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Abstract

Direct representation of material microstructure in a macroscale simulation is prohibitively expensive, if even possible, with

current methods. However, the information contained in such a representation is highly desirable for tasks such as material/alloy

design and manufacturing process control. In this paper, a mechanistic machine learning framework is developed for fast

multiscale analysis of material response and structure performance. The new capabilities stem from three major factors: (1)

the use of an unsupervised learning (clustering)-based discretization to achieve significant order reduction at both macroscale

and microscale; (2) the generation of a database of interaction tensors among discretized material regions; (3) concurrent

multiscale response prediction to solve the mechanistic equations. These factors allow for an orders-of-magnitude decrease

in the computational expense compared to FEn, n ≥ 2. This method provides sufficiently high fidelity and speed to reasonably

conduct inverse modeling for the challenging tasks mentioned above.

Keywords Data-driven · Unsupervised learning · Reduced order modeling · Concurrent multiscale · Materials design

1 Introduction

1.1 Hierarchical materials design

Modern advanced materials are manufactured with compli-

cated microstructural features at multiple length scales to

achieve better properties and performance than previous gen-

erations of materials. Figure 1 shows the system chart for

Nickel-based superalloys, adapted from the computational

materials design framework first proposed by Olson [1]. The

performance of components, e.g. aeroengine disks, in a high

temperature environment relies on the material properties

such as strength, toughness, creep resistance and fatigue

resistance. These properties are determined by the interac-

tions among the hierarchical microstructures: polycrystals,

carbides at grain boundaries, primary and secondary γ ′ pre-

cipitates, as well as byproducts such as voids, inclusions and

residual stress, which are further controlled by a sequence

of processing steps. For example, excellent creep resistance

might be achieved by optimizing the volume fraction and
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morphology of precipitates so that they impede dislocation

movement as well as grain boundary migration in the most

efficient way. Hierarchical materials design thus requires fast

evaluation of macroscopic properties as a function of hierar-

chical microstructures.

On the one hand, the involvement of microstructural

features at multiple length scales significantly broadens

the materials design space. On the other, this challenges

mechanistic computational prediction of macroscopic prop-

erties and performance (in-service behavior) of material

systems. The objective of this work is to address this con-

cern by developing a physics-based data-driven multiscale

modeling framework that can predict macroscopic proper-

ties/performance while capturing complex microstructures

at several length scales.

1.2 Multiscale methods: hierarchical and concurrent

The hierarchical (also known as serial coupling or parame-

ter passing) technique [2,3] has been used to model complex

material systems. It often has three stages: the bottom-up

stage, the macroscale analysis stage and the top-down stage.

The bottom-up stage is used to develop macroscale consti-

tutive models. It starts from the finest scale by calibrating

an upper scale material model with average stress-strain
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Fig. 1 System chart for

Nickel-based superalloys:

blocks indicate desired property

objectives, hierarchical

microstructures and sequential

processing steps needed for

design; links between blocks

indicate computational models

response computed from a microstructural volume element

(MVE, sometimes referred to as representative volume ele-

ment (RVE) [4] or statistical volume element (SVE) [5]), and

repeats this process until the macroscale constitutive law is

calibrated. The macroscale analysis stage predicts part per-

formance using the calibrated macroscale constitutive law.

Then, in the top-down stage, a detailed solution in a lower

scale MVE can be computed with the deformation response

of a material point in the upper scale as boundary conditions.

However, all these hierarchical approaches rely on the cal-

ibration of assumed constitutive laws at each scale through

homogenization operations, during which microscale details

are inevitably lost or neglected. In addition, the top-down

stage propagates errors through the boundary conditions.

One alternative is the concurrent (or two-way coupling)

technique, which requires the simulations at all scales to

be performed simultaneously. Every integration or material

point of an arbitrary scale (except the finest scale) is linked to

a MVE at a finer scale, which is solved on-the-fly to provide

the stress-strain responses for that integration point during the

analysis. Thus no assumed constitutive law is needed other

than at the finest scale. In this regard, FE-FE (or FE2) [6] and

FE-FFT [7] have been proposed to model a two-scale mate-

rial system. However, the computational cost is tremendous

if more than two scales are considered.

One assumption the above mentioned multiscale methods

often take is scale separation, meaning that the characteristic

length of deformation at the part scale is much larger than

that of the constitutive microstructural features. To regular-

ize the case when scale separation breaks down, generalized

continuum theories [8–11] have been proposed, which intro-

duce extra degrees of freedom (e.g. strain gradients) to avoid

spurious mesh-size dependency and RVE-size dependency.

These theories were later generalized to an arbitrary number

of scales, resulting in the multiresolution continuum theory

(MCT) [12–14]. These generalized continuum theories were

used most in the hierarchical multiscale framework, although

archetype-blending continuum (ABC) [15,16] was proposed

to maintain some information about microscale constituents.

The second-order computational homogenization methods

[17,18] maintain microscale information concurrently but

again suffer from the high computational cost. The need to

compute detailed mechanical response in multiscale methods

motivates the development of order-reduction methods.

1.3 Clustering: an efficient discretizationmethod

A myriad of reduced-order methods have been developed

for efficient multiscale simulations, for example, the trans-

formation field analysis (TFA) [19], the nonuniform trans-

formation field analysis (NTFA) [20], the eigen-deformation

based method [21], and the proper orthogonal decomposi-

tion (POD) [22]. A detailed review can be found in [23].

