2
r < 0.

The lower panel of Fig. 1 shows the composition profile of our

model. As is typical of stars supported by degeneracy pressure, the

buoyancy is due largely to composition gradients, with peaks in N
associated with sharp transitions in the internal composition.

3 FORMALI SM

3.1 Equation of motion

Consider a primary star of mass M and a secondary star of mass M
′

and choose a coordinate system whose origin is at the centre of the

primary and corotates with it. We assume that the orbit is circular

and that the spin angular momentum of the primary is aligned with

the orbital angular momentum. For simplicity, we do not account

for the effect of rotation on the mode dynamics except through the

Doppler shift of the tidal driving frequency. The equation of motion

governing the Lagrangian displacement field ξ (r, t) of a perturbed

fluid element at location r at time t is then (see e.g. Schenk et al.

2002; Weinberg et al. 2012, hereafter WAQB12)

ρξ̈ = f 1[ξ ] + f 2[ξ , ξ ] + ρatide, (4)

where f 1 and f 2 represent the linear and leading-order non-linear

internal restoring forces, and

atide = −∇U − (ξ · ∇) ∇U (5)

is the tidal acceleration. The tidal potential can be expanded as

U (r, t) = −
∑

l≥2,m

Wlm

GM ′

D(t)

[

r

D(t)

]l

Ylm(θ, φ) e−im(�orb−�s)t , (6)

where Ylm is the spherical harmonic function, and D, �orb, and �s

are the orbital separation, the orbital angular frequency, and the spin

frequency of the primary, respectively. We focus on the leading-order

quadrupolar (l = 2) tide, whose non-vanishing Wlm coefficients are

W2±2 =
√

3π/10 and W20 = −
√
π/5. It is useful to define

ε =
(

M ′

M

)(

R

D

)3

=
(

y

1 + y

)(

�orb

ω0

)2

, (7)

where y = M
′
/M is the mass ratio. The quantity ε characterizes the

overall tidal strength and will be useful when we want to distinguish

the system’s dependence on the tidal strength from its dependence

on the driving frequency 2(�orb − �s).

In order to solve equation (4), we expand the six-dimensional

phase-space vector as
⎡

⎣

ξ (r, t)

ξ̇ (r, t)

⎤

⎦ =
∑

qa(t)

⎡

⎣

ξ a(r)

−iωaξ a(r)

⎤

⎦, (8)

where qa(t), ωa, and ξ a(r), are the amplitude, frequency, and

displacement of an eigenmode labelled by subscript a. The frequency
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5484 H. Yu, N. N. Weinberg and J. Fuller

and displacement are found by solving the linear, homogeneous

equation

f 1[ξ a] = −ρω2
aξ a, (9)

which we normalize as

2ω2
a

∫

d3rρξ ∗
a · ξ b =

GM2

R
δab ≡ E0δab. (10)

Each eigenmode has a unique set of three quantum numbers: its

angular degree la, azimuthal order ma, and radial order na. The

summation in equation (8) runs over all mode quantum numbers

and both signs of eigenfrequency in order to include each mode and

its complex conjugate.1 Using the orthogonality of the eigenmodes,

equation (4) can now be expressed as a set of evolution equations for

the mode amplitudes:

q̇a + (iωa + γa)qa = iωa

[

Ua +
∑

b

U ∗
abq

∗
b +
∑

bc

κabcq
∗
bq∗

c

]

, (11)

where

Ua(t) = −
1

E0

∫

d3rρ ξ ∗
a · ∇U, (12)

Uab(t) = −
1

E0

∫

d3rρ ξ a ·
(

ξ b · ∇
)

∇U, (13)

κabc =
1

E0

∫

d3r ξ a · f 2

[

ξ b, ξ c

]

. (14)

The linear and non-linear tidal coefficients Ua and Uab characterize

the strength of the coupling of modes to the tide, and the three-mode

coupling coefficient κabc characterizes the strength of the coupling

of modes to each other.

We further simplify equation (11) by noting that the three-mode

coupling involving the equilibrium tide cancels significantly with the

non-linear tide (i.e.
∑

c∈eq κabcq
∗
c � −Uab; WAQB12). We therefore

ignore Uab and the equilibrium tide and focus on the dynamical

tide.2 The latter is dominated by the linear driving of the most-

resonant la = |ma| = 2 modes, for which |a/ωa|  1, where

a = ω − ωa is the linear detuning and ω = 2(�orb − �s) is the

linear driving frequency. We refer to such linearly resonant modes

as parent modes. By contrast, the other modes in our networks (the

daughters, granddaughters, etc.) are primarily excited through three-

mode parametric resonances rather than direct driving by the tide

since they have large |a| and smaller Ua than the parents (since

they have larger na and la; see equations 23 and 30). In our mode

network calculations, we therefore solve a reduced set of amplitude

equations in which the parent modes {a} satisfy

q̇a + (iωa + γa)qa = iωaUa + iωa

∑

bc

κabcq
∗
bq∗

c , (15)

1If the amplitudes qa+ and qa− correspond to eigenfrequencies ωa and −ωa,

respectively, then the reality of ξ requires qa+ = q∗
a−, where the asterisk

denotes complex conjugation.
2We note that the non-linear driving by equilibrium tide might be un-

stable depending on the residual coupling. Roughly, the growth rate for

the equilibrium-tide-driven instability is �
(eq)
nl ∼ εκ

(eq)
abc (�orb − �s). If the

residual coupling κ
(eq)
abc ∼ 1 after accounting for the cancellation with Uab,

then we have �
(eq)
nl ∼ 10−8 s at Porb = 50 min. This, while smaller than the

non-linear growth rate of the dynamical tide (equation 47), could be greater

than the damping rate of the resonant l = 2 modes at the same period. We

defer the study of this effect to future work.

Figure 2. Linear damping rate of la = 2 modes. The blue and green

circles represent the respective contributions of radiative diffusion γ diff and

convective turbulence γ turb. The orange circles are the inverse group traveling

time α of each mode (see Section 3.5). The solid and dashed black lines show

the Wentzel–Kramers–Brillouin (WKB) scaling relations (equations 21 and

42).

and the daughter modes {b, c} satisfy

q̇b + (iωb + γb)qb = iωb

∑

ac

κabcq
∗
aq∗

c , (16)

and similarly for the granddaughters, great-granddaughters, etc.

The energy of a mode Ea(t) is related to its amplitude by

Ea(t) = q∗
a (t)qa(t)E0. (17)

This neglects the energy in the three-mode coupling,

1

3

∑

b,c

κabcqaqbqc + c.c., (18)

where c.c. stands for complex conjugate. As we show in Section 3.4,

this energy is much less than
∑

aEa and, therefore, we will use

equation (17) to represent the mode energy.

3.2 Power-law relations for the coefficients

In Appendix A, we describe our calculations of γ a, Ua, and κabc

in detail. For the tidal synchronization problem, we are mostly

interested in binaries with orbital periods in the range Porb = [10,

100] min, which corresponds to la = 2 parent modes with radial

orders in the range na � [10, 100] (see equation 20). For such high-

order modes, we find that the coefficients follow simple power-law

relations in na and la.

We find that the eigenfrequencies of our WD model are approxi-

mately given by

ωa � 0.28
la

na

ω0 = 0.098
la

na

rad s−1, (19)

i.e. the mode periods are given by

Pa =
2π

ωa

� 1.1
na

la
min, (20)

where ω0 =
√

GM/R3 is the dynamical frequency of the WD.

In Fig. 2, we show the linear dissipation rates γ a. The dissipation

is dominated by electron conduction and radiative diffusion and for

MNRAS 496, 5482–5502 (2020)
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Non-linear tides in white dwarf binaries 5485

Figure 3. Linear tidal overlap Qa (blue circles). The black line is the fit given

by equation (23).

na � la (as is true of all modes in our networks) is approximately

given by

γa � 2.4 × 10−13n2
aω0 = 8.4 × 10−14n2

a s−1. (21)

By comparison, the dissipation due to turbulent convective damping

(green dots) is much smaller for the modes we are interested in (see

Appendix A for details).

From equations (6) and (12), we can write the linear tide coefficient

as

Ua = WlmQa

(

M ′

M

)(

R

D

)l+1

e−im(�orb−�s)t , (22)

where the overlap integral

Qa =
1

MRl

∫

d3rρξ ∗ · ∇
(

r lYlm

)

� 2.1n−3.7
a δla lδmam. (23)

In Fig. 3, we show Qa, calculated using the method described in

Appendix A3, and the numerical fit above. Note that the overlap is

non-zero only if la = l and ma = m.

In Fig. 4, we show the three-mode coupling coefficients as a

function of the parent mode’s radial order na. For high-order modes,

we find

κabc � 41

(

T

0.18

)(

na

la

)2

, (24)

where a is the parent mode. Here T is an angular integral that depends

only on each mode’s angular quantum numbers and vanishes if the

modes do not satisfy the angular selection rules: (i) |lb − lc| ≤ la ≤ lb

+ lc, (ii) la + lb + lc is even, and (iii) ma + mb + mc = 0. Otherwise,

it is of order unity for the typical triplets that we consider, e.g. T �
0.18 for la = lb = lc = 2 and (ma, mb, mc) = (2, −2, 0). In addition

to these angular selection rules, the modes couple significantly only

if their radial orders satisfy |nb − nc| � na (Wu & Goldreich 2001;

WAQB12).

3.3 Non-linear instability threshold

In the absence of non-linear interactions, a mode driven by the linear

tide has an energy

Ea,lin

E0

=
ω2

a

2
a + γ 2

a

U 2
a , (25)

Figure 4. Three-mode-coupling coefficient κabc as a function of the parent

mode’s radial order. The blue circles are the coupling computed with daughter

pairs that have the smallest frequency detuning with respect to the parent

mode, and the orange circles further restrict it to self-coupled daughters

(b = c). The green circles connected with solid lines use the approximate

expression for the coupling coefficient integrand given by equation (A18).

Note that for a given parent mode a, its κabc for different daughter pairs

satisfying the selection rules are all approximately equal as long as |nb − nc|
� na.

where a = ω − ωa and ω = m(�orb − �s). In linear theory, the

parent’s energy and dissipation rate are smallest when the parent is

half-way between resonances, i.e. when the detuning is at a maximum

|a| = |∂ωa/∂na|/2 � ωa/2na (�γ a for the periods of interest). The

linear energy of a parent half-way between resonances is

Ea,lin

E0

= 7.9 × 10−18

(

2y

1 + y

)2(
Porb

50 min

)−9.3

, (26)

assuming a non-rotating WD such that Pa � Porb/2.

Now consider a simple three-mode system consisting of a parent

mode driven by the tide coupled to a resonant daughter pair. If

Ea,lin > Eth the parent is unstable even at maximum a, where

the energy threshold (see e.g. WAQB12; Essick & Weinberg 2016,

hereafter EW16)

Eth

E0

=
1

4κ2
abc

(

γbγc

ωbωc

)

[

1 +
(

bc

γb + γc

)2
]

, (27)

with bc = ω + ωb + ωc the non-linear detuning. Note that if ω >

0, we have ωb, ωc < 0 according to our sign convention.

In Fig. 5, we show Ea,lin (dotted line) and the minimum Eth

from a numerical search of daughter pairs (black crosses) assuming

a non-rotating WD. We also show an analytic estimate of the

minimum Eth (blue line), whose calculation we describe below. We

see that for Porb � 150 min, even maximally detuned parent modes

are parametrically unstable. In fact, since Ea,lin � Eth over much

of this range, we will see that a single parent excites many unstable

daughter pairs.

