
Spatio-Temporal ∆-Σ N 2-port ADC Noise Shaping
for N ×N Antenna Arrays

H. Malavipathirana∗, A. Madanayake∗, C. Edussooriya†, S. Mandal‡, N. Udayanga∗, J. Liang‡, L. Belostotski§
∗Electrical and Computer Engineering, Florida International University, Email: hmala005@fiu.edu
†Electronic & Telecommunication Engineering, University of Moratuwa, Email: chamira@uom.lk

‡Electrical, Computer, and Systems Engineering, Case Western Reserve University, Email: sxm833@case.edu
§Electrical and Computer Engineering, University of Calgary, Email: lbelosto@ucalgary.ca

Abstract—A multi-port spatio-temporal noise-shaping ADC
is proposed to process plane waves received by spatially-
oversampled antenna arrays. In the proposed multi-port ADC,
the desired plane waves are processed with a spatial low-pass
frequency response whereas the noise and distortion are shaped
with a spatial high-pass frequency response. By employing a
first-order Butterworth filter, approximately circular passbands
and stopbands are achieved for the signal and the noise transfer
functions, respectively. The proposed noise-shaping system is
designed in the TSMC 180 nm CMOS process, with ADCs and
DACs modeled as noise sources. Circuit simulation results show
that the proposed system can achieve a bandwidth of 50 MHz.

I. INTRODUCTION

The concept of multi-dimensional delta-sigma (∆-Σ) noise-
shaping for array receivers has recently drawn much at-
tention [1]–[9]. The general idea is to exploit noise- and
distortion-shaping in the spatio-temporal domain such that
undesired noise/distortion added by the receiver can be shaped
outside the region of interest of the desired signals (incoming
plane waves), thus improving receiver performance metrics
such as linearity, noise figure (NF), and effective number
of bits (ENOB). In particular, N -port low-noise-amplifiers
(LNAs) and analog-to-digital converters (ADCs) using two-
dimensional (2-D) (space, time) ∆-Σ noise-shaping have been
simulated in 65 nm CMOS [4], [5]. A complete CMOS array
receiver using first-order spatio-temporal noise-shaping within
both the LNA and ADC has also been reported in [6].

We now extend this method to multiple spatial and
temporal dimensions for 2-D array receivers, and propose
three-dimensional (3-D) signal processing that uses practical
bounded-input bounded-output (BIBO) stable recursive filters
implemented in the spatially-discrete temporally-continuous
(SDTC) domain, as shown in Fig. 1. The idea is to exploit
3-D spatio-temporal noise-shaping to improve the effective
resolution (as quantified using ENOB) of the ADCs used to
digitize 2-D antenna arrays without relying on conventional
noise-shaping solutions based on temporal oversampling. The
proposed 3-D signal processing algorithm replaces the N2

conventional ADCs required to digitize an N × N 2-D an-
tenna array with a single multi-port analog-to-digital converter
(ADC) that utilizes noise-shaping in the spatial domain. Al-
though two-dimensional (2-D) algorithms have been explored
in the past [4]–[6] and also analogously extended to 3-D [10],
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Fig. 1. Plane wave signals received by a spatial-oversampled antenna array
are processed through an N2-port ADC with spatio-temporal noise shaping.

the 3-D case for rectangular/square arrays is actually not
straightforward due to theoretical difficulties in synthesizing
practical BIBO stable 3-D feedback loops that possess the nec-
essary 3-D frequency response shapes for signal enhancement
and noise shaping while maintaining stability.

This paper summarizes as extensive theoretical effort to-
wards the necessary 3-D filter synthesis that bridges the gap
between 2-D (linear array) and 3-D (rectangular/square array)
space-time. The proposed work is a significant improvement
over [10], in which the transfer functions were not fully
confirmed for 3-D noise-shaping requirements but were the
only possible theoretical developments available at that time.