Recently, the self-consistent clustering analysis (SCA) pro-

posed by Liu et al. [24] has been shown to maintain high

accuracy and effciency. The key idea of SCA is the clustering-

based discretization theory for order reduction rather than

the traditional domain-based discretization, as illustrated in

Fig. 2. The domain-based approach decomposes the domain

directly, leading to a Riemann integral; while the clustering-

based approach analyzes the a priori response of interest

through an unsupervised machine learning method to decom-

pose the domain into “clusters”, resulting in the so-called

Lebesgue integral. The key differences of SCA from the

other reduced-order methods mentioned above lie in: (1)

the clustering-based discretization, resulting in potentially

higher efficiency in representing heterogeneous material sys-

tems; (2) the flexibility of using a self-consistent scheme
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Fig. 2 Discretization of partial

differential equations through a

domain-based decomposition

and b response-based

decomposition clustering e.g.

with unsupervised learning
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Fig. 3 A schematic of the N -scale problem of interest where the char-

acteristic length scales satisfy L(1) ≫ L(2) ≫ · · · ≫ L(n) ≫ · · · ≫

L(N ). Certain material points in a scale are associated with a finer scale

microstructure volume element. Microstructure features are represented

by the squares, circles and triangles

in the online stage for higher accuracy. This method has

been used in FE-SCA type concurrent simulations for strain

softening materials [25], polycrystalline materials [26–28],

and composite materials [29–31]. However, in all the con-

current simulation approaches (FE-FE, FE-FFT, FE-SCA)

mentioned above, the finite element method is used for the

macroscale analysis, which slows down computational pre-

diction of structure-property-performance relationships in a

materials design practice. This work will address this issue

by extending the clustering-based discretization theory to

macroscale modeling and further to N -scale concurrent sim-

ulation of material systems, resulting in the multiresolution

clustering analysis (MCA) framework.

1.4 Outline of the paper

Section 2 presents the general integral equations for an arbi-

trary N -scale problem at finite strains and their clustering-

based discretization. A two-stage (offline/online) solution

scheme is given in Sect. 3. The accuracy and efficiency of

MCA in the context of an example problem is shown and dis-

cussed in Sect. 4. Concluding remarks are provided in Sect.

5.

2 Multiresolution formulation for
hierarchical material systems

2.1 Fully coupled N-scale problem description

A fully coupled N -scale problem of interest is schematically

shown in Fig. 3. Certain material points in a scale are asso-

ciated with a finer scale microstructure volume element. The

characteristic lengths of each scale are assumed to be well

separated, meaning that L(1) ≫ L(2) ≫ · · · ≫ L(n) ≫

· · · ≫ L(N ), where L(n) is the characteristic length of the nth

scale with n = 1, · · · , N .

The first scale involves a component or part with gen-

eral boundary conditions and body forces. The equilibrium

boundary value problem (BVP) of the first scale is expressed

by
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∇(1) · P(1)(X(1)) + b(1) = 0, ∀X(1) ∈ �(1)

F(1) = I2 + ∇(1)u(1)

u(1) = ū(1), ∀X(1) ∈ ∂�
(1)
u

t(1) = t̄(1), ∀X(1) ∈ ∂�
(1)
t = ∂�(1) \ ∂�

(1)
u

(1)

where P is the first Piola-Kirchhoff stress (PK1 stress); F is

the deformation gradient; b is the body force; I2 is the second

order identity tensor; u is the displacement with prescribed

values ū on the displacement boundary ∂�u; t = P · n is

the traction with prescribed values t̄ on the traction bound-

ary ∂�t. The normal vector n is on the domain boundary.

The gradient operator is denoted by ∇. The superscript (1)

denotes the first scale. The other scales (scale 2 to N ) involve

representative microstructure volume elements (MVEs) with

periodic boundary conditions. The equilibrium BVPs defined

on these MVEs are given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∇(n) · P(n) = 0, ∀X(n) ∈ �(n)

F(n) = I2 + ∇(n)u(n)

u(n) periodic on ∂�(n)

t(n) anti-periodic on ∂�(n)

(2)

where the superscript (n) denotes the nth scale with n =

2, ..., N . To establish the coupling relationship among these

BVPs at different scales, we denote V(n) as a subset of

�(n) whose material points are represented by finer scale

microstructures. It should be noted that V(N ) = ∅. If the

first scale is the component (part) scale where all material

points are associated with finer scale microstructures, we

have V(1) = �(1). Thus, the coupling between any two con-

secutive scales through homogenization of PK1 stress and

deformation gradient is given by

{

F(n−1)(X(n−1)) = 1
|�(n)|

∫

�(n) F(n)(X(n))dX(n),

P(n−1)(X(n−1)) = 1
|�(n)|

∫

�(n) P(n)(X(n))dX(n),
(3)

where X(n−1) is an arbitrary material point in V(n−1); �(n)

is the nth scale MVE domain associated with X(n−1); and

n = 2, ..., N . The constitutive equations for material points

at a scale that does not have finer microstructural features

are assumed to be known a priori and are represented by a

generic constitutive law:

P(n) = f (n)(F(n), w(n)), ∀X(n) ∈ �(n) \ V(n)

with n = 1, ..., N (4)

where w collectively denotes the necessary state variables.