The daughter pairs that minimize Eth are those that satisfy the κabc

selection rules, have |nb − nc| < na, and non-linear detunings bc ≈
γ b + γ c since they minimize the sum in quadrature in the brackets

of equation (27); see also EW16. We can obtain an analytic estimate

of the minimum Eth by using the scaling relations given above and

an estimate for the minimum bc. Following the argument given by

Wu & Goldreich (2001), we obtain an estimate for the minimum bc

MNRAS 496, 5482–5502 (2020)
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5486 H. Yu, N. N. Weinberg and J. Fuller

Figure 5. Linear energy Ea,lin for a parent half-way between adjacent

resonance peaks (equation 26; dotted black line), the non-linear threshold

energy Eth based on the analytic scaling relations (equation 29; blue line),

and the wave-breaking energy Ebrk (equation 44; orange line) as a function

of orbital period assuming a non-rotating WD. The black crosses show the

minimum Eth obtained from a numerical search for daughter pairs.

by noting that for a fixed parent mode a, there are ∼n2
a daughter pairs

satisfying |nb − nc| � na at fixed lb and lc. As we allow the angular

degree lb and lc to vary, we obtain an extra factor of lbla of mode pairs

that satisfy the condition |lb − lc| < la < lb + lc. The eigenfrequencies

of these potential daughter modes span a range of order na|∂ωb/∂nb|
� naωb/nb. Therefore, the typical minimum three-mode detuning

assuming a non-rotating WD is of order3

bc ≈
1

lblan2
a

naωb

nb

�
0.07laω0

l2
bn

3
a

, (28)

where in the second approximation we first eliminated nb in terms

of (ωb, lb) using equation (19) and then assumed that |ωb| � ωa/2.

The factor of 0.07 is from a fit to our numerical search for daughter

pairs that minimize Eth. By using the scaling relations in Section 3.2

and equation (28) and setting bc � γ b + γ c, it follows that the

minimum threshold energy

Eth

E0

� 1.0 × 10−20

(

0.18

T

)2(
Porb

50 min

)−3

, (29)

where this assumes a non-rotating WD and Pa = Porb/2. As Fig. 5

shows, this Eth estimate is in good agreement with that from the

numerical search for daughter pairs. The daughters that minimize

Eth typically have

lb � 6.0

(

Porb

50 min

)−5/4

and nb � 281

(

Porb

50 min

)−1/4

. (30)

3.4 Energy and angular momentum transfer

In this section, we derive the tidal power Ėtide and the tidal torque

τ tide in the inertial frame. We define the torque to be from the orbit

to the WD and when τ tide > 0 the tide spins up the WD. Given the

interaction Hamiltonian

Hint = −2E0

∑

ωa>0

(

q∗
aUa + qaU

∗
a

)

, (31)

3For a rotating WD, the detuning is smaller by yet another factor of lb because

the degeneracy between different combinations of mb and mc is lifted (i.e.

rotational splitting).

the tidal torque acting on the WD is

τtide =
∂Hint

∂�
� −4

∑

ωa>0

Re

[

q∗
a

∂Ua

∂�

]

E0

= −4
∑

ωa>0

maIm
[

q∗
aUa

]

E0, (32)

where a factor of 2 arises from the sum over modes and their complex

conjugate and another because we restricted the sum to positive

frequencies, and the last equality follows because ∂Ua/∂� = −imUa.

Note that we dropped the term ∝Uab in the interaction Hamiltonian

because only the linearly resonant parents have a significant direct

coupling to the tide (Section 3.1).

The associated tidal power, assuming a circular orbit, is given by

Ėtide = �orbτtide. (33)

In general, this will power a combination of mode energy, tidal heat-

ing, and WD spin energy. However, as we illustrate in Section 5.1 (see

e.g. Figs 7 and 8), in steady state the time-averaged total mode energy

is approximately constant and
∑

a Ėa �
∑

a

(

q̇∗
aqa + q∗

a q̇a

)

E0 � 0.

Using equation (15) we thus have, in a time-averaged sense,
∑

a

ωaIm
[

q∗
aUa

]

� −
∑

b

γbq
∗
bqb. (34)

The summation on the left-hand side is only over parent modes since

only they feel a strong, direct driving by the tide (Section 3), whereas

on the right-hand side it is over all modes from all generations. We

also dropped the three-mode dissipation terms as they contribute

little to the total dissipation.4

For the most-resonant parent modes with ωa ≥ 0 and la = 2, the

azimuthal order ma = m = 2 and ωa � ω = m(�orb − �s). We can

therefore relate the tidal torque and power to the total dissipation rate

inside the star, Ėdiss, as

τtide =
m

ω
Ėdiss, (35)

Ėtide =
�orb

(�orb − �s)
Ėdiss, (36)

where

Ėdiss = 4
∑

ωb>0

γbq
∗
bqbE0 � 4

∑

ωb>0

γbEb. (37)

If we assume that the WD rotates with uniform angular velocity �s,

then the tidal torque spins it up at a rate

�̇s =
τtide

IWD

, (38)

and the orbital frequency changes at a rate

�̇orb = �̇orb,gw +
3τtide

μD2
, (39)

where the GW-induced orbital decay rate

�̇orb,gw =
96

5

(

GMc

c3

)5/3

�
11/3
orb . (40)

Here μ is the reduced mass and Mc = y3/5(1 + y)−1/5M is the

chirp mass. In our study, we obtain Ėdiss from our mode network

4The three-mode coupling contributes −2
∑

abcγ aκabcRe[qaqbqc] to the

dissipation, which arises from the non-linear piece in the total mode energy

(equation 18). Since |
∑

abcκabcqaqbqc| 
∑

aEa (see last paragraph of this

section), the non-linear dissipation is much smaller than the lower order

contribution
∑

aγ aEa.
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Non-linear tides in white dwarf binaries 5487

simulations according to equation (37) and thereby determine τ tide,

�̇s, and �̇orb.5

Our large non-linear networks display complicated dynamics.

None the less, some insights can be gained by considering the non-

linear equilibrium of simple three-mode systems (WAQB12; EW16).

For such a system, the parent mode’s saturation is Ea, s = Eth and for

Ea,lin � Ea,s, the daughter mode’s equilibrium is

Eb,s

E0

�
√

γcωb

γbωc

∣

∣

∣

∣

Ua

2κabc

∣

∣

∣

∣

� 6.7 × 10−16

(

2y

1 + y

)(

Porb

50 min

)−7.7

. (41)

Comparing equations (29) and (41), we see that Eb, s � Ec, s � Ea, s.

As a result, the leading order drive to the granddaughters will be via

daughter–granddaughter three-mode coupling rather than parent–

granddaughter coupling at higher non-linear orders. We therefore

include multiple generations in our networks but only account for

three-mode coupling between adjacent generations.6

Energy is stored not only in each individual mode (∝Ea) but also

in the three-mode couplings (∝Re[κabcqaqbqc]; see equation 18).

However, the latter makes a negligible contribution to the total energy

at saturation. We can easily see this for a three-mode system, since at

saturation the total non-linear energy is ∼ κabc

√

Ea,sEb,s  Eb,s. To

see roughly why this also holds for our large mode networks, note that

at saturation the non-linear forces approximately balance the linear

forces. By equation (11), this implies |
∑

bc κabcq
∗
bq∗

c | approximately

equals |Ua| for parent modes and (γ /ωa)|qa| for the other modes.

Since both are |qa|, it follows that |
∑

bcκabcqaqbqc| Ea and there-

fore the non-linear energy is a small contribution to the total energy.

3.5 Standing waves versus traveling waves

The relations above and our mode network calculations assume that

the modes are all standing waves. In order to be a standing wave,

a mode’s linear damping time must be longer than its group travel

time through the propagation cavity (which here spans much of the

WD radius; see Fig. 1), Ta = 2
∫

drv−1
grp = 2

∫

dr(dωa/dkr )−1, where

vgrp is the mode’s group velocity (BQAW13; Ivanov, Papaloizou &

Chernov 2013). Otherwise, it is a traveling wave.7 Defining the

inverse group travel time αa = 2π/Ta, we find

αa � 0.28
la

n2
a

ω0 = 0.097
la

n2
a

rad s−1. (42)

In Fig. 2, we compare αa to the linear damping rate of modes. We

find that the standing wave condition γ a < αa is satisfied for

na � 1200

(

la

2

)1/4

, i.e. Porb � 1320

(

la

2

)−3/4

min, (43)

which is true of all the modes in our networks.

5Alternatively, we can compute τ tide by taking the time average of equa-

tion (32) in steady state. Although we verified that the two methods yield

consistent results, in practice we find that Im[q∗
a Ua] of individual parents is

much more oscillatory than
∑

bγ bEb and thus equation (37) provides a more

numerically accurate estimate of the torque.
6Four-mode coupling can be important for the p–g instability (Venumadhav,

Zimmerman & Hirata 2014; Weinberg 2016). However, that is a non-resonant

instability, whereas here we focus on the resonant parametric instability.
7Note that this condition is equivalent to the linear damping rate γ a

being smaller than the frequency difference between two adjacent g-modes,

|∂ωa/∂na| � ωa/na. One can show that under the Wentzel–Kramers–Brillouin

(WKB) approximation, αa = ωa/na. This can also be seen by comparing the

numerical values of equations (19) and (42).

Figure 6. Maximum local shear |krξ r| from the traveling-wave solution for

a non-rotating WD with Teff = 9000 K.

Another necessary condition for standing wave is that the shear

|dξ r/dr| � |krξ r| be everywhere less than unity, where ξ rYlm is the

radial component of the physical Lagrangian displacement ξ . If a

g-mode’s shear exceeds unity, it is strongly non-linear and overturns

the local stratification and breaks (see e.g. Goodman & Dickson

1998; Ogilvie & Lin 2007; Barker 2011).

Fuller & Lai (2012a, hereafter FL12) and Burkart et al. (2013,

hereafter BQAW13) use this local wave-breaking condition to

address the onset of non-linear tidal effects in WD binaries. They

show that at sufficiently short orbital periods, the tide excites internal

gravity waves that are initially linear deep within the WD but become

non-linear and break as they approach the stellar surface.8

We first evaluate the wave-breaking condition assuming a standing

wave, i.e. a g-mode. Using the approach described in Appendix A1,

we find that a g-mode’s shear exceeds unity if its energy exceeds (see

equation A4)

Ebrk

E0

= 3.6 × 10−12

(

Porb

50 min

)−2

. (44)

In Fig. 5, we show Ebrk as a function of Porb. We find that Ea,lin first

exceeds Ebrk at Porb � 10 min. Moreover, even highly resonant parent

modes are unlikely to break before Porb � 10 min. That is because the

parent is parametrically unstable (Ea,lin > Eth) out to Porb ≈ 150 min

(Fig. 5) and excites secondary modes that prevent it from reaching

the wave-breaking limit (see Section 5.1).

We now evaluate the wave-breaking condition assuming a trav-

eling wave rather than a standing wave. Specifically, we use the

approach described in FL12 (see Appendix C for a brief synopsis)

to find the traveling-wave solution of the linear inhomogeneous tidal

equations (equations C1–C3). Just as the standing wave assumption

is valid only if max|krξ r| < 1, the traveling-wave assumption

is valid only if max|krξ r| > 1. In Fig. 6, we show max|krξ r|
computed under the traveling-wave assumption for a non-rotating

WD with Teff = 9000 K. We find that the upper envelope of the

shear ∝ P −3
orb (which we explain in Appendix C) and reaches unity at

Porb � 10 min, consistent with the results assuming a standing wave.

The weakly non-linear regime of this study therefore spans a large

range of orbital periods (10�Porb/min� 150). Evaluating the global,

8It is interesting to note that whereas the local wave breaking occurs at the

surface, the global three-mode coupling happens mostly in the core region;

see Appendix A4 and Fig. 4. This is different from the case of solar models

(WAQB12).
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5488 H. Yu, N. N. Weinberg and J. Fuller

multimode dynamics in this regime is essential for understanding the

impact of tidal dissipation on WD binaries.

Our analysis assumes that all modes, not just the parent, are

standing waves and thus below the wave-breaking threshold. Since

Eth ∝ ω3 while Ebrk ∝ ω2, higher generation (i.e. lower frequency)

modes have even smaller ratios of Eth to Ebrk than the parent.

Thus, the excited daughters, granddaughters, etc. will likely become

parametrically unstable and saturate before breaking (see also ap-

pendix F in EW16). In practice, because we truncate our networks

at the fifth generation and include only the most-resonant pairs for

each generation (since including more modes does not significantly

increase the calculated Ėdiss; see Section 5.2), some high generation

modes in our network can have shears that momentarily exceed unity.

However, at any given time these represent only a very small fraction

of the excited modes and thus they are unlikely to modify the overall

dynamics and dissipation.