II. PLANE WAVE SPECTRA FOR 2-D RECEIVE ARRAYS

Consider a four-dimensional (4-D) propagating far-field
electromagnetic plane wave w4C(x, y, z, ct) having azimuth
and elevation angles (φ, θ) as shown in Fig. 2(a), where
(x, y, z) ∈ R3 are the spatial dimensions, t ∈ R is the time,
and c is the speed of a plane wave. The spatial direction
of arrival (DOA) is given by the direction cosine vector
[αx, αy, αz]

T, where αx = cosφ cos θ, αy = sinφ cos θ
and αz = sin θ [11, ch. 2], [12, ch. 6]. The direction
cosines defined in the 4-D space-time (x, y, z, ct) are given by
βv = αv√

α2
x+α

2
y+α

2
z+α

2
ct

where αct = 1 and v ∈ {x, y, z, ct}.
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Fig. 2. (a) A 4-D plane wave received by an array surface; (b) the ROS of
3-D plane waves in the continuous spatio-temporal frequency domain.

We assume that the wave is received by a planar array surface
constrained to the z = 0 plane. Therefore, the 4-D plane wave
w4C(x, y, z, ct) reduces to a 3-D plane wave w3C(x, y, ct) for
which the 3-D spatio-temporal direction cosines are described
by βv = αv√

α2
x+α

2
y+α

2
z+α

2
ct

, where αct = 1 and v ∈ {x, y, ct}.
In this case, broadside incidence reduces the direction cosines
to the vector [0, 0, 1]T. The extreme end-fire waves having
DOAs (φ, 0) are circularly symmetric around the array, all
corresponding to 3-D spatio-temporal direction cosines of the
vector form [cosφ, sinφ, 1]T/

√
2.

The region of support (ROS) of a function is defined as the
region of the domain where the function is not defined to be
zero-valued. The 3-D frequency domain ROS of a propagating
plane-wave lies on a straight line passing through the ori-
gin of the 3-D continuous spatio-temporal frequency domain
(Ωx,Ωy,Ωct) ∈ R3 [13]. For example, the ROS of a wideband
temporally band-pass plane wave consists of two straight-line
segments as shown in Fig. 2(b). The length of the straight-line
segment is determined by the temporal bandwidths of the plane
wave, and the orientation is determined by the vector given
by the 3-D spatio-temporal domain direction of propagation
βv = αv√

α2
x+α

2
y+α

2
z+α

2
ct

where αct = 1 and v ∈ {x, y, ct} [13],

[14]. The set of all possible propagating plane-waves have
combined ROS within the 3-D double-cone shaped region
given by Ω2

x + Ω2
y = Ω2

ct [14], [15]. This region, shown in
Fig. 2(b), for the case of propagating plane waves in free
space, is the 3-D Fourier domain representation of Einstein’s
Causality Light Cone, which was first proposed in the Special
Theory of Relativity [16].

The spatial sampling of such propagating waves using an
array of antennas requires the incident signals to be strictly
bandlimited in order to prevent spatio-temporal aliasing. Let
the maximum temporal frequency component be Ωct = Ωm.
Then, the inter-antenna spacing needs to be selected as ∆x =
∆y ≤ λm/2, where λm is the wavelength corresponding to
the frequency Ωm. For critical sampling, ∆x = ∆y = λm/2.
The introduction of a uniform square grid of antennas (ide-
ally, point antennas) converts the incident plane waves into
a 3-D signal that is discrete in the spatial dimensions but
continuous in time. Let the 3-D SDTC signal be defined as
w(nx, ny, ct) ≡ w3C(nx∆x, ny∆y, ct), where w3C(x, y, ct)