Note that different constitutive equations can be used to

represent the physics involved at each scale for which a con-

stitutive law is used.

Eqs. (1–4) together describe the fully coupled N -scale

problem to be solved in this work.

2.2 Generalized Lippmann-Schwinger integral
equation

The derivation in Sect. 2.1 shows that each scale entails a

boundary value problem, which is rewritten in the following

general form:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∇ · P(X) + b = 0, ∀X ∈ �

F = I2 + ∇u, ∀X ∈ �

u = ū, ∀X ∈ ∂�u

t = t̄, ∀X ∈ ∂�t = ∂� \ ∂�u

(5)

where the superscript defining the operative scale is omitted

to simplify the notation.

By introducing an arbitrary comparison medium with elas-

tic stiffness C0(X), the solution F(X) to problem Eq. (5)

can be obtained through the superposition of a reference

deformation solution and an eigenstress deformation solu-

tion: F(X) = F̃(X)+∇û(X). Here, F̃(X) is the deformation

solution to the following reference problem:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∇ · P̃(X) + b = 0, ∀X ∈ �

P̃(X) = C0(X) :
(

F̃(X) − I2

)

, ∀X ∈ �

ũ = ū, ∀X ∈ ∂�u

t̃ = t̄, ∀X ∈ ∂�t

(6)

and û(X) is the displacement solution to the following eigen-

stress problem:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∇ · P̂(X) = 0, ∀X ∈ �

P̂(X) = C0(X) : ∇û(X) + τ (X), ∀X ∈ �

û = 0, ∀X ∈ ∂�u

t̂ = 0, ∀X ∈ ∂�t

(7)

where τ (X) = P(X) − C0(X) : (F(X) − I2). The dis-

placement solution of the eigenstress problem Eq. (7) can

be expressed as

ûi (X) =

∫

�

Gi j (X, X′)τ jk,k′(X′)dX′

=

∫

∂�

Gi j (X, X′)τ jk(X
′)nk(X

′)dX′

−

∫

�

Gi j,k′(X, X′)τ jk(X
′)dX′
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=

∫

�

(

Gi j (X, X′)nk(X
′)δS(X′)

−Gi j,k′(X, X′)
)

τ jk(X
′)dX′, (8)

where Gi j (X, X′) is the Green’s function that satisfies the

same boundary condition as in Eq. (7). Note that k′ in Eq.

(2.2) denotes that the derivative is taken w.r.t. X′ and it still

denotes the same index with k and they follow the Einstein

summation convention. δS(X) is the delta function defined

on boundary ∂�:

δS(X) =

{

limδ→0
1
δ

if X ∈ ∂�δ

0 otherwise
(9)

where ∂�δ is a volume such that it includes the boundary

∂� and its orthogonal cross-section has a specially defined

measure of δ, see [32] for details. This allows the conversion

from the surface integral to volume integral in Eq. (2.2).

Then the deformation gradient can be obtained with

ûi,l(X) = −

∫

�

Ŵil jk(X, X′)τ jk(X
′)dX′ (10)

where the Green’s operator Ŵ is defined as

Ŵil jk = Gi j,k′l(X, X′) − Gi j,l(X, X′)nk(X
′)δS(X′). (11)

The tensor form of the strain solution to the eigenstress prob-

lem Eq. (7) is

∇û(X) = −

∫

�

Ŵ(X, X′) : τ (X′)dX′. (12)

Then the solution of problem Eq. (5) can be expressed as

F(X) = F̃(X) −

∫

�

Ŵ(X, X′) :

(

P(X′) − C0(X′) : (F(X′) − I2)
)

dX′. (13)

This is the generalized Lippmann-Schwinger equation (L-

S equation). It should be noted that the above derivation relies

on the introduction of the reference elastic stiffness C0(X).

This ensures the availability of the Green’s function, so that

the generalized L-S equation holds for finite strain cases as

well as nonlinear constitutive relationships between P and F.

In the special case of a homogeneous reference stiffness

tensor, i.e. C0(X′) = constant , and periodic boundary con-

ditions, Eq. (13) reduces to the classical L-S equation [33]:

F(X) = F0 −

∫

�

Ŵ(X, X′) : (P(X′) − C0 : F(X′))dX′, (14)

where F0 is the far field deformation gradient. This can be

shown by noting that the solution to the reference problem

Eq. (6) is equal to the far field deformation gradient F0, and

the following property of the Green’s operator [34]:

∫

�

Ŵ(X, X′) : (C0 : I2)dX′ = 0. (15)

For practical convenience, the incremental form of Eq.

(13) is given by

�F(X) = �F̃(X) −

∫

�

Ŵ(X, X′) : (�P(X′)

−C0(X′) : �F(X′))dX′. (16)

where �F and �P are the incremental deformation gradient

and PK1 stress respectively.