It is also worth noting that the shear can be a sensitive function of

the WD temperature. For example, in Appendix A1, we show that for

Teff = 18 000 K the maximum shear is about an order of magnitude

larger than for 9000 K. On the other hand, this is compensated by

the tidal synchronization that decreases the driving frequency (see

Section 5.4 and Appendix C). The orbital period where the dynamical

tide transitions from weakly to strongly non-linear is therefore still

≈10 min when the effects of both temperature and synchronization

are taken into account.

4 NUMER ICAL IMPLEMENTATION

The modes in our networks oscillate near their eigenfrequencies and

have small linear detunings a (parents) or non-linear detunings bc

(daughters, granddaughters, etc.). We can therefore factor out the

fast oscillations by transforming coordinates to ca = qa exp (iωat),

similar to the approach of previous mode network studies (Brink,

Teukolsky & Wasserman 2005; EW16). The parent mode amplitude

equation (15) is then

ċa + γaca = iωa |Ua |e−ia t + iωa

∑

bc

κabcc
∗
bc

∗
c ei′

bc
t , (45)

and similarly for the other modes, where ′
bc = ωa + ωb + ωc. We

initialize our networks by starting each mode at its linear tidal energy

and a random phase. We implemented the calculations in PYTHON and

used the NUMBA package (Lam, Pitrou & Seibert 2015) to enhance

the computational performance.

Initially, the amplitudes of the unstable daughters will grow

exponentially at a characteristic rate (see WAQB12),

�nl � ωaκabc

√

Ea

E0

. (46)

This allows us to define a characteristic non-linear growth time-scale,

Tnl ≡
1

�nl

∼ 0.12

(

Porb

50 min

)3.7

yr, (47)

where the numerical value is for a parent mode at an initial energy

Ea,lin.

We find that the mode networks saturate and reach a non-linear

equilibrium over a few non-linear growth times Tnl. This is much

shorter than the GW-induced orbital decay time-scale,

Tgw =
�orb

�̇orb,gw

= 4.8 × 107

(

Porb

50 min

)8/3

yr, (48)

where the numerical value assumes a typical WD binary with M =
M ′ = 0.6 M�. The time-scale Tnl is also shorter than the time it takes

for the GW orbital decay to change the three-mode detuning bc by

an amount (γ b + γ c) � 2γ b (see Section 3.3),

Tdet =
γb

�̇orb,gw

� 150

(

Porb

50 min

)19/6

yr. (49)

Therefore, the particular parametrically unstable pairs that are most

resonant and thus have the lowest Eth do not change on a time-scale

of a few Tnl. We therefore only construct our mode networks once

for each Porb we consider.

In order to construct our mode networks, we search for the

daughters, granddaughters, etc. with the lowest threshold energies.

Numerically, we find that a network’s total energy dissipation rate

Ėdiss converges once we include five mode generations constructed as

follows. The first generation (parents) includes the two most linearly

resonant modes. The second generation (daughters) includes the three

lowest threshold daughter pairs of each parent. Since the two parent

modes both oscillate at the tidal driving frequency, they usually have

the same pair of most-resonant daughter modes and thus the second

generation typically has six modes instead of 12. The third through

fifth generations include the single lowest threshold pair of each

mode from the previous generation. A typical network consists of 92

modes, with (2, 6, 12, 24, and 48) modes in each generation (since

modes sometimes appear in more than one pair, some networks have

slightly fewer than 92 modes). We find that increasing the number of

modes and generations does not significantly change the computed

Ėdiss (see Section 5.2).

A collective instability can occur if daughters form large sets of

mutually coupled pairs (WAQB12). Collectively unstable daughters

initially grow much more rapidly than the isolated pairs described

above. However, in our problem the collective instability threshold

Eth, col is higher than the isolated pair instability threshold Eth. EW16

found that the parents, whose linear energy might be well above

Eth, col, reach a non-linear equilibrium at an energy below Eth, col due

to their coupling to isolated pairs. As a result, they found that the

collective pairs eventually decay away and thus do not enhance the

net dissipation in the system. We expect similar dynamics here and

therefore do not include collectively unstable pairs in our networks.

5 R ESULTS

Having described the formalism and numerical methods in Sections 3

and 4, we now describe the results of our coupled mode network

simulations. In Section 5.1, we show representative examples of the

mode dynamics on short time-scales. In Section 5.2, we show how

the total energy dissipation rate depends on orbital period over a

wide range of orbital separations. In Section 5.3, we describe semi-

analytic models that accurately capture the scalings found in the

network simulations. In all three sections, we assume a non-rotating

WD in an equal mass binary. In Section 5.4, we consider a rotating

WD and study the impact of the tide on the spin evolution and

synchronization of the binary.

5.1 Mode dynamics on short time-scales

In the top panel of Fig. 7, we show a zoomed-in view of the energy

Ea(t) of each mode in our network over a duration of approximately

one non-linear growth time-scales Tnl (equation 47) at an orbital

period near Porb � 60 min. The top panel of Fig. 8 is similar except

at Porb � 30 min. In both figures, the precise periods are chosen

in order that the most-resonant parent mode has a detuning |a| =
ωa/3na, which is somewhat far from a resonance peak (|a| = ωa/2na

half-way between adjacent resonance peaks). The solid grey line in

MNRAS 496, 5482–5502 (2020)
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Non-linear tides in white dwarf binaries 5489

Figure 7. Mode energy (upper panel) and total energy dissipation rate (lower

panel) as a function of time at an orbital period Porb=59.46 min. At this

period, the most-resonant parent has a detuning |a| = ωa/3na. We include

five generations of modes and in the upper panel label the first (i.e. the

parent) to the fifth generation of modes with blue, orange, green, purple,

and brown lines, respectively. The grey solid line is the total mode energy.

For comparison, we also show the mode energy according to linear theory

(equation 25; black dotted line) and the three-mode equilibrium energy of

the daughter modes (black dashed line) estimated using equation (41). In the

lower panel, the blue solid line is the numerically computed total dissipation

rate Ėdiss and the grey dotted line is 20 times the product of the maximally

detuned parent mode energy Ea,lin and the corresponding three-mode growth

rate (equation 46).

Figure 8. Same as Fig. 7 but at Porb=28.48 min.

each figure shows the total mode energy Etot =
∑

aEa. Although

an individual mode’s energy can vary by orders of magnitude over

time, we find that over duration of a few Tnl, the system settles into a

quasi-equilibrium state with Etot ≈ constant. Thus, there is a balance

between the time-averaged tidal power driving the parents and the

Figure 9. Top panel: tidal dissipation rate Ėdiss as a function of orbital

period near Porb = 40 min assuming a non-rotating WD. The period range

shown spans �0.5 min, which corresponds to half of the separation between

two adjacent linear resonances. We show Ėdiss computed with the standard

92-mode network (+ symbols) and a 32-mode network (× symbols). The

coloured lines show Ėdiss according to linear theory (grey line) and models

M0, M1, and M2 (purple, orange, and blue) for λnl = 1 (dashed lines) and

λnl = 3 (solid lines); we see that the latter value provides the best fit to the

numerical results. Bottom panel: similar to the top panel but showing energy

rather than Ėdiss. We show the total mode energy Etot in the two networks,

the parent linear energy Elin (grey line), the maximally detuned parent linear

energy Ea,lin (purple line), and the effective energies Eeff of models M1

and M2 (orange and blue lines). Note that Etot has been multiplied by a

factor of 24γa/γ
(M2)
eff  1, where γ a is the linear damping rate of the parent

mode. We do this in order to be able to show it on the same scale as Elin

and Eeff.

net thermal dissipation from mode damping. We also find that Etot �
Elin, where Elin is the total energy according to linear theory (dotted

black line; equation 25).

We note that there is no energy hierarchy in the mode generation.

In fact, modes from different generations alternatively dominate the

system’s energy in a limit-cycle-like (or even chaotic) manner with

a variation time-scale shorter than Tnl.

In the bottom panels of Figs 7 and 8, we show the numerically

computed energy dissipation rate Ėdiss = 4
∑

ωa>0 γaEa on short

time-scales. Similar to Etot, we find that Ėdiss ≈ constant.

5.2 Energy dissipation as a function of orbital period

We now use the numerical results at individual Porb to determine

the time-averaged non-linear dissipation as a function of orbital

separation.

MNRAS 496, 5482–5502 (2020)
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5490 H. Yu, N. N. Weinberg and J. Fuller

Figure 10. Top panel: energy dissipation rate Ėdiss as a function of orbital

period. The up (down) triangles show results of the 92-mode network at

Porb where the parent has a relatively large (small) detuning |a| = ω/3na

(ω/10na). The blue line shows results of the weakly non-linear model M2

and the red line shows results of the traveling-wave model. Bottom panel: the

spin-up time-scale Ts for model M2 (blue line) and the traveling-wave model

(red line). The dashed line is the GW-induced orbital decay time-scale Tgw. In

both panels we assume a non-rotating WD and use λnl = 3 when evaluating

M2.

In the upper panel of Fig. 9, we show Ėdiss over a narrow range

of orbital period near Porb � 40 min (corresponding to resonance

of the na = 37 parent mode). The range is chosen to span half

the distance between two adjacent linear resonances. We find that

Ėdiss is many orders of magnitude larger than the linear energy

dissipation rate Ėlin (solid grey line) except when extremely near

the resonance peak. Although the non-linear dissipation is much less

sensitive to distance from resonance than the linear dissipation, it

does still vary significantly with a. In going from on-resonance to

half-way between resonance, Ėdiss decreases by a factor of �10 at

Porb � 40 min. As we show below, it is even more sensitive to a at

larger Porb.

In Fig. 9, we show results for our standard 92-mode network with

(2, 6, 12, 24, and 48) modes in each generation, and a 32-mode

network with (2, 2, 4, 8, and 16) modes in each generation (see

Section 4). The Ėdiss of each agree to within a factor of about 2. We

also verified that adding the next two most-resonant parent modes

(na = 36 and 39) does not affect the energy dissipation by more than

O(10 per cent). From these experiments we performed, we conclude

that our 92-mode network is sufficiently large to adequately capture

the full non-linear dissipation.

In Fig. 10, we show Ėdiss over a wide range of Porb. The triangles

are the results from a series of mode network simulations, with the

upward (downward) triangles corresponding to Porb when the most-

resonant parent has a relatively large (small) detuning |a| = ωa/3na

(ωa/10na). We find that the difference in Ėdiss between peaks and

trough decreases considerably with decreasing Porb; the difference is

a factor of ∼103 at Porb � 80 min, while it is only a factor of ∼30 at

Porb � 20 min.

From the numerical results, we see that the dissipation scales

approximately as Ėdiss ∝ P −13
orb when the detuning is large. Since

the typical linear damping of the modes in the network scales

approximately9 as γa ∝ P −2
orb , the total mode energy at large detuning

Etot ∝ P −11
orb . As a result, although the simple three-mode daughter

equilibrium energy Eb,s ∝ P −7.7
orb (equation 41) roughly equals Etot at

Porb ≈ 60 min (Fig. 7), it is significantly smaller than Etot at Porb ≈
30 min (Fig. 8).

5.3 Semi-analytic models of the dissipation rate

Since the mode network integrations are computationally expensive,

it is useful to have a semi-analytic model calibrated to the numerical

results that can provide an estimate of Ėdiss over the full range of

Porb. Here we consider models in which the energy dissipation rate

is approximated as

Ėdiss = 4γeffEeff, (50)

where Eeff is an effective energy and γ eff is an energy-dependent

effective damping rate. The factor of 4 accounts for the two frequency

signs and the fact that γ eff is the amplitude, rather than energy,

damping rate.

