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Abstract

Direct representation of material microstructure in a macroscale simulation is prohibitively expensive, if even possible, with
current methods. However, the information contained in such a representation is highly desirable for tasks such as material/alloy
design and manufacturing process control. In this paper, a mechanistic machine learning framework is developed for fast
multiscale analysis of material response and structure performance. The new capabilities stem from three major factors: (1)
the use of an unsupervised learning (clustering)-based discretization to achieve significant order reduction at both macroscale
and microscale; (2) the generation of a database of interaction tensors among discretized material regions; (3) concurrent
multiscale response prediction to solve the mechanistic equations. These factors allow for an orders-of-magnitude decrease
in the computational expense compared to FE", n > 2. This method provides sufficiently high fidelity and speed to reasonably
conduct inverse modeling for the challenging tasks mentioned above.

Keywords Data-driven - Unsupervised learning - Reduced order modeling - Concurrent multiscale - Materials design

1 Introduction
1.1 Hierarchical materials design

Modern advanced materials are manufactured with compli-
cated microstructural features at multiple length scales to
achieve better properties and performance than previous gen-
erations of materials. Figure 1 shows the system chart for
Nickel-based superalloys, adapted from the computational
materials design framework first proposed by Olson [1]. The
performance of components, e.g. aeroengine disks, in a high
temperature environment relies on the material properties
such as strength, toughness, creep resistance and fatigue
resistance. These properties are determined by the interac-
tions among the hierarchical microstructures: polycrystals,
carbides at grain boundaries, primary and secondary y’ pre-
cipitates, as well as byproducts such as voids, inclusions and
residual stress, which are further controlled by a sequence
of processing steps. For example, excellent creep resistance
might be achieved by optimizing the volume fraction and
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morphology of precipitates so that they impede dislocation
movement as well as grain boundary migration in the most
efficient way. Hierarchical materials design thus requires fast
evaluation of macroscopic properties as a function of hierar-
chical microstructures.

On the one hand, the involvement of microstructural
features at multiple length scales significantly broadens
the materials design space. On the other, this challenges
mechanistic computational prediction of macroscopic prop-
erties and performance (in-service behavior) of material
systems. The objective of this work is to address this con-
cern by developing a physics-based data-driven multiscale
modeling framework that can predict macroscopic proper-
ties/performance while capturing complex microstructures
at several length scales.

1.2 Multiscale methods: hierarchical and concurrent

The hierarchical (also known as serial coupling or parame-
ter passing) technique [2,3] has been used to model complex
material systems. It often has three stages: the bottom-up
stage, the macroscale analysis stage and the top-down stage.
The bottom-up stage is used to develop macroscale consti-
tutive models. It starts from the finest scale by calibrating
an upper scale material model with average stress-strain
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response computed from a microstructural volume element
(MVE, sometimes referred to as representative volume ele-
ment (RVE) [4] or statistical volume element (SVE) [5]), and
repeats this process until the macroscale constitutive law is
calibrated. The macroscale analysis stage predicts part per-
formance using the calibrated macroscale constitutive law.
Then, in the top-down stage, a detailed solution in a lower
scale MVE can be computed with the deformation response
of a material point in the upper scale as boundary conditions.
However, all these hierarchical approaches rely on the cal-
ibration of assumed constitutive laws at each scale through
homogenization operations, during which microscale details
are inevitably lost or neglected. In addition, the top-down
stage propagates errors through the boundary conditions.

One alternative is the concurrent (or two-way coupling)
technique, which requires the simulations at all scales to
be performed simultaneously. Every integration or material
point of an arbitrary scale (except the finest scale) is linked to
a MVE at a finer scale, which is solved on-the-fly to provide
the stress-strain responses for that integration point during the
analysis. Thus no assumed constitutive law is needed other
than at the finest scale. In this regard, FE-FE (or FE?) [6] and
FE-FFT [7] have been proposed to model a two-scale mate-
rial system. However, the computational cost is tremendous
if more than two scales are considered.

One assumption the above mentioned multiscale methods
often take is scale separation, meaning that the characteristic
length of deformation at the part scale is much larger than
that of the constitutive microstructural features. To regular-
ize the case when scale separation breaks down, generalized
continuum theories [8—11] have been proposed, which intro-
duce extra degrees of freedom (e.g. strain gradients) to avoid
spurious mesh-size dependency and RVE-size dependency.
These theories were later generalized to an arbitrary number
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of scales, resulting in the multiresolution continuum theory
(MCT) [12-14]. These generalized continuum theories were
used most in the hierarchical multiscale framework, although
archetype-blending continuum (ABC) [15,16] was proposed
to maintain some information about microscale constituents.
The second-order computational homogenization methods
[17,18] maintain microscale information concurrently but
again suffer from the high computational cost. The need to
compute detailed mechanical response in multiscale methods
motivates the development of order-reduction methods.