2.2.1 Coupling between scales

Based on the above derivation, the fully coupled integral

equations of the N-scale problem described in Sect. 2.1 are

given in the following incremental form:

�F(n)(X) = �F̃(n)(X) −

∫

�(n)

Ŵ(n)(X, X′) :

(

�P(n)(X′)−C0,(n)(X′) :�F(n)(X′)
)

dX′ (17)

where n = 1, ..., N ; �F̃(1) is the solution to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇(1) · �P̃(1)(X(1)) + b(1)(X(1)) = 0, ∀X(1) ∈ �(1)

�P̃(1)(X) = C0,(1)(X(1)) : �F̃(1)(X(1)), ∀X(1) ∈ �(1)

�ũ(1)(X(1)) = �ū(1), ∀X(1) ∈ ∂�
(1)
u

�t̃(1)(X(1)) = �t̄(1), ∀X(1) ∈ ∂�
(1)
t ;

(18)

�F̃(n), n = 2, ..., N is the solution to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇(n) · �P̃(n)(X(n)) = 0, ∀X(n) ∈ �(n)

�P̃(n)(X(n)) = C0,(n)(X(n)) : �F̃(n)(X(n)), ∀X(n) ∈ �(n)

1
|�(n)|

∫

�(n) �F̃(n)(X(n))dX(n) = �F(n−1)(X(n−1)), ∀X(n−1) ∈ V(n−1)

�ũ(n) periodic on ∂�(n)

�t̃(n) anti-periodic on ∂�(n)

(19)

and

�P(n−1) =
1

|�(n)|

∫

�(n)

�P(n)dXn, n = 2, ..., N . (20)

Note that in the special case of a homogeneous reference

stiffness tensor, i.e. C0,(n)(X) = constant , Eq. (19) is equiv-

alent to

�F̃(n) = �F(n−1), n = 2, ..., N . (21)
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2.3 Clustering-based discretization of the
Lippmann-Schwinger equation

At each scale n, n = 1, ..., N , suppose the domain �(n) is

decomposed into N
(n)
c compact, non-overlapping clusters.

Also assume that all variables are uniform in each cluster

�I (n)
, I (n) = 1, ..., N

(n)
c of scale n and represented by their

volume averages ⊡
I (n)

= 1

|�I (n)
|

∫

�I (n) ⊡(X(n))dX(n). Note

that ⊡
I (n)

= ⊡
I (1),...,I (n−1),I (n)

indicates the average value of

a variable (scalar, vector or tensor) in cluster I (n) associated

with cluster I (1), ..., I (n−1) in successively coarser scales.

Thus any variable ⊡
(n)(X(n)) can be approximated by

⊡
(n) (X(n)) =

N
(n)
c

∑

I (n)=1

⊡
I (n)

χ I (n)

(X(n))dX(n), (22)

where

χ I (n)

(X(n)) =

{

1 if X(n) ∈ �I (n)

0 otherwise.
(23)

Using the above representation, the fully coupled integral

equations in Eq. (17) can be discretized as

�FI (n)

= �F̃I (n)

−

N
(n)
c

∑

J (n)=1

DI (n),J (n)

:

�τ J (n)

, I (n) = 1, ..., N (n)
c , n = 1, ..., N

(24)

where the incremental eigenstress�τ J (n)
=�PJ (n)

−C0,J (n)
:�FJ (n)

,

and

�F̃I (n)

=
1

|�I (n)
|

∫

�I (n)
�F̃(X(n))dX(n),

I (n) = 1, ..., N (n)
c , n = 1, ..., N (25)

and DI (n),J (n)
is the so-called interaction tensor between clus-

ter I (n) and cluster J (n), which is given by

DI (n),J (n)

=
1

|�I (n)
|

∫

�I (n)
χ I (n)

(X(n))(Ŵ(n) ∗ χ J (n)

)(X(n))dX(n). (26)

The clustering-based discretized version of the fully cou-

pled N -scale integral equations, given in Eq. (24), will be

solved with the MCA framework to be introduced in the next

section.

3 Two-stage (offline/online) solution

This section describes the MCA solution scheme based on the

Lebesgue integral concept mentioned earlier, which consists

of an “offline” stage to generate a clustering database and an

“online” stage that makes use of the database to predict mate-

rial responses at multiple length scales. The efficiency and

accuracy of MCA will be shown through numerical examples

that involve several length scales.

3.1 Offline stage: clustering database generation

The offline stage for clustering database generation consists

of three primary steps: (1) data collection, (2) unsupervised

learning (e.g. clustering), and (3) pre-computation of the

interaction tensors among clusters.

3.1.1 Deformation concentration field

MCA reduces the degrees of freedom to be solved by taking

advantage of the mechanical response similarity of mate-

rial points. This similarity is found by clustering the field

data of some mechanical response. In this work, linear elas-

tic mechanical responses are chosen as the clustering data,

because they well indicate local material behaviors and are

computationally less expensive to obtain.

At microstructural scales, the deformation concentration

tensor can be used. It is defined by

A(X) =
∂F(X)

∂F0
,∀X ∈ � (27)

where F0 is the macroscopic deformation corresponding to

the boundary conditions of the MVE, F(X) is the local defor-

mation at point X in the MVE domain �. In two dimensions,

A(X) has (2 × 2)2 = 16 independent components, requiring

direct numerical simulations (DNS) under four orthogonal

loading conditions to determine. In three dimensions, A(X)

has (3 × 3)2 = 81 independent components, requiring DNS

under nine orthogonal loading conditions to uniquely define.

For small strain problems, the strain concentration tensor can

be used, and only six (or three) orthogonal loading conditions

for DNS are needed in three (or two) dimensions.