5.3.1 Model 0

In Model 0 (M0), our simplest model, we assume that

γ
(M0)
eff = �nl = λnlωaκabc

√

Ea,lin

E0

,

E
(M0)
eff = Ea,lin, (51)

which implies

Ė
(M0)
diss = 4γ

(M0)
eff E

(M0)
eff ∝

(

2y

1 + y

)3

�6
orbω

7.0
a , (52)

where �nl is given by equation (47) evaluated at a parent energy

Ea = Ea,lin, modes b, c are the fastest growing daughter pair, and λnl

is a dimensionless constant whose value is determined by fitting to

the numerical results. We separated our Ė
(M0)
diss expression into the part

that depends on �orb and the part that depends on the eigenfrequency

ωa [which is further related to the driving frequency ω = m(�orb −
�s) � ωa]. The �orb dependence arises from terms that scale with

the overall tidal amplitude ε (equation 7), while the ωa dependence

arises from terms that depend on the internal structure of the resonant

parent modes (e.g. Qa, γ a, κabc, etc.). Separating the expression for

energy dissipation rates in this way will be useful when we consider

a rotating WD and tidal synchronization in Section 5.4.

M0 is similar to one proposed in Kumar & Goodman (1996) who

studied non-linear mode damping in tidal capture binaries. In their

analysis, the binary is on a highly eccentric orbit and the parent is

excited from essentially zero energy to a linear energy Ea,lin during

pericentre passage (using the method of Press & Teukolsky 1977).

They argue that Ėdiss ≈ 4�nlEa,lin because that is the maximum rate

at which the fastest growing daughter pair can drain energy from an

undriven parent that has an initial energy Ea,lin.

In the bottom panels of Figs 7 and 8, we compare M0 to the network

simulations. Although M0 can match the simulations at both Porb �
30 and 60 min, the agreement is only good at the large detuning a =
ωa/3na assumed in both figures. Since Ė

(M0)
diss is independent of a, it

cannot account for the significant variation of Ėdiss with a seen in

9This ignores the fact that the dissipation at different instants may be

dominated by modes from different generations. Therefore, at a given Porb,

the linear damping among different modes can vary by factors of O(10).
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Non-linear tides in white dwarf binaries 5491

the numerical simulations (see Figs 9 and 10). This failure is perhaps

not surprising since here, unlike the highly eccentric orbit of the tidal

capture problem, there is a continuous, a-dependent interaction

between the parent’s tidal driving and non-linear damping.

5.3.2 Model 1

In order to construct models that depend on a, we next consider

effective energies with Lorentzian profiles of the form

Eeff

E0

=
ω2

a

2
a + γ 2

eff

U 2
a . (53)

This is similar to the expression for linear energy (equation 25) except

that the linear damping rate γ a is replaced by the effective damping

rate γ eff.
10

Since M0 gives a reasonable approximation to the dissipation rate

when a is large, we construct models by starting from M0 and

using an iterative approach to improve upon it. Specifically, starting

with the maximally detuned linear energy of the parent Ea,lin, we

first define the 0th-order expressions:

γ
(0)
eff = λnlωaκabc

√

Ea,lin

E0

,

E
(0)
eff

E0

=
ω2

a

2
a +
[

γ
(0)
eff

]2
U 2

a . (54)

We then use these to evaluate the next order expressions, which define

our Model 1 (M1),

γ
(M1)
eff = λnlωaκabc

√

E
(0)
eff

E0

,

E
(M1)
eff

E0

=
ω2

a

2
a +
[

γ
(M1)
eff

]2
U 2

a . (55)

Note that E
(M1)
eff is not the total energy stored in the non-linear network

(see the upper panels of Figs 7 and 8). Instead, the total energy is

greater than E
(M1)
eff by a factor of O (γeff/γa) � 1, as shown in the

lower panel of Fig. 9.

5.3.3 Model 2

An alternative and perhaps more natural choice of energy at which

to evaluate γ eff is Eeff itself. This choice defines our Model 2 (M2),

namely

γ
(M2)
eff = λnlωaκabc

√

E
(M2)
eff

E0

,

E
(M2)
eff

E0

=
ω2

a

2
a +
[

γ
(M2)
eff

]2
U 2

a

=
−2

a +
√

4
a + 4λ2

nlω
4
aκ

2
abcU

2
a

2λ2
nlω

2
aκ

2
abc

. (56)

10This model should only be applied when γ eff is smaller than the frequency

spacing between two adjacent g-modes, |∂ωa/∂na| � ωa/na, as is the case

here. This ensures the parent mode is a standing wave (see also Section 3.5)

and the dynamics are well characterized by the most-resonant parent mode

alone.

The second equality in the effective energy expression follows

by solving the quadratic equation for Eeff. Note that if we keep

performing the iteration process we used in M1, it will eventually

converge to M2.

It will be useful to have the M2 scaling relations for the effective

energy and the energy dissipation rate when the parent mode is

exactly on resonance. We find

E
(M2)
eff

E0

(a=0) =
Ua

λnlκabc

∝
(

2y

1 + y

)

�2
orbω

5.7
a , (57)

Ė
(M2)
diss (a=0) ∝

(

2y

1 + y

)3/2

�3
orbω

7.5
a . (58)

Note that the resonant effective energy scales with the orbital

frequency as �2
orb, whereas the linear tidal energy scales as �4

orb.

The difference is due to the fact that the non-linear damping term

γ eff is itself a function of tidal energy, whereas the linear damping γ a

is independent of �orb. We will use equation (58) in Section 5.4 to

address the possibility of resonant locking (as studied in BQAW13

for linear tides) in the weakly non-linear tide regime.

5.3.4 Traveling-wave limit

In Section 3.5, we showed that in the traveling-wave regime (Porb �

10 min), the internal gravity waves excited in the core reach such

large amplitudes that they become strongly non-linear and break

near the stellar surface. Although the focus of our study is instead

weakly non-linear mode coupling in the standing wave regime (10

� Porb/min � 150), it is none the less instructive to compare the

predictions of the two regimes as if one or the other applied at all

Porb.

The tidal evolution in the traveling-wave regime was studied in

detail by FL12 (see also BQAW13). In Appendix C, we review key

aspects of the traveling-wave solution and show that it gives an energy

dissipation

Ė
(tw)
diss � f̂ ωE0

(

y

1 + y

)2(
�orb

ω0

)4(
ω

ω0

)5

∝ �4
orbω

6, (59)

where ω = 2(�orb − �s) is the frequency at which the wave is forced

(there are no resonances) and f̂ is a dimensionless quantity that

characterizes the overall strength of the dissipation. Based on our

WD model, we find f̂ � 20 (see Fig. C1), which agrees well with

the value obtained by FL12 for a similar model. The above equation

is related to the tidal energy transfer rate (see equation 42 in FL12)

by Ė
(tw)
tide = (�orb/ω) Ė

(tw)
diss .

The models adopted by FL12 and BQAW13 are effectively linear

models since Ėdiss ∝ ε2 ∝ �4
orb. In our weakly non-linear models,

by contrast, γ eff is itself a function of ε and thus the dissipation does

not scale as �4
orb (see e.g. equation 58). We will show in Section 5.4

that this can result in a substantially different spin evolution.

5.3.5 Comparison of tidal dissipation models

In the upper panel of Fig. 9, we show that M1 and M2 provide a

good fit to the mode network simulations for λnl � 3. Moreover, they

provide a much better fit than M0, especially at small |a|. Although

near exact resonance M1 provides a better fit than M2, we show in

Appendix B that the tidal synchronization and heating are similar in

the two models. We therefore adopt M2 as our fiducial model, as its

analytic form is simpler than M1’s.

In the top panel of Fig. 10, we show Ėdiss of M2 over a

wide range of Porb. We see that it agrees well with the network
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5492 H. Yu, N. N. Weinberg and J. Fuller

simulations both in terms of its overall Porb scaling and the high-

frequency oscillations with a (modulo the slight overestimate near

the resonance peaks, as noted above). It also helps explain why

the oscillations decrease in amplitude at smaller Porb; namely, γ eff

increases and becomes comparable to the maximum detuning, which

smears out the resonance peaks.

In Fig. 10, we also show the dissipation Ė
(tw)
diss if we treat the

dynamical tide as a traveling wave at large Porb (even though it is a

standing wave). We find that the traveling-wave solution appears to

trace the upper envelope of the weakly non-linear solution. However,

this is merely a coincidence. Indeed, comparing equations (58) and

(59) we see that they only have similar scaling when the spin rate

is fixed at zero so that ωa � 2�orb. When we consider the tidal

synchronization problem, they in fact have qualitatively different

behaviours.

5.4 Tidal synchronization and heating

We now study the tidal synchronization and heating of the WD

by using the calculation of Ėdiss to solve for the tidal torque τ tide

(equation 35) and thereby determine �̇s and �̇orb (equations 38 and

39). We use Ėdiss as given by model M2 with λnl = 3 since it provides

a useful analytic form that agrees well with the numerical results

(Section 5.3).

In the top panel of Fig. 11, we show the evolution of �s and

the asynchronicity �asyn ≡ �orb − �s as a function of Porb. We

initialize the frequencies at �orb = 2π/ (240 min) and �s = �orb/30,

although we find that the synchronization calculation is insensitive to

the initial conditions as long as both frequencies are initially small.

Initially both �s and �asyn increase as the orbit decays but at a critical

orbital period Pc � 50 min the spin-up has an inflection point and

�asyn becomes nearly constant. This is because at Pc, the spin-up

time-scale,

Ts =
�orb

�̇s

, (60)

first becomes smaller than the orbital decay time-scale Tgw =
�orb/�̇orb,gw (equation 48), as shown in the bottom panel of Fig. 10.

By evaluating Ėdiss using model M2 at a resonance a = 0 (see

equation 58), where the dissipation has a local maximum and thus

Ts has a local minimum, we find that the condition Ts = Tgw is first

satisfied at

Pc = 55

(

λnl

3

)−0.09

min. (61)

Although model M2 slightly overestimates Ėdiss at resonances (see

Section 5.3), this estimate of Pc is robust owing to the weak

dependence on λnl.

For Porb < Pc, the spin frequency �s continues to increase as

the orbit decays. Meanwhile, the asynchronicity �asyn is nearly

constant, although importantly it continues to increase, albeit slowly.

This continual increase implies that the system never acquires a

resonance lock. In a resonance lock, the tidal torque causes the

tidal forcing frequency |ω| = 2�asyn to remain constant even as

the orbit shrinks (Witte & Savonije 1999). BQAW13 found that

resonance locks should occur universally in WD binaries, whether

the parent is a standing wave or a traveling wave. However, their

study did not account for non-linear mode coupling, which we

find prevents resonance locks from forming in the standing-wave

regime (Porb � 10 min; Section 3.5). This is because �̇s ∝ Ėdiss and

based on model M2, Ėdiss ∝ �3
orbω

7.5
a at perfect resonance a = 0

(equation 58). Thus, if ωa � ω remains at a constant value near 4π/Pc

Figure 11. Top panel: spin frequency �s (solid lines), asynchronicity

�asyn = �orb − �s (dashed lines), and orbital frequency �orb (dotted lines)

as a function of orbital period Porb. Bottom panel: tidal power Ėtide (solid

line), tidal dissipation rate inside the star Ėdiss (dotted line), and GW power

Ėgw (dash–dotted line) as a function of Porb. In both panels, the blue lines

correspond to the weakly non-linear model M2 (assuming λnl = 3) and the

red lines correspond to the traveling-wave model.

for Porb < Pc, we have Ts ∝ �−2
orb and since Tgw ∝ �

−8/3
orb even the

maximal tidal torque at a = 0 is insufficient to maintain a resonance

lock as �orb increases.

To better illustrate why resonance locks do not form, in Fig. 12 we

show a zoomed-in view of the spin evolution over three consecutive

resonances. The top panel shows �asyn and the bottom panel shows

1 − Tgw/Ts. We see that at resonances (shaded regions), the tidal

torque is nearly strong enough to keep �asyn constant and a lock

almost forms. However, the torque is not quite sufficient to maintain

synchronization as the orbit decays (as evidenced by the weaker �orb

scaling of Ts ∝ �−2
orb than Tgw ∝ �

−8/3
orb ). As a result, �asyn slowly

increases and the driving frequency gradually moves away from the

mode resonance. This in turn reduces the torque and increases Ts until

at some point (top edge of shaded regions in Fig. 12) the detuning

becomes greater than the effective damping, a � γeff . The torque

then drops dramatically, �s stops increasing, and �asyn increases

rapidly (entirely due to the GW-induced orbital decay). Eventually,

�asyn gets so large that it hits the next mode resonance and the cycle

begins again.