1.3 Clustering: an efficient discretization method

A myriad of reduced-order methods have been developed
for efficient multiscale simulations, for example, the trans-
formation field analysis (TFA) [19], the nonuniform trans-
formation field analysis (NTFA) [20], the eigen-deformation
based method [21], and the proper orthogonal decomposi-
tion (POD) [22]. A detailed review can be found in [23].
Recently, the self-consistent clustering analysis (SCA) pro-
posed by Liu et al. [24] has been shown to maintain high
accuracy and effciency. The key idea of SCA is the clustering-
based discretization theory for order reduction rather than
the traditional domain-based discretization, as illustrated in
Fig. 2. The domain-based approach decomposes the domain
directly, leading to a Riemann integral; while the clustering-
based approach analyzes the a priori response of interest
through an unsupervised machine learning method to decom-
pose the domain into “clusters”, resulting in the so-called
Lebesgue integral. The key differences of SCA from the
other reduced-order methods mentioned above lie in: (1)
the clustering-based discretization, resulting in potentially
higher efficiency in representing heterogeneous material sys-
tems; (2) the flexibility of using a self-consistent scheme
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Fig.2 Discretization of partial
differential equations through a
domain-based decomposition
and b response-based
decomposition clustering e.g.
with unsupervised learning
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Fig.3 A schematic of the N-scale problem of interest where the char-
acteristic length scales satisfy L) > L@ > ... LW » ...»
L™ Certain material points in a scale are associated with a finer scale

in the online stage for higher accuracy. This method has
been used in FE-SCA type concurrent simulations for strain
softening materials [25], polycrystalline materials [26-28],
and composite materials [29-31]. However, in all the con-
current simulation approaches (FE-FE, FE-FFT, FE-SCA)
mentioned above, the finite element method is used for the
macroscale analysis, which slows down computational pre-
diction of structure-property-performance relationships in a
materials design practice. This work will address this issue
by extending the clustering-based discretization theory to
macroscale modeling and further to N-scale concurrent sim-
ulation of material systems, resulting in the multiresolution
clustering analysis (MCA) framework.

1.4 Outline of the paper

Section 2 presents the general integral equations for an arbi-
trary N-scale problem at finite strains and their clustering-
based discretization. A two-stage (offline/online) solution
scheme is given in Sect. 3. The accuracy and efficiency of
MCA in the context of an example problem is shown and dis-

LIV

microstructure volume element. Microstructure features are represented
by the squares, circles and triangles

cussed in Sect. 4. Concluding remarks are provided in Sect.
5.

2 Multiresolution formulation for
hierarchical material systems

2.1 Fully coupled N-scale problem description

A fully coupled N-scale problem of interest is schematically
shown in Fig. 3. Certain material points in a scale are asso-
ciated with a finer scale microstructure volume element. The
characteristic lengths of each scale are assumed to be well
separated, meaning that L > L® » ... » LW »
.o LY where L™ is the characteristic length of the nth
scale withn =1,---, N.

The first scale involves a component or part with gen-
eral boundary conditions and body forces. The equilibrium
boundary value problem (BVP) of the first scale is expressed
by
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where P is the first Piola-Kirchhoff stress (PK1 stress); F is
the deformation gradient; b is the body force; I, is the second
order identity tensor; u is the displacement with prescribed
values u on the displacement boundary 02,; t = P - n is
the traction with prescribed values t on the traction bound-
ary 9€2;. The normal vector n is on the domain boundary.
The gradient operator is denoted by V. The superscript (1)
denotes the first scale. The other scales (scale 2 to N) involve
representative microstructure volume elements (MVEs) with
periodic boundary conditions. The equilibrium BVPs defined
on these MVEs are given by

vm . pm =, vyX® ¢ Q®
F® =1, + v®Wyu® @
u® periodic on Q"

t™ anti-periodic on 9Q"

where the superscript (n) denotes the n™ scale with n =

2, ..., N. To establish the coupling relationship among these
BVPs at different scales, we denote V@ as a subset of
Q™ whose material points are represented by finer scale
microstructures. It should be noted that VIV = & If the
first scale is the component (part) scale where all material
points are associated with finer scale microstructures, we
have V(U = QD Thus, the coupling between any two con-
secutive scales through homogenization of PK1 stress and
deformation gradient is given by

Q)|

P(n—l)(X(n—l)) — |an)| fQ('t) P(n)(X(n))dX(n)’

{F(n—l)(x(n—l)) — | 1 fQ(") F(n)(X(n))dX(n), 3

where X"~V is an arbitrary material point in V'~D; Q)
is the n'™ scale MVE domain associated with X~D: and
n = 2, ..., N. The constitutive equations for material points
at a scale that does not have finer microstructural features
are assumed to be known a priori and are represented by a
generic constitutive law:

P — g (F("), W(")), vX® ¢ \V(n)
withn=1,..., N )

where w collectively denotes the necessary state variables.
Note that different constitutive equations can be used to
represent the physics involved at each scale for which a con-
stitutive law is used.

@ Springer

Eqgs. (1-4) together describe the fully coupled N-scale
problem to be solved in this work.