At the macro-scale, the clustering data depends on the

applied boundary conditions and loading conditions. Thus,

some prior knowledge of the possible loading paths would

benefit the applicability of the proposed method. In the case

of fixed boundary conditions, the deformation gradient (or

strain) field calculated under the same boundary conditions

can be used for clustering. In the case of moving bound-

ary conditions, a database of deformation gradient (or strain)

field under all possible loading paths needs to be prepared.
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3.1.2 Clustering

Once the deformation concentration field is prepared, the

next step is to decompose the domain into clusters each

containing similar data points. This can be done using the

k-means clustering algorithm [24]. For a predefined num-

ber of clusters Nc, k-means clustering solves a minimization

problem defined by

S⋆ = argmin
S

Nc
∑

J=1

∑

m∈S J

||Am − ĀJ ||2. (28)

where S = {S1, S2, ..., SNc} is a non-overlapping partition of

the material points in a domain of interest; S⋆ is the partition

that achieves minimization; Am is the deformation concen-

tration tensor at material point m; ĀJ is the deformation

concentration tensor averaged within cluster J . Similarity is

measured by the Frobenius norm, denoted by ||⊡̄||. It should

be noted that more advanced clustering methods, e.g. self-

organizing maps [35], could also be used in lieu of k-means

clustering.

3.1.3 Interaction tensors

The interaction tensor describes the impact one cluster has

on each of the other clusters. Once the clustering process is

completed, the interaction tensor can be explicitly computed.

Importantly, the integral part only has to be computed once

during the offline stage. Three ways to compute the interac-

tion tensor are [36]:

Fast Fourier transform With periodic boundary condi-

tions and a homogeneous reference material with isotropic

stiffness, the Green’s operator has a simple expression in

Fourier space [37,38], given by

Ŵ̂0
i jkl(ξ) =

δikξ jξl

2μ0 |ξ |2
−

λ0

2μ0
(

λ0 + 2μ0
)

ξiξ jξkξl

|ξ |4
(29)

where Ŵ̂0
i jkl = F(Ŵ0) is the Fourier transform of a periodic

Green’s operator Ŵ0; λ0 and μ0 are the Lamé’s constants

of the isotropic stiffness tensor; ξ is the Fourier point. The

expression of Green’s operators for anisotropic stiffness ten-

sors are more complex and can be found in [39]. Eq. (29) is

preferred because the elastic constants are separated from the

Fourier variables, so that the elastic constants can be easily

updated in the online stage to achieve self-consistency and

improve accuracy. Then the interaction tensor can be calcu-

lated with

D
I ,J =

1

|�I |

∫

�

χ I (X)F−1
(

F(χ J )F(Ŵ0)
)

dX,

∀I , J ∈ {1, ..., Nc} (30)

using the fast Fourier transform (FFT) technique. The com-

putational complexity is O
(

(Nc)
2(NF)log(NF)

)

, where NF

is the number of Fourier points used in the FFT calculation.

Numerical integration With an infinite homogeneous

reference material, the Green’s operator can be expressed in

real space as shown in [35] and [40]. Numerical integration

is the most straightforward method to compute the integral

equation given in Eq. (26). The computational complexity is

O
(

(NI)
2
)

, where NI is the number of integration points used.

In [40], a fast method is proposed to approximate D I J .

Finite element method Based on the physical interpreta-

tion of the interaction tensor, the finite element method can

also be used. By applying uniform unit eigenstress compo-

nent kl in the J th cluster, the average strain can be computed

for all clusters, resulting in D I J
i jkl for all I = 1, ..., Nc. Thus,

the computational complexity is O
(

6(Nc)(Ne)
)

, where Ne is

the number of finite elements used.

For microstructure scale solutions (n > 1), we use FFT or

numerical integrations; for the part scale (n = 1), we use the

finite element method. A fast approximation of interaction

tensors based on coarse background grid was developed in

[40].

3.2 Online stage: iterative solution scheme

In the online stage, the clustering-based discretization prob-

lem derived in Eq. (24) is solved, with proper constitutive

equations for each of the individual phases not represented

by a smaller scale.

Note that �F̃I (n)
can be obtained in the offline stage by

solving the elastic problem (6), and �PJ (n)
is a function

of �FJ (n)
through the local constitutive equations and/or

homogenization of a finer scale MVE associated with the

J th cluster. The unknowns for Eq. (24) are

{�F} =
{

�FI (1),...,I (n)

, I (n) = 1, ...N (n)
c , n = 1, ..., N

}

.

(31)

Newton’s iterative method is used to solve Eq. (24) for

each scale in the online stage, where the residual {r}(n) is

given component-wise as:

rI (n)

= �FI (n)

+

Nc
∑

J=1

DI (n),J (n)

: �τ J (n)

− �F̃I (n)

. (32)

The system Jacobian {M}(n)(n) at scale (n) is defined

component-wise as:

MI (n) J (n)

= δI (n) J (n)I4 + DI (n) J (n)

: �CJ (n)

,

for I (n), J (n) = 1, ..., N (n)
c , (33)
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where �CJ (n)
= CJ (n)

eff − C0,J (n)
. Here CJ (n)

eff = ∂�PJ (n)

∂�FJ (n) is

the effective tangent stiffness tensor of the material in the

cluster J (n) and is an output of a finer scale problem. I4 is

a 4th rank identity tensor defined by I4,klmn = δkmδln , and

δI (n) J (n) is the Kronecker delta in terms of indices I (n) and

J (n). It is suggested to use the self-consistent scheme [28]

to update the effective tangent stiffness tensor of an MVE to

achieve higher accuracy in the online stage.