In the bottom panel of Fig. 11, we show Ėdiss and Ėtide as a

function of Porb. While the weakly non-linear model has a heating

rate that is overall quite similar to the traveling-wave model (see

also Section 5.4.1 below), it has brief but significant dips. Each

dip corresponds to a transition from one resonant mode to the next

MNRAS 496, 5482–5502 (2020)
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Non-linear tides in white dwarf binaries 5493

Figure 12. A zoomed-in view of the spin evolution in the weakly non-

linear model when Porb < P
(nl)
c . The top panel shows the evolution of

the asynchronicity, �asyn/π. The shaded regions (from bottom to top) are

centred on the eigenfrequencies of the na = 48, 47, 46 g-modes, with a width

determined by the effective non-linear damping rate γ eff (which increases

slightly with decreasing Porb; see Section 5.3). The bottom panel shows 1

− (Tgw/Ts), where Ts is the spin-up time-scale and Tgw is the GW-induced

orbital decay time-scale.

(Fig. 12), during which the tidal heating is much less than the

traveling-wave prediction given by equation (66) below.

In order to estimate the full width of each dip, first note

that the driving frequency changes by ω = |∂ωa/∂na| � ωa/na

when evolving through the dip, where na (ωa) is the radial order

(eigenfrequency) of the mode prior to the transition. During the

dip the orbit evolves much faster than the spin, and therefore

ω � m�orb = 2πm|Porb|/P 2
orb. Since, as noted above, �asyn

(and hence the driving frequency) evolves slowly for Porb < Pc, we

have ωa � ω(Porb = Pc) � 2πm/Pc. Therefore, the width of the dip,

i.e. the amount by which the orbital period changes during the dip,

is

|Porb| �
P 2

orb

naPc

. (62)

As we discuss in Section 6.1, the dips may have direct obser-

vational consequences, and may provide an explanation for the

observed luminosity of the CO WD in J0651 (Brown et al. 2011;

Hermes et al. 2012).

5.4.1 Comparison with traveling-wave limit

As with Ėdiss in Section 5.3.5, it is useful to compare these weakly

non-linear results to the traveling-wave results (even though the

dynamical tide is a standing wave at Porb � 10 min). According to

the latter, Ė
(tw)
diss ∝ �4

orbω
6 (equation 59). Thus, unlike our weakly

non-linear results, T (tw)
s ∝ �−3

orb is steeper than Tgw ∝ �
−8/3
orb and for

Porb < P (tw)
c the asynchronicity is almost perfectly constant at a value

�asyn � 2π/P (tw)
c . Using our traveling-wave solution (Appendix C),

we find

P (tw)
c = 45

(

f̂

20

)3/16

min. (63)

More specifically, by plugging equations (35), (38)–(40), and (59)

into the condition �̇s � �̇orb, we find

ω = 2�asyn ∝ �
−1/15
orb . (64)

We thus see that even when the tidal torque is a smooth power law

of the frequency, the asynchronicity can stay very nearly constant (it

in fact decreases very slightly with increasing �orb to compensate

for the excess tidal torque and maintain synchronization). BQAW13

argued that the torque needs to be a ‘jagged’ function of the driving

frequency ω in order to maintain a resonance lock. While we agree

that that is necessary in order to maintain an exact lock, i.e. �̇asyn = 0,

equation (64) implies that even a torque that is a smooth, power-law

function of ω has �̇asyn � 0 and thus will, in effect, result in a lock.

5.4.2 Tidal heating when synchronous

When tidal synchronization does occur, the condition �̇s � �̇orb

implies that the tidal energy transfer rate is dictated by the GW-

induced decay rate and is essentially independent of the microphysics

governing the dissipation process. In particular,

Ėtide � IWD�orb�̇orb,gw �
3

2
IWD�2

orb

Ėpp

Eorb

, (65)

where in the second equality we use the relation �̇orb,gw/�orb �
(3/2)Ėpp/Eorb, with Ėpp the point-particle GW power and Eorb =
−GMM

′
/2D the orbital energy. The tidal heating rate is then given

by

Ėdiss �
2π

�orbPc

Ėtide �
2π

Pc

IWD�̇orb,gw, (66)

with IWD and Pc the only free parameters.

Note that even if we do not use the simple power-law fitting

formula for the traveling-wave dissipation but take into account

the scattering in the internal structure (see Fig. C1), the post-

synchronization heating rate should still be a smooth function of

frequency as demonstrated in fig. 14 of FL12. Varying the micro-

physics of the dissipation process (i.e. changing f̂ or λnl) only affects

the post-synchronization heating rate through a change in the location

of Pc, which by equation (66) only changes the overall magnitude of

the dissipation rate. And since Pc only depends weakly on f̂ and λnl

(see equations 61 and 63), the observed tidal heating should have a

relatively small scattering for different CO WDs at a given orbital

period Porb < Pc. We discuss the observational implications of this

in more detail in the next section.

6 O BSERVATI ONA L SI GNATURES

6.1 In electromagnetic radiation

Tidal dissipation converts a fraction of the orbital energy into heat.

In Appendix A2, we argue that the majority of the heat should be

deposited at locations sufficiently close to the WD’s surface where

the thermal diffusion time-scale is much shorter than the orbital

decay time-scale. As a result, we would expect the tidal heating to

be instantly manifested at the surface and to play a significant role

in determining the luminosity of WDs in compact binaries. This is

especially true for systems with orbital periods �20 min, as we may

expect the tidal heating to exceed the WD’s intrinsic cooling (for a

typical CO WD with an age of 1 Gyr, the luminosity due to its cooling

is about 10−3 L�; Salaris et al. 1997). Thus it would be particularly

interesting to compare our prediction of the tidal heating rate to the

MNRAS 496, 5482–5502 (2020)
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5494 H. Yu, N. N. Weinberg and J. Fuller

Figure 13. Similar to the bottom panel of Fig. 11 but for parameters cor-

responding to a J0651-like binary. We assume M = 0.5 M�, M ′ = 0.25 M�
and let the radius of the primary be R = 9.9 × 10−8 cm but keep the other

parameters controlling the primary WD’s internal structure the same as our

main model. The star symbol is at the observed period and luminosity of

J0651 (Hermes et al. 2012).

observed luminosity of the CO WD11 in the 13-min system J0651

(L = 1.0 × 10−3 L� and Teff = 8700 K; Hermes et al. 2012).

We first consider the heating rates calculated under the traveling-

wave model, which is appropriate for Porb � 10 min (see Sec-

tion 3.5). As shown in FL12 and BQAW13, the traveling-wave

calculation would predict a heating rate higher than the observed

luminosity of the CO WD in J0651 by about a factor of 10. However,

one of the key features of the traveling-wave model is that the heating

rate should be a relatively smooth function of Porb with little scatter.

Because of the synchronization condition �̇s � �̇orb, the heating

rate is dictated by the GW radiation and should thus follow a smooth

power law with respect to period. The only free parameters are the

moment of inertia of the WD, IWD, and the asynchronicity period,

P (tw)
c (see equation 66). The uncertainty in IWD should be relatively

small. Meanwhile, to increase P (tw)
c by a factor of 10 (in order to

explain the luminosity of J0651), it would require an increase of

f̂ , the characteristic traveling-wave dissipation rate, by a factor of

2.2 × 105 (see equation 63)!

On the other hand, our non-linear model offers a potential

explanation of the observed luminosity of J0651 (though it may not be

the only explanation). Recall from Fig. 11 that the non-linear model

(blue traces) has a heating rate that is overall similar to the traveling-

wave prediction when 10 < Porb < 20 min, except that there are dips

in the non-linear heating model when the asynchronicity transitions

from one mode’s resonance to the next.

In Fig. 13, we repeat the tidal heating calculation as we have

done in Section 5.4. To generate the plot, we have adjusted the

overall tidal amplitude ε according to J0651 (Hermes et al. 2012)

so that M = 0.5 M� and M ′ = 0.25 M� for the primary and the

secondary, respectively, and R = 1.4 × 10−2 R� = 9.9 × 10−8 cm

(for the primary; the secondary is treated as a point mass). The other

parameters determining the internal structure of the primary WD are

left the same as our main WD model (see Section 3.1; this should be

a good approximation as our model has a similar mass and effective

11We focus here only on the CO WD that is consistent with our background

stellar model. We leave for future study the case of weakly non-linear

dynamical tides of a He WD.

temperature as the CO WD in J0651). We find a surprisingly good

agreement between our non-linear model and the observation.12

While the exact match between our model and observation in

Fig. 13 is a coincidence of our background model, we can none the

less estimate the probability of observing such a system. In order

to produce the low luminosity of J0651, it requires a system to

be undergoing transition from one resonant mode to the other (see

Fig. 12). In Fig. 13 it corresponds to the transition from parent mode

na = 67 to 66. Thus the frequency difference between the two modes

can be estimated as |∂ωa/∂na| � ωa/na, corresponding to a width

of the dip in terms of orbital period of P 2
orb/ (naPc) � 0.031 min

(equation 62). This gives the analytical approximation of the full

width of the dip, and numerically we find a width of 0.021 min inside

which the luminosity is within a factor of 2 of the local minimum.

Meanwhile, the typical separation between two dips is about 1.7 min

(the three dips closest to J0651 are, respectively, at orbital periods

of 11.2, 12.8, and 14.5 min). Therefore, the probability of finding a

system at a dip in the tidal heating is thus estimated to be 0.021/1.7 �
1.2 per cent.

We note that the parameter space can be further expanded if one

takes into account the scattering in e.g. the tidal overlap of the parent

mode Qa, and/or the three-mode coupling coefficient κabc as they

can make the dips deeper and hence a larger range of Porb would

be consistent with the observation. Note that the scattering in the

internal structure affects the tidal heating only when Ts � Tgw, and

therefore has little effect in the traveling-wave limit as argued above.

However, we cannot readily explain the luminosity of the recent

observed 7-min system J1539 (Burdge et al. 2019). The model only

allows for extra scattering towards the lower luminosity side of the

traveling-wave model, which cannot be used to explain the higher

than expected temperature of the CO WD in J1539. Moreover, the

very low luminosity and temperature of the secondary WD in that

system likely fall below our estimates (though we have not yet

computed non-linear effects in He WD models). In general, it is

difficult for tidal heating models to simultaneously explain the high

luminosity of the primary and the low luminosity of the secondary in

J1539, so it is likely that other effects such as ongoing mass transfer

are occurring in that system.

Looking towards future, the nature of tidal dissipation can be

better constrained when more compact WD binaries are observed by

campaigns like the Extremely Low Mass (ELM; Brown et al. 2016)

and Zwicky Transient Facility (ZTF; Graham et al. 2019) surveys.

Whereas the traveling-wave model predicts the luminosities should

follow a smooth power law with respect to the orbital period with

small scatter, in the non-linear model we might expect occasional dips

in the luminosity that are O(10) times fainter than the prediction of

a smooth power law. The probability of seeing an underluminous

system is estimated to be a few per cent, with the CO WD in J0651

potentially being one such example. A complication is that some

WDs may be born at short orbital periods and still radiating their natal

thermal energy, adding upward scatter to the observed temperatures.

More discoveries at very short orbital periods (P < 15 min) where

tidal heating dominates the luminosity will help test these ideas.