2.2 Generalized Lippmann-Schwinger integral
equation

The derivation in Sect. 2.1 shows that each scale entails a

boundary value problem, which is rewritten in the following
general form:

V.PX)+b=0, VXeQ

F=L+Vu, VXeQ 5
u=1u, VXeQ,
t=t, VXedQ =0Q)\IQ

where the superscript defining the operative scale is omitted
to simplify the notation.

By introducing an arbitrary comparison medium with elas-
tic stiffness C%(X), the solution F(X) to problem Eq. (5)
can be obtained through the superposition of a reference
deformation solution and an eigenstress deformation solu-
tion: F(X) = F(X) + Vu(X). Here, F(X) is the deformation
solution to the following reference problem:

V-PX)+b=0, VXeQ

PX)=C'X): (FX)-L), vXeQ

PCx) X (FX) -L), vXe ©
u=1u, VXedQ,

t=t VXeaQ

and a(X) is the displacement solution to the following eigen-
stress problem:

V.-PX)=0, VXeQ

PX) = COX) : VaX) + 1(X), VXeQ .
=0, VXeaQy
t=0, VX e

where 7(X) = P(X) — C°(X) : (F(X) — I,). The dis-
placement solution of the eigenstress problem Eq. (7) can
be expressed as

i (X) =/ Gij (X, X)1jp p(X)dX’
Q
_ / Gy (X, X)X yng (X)X
o

—/ Gijw X, XN Tje(X)axX’
Q
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= /Q (Gij (X, X (X)ds(X)
—Gij (X, X)) Tk (X)dX', (8)

where G;;(X, X') is the Green’s function that satisfies the
same boundary condition as in Eq. (7). Note that " in Eq.
(2.2) denotes that the derivative is taken w.r.t. X and it still
denotes the same index with k and they follow the Einstein
summation convention. §s(X) is the delta function defined
on boundary 9€2:

lims_o} if X € 9%

3s(X) = {0 ©)

otherwise

where 025 is a volume such that it includes the boundary
d€2 and its orthogonal cross-section has a specially defined
measure of §, see [32] for details. This allows the conversion
from the surface integral to volume integral in Eq. (2.2).
Then the deformation gradient can be obtained with

i 1 (X) = —/ Cirje (X, X) 7j5(X)dX! (10)
Q

where the Green’s operator I' is defined as

Titjk = Gijan(X, X) = Gij i (X, X)ng(X)8s(X'). (1)

The tensor form of the strain solution to the eigenstress prob-
lem Eq. (7) is

vViaX) = —/ rx, X): r(XhHax'. (12)
Q
Then the solution of problem Eq. (5) can be expressed as

F(X) = F(X) — / rex,x):
Q
(P(X’) — X'y : (FX') — 12)) dax. (13)

This is the generalized Lippmann-Schwinger equation (L-
S equation). It should be noted that the above derivation relies
on the introduction of the reference elastic stiffness C°(X).
This ensures the availability of the Green’s function, so that
the generalized L-S equation holds for finite strain cases as
well as nonlinear constitutive relationships between P and F.

In the special case of a homogeneous reference stiffness
tensor, i.e. CO(X') = constant, and periodic boundary con-
ditions, Eq. (13) reduces to the classical L-S equation [33]:

F(X) =F' — / I'X,X): (PX)—C":FX))dX, (14)
Q

where FV is the far field deformation gradient. This can be
shown by noting that the solution to the reference problem

Eq. (6) is equal to the far field deformation gradient FO, and
the following property of the Green’s operator [34]:

/ rx,X): (C%: n)dx =o. (15)
Q

For practical convenience, the incremental form of Eq.
(13) is given by

AF(X) = AF(X) — / rX,X): (APX)
Q
—C'X') : AF(X))dX'. (16)

where AF and AP are the incremental deformation gradient
and PK1 stress respectively.

2.2.1 Coupling between scales

Based on the above derivation, the fully coupled integral
equations of the N-scale problem described in Sect. 2.1 are
given in the following incremental form:

AF™(X) = AF™(X) — / rx,x:
Q)

(AP X)€" (X): AF® (X)) )dX' (17)
wheren =1, ..., N; AFW is the solution to

v APDOXD) £ pD XDy =9, vXD ¢ QD
APD(X) = COM XDy AFDO XDy, vxXD e QM)
AFDXD) = aa®, vXO € sl
AT XD) = AtV vXD e gV

(18)

AF("), n =2, ..., N is the solution to

v Af’(”)(X(")) =0, vX® ¢
APO (XM = €O (XM) : AFM (XM), vX® e Q)
gy Jow AFPXM)AX® = AFCDX0D), vXO=D e vorD
Al™ periodic on 9"
At™ anti-periodic on 9™
(19)

and

1

— AP™dX",
QM| Jom

AP — n=2,..,N. (20)

Note that in the special case of a homogeneous reference
stiffness tensor, i.e. CO ™ (X) = constant, Eq. (19) is equiv-
alent to

AF® = ARV =2 . N. 2h
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2.3 Clustering-based discretization of the
Lippmann-Schwinger equation

At each scale n,n = 1, ..., N, suppose the domain Q@™ s

decomposed into NC(") compact, non-overlapping clusters.