A recursive algorithm to solve Eq. (24) is given in Boxes I

and II in Appendix 1. The algorithm in Box I controls Newton

iterations at the part scale, while a recursive subroutine in

Box II handles consecutive scale coupling. Scale coupling

passes deformation gradient increments from a cluster at the

coarser scale (e.g. scale 1) to the corresponding MVE at the

finer scale (e.g. scale 2) as loading conditions, and returns

the homogenized stress increments and the effective tangent

stiffness tensor.

The number of unknowns in Eq. (31) is no more than

9 ×
∑N

n=1

∏n
k=1 N

(k)
c with the extreme case where all clus-

ters of all scales except the finest scale are associated with a

finer scale MVE. The computational complexity of Newton’s

method is O

(

729
∑N

n=1

∏n−1
k=1 N

(k)
c

(

N
(n)
c

)3
)

, if a direct

solver such as the LU decomposition method is used for

the linearized equation systems. As a comparison, the num-

ber of unknowns when using concurrent multiscale FEM

is 3
(

∑N
n=1

∏n−1
k=1 N

(k)
i N

(n)
n

)

, resulting in a computational

complexity of O
(

3
(

∑N
n=1

∏n−1
k=1 N

(k)
i N

(n)
n

))

, assuming an

linear scaling in the best scenario. Here, N
(k)
i is the num-

ber of integration points used at the kth scale; N
(n)
n is the

number of nodes used at the nth scale. For a three-scale prob-

lem, if N
(1)
i , N

(2)
i and N

(3)
n is O

(

105
)

, and N
(1)
c , N

(2)
c and

N
(3)
c is O (10), then the computational complexity of MCA

is O(1011), which is significantly less than that of concurrent

multiscale FEM O(1015).

4 Numerical example: modeling three-scale
particle-reinforced composites

The MCA framework is applicable to problems that involve

an arbitrary number of length scales. In this section, we

demonstrate its accuracy and efficiency by modeling a three-

scale particle-reinforced composite.

4.1 Problem setting

A particle-reinforced composite system shown in Fig. 4 is

used to demonstrate the accuracy and efficiency of the pro-

posed method. A plate with three holes made of a composite

whose matrix is reinforced by cubic particles (primary) at the

Table 1 Elastic properties of the matrix and particle phases

Phases Young’s moduli (MPa) Poisson’s ratios

Matrix 1000 0.3

Particle 2000 0.2

micrometer scale with volume fraction of 5% and spherical

particles (secondary) at the nanomemeter scale with volume

fraction of 20%. This might be thought of as a rough model

of a precipitate strengthen alloy, for example. Table 2 lists

seven different numerical cases conducted. The first case is

a homogeneous coupon with only the matrix phase, under

uniaxial loading. In the second case, 5% volume fraction of

cubic primary particles are added to the matrix. In the third

case, 20% volume fraction of spherical secondary particles

are added further to the matrix (but not the primary particles).

In the fourth to seventh cases, the shape of the secondary

particles are changed to ellipsoids with shape and volume

fraction fixed but different angles φ between the major axis

and the loading direction.

The matrix phase is modeled as an elasto-plastic material

with J2 yielding and linear hardening rules. Both the primary

and secondary particle phases are modeled with pure elastic-

ity. The elastic properties of the two phases are given in Table

1. It should be noted that these constitutive relationships are

used for demonstration purposes. More complex ones could

be used depending on the problem of interest.

The von Mises yield surface is given by

f = σ̄ − σY (ε̄p) ≤ 0, (34)

where σ̄ is the von Mises equivalent stress, and the yield

stress σY is a linear function of the equivalent plastic strain

ε̄p:

σY (ε̄p) = 6 + 500ε̄p MPa. (35)

4.2 Clustering and interaction database generation

To generate the interaction database for MCA, the three-step

method introduced in Sect. 3.1 is used. In the first step, lin-

ear elastic analysis for each individual scale is conducted

separately. Uniaxial loading is applied at the part scale (scale

1) until 1% elongation is reached. FEM is used to get the

strain field with the material properties of the matrix phase

given in Table 1. Six orthogonal loading cases were applied

at the microstructure scales (scales 2 and 3) to get the corre-

sponding strain concentration fields using the FFT method.