12It is also interesting to note that when the companion becomes less massive,

the weakly non-linear model has a greater critical period than the traveling-

wave model, P
(nl)
c > P

(tw)
c when y < 1. This is because the weakly non-linear

mode has a tidal dissipation rate that scales with the mass ratio y as [2y/(1 +
y)]3/2, whereas in the traveling-wave model the scaling is [2y/(1 + y)]2; see

equations (58) and (59).
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Non-linear tides in white dwarf binaries 5495

6.2 In gravitational waves

The tidal interaction may lead to signatures in GWs that are poten-

tially observable for proposed GW observatories like LISA (Kupfer

et al. 2018; Korol et al. 2020) and TianGO (Kuns et al. 2019),

whose detectability we estimate here. Our focus will be on systems

that are sufficiently compact that their frequency chirping can be

resolved by GW observatories over ∼5 yr. Moreover, we want the

source to be individually resolvable instead of being part of the

confusion foreground. This typically requires the system to start

at a GW frequency fgw > 3 mHz, which corresponds to an orbital

period Porb < 11 min. For those systems, the traveling-wave limit

studied by FL12 begins to apply, as shown in Section 3.5. In fact, the

best constraints on the tide will be derived from systems that are so

compact that they are close to the onset of mass transfer.13 In part,

these systems are intrinsically louder in GW radiation compared to

the less compact ones. Furthermore, as argued in equation (65), we

have Ėtide/|Ėpp| ∝ �
4/3
orb , and thus tidal effects play an increasingly

important role relative to the point-particle GW radiation as the

orbital frequency increases. More importantly, these systems will

experience a significant amount of frequency evolution, which allows

us to disentangle the point-particle effects and the tidal effects even

if we do not know the binary’s chirp mass a priori. To address

this quantitatively, we will focus on binaries with Porb � 5 min and

adopt the Fisher information matrix to estimate the detectability of

parameters, especially the WD moment of inertia, IWD. Our study

compliments that by Piro (2019) who focused on systems at longer

orbital periods near Porb � 10 min. Such systems experience much

less frequency evolution and thus only the leading-order frequency

derivatives can be resolved.14

While in the case of inspiraling neutron star binaries, the leading-

order effect on the gravitational waveform is due to the equilibrium

tide (Flanagan & Hinderer 2008), it plays a comparatively minor role

in the case of double WDs. To see why, first note that the energy of

the equilibrium tide can be written as (BQAW13)

Eeq

E0

= keqε
2, (67)

where the constant keq ≡ 2
∑

a W 2
a Q2

a � 0.07, which is largely

dominated by the f-mode contribution. The internal dissipation of the

equilibrium tide induces a negligible tidal lag (Willems, Deloye &

Kalogera 2010). Instead, the dominant contribution to the tidal lag

is the GW-induced orbital decay (see e.g. Lai 1994). The associated

energy transfer rate into the equilibrium tide (to raise the tidal bulge)

is thus given by

Ėeq =
2

3

�̇orb

�orb

Eeq

= 2.0 × 10−5 L�

(

keq

0.1

)(

Porb

10 min

)−20/3

. (68)

This is negligible compared to the energy transfer rate due to the

dynamic tide (see Fig. 11), and we therefore ignore the effect of the

13For a typical 0.6–0.6 WD binary, the onset of the Roche lobe overflow

corresponds to a GW frequency of 30 mHz and Porb = 1.1 min.
14Assuming a 5-yr observation, the frequency resolution is 6.3 nHz. Over

this period, a system initially at Porb � 10 min (fgw � 3 mHz) evolves only

∼25 nHz. In comparison, the systems we consider in this section will evolve

by an amount ranging from ∼1µHz, if the initial GW frequency is fgw =
10 mHz, to ∼100µHz, if the initial frequency is fgw = 30 mHz.

equilibrium tide in the following discussion (see however the last

paragraph of this section).

Since the systems we consider in this section are in the traveling-

wave regime, we expect the WD’s spin to be well synchronized

with the orbit and thus �̇orb � �̇s. We can solve for the excess

frequency evolution due to the dynamical tide �̇tide ≡ �̇orb − �̇orb,gw

by using the relations given in Section 3.4 and the fact that the

post-synchronization dynamical tide is essentially controlled by a

single parameter, IWD (Section 5.4.1), and is therefore insensitive

to the details of the tidal interaction (namely, the value of f̂ ). We

find

�̇tide = �̇orb − �̇orb,gw =
(

3IWD/Iorb

1 − 3IWD/Iorb

)

�̇orb,gw, (69)

where Iorb is the orbital moment of inertia, and for future convenience

we express it in terms of Mc and �orb as

Iorb = μD2 =
G2/3M5/3

c

�
4/3
orb

. (70)

The Fisher matrix analysis is most conveniently done in the

frequency domain. This requires finding the phase �(fgw) of the

GW waveform in the frequency domain, which is related to the time-

domain GW phase φ(t) as (Cutler & Flanagan 1994)

�(fgw) = 2πfgwt(fgw) − φ
[

t(fgw)
]

−
π

4
. (71)

Separating the GW frequency evolution into the point-particle con-

tribution ḟpp = �̇orb,gw/π and the tide-induced contribution ḟtide =
�̇tide/π, we have

t(fgw) =
∫ fgw df

ḟ
=
∫ fgw df

ḟpp + ḟtide

= tpp(fgw) −
∫ fgw 3IWD

Iorb

df

ḟpp

, (72)

where tpp(fgw) =
∫

dfgw/ḟpp is the time as a function of GW

frequency without tidal effects and we use equation (70) to derive the

last equality. The lower limit of the integration (not shown) is set to

be the initial frequency of the waveform. Similarly, the time-domain

phase can be evaluated as

φ
[

t(fgw)
]

= 2π

∫ fgw f

ḟ
df

= φpp

[

t(fgw)
]

− 2π

∫ fgw 3IWD

Iorb

f

ḟpp

df , (73)

where φpp is the point-particle phase. Consequently, we have

�(fgw) = �pp(fgw) − 2π

(

fgw

∫ fgw 3IWD

Iorb

df

ḟpp

−
∫ fgw 3IWD

Iorb

f

ḟpp

df

)

. (74)

Even at the onset of mass transfer (fgw � 30 mHz for a typical

0.6–0.6 WD binary), the orbital velocity (vorb/c)2 � 10−4. Thus the

leading-order quadruple formula is sufficient to describe the point-

particle phase �pp, which is given by

�pp(fgw) = 2πfgwtc − φc −
π

4
−

3

4

(

8πG

c3
Mcfgw

)5/3

, (75)

where tc and φc are constants of integration. Since the orbital

moment of inertia Iorb can be viewed as function of fgw, with the

MNRAS 496, 5482–5502 (2020)
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5496 H. Yu, N. N. Weinberg and J. Fuller

Figure 14. Fractional uncertainty on the WD’s moment of inertia as a

function of the binary’s GW frequency over an observational period of 5 yr.

We assume the binary is at a distance of 10 kpc and we averaged over its sky

location. Note that we focus here on binaries with very short orbital periods,

and hence assume that the system is in the traveling-wave regime and the spin

is synchronized with the orbit (�̇s = �̇orb).

chirp mass Mc a parameter (see equation 70), we can construct the

frequency-domain strain waveform h(fgw) with five parameters,15

{r,Mc, tc, φc, IWD}, where r is the distance to the source. Note that

so far we only included the tidal effect from one of the WDs; in

reality, both WDs contribute to the phase shift and the quantity we

measure will be the sum of their moments of inertia.16

In Fig. 14, we show the fractional measurement uncertainty of

the WD’s moment of inertia as a function of the binary’s GW

frequency. The x-axis gives the binary’s initial GW frequency, and

we show results assuming a 5-yr observation. We fix the source

distance at 10 kpc and adopt the Fisher matrix technique to calculate

the parameter estimation uncertainty using both the sky-averaged

LISA (blue) and TianGO (orange) sensitivities. We see that for a

WD at fgw = 10 mHz, LISA can already constrain the moment of

inertia to better than 0.1 per cent. For a system close to the onset of

Roche lobe overflow, the statistical uncertainty in IWD with TianGO’s

sensitivity can be as small as 10−6. In reality, this precision may

not be reached because the modelling assumptions of this section

(such as the assumption of spin–orbit synchronization) introduce

systematic errors. None the less, it is clear that future space-based

GW observatories will be able to detect the tide’s contribution to the

orbital decay, which will constrain the WD moments of inertia and

theories of tidal dissipation.

While here we have treated the moment of inertia IWD as a

free parameter, in the near future we may have a sufficiently

reliable model of WDs (especially after verifying the tidal effect

after the first few detections by LISA and/or TianGO with high

statistical accuracy). If, for example, we can treat the moment

15Here we focus on the detectability of intrinsic parameters, so we have

dropped the inclination, polarization, and sky location of the source, and use

the sky-averaged sensitivity curves of LISA and TianGO (see fig. 1 of Kuns

et al. 2019).
16Note that the WD’s moment of inertia enters the phase linearly. Therefore

the parameter estimation uncertainty on the moment of inertia, IWD, is

independent of the magnitude of IWD, whereas the fractional error IWD/IWD

decreases as IWD increases.

of inertia as a function of mass, IWD = IWD(M), instead of as

a free parameter, then the tidal effect will allow us to measure

the component masses of the binary instead of just chirp mass

(see equation 74). This will help improve our understanding of

Type Ia supernovae and their progenitors as it allows us to measure

a binary’s total mass and determine whether it is super- or sub-

Chandrasekhar. This possibility was also demonstrated by Kuns et al.

(2019).

Lastly, while here we focus on the effects of dynamical tides on

the secular evolution of the binary, McNeill, Mardling & Müller

(2020) recently proposed an alternative method of constraining the

WD structure using the equilibrium tide. Specifically, the equilibrium

tide introduces a non-dissipative radial force −∂H/∂D ∼ Re
[

q∗
aU
]

(see equation 31). This force causes a non-secular oscillation of the

orbital eccentricity, which generates GWs at both �orb and 3�orb in

addition to the main 2�orb harmonic. Since the effect proposed by

McNeill et al. (2020) operates on a time-scale of Porb whereas the

dynamical tide is manifested over a much longer time-scale ∼Tgw,

we expect the two effects to be complementary to each other. The

eccentricity excited by the equilibrium tide might further enhance

the dynamical tide’s dissipation rate, as the spin is not synchronized

with the first and third orbital harmonics, and it could thus further

excite waves inside the WDs. We plan to study this interaction in the

future.

7 SUMMARY AND DI SCUSSI ON

In this paper, we studied the effects of non-linear dynamical tides

in compact WD binaries that inspiral due to GW radiation. Our

focus was on the weakly non-linear regime that we showed covers

the orbital period range 10 � Porb/min � 150 (see Fig. 5). In this

range, parent modes resonantly driven by the linear tide are so

energetic that they excite secondary waves through the three-mode

parametric instability. At longer periods linear theory applies, and at

shorter periods the parents are driven to such large amplitudes that

they become strongly non-linear and break near the WD’s surface.

Such parents are therefore traveling waves rather than standing

waves.

To study the weakly non-linear regime, we carried out a suite

of numerical integrations of coupled mode networks over a wide

range of orbital periods. The duration of each integration was a few

non-linear growth times Tnl  Tgw, where Tgw is the GW decay

time-scale. On this time-scale, the system settled into a quasi-steady

state in which the total mode energy and energy dissipation rate

approached constant values. We considered mode networks with 32

and 92 modes, both consisting of five mode generations, and found

that they converged on similar values for the total energy dissipation

rate. The computed dissipation rates are orders of magnitude larger

than that predicted by linear theory.

Based on the mode network integrations, we constructed phe-

nomenological models that provided a robust estimate of the non-

linear dissipation rate as a function of the system parameters

(Section 5.2). In the models, the total energy dissipation rate is given

by the product of an effective damping rate γ eff and an effective

energy Eeff. The effective damping is characterized by the three-mode

parametric growth rate �nl (equation 46) that is itself a function of

mode energy. The effective energy has a Lorentzian profile like the

linear tide energy but with γ eff replacing the linear damping rate γ a

(see equations 25 and 56). They are approximately equal when the

frequency detuning is large (a > γ eff � γ a), while Eeff is always

much smaller than the total mode energy in the non-linear network

[their ratio is O(γa/�nl)  1].

MNRAS 496, 5482–5502 (2020)
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We used the dissipation models to analyse the tidal synchronization

and heating of a CO WD as a function of orbital separation. Although

the trajectories in the weakly non-linear, standing wave regime are

similar to what previous studies found by (incorrectly) assuming a

traveling wave at Porb > 10 min, there are some important differences.

The most significant difference is that in the weakly non-linear

analysis, there are brief dips in the tidal heating rate that are 10–

100 times below the traveling-wave estimates (see Figs 11 and 13).

This is because in our weakly non-linear model, tidal synchronization

can only be approximately achieved for a finite duration near a

resonance peak (Fig. 12). Once the tidal torque at resonance becomes

insufficient to synchronize the spin with the orbit, the asynchronicity

�asyn = (�orb − �s) increases, and the mode moves out of resonance.