Also assume that all variables are uniform in each cluster

Q! 1™ =1, .. N™ of scale n and represented by their
7™ 1

volume averages [/ = T fQﬂ") BX™)dX™ . Note

that " = @ V17" I™ indicates the average value of
a variable (scalar, vector or tensor) in cluster /) associated
with cluster / (1), o, 10D g successively coarser scales.
Thus any variable (17 (X)) can be approximated by

N
a0 X0y = Y @ ! (X)X ™, (22)
1mM=1
where
. 1 ifX™ e ™
1xmy =11 23)

0 otherwise.

Using the above representation, the fully coupled integral
equations in Eq. (17) can be discretized as

N
AF[(n) _ AFI(n) _ Z DI(n),](n) :
Jm=]
A" I =1, N®, n=1,...N

(24)

. . (n) (n) (n) (n)
where the incremental elgenstressmj () TR g URAS YA ,
and

o 1
= |QI()1)|
™ =1, ,N", n=1,..,N

AF

/ AFXM)gx ™
Ql(")

(25)

and D! o, is the so-called interaction tensor between clus-
ter 7 and cluster J, which is given by

(o g 1 10
- |Ql(n)| Q,(n) X

Xy 5 7

YXMygX ™, (26)

The clustering-based discretized version of the fully cou-
pled N-scale integral equations, given in Eq. (24), will be
solved with the MCA framework to be introduced in the next
section.
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3 Two-stage (offline/online) solution

This section describes the MCA solution scheme based on the
Lebesgue integral concept mentioned earlier, which consists
of an “offline” stage to generate a clustering database and an
“online” stage that makes use of the database to predict mate-
rial responses at multiple length scales. The efficiency and
accuracy of MCA will be shown through numerical examples
that involve several length scales.

3.1 Offline stage: clustering database generation

The offline stage for clustering database generation consists
of three primary steps: (1) data collection, (2) unsupervised
learning (e.g. clustering), and (3) pre-computation of the
interaction tensors among clusters.

3.1.1 Deformation concentration field

MCA reduces the degrees of freedom to be solved by taking
advantage of the mechanical response similarity of mate-
rial points. This similarity is found by clustering the field
data of some mechanical response. In this work, linear elas-
tic mechanical responses are chosen as the clustering data,
because they well indicate local material behaviors and are
computationally less expensive to obtain.

At microstructural scales, the deformation concentration
tensor can be used. It is defined by

IF(X)

AK) = =5,

VX € Q Q27)

where FU is the macroscopic deformation corresponding to
the boundary conditions of the MVE, F(X) is the local defor-
mation at point X in the MVE domain 2. In two dimensions,
A(X) has (2 x 2)? = 16 independent components, requiring
direct numerical simulations (DNS) under four orthogonal
loading conditions to determine. In three dimensions, A (X)
has (3 x 3)% = 81 independent components, requiring DNS
under nine orthogonal loading conditions to uniquely define.
For small strain problems, the strain concentration tensor can
be used, and only six (or three) orthogonal loading conditions
for DNS are needed in three (or two) dimensions.

At the macro-scale, the clustering data depends on the
applied boundary conditions and loading conditions. Thus,
some prior knowledge of the possible loading paths would
benefit the applicability of the proposed method. In the case
of fixed boundary conditions, the deformation gradient (or
strain) field calculated under the same boundary conditions
can be used for clustering. In the case of moving bound-
ary conditions, a database of deformation gradient (or strain)
field under all possible loading paths needs to be prepared.
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3.1.2 Clustering

Once the deformation concentration field is prepared, the
next step is to decompose the domain into clusters each
containing similar data points. This can be done using the
k-means clustering algorithm [24]. For a predefined num-
ber of clusters N, k-means clustering solves a minimization
problem defined by

Ne
§* =argmin )~ Y ||A" — A|]%. (28)
S J=lmes’
=lmes§

where S = {S', 2, ..., SN} is a non-overlapping partition of
the material points in a domain of interest; S* is the partition
that achieves minimization; A™ is the deformation concen-
tration tensor at material point m; A’ is the deformation
concentration tensor averaged within cluster J. Similarity is
measured by the Frobenius norm, denoted by ||E|]. It should
be noted that more advanced clustering methods, e.g. self-
organizing maps [35], could also be used in lieu of k-means
clustering.