is the spatio-temporal plane wave received at the array plane
given by z = 0. Given that the antennas contain signals that
are in the continuous temporal domain, the corresponding ROS
is periodic along the 2-D spatial-frequency variables ωx and
ωy (ωi = Ωi∆i, where i ∈ {x, y}) but non-periodic and
bandlimited along the temporal-frequency variable Ωct in the
3-D SDTC frequency domain (ωx, ωy,Ωct) ∈ R3 [13]. When
critical sampling is employed on the spatial dimensions, the
combined ROS of all possible incident plane waves pertain to
a double-cone having its axis along the Ωct axis and a half-
cone angle of 45◦ inside the principal Nyquist square cuboid
N3S (−π ≤ ωx, ωy < π and −∞ < Ωct < ∞) in the 3-D
SDTC frequency domain. In this case, at the highest frequency
Ωct = Ωm, the double-cone shaped spectral ROS takes its
maximum radius of π. However, spatially over-sampling the
array by reducing the inter-antenna spacing by a factor Ku > 1
causes the maximum radius of the ROS to decrease to π/Ku.

III. THREE-DIMENSIONAL ∆-Σ ADC NOISE-SHAPING

In the previous section, it was established that the spectral
ROS of a 3-D spatially-sampled temporally-continuous (i.e.,
analog) array signal present at the terminals of the receiver
antennas are given by a double-cone region in the 3-D SDTC
frequency domain. It was also established that the spatially
over-sampled double-cone shaped ROSs have a maximum
radius of π/Ku at the highest possible frequency of incident
waves Ωm. For emerging 5G and 6G mm-wave wireless
communications and radar applications, the carrier frequency
Ωc can be much greater than than the bandwidth B of the
signal of interest. For example, carrier frequencies in the
emerging 140 GHz band are typically modulated with a
temporal bandwidth less than 2 GHz. The band-pass nature of
such incident plane waves allows innovative signal processing
algorithms that exploit the double-cone shaped 3-D SDTC
frequency domain ROS of the incident plane waves. When
B � Ωc, the spectral ROS of a 3-D band-pass plane wave,
shown in Fig. 3(a), essentially reduces to two very-short
straight-line segments. In this case, a large fraction of the
double-cone 3-D spectral ROS is empty (i.e., zero-valued),
resulting a double band-pass cone region, as shown in Fig.3(a).

Given that a typical mm-wave or sub-THz array receiver
employs highly band-pass signals whose B � Ωc, this
allows either i) down-conversion to intermediate frequencies
or baseband prior to digitization, or ii) band-pass sampling
to achieve both down-conversion and digitization in a single
step at the cost of higher noise levels due to noise-folding
(a result of temporal aliasing). For example, consider the
set of incident waves occupying the band [Ωm − B,Ωm]
with a carrier frequency Ωc = Ωm − B

2 . Following down-
conversion to an intermediate-frequency (IF) band (with a
center frequency of B/2), the 3-D SDTC frequency domain
ROS now takes a double-conic shape as shown in Fig. 3(b).
For typical narrowband signals for which B � Ωc, the double-
conic shape appears approximately cylindrical for all practical
purposes. The radius of this double-conic 3-D ROS remains
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Fig. 3. (a) The ROS of the spectrum of a narrowband plane wave in the 3-D
SDTC frequency domain; (b) the ROS after down-conversion to an IF band
with a center frequency B/2.

F (zx, zy, s)

N(zx, zy, s)

W (zx, zy, s) YD(zx, zy, zct)
ADC

DACLPF
Y (zx, zy, s)

Fig. 4. The proposed three-dimensional noise shaping system.

at π/Ku despite temporal down-conversion. Furthermore, note
that the signal is wideband after down-conversion.

Let Φdc denote the 3-D double-conic ROS of the down-
converted signal prior to digitization and Φ̄dc be the part of
the 3-D frequency domain which lies outside the double-conic
ROS inside N3S . We propose a 3-D ∆-Σ spatio-temporal
feedback system, shown in Fig. 4, that provides ADC noise
shaping such that the signal of interest having ROS Φdc is
subject to a 2-D spatial passband function Hp(zx, zy, s) that
approximates Φdc while noise and distortion is shaped into the
region given ideally by Φ̄dc, which is achieved via the spatial
noise-shaping function Hn(zx, zy, s) = 1−Hp(zx, zy, s).