It should be noted that high stiffness contrast between matrix

and particles could result in spurious oscillations in the elas-

tic strain field, as reported in [37]. A simple resolution used

in this work is postprocessing the deformation gradient field
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Fig. 4 A three-scale numerical example: a a plate with three holes

made of a particle-reinforced composite; b cubic primary particles at

the micrometer scale with volume fraction of 5%; c spherical secondary

particles at the nanometer scale with volume fraction of 20%. Ellipsoidal

secondary particles with volume fraction of 20% and different angles φ

between the major axis and the loading direction (y axis direction) will

also be tested: d φ = 90◦; e φ = 30◦; f φ = 15◦; g φ = 0◦. The scale

lengths L(1), L(2), and L(3) are assumed to be 10 mm, 200 μm, and 10

μm respectively, so that the scales are well separated

Table 2 Numerical cases for modeling the particle reinforced composite system

Cases Material description Number of scales

Case 1 Matrix material only 1

Case 2 Matrix + 5% cubic primary particles 2

Case 3 Matrix + 5% cubic primary particles + 20% spherical secondary particles 3

Case 4 Matrix + 5% cubic primary particles + 20% ellipsoidal secondary particles with φ = 90◦ 3

Case 5 Matrix + 5% cubic primary particles + 20% ellipsoidal secondary particles with φ = 30◦ 3

Case 6 Matrix + 5% cubic primary particles + 20% ellipsoidal secondary particles with φ = 15◦ 3

Case 7 Matrix + 5% cubic primary particles + 20% ellipsoidal secondary particles with φ = 0◦ 3

by performing local averaging over the nearest 27 voxels

(including each voxel itself). Alternative methods to solve

this issue can be found in [41]. Figure 5a, b and c shows the

DNS mesh used to generate strain concentration fields for

each scale; Fig. 5d, e and f show contours of the strain com-

ponent εyy normalized by their corresponding far field values.

In the second step, the strain and strain concentration fields

thus obtained were used to get a cluster-based domain decom-

position at each scale with the k-means clustering method.

The resulting clusters at each scale of the composite system

are visualized in Fig. 5g, h and i. With this, the degrees of

freedom to be solved is reduced from O(1016) to O(103). In

step three, the interaction tensors, see Fig. 5j, k and l, among

these clusters at each scale were calculated based on Eq. (26)

with FEM used for the part scale and FFT for microstructure

scales. This multiscale interaction database will be used in

the online stage of MCA.

4.3 Single-scale (part scale) MCA verification

For test case 1, Fig. 6 shows the reaction force-displacement

curves computed using single-scale MCA with differing

numbers of clusters, and compares that with the reference

FEM solution using a fine mesh. The MCA result is close
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Fig. 5 Example database generated in the offline stage: a, b, c geometry and mesh, d, e, f deformation concentration obtained through linear elastic

analysis, g, h, i clusters obtained using the k-means clustering method and j, k, l interaction tensors obtained using FEM and FFT

to the FEM result even for a small number of clusters and

gets closer to the FEM result as the number of clusters

increases. Figure 7 shows a comparison of the strain compo-

nent ε22 distribution around the middle hole. As the number

of clusters increases, the contour of ε22 computed using MCA

approaches the reference FEM solution. This can be also seen

from Fig. 8, which plots strain ε22 along the dashed line in

Fig. 7.

4.4 Two-scale MCA verification

For test case 2, Fig. 9 shows the load-displacement curves

computed using two-scale MCA with different numbers of

clusters at the part scale with comparison to that using FE-

SCA. Again, the MCA result is close to the FEM result even

for a small number of clusters and gets closer to the FEM

result as the number of clusters increases.
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Fig. 6 a Comparison of reaction

force-displacement curves for

the macroscale problem

computed using FEM and MCA

with different numbers of

clusters; b An enlarged view.

The green shading indicates an

area within 5% percent of the

FEM solution
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Fig. 7 Comparison between

FEM and MCA with a varying

number of clusters of local strain

component YY distribution

around the middle hole. The

MCA solution approaches that

of FEM as the number of

clusters increases, showing the

ability of MCA to capture strain

concentrations while still

reducing the number of degrees

of freedom substantially

-20 -15 -10 -5 0

X (mm)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

S
tr

a
in

 Y
Y

FEM

N
c

(1) =4

N
c

(1) =16

N
c

(1) =64

N
c

(1) =256

Fig. 8 Comparison of strain component YY along the dashed line in

Fig. 7

4.5 Three-scale MCA for strengthening effect
prediction

The result of test case 3 is compared with that of test cases

1 and 2 in Fig. 10a, which shows the strengthening effect of

adding primary and secondary particles. Significant increase

in both effective stiffness and yield strength is achieved by

adding 20% volume fraction of secondary particles. The

results of test cases 4-7 are compared with those of test

case 3 in Fig. 10b, which shows that the stiffness and yield

strength could be increased further by changing the sec-

ondary particles to ellipsoids and aligning them with the

loading direction.

4.6 CPU time

Table 3 compares the degrees of freedom (DoFs) and the CPU

time used for different methods. Note that simulations with

FE2 and FE3 are not practical to conduct due to their tremen-

dous computational cost. For the two scale problems, the

speedup is calculated by comparing to the FE-SCA method.

For a tolerance of tolnewton = 10−4 in Box I and II, the New-

ton’s method typically converges in less than 10 iterations.