3.1.3 Interaction tensors

The interaction tensor describes the impact one cluster has
on each of the other clusters. Once the clustering process is
completed, the interaction tensor can be explicitly computed.
Importantly, the integral part only has to be computed once
during the offline stage. Three ways to compute the interac-
tion tensor are [36]:

Fast Fourier transform With periodic boundary condi-
tions and a homogeneous reference material with isotropic
stiffness, the Green’s operator has a simple expression in
Fourier space [37,38], given by

-0 _ Sik & _ 20 &&i&Lé
Iﬂijkl(s) - ZMO |E|2 ZMO ()»0 + QMO) |§|4 (29)

where f‘?j u=F (I'%) is the Fourier transform of a periodic

Green’s operator I'’; A0 and ;© are the Lamé’s constants
of the isotropic stiffness tensor; & is the Fourier point. The
expression of Green’s operators for anisotropic stiffness ten-
sors are more complex and can be found in [39]. Eq. (29) is
preferred because the elastic constants are separated from the
Fourier variables, so that the elastic constants can be easily
updated in the online stage to achieve self-consistency and
improve accuracy. Then the interaction tensor can be calcu-
lated with

g L 1 1 J 0
D = o [ A 0F (P X)) ax,
VI, Je{l,.., N} (30)

using the fast Fourier transform (FFT) technique. The com-
putational complexity is O ((Nc)*(Nr)log(Nr)), where Ng
is the number of Fourier points used in the FFT calculation.
Numerical integration With an infinite homogeneous
reference material, the Green’s operator can be expressed in
real space as shown in [35] and [40]. Numerical integration
is the most straightforward method to compute the integral
equation given in Eq. (26). The computational complexity is
O ((N1)?), where Ny is the number of integration points used.
In [40], a fast method is proposed to approximate D7 .
Finite element method Based on the physical interpreta-
tion of the interaction tensor, the finite element method can
also be used. By applying uniform unit eigenstress compo-
nent k/ in the J™ cluster, the average strain can be computed

for all clusters, resulting in Dl.[j‘,’d forall / =1, ..., N.. Thus,

the computational complexity is O (6(NC)(Ne)), where N, is
the number of finite elements used.

For microstructure scale solutions (n > 1), we use FFT or
numerical integrations; for the part scale (n = 1), we use the
finite element method. A fast approximation of interaction
tensors based on coarse background grid was developed in
[40].

3.2 Online stage: iterative solution scheme

In the online stage, the clustering-based discretization prob-
lem derived in Eq. (24) is solved, with proper constitutive
equations for each of the individual phases not represented
by a smaller scale.

Note that AF/" can be obtained in the offline stage by

Jm

solving the elastic problem (6), and AP is a function

of AF/" through the local constitutive equations and/or
homogenization of a finer scale MVE associated with the
J® cluster. The unknowns for Eq. (24) are

[AF} = {AF’(I)’“'”W, ™ =1, N n=1,.. N}.
(31)
Newton’s iterative method is used to solve Eq. (24) for

each scale in the online stage, where the residual {r}® is
given component-wise as:

Ne
o/ = AR 3 DI Al AR (32)
J=1

The system Jacobian {M}™® at scale (n) is defined
component-wise as:

M[(n)J(n) _ 81(,1)1(”)14 + D](n)](n) : ch(n),
for 1, J™ =1, ..., N™, (33)
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) ) o
— C%7™ Here /" = 9AP is

where AC7" = = Cly Y i IAFTT
the effective tangent stlffness tensor of the material in the
cluster /" and is an output of a finer scale problem. I is
a 4 rank identity tensor defined by 14 kimn = Skm01n, and
8@ ya 1s the Kronecker delta in terms of indices / ™ and
J™ Tt is suggested to use the self-consistent scheme [28]
to update the effective tangent stiffness tensor of an MVE to
achieve higher accuracy in the online stage.

A recursive algorithm to solve Eq. (24) is given in Boxes |
and ITin Appendix 1. The algorithm in Box I controls Newton
iterations at the part scale, while a recursive subroutine in
Box II handles consecutive scale coupling. Scale coupling
passes deformation gradient increments from a cluster at the
coarser scale (e.g. scale 1) to the corresponding MVE at the
finer scale (e.g. scale 2) as loading conditions, and returns
the homogenized stress increments and the effective tangent
stiffness tensor.

The number of unknowns in Eq. (31) is no more than
9x YN T, 9 with the extreme case where all clus-
ters of all scales except the finest scale are associated with a
finer scale MVE. The computational complexity of Newton’s

3
method is O (729 SN TN, (k)( C(")>

solver such as the LU decomposition method is used for
the linearized equation systems. As a comparison, the num-
ber of unknowns when using concurrent multiscale FEM

, if a direct

is 3 (Zn Tz, I'N; (k)N (n)) resulting in a computational
complexity of O (3 (Z,IIV Tz, N(k)N(n)>), assuming an
(k)

linear scaling in the best scenario. Here, N;" is the num-

ber of integration points used at the k™ scale; Ny ™ is the
number of nodes used at the n'™ scale. For a three-scale prob-
lem, if N(]) N(z) and N(3) is O (105) and N(l) N(z) nd
NCG) is O (10), then the computational complexity of MCA
is O (10'!), which is significantly less than that of concurrent
multiscale FEM O (10'9).

4 Numerical example: modeling three-scale
particle-reinforced composites

The MCA framework is applicable to problems that involve
an arbitrary number of length scales. In this section, we
demonstrate its accuracy and efficiency by modeling a three-
scale particle-reinforced composite.