As a result, the total tidal torque and heating rate drop significantly

until the next mode becomes resonant.

These dips offer a potential explanation for the observed luminos-

ity of the CO WD in J0651 (see Fig. 13), which is about 10 times

fainter than predicted by the traveling-wave model. On the other

hand, the probability of finding a WD in such a state is only a

few per cent based on the width and spacing of the dips. The recently

observed 7-min system J1539 has an especially high luminosity

that cannot be explained by our model, although it is likely in the

traveling-wave regime and other non-tidal effects, such as ongoing

or previous mass transfer, are likely at play in this system.

More generally, we predict that most WD binaries with orbital

periods between about 10 and 20 min will have a luminosity

L consistent with the traveling-wave model and follow a power-

law scaling with respect to the orbital period, L � Ėdiss ∝ P
−11/3
orb

(equation 66). However, we expect O (1 per cent) will be outliers

that are 10 times dimmer. Future surveys should be able to test this

idea.

Lastly, we considered the impact of dynamical tides on the GW

signal. Since the loudest sources will have Porb < 10 min, in this part

of the analysis we adopted the traveling-wave model and assumed

that the WD spin would be synchronized with the orbit. We showed

that under these assumptions the only free parameter impacting the

GW signal is the moment of inertia of the WD (or the sum of the

moments of inertia if the tides in both WDs are taken into account).

We found that the moment of inertia should be constrained to better

than 1 per cent with future space-based GW observatories like LISA

or TianGO.

Our mode coupling formalism and network integrations assumed

that all the excited modes are standing waves. Although we showed

that the parent mode does not break for Porb � 10 min and is therefore

a standing wave, it is less clear whether the same is true of the

secondary waves that the parent excites. Since the shear increases

with increasing wavenumber, the secondary waves break at a smaller

energy than the parent. On the other hand, they are parametrically

unstable to three-mode coupling at a smaller energy than the parent.

As our network integrations show, three-mode coupling can suppress

mode amplitudes and prevent them from reaching wave-breaking

energies (e.g. we find that the parent’s energy at resonance peaks is

suppressed by orders of magnitude compared to the linear value as

a result of three mode coupling; see Fig. 9). Addressing this issue in

detail requires a formalism that allows for a mix of coupled standing

waves and traveling waves. Such an analysis might be especially

important for very hot WDs since the shear and linear damping rates

increase with increasing temperature and thus the tide is more likely

to excite traveling waves.

Throughout our analysis, we assumed that the WD can maintain

solid-body rotation throughout its evolution, and we accounted for the

spin’s effect only on the Doppler shift of the tidal driving frequency.

In particular, we neglected the Coriolis and centrifugal effects of

rotation on the WD’s oscillation modes.

One of the rotational effects is the shift of a mode’s eigenfrequency.

To account for this effect, the condition for resonant locking should

be generalized as (Witte & Savonije 1999; BQAW13)

0 � m
(

�̇orb − �̇s

)

− ω̇a

= m

[

�̇orb −
(

1 +
1

m

∂ωa

∂�s

)

�̇s

]

. (76)

Under the traditional approximation of rotation, we have ∂ωa/∂�s �
−m/6 in the slow-rotation limit (Unno et al. 1989; BQAW13). Such

a constant does not affect the qualitative synchronization trajectory

we considered in Section 5. Higher order corrections to the mode

frequency and the rotational modifications to the tidal overlap (Ivanov

et al. 2013) and to the three-mode coupling (Schenk et al. 2002) may

also be important, but are ignored in the current study for simplicity.

Nevertheless, Fuller & Lai (2014) showed that in the traveling-wave

limit, rotation does not significantly alter the spin-up and heating

trajectories of inspiraling WDs.

Another critical simplification we made is that we fixed the back-

ground model and ignored any potential adjustments to the structure

due to tidal heating. While this treatment is also adopted by previous

studies (e.g. FL12; BQAW13), its validity remains to be examined

more carefully, especially when the tidal heating rate is significantly

greater than the WD’s intrinsic cooling luminosity. This effect may

further change the synchronization trajectory, equation (76), by

introducing terms such as (∂ωa/∂Teff)Ṫeff . We plan to study this

effect in future work.
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APPE N D IX A : A SYMPTOTIC RELATIONS

In this appendix, we present various asymptotic relations used in

our calculations. For future convenience, we expand the Lagrangian

displacement vector field ξ a as

ξ a(r) =
[

ξ r
a (r)er + ξh

a (r)r∇
]

Ylama
(θ, φ), (A1)

where er is the unit vector along the radial direction. The radial and

Figure A1. Top panel: profile of the shear envelope krA for a normalized

mode with qa = 1. Bottom panel: local damping rate weighted by the time the

wave spends per scale height (blue line) and time-scales for thermal diffusion

(solid orange line) and GW-driven orbital decay (dotted orange line). We

show results for both our standard CO WD model with Teff = 9000 K (solid

lines) and a hotter CO WD model with Teff = 18 000 K (dashed lines). We set

ωa = 0.01ω0 here; for the range of interest, varying ωa modifies the overall

scale but has almost no effect on the shape of the profile.

horizontal motions can thus be characterized by ξ r
a (r) and ξh

a (r),

respectively.

A1 Shear profile

For a high-order g-mode normalized according to equation (10),

the radial displacement ξ r
a can be approximated by the Wentzel–

Kramers–Brillouin (WKB) relation (Unno et al. 1989)

ξ r
a � A sin φ, (A2)

where the phase φ =
∫

krdr + π/4 and the amplitude

A2 =
(

E0
∫

Nd ln r

)

1

ρr3N
. (A3)

Consequently, we can approximate the envelope of the shear as a

function of radius as |krξ
r
a | ∼ krA with the wavenumber kr given by

equation (3).

In Fig. A1, we show the shear profile. When evaluating kr,

we assume a reference frequency ωa = 0.01ω0. Notice that the

amplitude A is determined purely by background quantities while

the wavenumber kr ∝ 1/ωa when ω2
a  N 2, S2

l . Therefore, different

g-modes (as well as the traveling-wave solution) will have essentially

the same shape as the shear envelope, which peaks at a radius r =
0.994R and a pressure P = 5.4 × 1014 dyn cm−2 for the Teff = 9000 K

model we consider in the main text (corresponding to the solid traces

in Fig. A1; note that this is different from solar models where the

wave breaks near the centre; see e.g. Ogilvie & Lin 2007; Barker &

Ogilvie 2011; WAQB12; EW16). The maximum shear over the star

(which we used to derive the threshold energy of local wave breaking

in Fig. 5) can then be expressed as

max
r

|qakrξ
r
a | = max

r
|qakrA| � 6.4 × 105qa

(

0.01ω0

ωa

)

, (A4)

where the numerical value is for the Teff = 9000 K model.
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Non-linear tides in white dwarf binaries 5499

While in the main text we focus on a single WD model

with Teff=9000 K, in Fig. A1 we also consider a model with

Teff=18 000 K. As the WD becomes hotter, the radiative zone extends

closer to the surface. Thus, a gravity wave of a given frequency

propagates out to smaller pressures and its peak shear can be greater.

Consequently, tidal heating might further accelerate the transition

between the weakly-non-linear tidal interaction to the traveling-wave

limit as the binary’s separation decreases. Assessing this possibility

requires a study that couples tidal effects to the adjustment of the

WD’s internal structure.

A2 Linear dissipation

We now describe our calculation of the dissipation rates, which

closely follows the work of BQAW13.

There are two types of mode damping that are potentially relevant

in the WD. The first is due to electron conduction and radiative

diffusion, which can be estimated as

γ (diff)
a =

ω2
a

E0

∫

χk2
r

[

(

ξ r
a

)2 + l(l + 1)
(

ξh
a

)2
]

ρr2dr, (A5)

where the thermal diffusivity

χ =
16σT 3

3κρ2CP

. (A6)

Here κ and CP are the opacity and the specific heat at constant

total pressure. In addition to thermal diffusion, a g-mode can also be

damped by convective turbulence, whose dissipation rate we estimate

as

γ (turb)
a =

ω2
a

E0

∫

νturb

[

0.23

(

dξ r
a

dr

)2

+ 0.084l(l + 1)

(

dξh
a

dr

)2
]

ρr2dr, (A7)

where ν turb is the effective turbulent viscosity (Shiode, Quataert &

Arras 2012),

νturb = Lcvc min

[

10

(

2πLc

ωavc

)2

,

(

2πLc

ωavc

)

, 2.4

]

. (A8)

Here Lc and vc are the convective luminosity and velocity according

to mixing length theory (which are given by our MESA model).

In Fig. 2, we present the dissipation rates as a function of the

mode radial order (bottom axis) and frequency (top axis). The dots

are exact values calculated under the prescription described in this

section, and the solid lines are the power-law fits given in Section 3.1.

The blue and green lines are the dissipation due to thermal diffusion

and turbulent damping, and the orange line is the inverse of a mode’s

group travel time (see equation 42). We see that for modes with na

� 20, the dissipation is dominated by thermal diffusion. Those are

the modes most relevant for the tidal synchronization calculation.

For modes with lower radial orders, the turbulent damping becomes

significant. We do not include the contribution of γ (turb)
a in our mode

network calculations since modes with na � 20 are not excited once

the tidal synchronization is taken into account (see Section 5.4).

The quantity presented in equation (A5) is the global damping rate.

To better understand the tidal heating process, it is also instructive

to study the local heating rate, γ (loc)
a =χk2

r /2. Specifically, the global

damping rate can be viewed as the integral of the local rate weighted

by the time the wave packet spends at each radius (Goodman &

Dickson 1998),

γ (diff)
a �

2

Ta

∫

γ (loc)
a

dr

dωa/dkr

=
2

Ta

∫

γ (loc)
a

H

dωa/dkr

d ln P , (A9)

where Ta = 2
∫

dr(dωa/dkr)
−1 is the wave’s group travel time and H

≡ P/gρ is the pressure scale height.17 In the second line, we reversed

the limits of integration so that it corresponds to increasing ln P. In

the lower panel of Fig. A1, we show the integrand of equation (A9).

Note that by presenting it in this form (local damping rate weighted

by the time the wave packet spends per pressure scale height), we

expect an equal contribution to the total damping per dln P. The figure

assumes a reference frequency ωa = 0.01ω0 and the solid and dashed

blue lines represent the Teff = 9000 K and Teff = 18 000 K models,

respectively. Note that similar to the shear profile, the reference

frequency ωa only affects the overall magnitude of the damping but

does not change its shape. The solid orange line shows the inverse of

the local thermal diffusion time-scale,

tth =
PCP T

gF
, (A10)

for the Teff = 9000 K model, where F is the radiation flux (the Teff =
18 000 K model has a similar t−1

th profile). As a reference, the dotted

orange line is the inverse of the GW decay time-scale for a binary at

Porb = 10 min (see equation 48).

As Fig. A1 shows the peak of the weighted local damping rate

happens near the WD surface at a location close to the peak of the

shear. The typical thermal time-scale at the peak is less than 1000 yr,

and all the heat deposited at P � 1018 dyne cm−2 has tth < Tgw.

Therefore, a significant portion of the tidal heating can diffuse out

through the surface layers and hence affect the observed luminosity

of WDs in compact binaries.