It is seen that the CPU time in the one-time offline stage

of MCA is relatively expensive. However, once the offline

database is prepared, MCA shows a tremendous speedup
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Fig. 9 a Comparison of reaction

force-displacement curves

computed using FE-SCA and

two-scale MCA with a different

number of clusters at the part

scale and 20 clusters at the

primary particle scale; b An

enlarged view. The green

shading indicates an area within

5% percent of the FE-SCA

solution
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Fig. 10 a Load-displacement

curve predicted using MCA

showing that adding primary and

secondary particles increases

both stiffness and yield strength;

b Load-displacement curve

predicted using MCA showing

that decreasing the angle

between the inclusion major

axis and the loading direction

increases both stiffness and

yield strength

Table 3 CPU time of MCA

compared with different

methods showing

orders-of-magnitude speedup in

the online stage

Methods DoFs Offline (s) Online (s) Speedup

FE 1.76 × 105 0 254.6 1

Single-scale MCA 36 207.34 0.0075 33952

FE2 1.47 × 1011 0 NA NA

FE-SCA 3.44 × 107 17,032 3266.8 1

Two-scale MCA 756 17,239 0.13 25129

FE3 1.47 × 1017 0 NA 1

Three-scale MCA 15156 34271 26.4 NA

(more than 25,000 times faster) compared to the traditional

finite-element-based methods.

5 Conclusion and future work

A multiresolution clustering analysis method is proposed for

properties and performance prediction by concurrently mod-

eling material behaviors at multiple length scales. The key

idea of this method is to solve a set of fully coupled govern-

ing partial differential equations using the clusters generated

from unsupervised machine learning at multiple length scales

and a precomputed database of interaction tensors among

these clusters. This method features an unprecedented bal-

ance of accuracy and efficiency by combining the advantages

of both physics-based modeling and data-science based

order reduction. Potential application to materials design is

demonstrated with a particle reinforced composite, roughly

analogous to a precipitate strengthened alloy, under uniaxial

tensile loading. The example results show that the composite

stiffness and yield strength could be improved by adding pri-

mary and secondary particles, and changing particle shapes.

Refined material models can be used within this efficient

multiscale modeling framework to discover more structure-

property relationships, guiding hierarchical material design.

Theoretically, MCA works for material systems that

involve an arbitrary number of discrete scales as long as

continuum and scale separation assumptions can be made.

However, attention must be paid to microstructural model-

ing and design at the nanoscale. For example, there are strong

interactions between nanoparticles and dislocations resulting

in a size effect in precipitation strengthened alloy systems.

One way to capture the size effect would be to introduce

a strain-gradient formulation of the Lippmann-Schwinger

equation. Furthermore, problems with moving boundaries

(e.g. moving contact between the roller and the part in the
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rolling process) and microscale problems with significantly

evolving microstructures (e.g. micro cracks) require special

considerations. For example, one could adopt the arbitrary

Lagrangian Eulerian method [42,43] in a moving contact

problem where the clusters are fixed while materials points

are allowed to flow in and out of a cluster. To accurately cap-

ture evolving microstructures, adaptive clustering methods

might be used in a similar sense to the adaptive finite ele-

ment methods [44] along with a fast method [40] to update

the interaction tensors.
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Appendix

A Recursive algorithm for solving N-scale L-S
equations

Box I

Algorithm for MCA online stage

1. Initial conditions and initilization:

(a) Set k = 0, {F}
(1)
k = {I2}, {P}

(1)
k = 0, {�F}

(1)
k = 0 and

{�F}
(1)
new = {�F}

(1)
k

(b) Set the reference stiffness C0,(1)

(c) Load the interaction tensor {D}(1)

2. Newton iterations:

(a) For each �FI (n)
, I (n) = 1, , ..., N

(1)
c , call the subroutine

Concurrent to form {�P}
(1)
new and {C}

(1)
eff

(b) Compute the residual {r}(1)

(c) Compute the system Jacobian {M}(1) =∂{r}(1)/∂{�F}(1)

(d) Solve the linear equation {M}(1){δF}(1) = −{r}(1) for

{δF}(1)

(e) {�F}
(1)
new ← {�F}

(1)
new + {δF}(1)

(f) if max
Nc

J=1{||δFJ (1)
||} < tolnewton is not met, go to 2(a)

3. {F}
(1)
k ← {F}

(1)
k + {�F}

(1)
new, {P}

(1)
k ← {P}

(1)
k + {�P}

(1)
new,

k ← k + 1 and update state variables

4. Repeat 2-3 until simulation complete

Box II

Recursive subroutine for RVE analysis: Concur-

rent(�FI (n)
,N ,C0,I (n)

)

1. If n = N , call a user material subroutine to get �PI (n)
and

CI (n)
; Set CI (n)

eff ← CI (n)
and go to 5

2. Initial conditions and initilization:

(a) Set {�F}
(n+1)
new = �FI (n)

(b) Set the reference stiffness C0,I (n+1)
= C0,I (n)

(c) Load the interaction tensor {D}(n+1)

3. Newton iterations:

(a) Call the subroutine Concurrent to get {�P}
(n+1)
new and

{C}
(n+1)
eff

(b) Compute the residual {r}(n+1)

(c) Compute the system Jacobian

{M}(n+1)=∂{r}(n+1)/∂{�F}(n+1)

(d) Solve the linear equation

{M}(n+1){δF}(n+1) =−{r}(n+1) for {δF}(n+1)

(e) {�F}
(n+1)
new ← {�F}

(n+1)
new + {δF}(n+1)

(f) If max
Nc

J=1{||δFJ (n+1)
||} < tolnewton is not met, go to 3(a)

4. Average {�P}
(n+1)
new to get �PI (n)

; Get effective tangent stiff-

ness CI (n)

eff

5. Return �PI (n)
and CI (n)

eff
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