4.1 Problem setting

A particle-reinforced composite system shown in Fig. 4 is
used to demonstrate the accuracy and efficiency of the pro-
posed method. A plate with three holes made of a composite
whose matrix is reinforced by cubic particles (primary) at the
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Table 1 Elastic properties of the matrix and particle phases

Phases Young’s moduli (MPa) Poisson’s ratios
Matrix 1000 0.3
Particle 2000 0.2

micrometer scale with volume fraction of 5% and spherical
particles (secondary) at the nanomemeter scale with volume
fraction of 20%. This might be thought of as a rough model
of a precipitate strengthen alloy, for example. Table 2 lists
seven different numerical cases conducted. The first case is
a homogeneous coupon with only the matrix phase, under
uniaxial loading. In the second case, 5% volume fraction of
cubic primary particles are added to the matrix. In the third
case, 20% volume fraction of spherical secondary particles
are added further to the matrix (but not the primary particles).
In the fourth to seventh cases, the shape of the secondary
particles are changed to ellipsoids with shape and volume
fraction fixed but different angles ¢ between the major axis
and the loading direction.

The matrix phase is modeled as an elasto-plastic material
with J2 yielding and linear hardening rules. Both the primary
and secondary particle phases are modeled with pure elastic-
ity. The elastic properties of the two phases are given in Table
1. It should be noted that these constitutive relationships are
used for demonstration purposes. More complex ones could
be used depending on the problem of interest.

The von Mises yield surface is given by

f=0—oy(&P) <0, (34)

where o is the von Mises equivalent stress, and the yield

stress oy is a linear function of the equivalent plastic strain
eP:

oy (8P) = 6 4 500&P MPa. (35)
4.2 Clustering and interaction database generation

To generate the interaction database for MCA, the three-step
method introduced in Sect. 3.1 is used. In the first step, lin-
ear elastic analysis for each individual scale is conducted
separately. Uniaxial loading is applied at the part scale (scale
1) until 1% elongation is reached. FEM is used to get the
strain field with the material properties of the matrix phase
given in Table 1. Six orthogonal loading cases were applied
at the microstructure scales (scales 2 and 3) to get the corre-
sponding strain concentration fields using the FFT method.
It should be noted that high stiffness contrast between matrix
and particles could result in spurious oscillations in the elas-
tic strain field, as reported in [37]. A simple resolution used
in this work is postprocessing the deformation gradient field
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1301

LM

Tensile coupon
(scale 1)

Primary particles
(scale 2)

Nano particles
(scale 3)

Fig. 4 A three-scale numerical example: a a plate with three holes
made of a particle-reinforced composite; b cubic primary particles at
the micrometer scale with volume fraction of 5%; ¢ spherical secondary
particles at the nanometer scale with volume fraction of 20%. Ellipsoidal
secondary particles with volume fraction of 20% and different angles ¢

¢ =15

between the major axis and the loading direction (y axis direction) will
also be tested: d ¢ = 90°; e ¢ = 30°; f ¢ = 15°; g ¢ = 0°. The scale
lengths LD, L@ and L® are assumed to be 10 mm, 200 pm, and 10
pm respectively, so that the scales are well separated

Table 2 Numerical cases for modeling the particle reinforced composite system

Cases Material description Number of scales
Case 1 Matrix material only 1
Case 2 Matrix + 5% cubic primary particles 2
Case 3 Matrix + 5% cubic primary particles + 20% spherical secondary particles 3
Case 4 Matrix + 5% cubic primary particles + 20% ellipsoidal secondary particles with ¢ = 90° 3
Case 5 Matrix + 5% cubic primary particles + 20% ellipsoidal secondary particles with ¢ = 30° 3
Case 6 Matrix + 5% cubic primary particles + 20% ellipsoidal secondary particles with ¢ = 15° 3
Case 7 Matrix + 5% cubic primary particles + 20% ellipsoidal secondary particles with ¢ = 0° 3

by performing local averaging over the nearest 27 voxels
(including each voxel itself). Alternative methods to solve
this issue can be found in [41]. Figure 5a, b and ¢ shows the
DNS mesh used to generate strain concentration fields for
each scale; Fig. 5d, e and f show contours of the strain com-
ponent £, normalized by their corresponding far field values.
In the second step, the strain and strain concentration fields
thus obtained were used to get a cluster-based domain decom-
position at each scale with the k-means clustering method.
The resulting clusters at each scale of the composite system
are visualized in Fig. 5g, h and i. With this, the degrees of
freedom to be solved is reduced from O (10'%) to O(10%). In

step three, the interaction tensors, see Fig. 5j, k and 1, among
these clusters at each scale were calculated based on Eq. (26)
with FEM used for the part scale and FFT for microstructure
scales. This multiscale interaction database will be used in
the online stage of MCA.