A3 Tidal overlap

For the high-order g-modes that we consider, a brute-force calcula-

tion of the tidal overlap Qa according to equation (23) is subject to

considerable numerical error as the modes are highly oscillatory. A

more numerically accurate approach is to evaluate it in terms of the

equilibrium tide solution (see also equations C4 and C5; BQAW13),

f 1

[

ξ eq(r)
]

≡ ρWlm

GM ′

Dl+1
∇
(

r lYlm

)

. (A11)

We further note that the set of linear eigenmodes
{

ξ a

}

forms a com-

plete, orthonormal basis. This allows us to expand the equilibrium

tide as

ξ eq(r) =
∑

xaξ a(r). (A12)

Applying first the f 1 operation on both side of equation (A12) and

then contracting with ξ a using the orthogonality equation (10), we

can express the expansion coefficient xa in terms of the tidal overlap

integral,

xa = εWlmQalm. (A13)

17Using the WKB amplitude of a mode (see equation A3) together

with the property that l(l + 1)ξh
a /r ∼ krξ

r
a � ξ r

a , it can be shown that

γ
(loc)
a (∂kr/∂ωa) is proportional to the integrand of equation (A5).
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5500 H. Yu, N. N. Weinberg and J. Fuller

Plugging this into equation (A12) and contracting both sides with ξ a

then gives an alternate expression for the tidal overlap:

Qa =
ω2

a

WlmE0

∫

[

ξ r
eqξ

r
a + l(l + 1)ξh

eqξ
h
a

]

ρr2dr, (A14)

where ξ eq is evaluated with ε = 1. Also here we focus on the spatial

part of ξ only (dropping the temporal phase, which is complex); for

adiabatic oscillations both ξ eq(r) and ξ a(r) are real.

In Fig. 3, we plot Qa given by equation (A14). The blue dots are

the exact values and the solid orange line is the asymptotic fit we use

in the non-linear network calculations.

A4 Three-mode-coupling coefficient

In this section, we calculate the three-mode-coupling coefficient κabc

for our WD model. For conciseness, we use ar(ah) to represent the

radial (horizontal) displacement ξ r
a (ξh

a ) of mode a. We further define

�2
a = la(la + 1) and the angular integral,

T =
[

2(la + 1)(lb + 1)(lc + 1)

4π

]1/2

×

⎛

⎝

la lb lc

ma mb mc

⎞

⎠

⎛

⎝

la lb lc

0 0 0

⎞

⎠, (A15)

where the matrices are Wigner 3-j symbols.

While the exact expression for the coupling coefficient is compli-

cated (see equations A55–A62 in WAQB12), numerically we find that

terms (A56) and (A58) in WAQB12 dominate (the two have about

the same magnitude but opposite sign). This allows us to write

2E0

dκabc

dr
� T r�1P

[

∇ · b∇ · c
(

�2
aah − 4ar

)

+ ∇ · c∇ · a
(

�2
bbh − 4br

)

+ ∇ · a∇ · b
(

�2
cch − 4cr

)]

+ 4T rgρ (∇ · abrcr + ∇ · bcrar + ∇ · carbr ) , (A16)

where we use the fact that 4g � rdg/dr. We further simplify this

equation by substituting

�1P∇ · ξ � gρξ r
a − ω2

arρξh
a � gρξ r

a , (A17)

where in the first equality we make the Cowling approximation and

in the second we use the fact that g ∼ ω2
0r � ω2

ar . We then have

2E0

dκabc

dr
� T r

P

�1H 2

(

�2
aahbrcr + �2

bbharcr + �2
ccharbr

)

� T r
P

�1H 2
�2

aahbrcr , (A18)

where H is the pressure scale height. We keep only the brcr term

for the reason given in WAQB12. Namely, for high-order modes

brcr ∝ sin (φb)sin (φc) = cos (φb − φc)/2 � 1/2, which is roughly a

constant given that φb � φc. By comparison, the brch term is much

smaller since brch ∝ sin (φb − φc)/2  1 for φb � φc. Although

for the WD model we start from a different point than WAQB12

for solar-type stars (the sum of equations A56 and A58 instead of

equation A56 alone), the final result we obtain reduces to equation

(A63) in WAQB12.

In the top panel of Fig. A2, we show the cumulative three-mode-

coupling coefficient
∫

rdr(dκabc/dr). The solid grey line is the result

found by integrating all the terms in the exact expression for κabc

given in WAQB12, and the dashed grey line is the result found by

integrating the approximate expression given by equation (A18).

Figure A2. Top panel: cumulative three-mode coupling
∫

rdr(dκabc/dr) (grey

traces) and ln (N /ωa) (orange traces). Note that most of the (global) mode

coupling happens in the region r � 0.1R despite the fact that the local shear

peaks near the surface. Bottom panel: Lagrangian displacement of the parent

mode’s horizontal component ah (blue) and one of the daughter modes’ radial

component br (olive).

Here the parent mode quantum numbers are (la, ma, na) = (2, 2, 47)

and the daughters are (lb, mb, nb) = (2, 0, 94) and (lc, mc, nc) = (2,

−2, 96).

Note that the three-mode coupling accumulates primarily in the

core region (at r � 0.1R), near the inner boundary of the wave’s

propagation where ωa � N (see orange line in Fig. A2). By contrast,

the shear and linear damping peak near the surface of the star where

the modes are highly oscillatory (see Fig. A1).

We also show the horizontal displacement of the parent mode ah

(blue) and the radial displacement of one of the daughters br (olive)

in the lower panel of Fig. A2. Comparing with the top panel, we see

that most of the contribution to three-mode coupling happens near the

parent’s inner turning point. In this region the parent transitions from

being oscillatory to evanescent and the coupling adds coherently over

a length scale of order �0.1R (although the parent is also evanescent

at its outer turning point, that region contributes little to the global

coupling since it is very near the surface where the density is small).

As we note above, since the daughters are spatially coherent, brcr

≈ constant, and it is the parent’s spatial variations that matters

most.

In Fig. 4, we show the coupling coefficient as a function of

the parent mode’s radial order (bottom axis) and frequency (top

axis). The blue dots (κabc) are coefficients evaluated with the

exact expression for daughter pairs with the smallest frequency

detuning to the parent mode and satisfying |nb − nc| < na, and

the orange dots (κabb) are evaluated for the most-resonant, self-

coupled daughters (i.e. b = c). Here we restricted the daughters

to have l = 2, although the coupling to daughters with different

l’s is similar. Indeed, as long as |nb − nc| � na, the coupling

coefficients are approximately the same (after factoring out the

angular dependence T) and can be treated as a function of the

parent mode’s (la, na) alone (see also Wu & Goldreich 2001;

WAQB12). We also show the coupling coefficient evaluated with the

approximate expression equation (A18) for self-coupled daughters

(green dots). Lastly, the purple line is the asymptotic fit given by

equation (24).
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APP ENDIX B: SPIN EVO LUTION W ITH

DIF F EREN T NON-LINEAR D ISSIPATION

M O D E L S

In the main text we use Model 2 (M2) as our fiducial model for

the tidal dissipation rate (Section 5.3.3). While M2 provides a good

fit to the numerical results, near the resonance peaks Model 1 (M1;

Section 5.3.2) provides a somewhat better fit (see Fig. 9), albeit at

the expense of a less simple analytic form. Here we compare the two

models and show that they give similar results.

In Fig. B1, we show the M1 (orange lines) and M2 (blue line)

trajectories for the evolution of the WD’s spin and heating rates

(similar to Fig. 11). We see that they are very similar overall. There

are, however, two noticeable differences. First, the critical orbital

period Pc when Ts = Tgw is first satisfied is smaller for M1 than M2.

This is because the maximum torque provided by a given parent mode

is smaller in M1 than in M2 (see Fig. 9). Therefore, Pc corresponds

to a smaller radial order na of the parent mode in M1 than in M2.

This also slightly reduces the temporal density and depth of the

dips as both the mode density and the peak-to-trough spread of the

dissipation rate (see Fig. 10) decrease with decreasing na. Second,

whereas in M2 the dips are single narrow lines that occur each time

tidal synchronization is lost and the resonance transitions to a new

mode, in M1 the dips are line doublets. This is because in M1, Ėdiss

has a more complicated dependence on parent detuning a; unlike

M2 the peak Ėdiss is not at a = 0 but instead at the shoulders with

a � γ eff (see Fig. 9). The major dip is still due to the transition from

one resonant mode to the other (the same as in M2). The minor dip is

due to the decrease of dissipation rate at exact resonance (with a =

Figure B1. Similar to Fig. 11 but now also showing the results of Model 1

(orange lines) in order to compare with Model 2 (blue lines).

0) compared to at the shoulder (with a � γ
(M1)
eff ). The minor dips are

not in the middle of two major ones because while Ėdiss is symmetric

about the resonance, the GW decay rate increases monotonically as

Porb decreases.

APPENDI X C : TRAVELI NG-WAVE SOLUTIO N

In the main text we compare the linear traveling-wave results studied

previously to our weakly non-linear standing wave results. In this

appendix, we describe the traveling-wave solution of the dynamical

tide in more detail. Our approach closely follows that presented in

FL12.

To linear order, the inhomogeneous equations describing the

perturbed fluid flow are (see e.g. Lai 1994)

(

r2ξ r
)′ =

g

c2
s

r2ξ r +
[

l(l + 1)

ω2
−

r2

c2
s

]

δP

ρ
+

l(l + 1)

ω2
U, (C1)

(

δP

ρ

)′

= (ω2 − N 2)ξ r +
N 2

g

(

δP

ρ

)

− U ′, (C2)

ξh(r) =
1

ω2r

[

δP

ρ
+ U

]

, (C3)

where primes denote partial derivatives with respect to radius, ω is

the tidal forcing frequency, δP is the Eulerian pressure perturbation,

and in this section U = U(r) = −Wlm(GM
′
/D)(r/D)l is the radial

dependence of the tidal potential. We neglect perturbations to the

gravitational potential of the primary, i.e. we make the Cowling

approximation, which is reasonable given the short wavelength of

the dynamical tide for the orbital periods of interest.

The displacement field can be expressed as sum of equilibrium tide

and dynamical tide components, i.e. ξ r = ξ r
eq + ξ r

dyn, and similarly

for the horizontal displacement, where in the Cowling approxima-

tion,

ξ r
eq = −

U

g
, (C4)

ξh
eq = −

1

l(l + 1)r

(

r2U

g

)′

. (C5)

In the traveling-wave limit, the shear at the outer boundary is assumed

to be sufficiently large that the dynamical tide component breaks

locally at the location where krξ
r peaks (see Fig. A1). To ensure that

Figure C1. The traveling-wave tidal torque function F(ω) as a function of

ω = m(�orb − �s) (blue circles; see equation C9). The black line shows the

approximation f̂ (ω/ω0)5 with f̂ = 20. The result is in good agreement with

the calculation in FL12 for a similar WD model.
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5502 H. Yu, N. N. Weinberg and J. Fuller

only an outgoing wave exists, we impose a radiative outer boundary

condition at the peak of krξ
r (corresponding to r � 0.994R for the

Teff = 9000 K WD model) given by

(

ξh − ξh
eq

)′
=
[

−(ρr2/kr )′

2(ρr2/kr )
− ikr

]

(

ξh − ξh
eq

)

. (C6)

At the inner boundary we apply the regularity condition ω2rξ r =
δP/ρ + U. The set of inhomogeneous equations (C1)–(C3) can then

be solved to obtain the perturbed displacement field.

The wave carries a net angular momentum flux,

J̇z(r) = 2mω2ρr3Re
[

i
(

ξ r
dyn

)∗
ξh

dyn

]

, (C7)

which becomes a positive constant near the outer boundary since

the wave is purely outgoing. This constant corresponds to the tidal

torque exerted on the star, which can be expressed as

τtide = E0

(

y

1 + y

)2(
�orb

ω0

)4

F (ω), (C8)

where the function F(ω) can be approximated as (equation 78 in

FL12)

F (ω) � f̂

(

ω

ω0

)5

, (C9)

with f̂ a dimensionless constant that depends on the internal structure

of the WD.

In Fig. C1, we show the numerical calculation of F(ω) (blue dots)

and the approximation given by equation (C9) for our Teff = 9000 K

WD model (solid grey line). We find that f̂ = 20 provides a

reasonable fit to the numerical result. This agrees well with the

results of FL12 for their 0.6 M� WD model with Teff=8720 K.

To understand the scaling of the traveling-wave shear shown in

Fig. 6, we first note that near the surface, the horizontal and radial

components of the wave satisfies (FL12)

ξh
dyn = −i

krr

l(l + 1)
ξ r

dyn ∝
ξ r

dyn

ω
. (C10)

Combining this with equations (C7)–(C9) gives

ξ r
dyn ∝ �2

orbω
2 and krξ

r
dyn ∝ �2

orbω. (C11)

For a non-rotating WD, ω = 2�orb, and we obtain the P −3
orb scaling

shown in Fig. 6.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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