4.3 Single-scale (part scale) MCA verification

For test case 1, Fig. 6 shows the reaction force-displacement
curves computed using single-scale MCA with differing
numbers of clusters, and compares that with the reference
FEM solution using a fine mesh. The MCA result is close
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Scale 1

Scale 2 Scale 3
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& mesh

(a) NS = 47515

(b)NS? =100 x 100 x 100 () N = 100 x 100 x 100
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Fig.5 Example database generated in the offline stage: a, b, ¢ geometry and mesh, d, e, f deformation concentration obtained through linear elastic
analysis, g, h, i clusters obtained using the k-means clustering method and j, k, 1 interaction tensors obtained using FEM and FFT

to the FEM result even for a small number of clusters and
gets closer to the FEM result as the number of clusters
increases. Figure 7 shows a comparison of the strain compo-
nent &7 distribution around the middle hole. As the number
of clusters increases, the contour of £2> computed using MCA
approaches the reference FEM solution. This can be also seen
from Fig. 8, which plots strain &7 along the dashed line in
Fig. 7.
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4.4 Two-scale MCA verification

For test case 2, Fig. 9 shows the load-displacement curves
computed using two-scale MCA with different numbers of
clusters at the part scale with comparison to that using FE-
SCA. Again, the MCA result is close to the FEM result even
for a small number of clusters and gets closer to the FEM
result as the number of clusters increases.
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Fig.6 a Comparison of reaction (a)2° ‘ (b) 16—
force-displacement curves for
the macroscale problem — —
computed using FEM and MCA 15 < 155 o--" e
h di ® < Rl IR
“;ltht d1fffge:£t nurlnber(sjof g —FEM,NS) —47515 g ___________ —FEM,NS) —47515
clusters; b An enlarged view. O 1o} S L=
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The green shading indicates an S ° S 15 ©
area within 5% percent of the B - - MCcAND =16 B -- MCAN"=16
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----MCA, N(1)—256 14.5 ---MCAN{" =256
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0 0.5 1 1 5 2 1.45 1.5 1.55
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Fig.7 Comparison between
FEM and MCA with a varying
number of clusters of local strain
component Y'Y distribution
around the middle hole. The
MCA solution approaches that
of FEM as the number of
clusters increases, showing the
ability of MCA to capture strain
concentrations while still
reducing the number of degrees
of freedom substantially

: [ ( - (N(l) o

Displacement (mm)

Strain YY
0.05

[004

—0.03
—0.02

[0.01

0.00

N® =

N(l) N(l)
&
o< X
0.035 in both effective stiffness and yield strength is achieved by
0.03 adding 20% volume fraction of secondary particles. The
0.02 results of test cases 4-7 are compared with those of test
z 025 case 3 in Fig. 10b, which shows that the stiffness and yield
£ 002 strength could be increased further by changing the sec-
B o015 ondary particles to ellipsoids and aligning them with the
loading direction.
0.01
0% 0 s -10 -5 0 4.6 CPU time
X (mm)

Fig. 8 Comparison of strain component YY along the dashed line in
Fig. 7

4.5 Three-scale MCA for strengthening effect
prediction

The result of test case 3 is compared with that of test cases
1 and 2 in Fig. 10a, which shows the strengthening effect of
adding primary and secondary particles. Significant increase

Table 3 compares the degrees of freedom (DoFs) and the CPU
time used for different methods. Note that simulations with
FE? and FE? are not practical to conduct due to their tremen-
dous computational cost. For the two scale problems, the
speedup is calculated by comparing to the FE-SCA method.
For a tolerance of 0lpewton = 10™% in Box I and I, the New-
ton’s method typically converges in less than 10 iterations.
It is seen that the CPU time in the one-time offline stage
of MCA is relatively expensive. However, once the offline
database is prepared, MCA shows a tremendous speedup
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Fig.9 a Comparison of reaction (a) 25 (b)
force-displacement curves ‘
computed using FE-SCA and 20 | 18
two-scale MCA with a different = / >
number of clusters at the part 8 45! )
scale and 20 clusters at the S —FE-SCAN =47515 | 5 175 _— —FE-SCAN(=47515
primary pa'rticle scale; b An S 10 /—MCA'NS):A' < . —MCA,N(C1)=4
enlarged view. The green = 0 Z 47 )
shading indicates an area within § / -~ MCAN, =16 § -~ MCAN;’=16
5% percent of the FE-SCA c ° pZ MCAN(" =64 o MCA,N{" =64
solution o yd ~--MCAN{" =256 16.5 ~--MCA,N{) =256
0 0.5 1 15 2 1.45 1.5 1.55
Displacement (mm) Displacement (mm)
Fig. 10 a Load-displacement (a)25 . (b) 25
curve predicted using MCA - 20% secondarypaiticles £ JOL S
showing that adding primary and Z 20 5% primary particles I 2 Z 20 ~& < I 8
secondary particles increases ¢ 5 %" g L %"
both stiffness and yield strength; 5 15 - & 5 15 &
. ftad Matrix ftaed
b Load-displacement curve = only c —sphere
predicted using MCA showing 2 10 2 10 - - ellipsoid,$=90°
that decreasing the angle = —N=1 o = - - ellipsoid,$=30"

. . . 0 5 —N=2,v?=5% 3 5 o
between the inclusion major o L . I~ ellipsoid,¢=15
axis and the loading direction —N=3,vP=5%,v=20% - - ellipsoid,p=0"

. . 0 : 0

n}c;gases bot}il stiffness and 0 05 1 15 5 0 05 1 15 )
yield strengt Displacement (mm) Displacement (mm)

Table 3 CPU time of MCA . -

o Method DoF ffl 1 d
compared with different crhods oS Offline (5) Online (s) Speedup
methods showing , FE 176 x 10° 0 254.6 1
orders-of-magnitude speedup in ]
the online stage Single-scale MCA 36 207.34 0.0075 33952

FE? 1.47 x 101 0 NA NA
FE-SCA 3.44 x 107 17,032 3266.8 1
Two-scale MCA 756 17,239 0.13 25129
FE? 1.47 x 107 0 NA 1
Three-scale MCA 15156 34271 26.4 NA

(more than 25,000 times faster) compared to the traditional
finite-element-based methods.

5 Conclusion and future work

A multiresolution clustering analysis method is proposed for
properties and performance prediction by concurrently mod-
eling material behaviors at multiple length scales. The key
idea of this method is to solve a set of fully coupled govern-
ing partial differential equations using the clusters generated
from unsupervised machine learning at multiple length scales
and a precomputed database of interaction tensors among
these clusters. This method features an unprecedented bal-
ance of accuracy and efficiency by combining the advantages
of both physics-based modeling and data-science based
order reduction. Potential application to materials design is
demonstrated with a particle reinforced composite, roughly
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analogous to a precipitate strengthened alloy, under uniaxial
tensile loading. The example results show that the composite
stiffness and yield strength could be improved by adding pri-
mary and secondary particles, and changing particle shapes.
Refined material models can be used within this efficient
multiscale modeling framework to discover more structure-
property relationships, guiding hierarchical material design.

Theoretically, MCA works for material systems that
involve an arbitrary number of discrete scales as long as
continuum and scale separation assumptions can be made.
However, attention must be paid to microstructural model-
ing and design at the nanoscale. For example, there are strong
interactions between nanoparticles and dislocations resulting
in a size effect in precipitation strengthened alloy systems.
One way to capture the size effect would be to introduce
a strain-gradient formulation of the Lippmann-Schwinger
equation. Furthermore, problems with moving boundaries
(e.g. moving contact between the roller and the part in the
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rolling process) and microscale problems with significantly
evolving microstructures (e.g. micro cracks) require special BoxII . i i

Recursive subroutine for RVE analysis: Concur-

considerations. For example, one could adopt the arbitrary
Lagrangian Eulerian method [42,43] in a moving contact
problem where the clusters are fixed while materials points
are allowed to flow in and out of a cluster. To accurately cap-
ture evolving microstructures, adaptive clustering methods
might be used in a similar sense to the adaptive finite ele-
ment methods [44] along with a fast method [40] to update
the interaction tensors.
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Appendix

A Recursive algorithm for solving N-scale L-S
equations

Box 1
Algorithm for MCA online stage

1. Initial conditions and initilization:
(@) Setk =0, {F)\" = (L}, {P}\" = 0, (AF}\" = 0 and
1 1
[AF}ey = (AFY
(b) Set the reference stiffness C:(1
(c) Load the interaction tensor {D}V

2. Newton iterations:

(a) For each AFI("), 1M =1, .., Ngl), call the subroutine
Concurrent to form {AP},(,Q,, and {C}é;f)

(b) Compute the residual {r}"

(c) Compute the system Jacobian M =9 {r}(l)/B{AF}“)

(d) Solve the linear equation (M} {SF}V = —{r}( for
{SF}(])

(©) {AF}ey < (AF}, + {sF}D

() it max) {[[8F/" ||} < r0lnewton is not met, go to 2(a)

1 1 1 1 1 1
3. (B < (FRY + (AFKG, (P < (P + (APKS,,
k < k + 1 and update state variables
4. Repeat 2-3 until simulation complete

rem‘(AF[(n) ,N,CO'I(”))

1. If n = N, call a user material subroutine to get AP/ “ and
C’m; Set CQ;) <« C’(") and goto 5

2. Initial conditions and initilization:
(a) Set {AF}7ED — AF!™

(b) Set the reference stiffness C%/ =0/
(c) Load the interaction tensor {D}*+1D

(n+1) (n)

3. Newton iterations:

(a) Call the subroutine Concurrent to get {AP},(I’Q Y and

{C}ér;;rl)

(b) Compute the residual {r}"+D

(c) Compute the system Jacobian
{M}(n+1)=3{l‘}("+l)/3{AF}<n+1)

(d) Solve the linear equation
{M}(n+1){8F}(n+l) — _{r}(n+l) for {8F}<n+1)

(© (AFhey” < (AF)G + (sF)0+D

) If ma)(ljv;l (1I6F " 11} < tolpewton is not met, go to 3(a)

4. Average {AP},(,'Q,,'I) to get AP/ ("); Get effective tangent stift-
(n)
ness C/
eff
5. Return AP’ and Céf(;)
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