A. Design and Realization of F (zx, zy, s)

In the proposed 3-D ADC noise-shaping system, shown
in Fig. 4, the incident SDTC array signal w(nx, ny, ct) ⇔
W (zx, zy, s) is subject to the 3-D transfer function

Hp(zx, zy, s) =
F (zx, zy, s)

1 + F (zx, zy, s)
, (1)

while internal 3-D spatio-temporal noise and distortion
n(nx, ny, ct)⇔ N(zx, zy, s) is subject to the shaping function

Hn(zx, zy, s) =
1

1 + F (zx, zy, s)
. (2)

We propose the forward function F (zx, zy, s), which is ideally
independent of the temporal frequency Ωct, as

F (zx, zy, s) =
a
(
1 + z−1

x + z−1
y + z−1

x z−1
y

)
1 + b1

(
z−1
x + z−1

y

)
+ b2z

−1
x z−1

y

, (3)

where, a = α2/(1 − α2), b1 = (β − α2)/(1 − α2) and b2 =
(β2 − α2)/(1− α2). Here, α and β are defined using a first-
order low-pass Butterworth filter of which the transfer function
is given by H(z) = α(1+z−1)

1+βz−1 [17, ch. 10].
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Fig. 5. Realization of a module of F (zx, zy , s), where u(nx, ny , t) and
v(nx, ny , t) are the input and the output, respectively.
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Fig. 6. MATLAB simulation results for the magnitude frequency responses of
(a) the signal transfer function Hp(zx, zy , s) and (b) noise transfer function
Hn(zx, zy , s), assuming Ku = 3. (c)-(d) Same as (a)-(b), but for Ku = 5.

The system F (zx, zy, s) can be realized using N2 opera-
tional amplifiers for an N × N antenna array, resulting in
N2 similar modules. The realization of one such module is
shown in Fig. 5, assuming a, b1, b2 > 0. In this case, a = R1

R4
,

b1 = R1

R2
, and b2 = R1

R3
; v+(nx, ny, t) and v−(nx, ny, t) refer

to the outputs of the differential op-amp; and u+(nx, ny, t)
and u−(nx, ny, t) are the differential inputs.

B. Dominant-Pole 3-D Transfer Functions

Although the spatial 2-D noise shaping function was de-
veloped as a purely spatial operation, real-world electronics
uses amplifiers with finite gains and dominant-pole frequency
responses to ensure stability [18]. Let the dominant pole
frequency be at Bλ1 for the outer feedback loop. We therefore
modify the spatial noise shaping operation using a dominant
pole response for the active circuitry [19] to obtain the

Authorized licensed use limited to: Linkoping University Library. Downloaded on November 12,2020 at 23:45:53 UTC from IEEE Xplore.  Restrictions apply. 



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 7. Op-amp simulations: (a) open-loop gain and phase, (b) step responses. Cadence Spectre simulation results for the magnitude frequency responses of
signal and noise transfer functions at a temporal frequency of (c) and (d) DC, (e) and (f) 25 MHz, and (g) and (h) 50 MHz, when Ku = 3.

modified transfer functions

Hp,dp(zx, zy, s) =

Fdp(zx,zy,s)
1+s/Bλ1

1 +
Fdp(zx,zy,s)
1+s/Bλ1

, (4)

and
Hn,dp(zx, zy, s) =

1

1 +
Fdp(zx,zy,s)
1+s/Bλ1

(5)

where Fdp(zx, zy, s) is the 3-D forward function, which itself
is not subject to a dominant pole response. Let the dominant
pole response for the forward function be Bλ2. Therefore, the
dominant pole response of the forward function is modeled as

Fdp(zx, zy, s) =
a
(
1 + z−1

x + z−1
y + z−1

x z−1
y

)
1 +

b1(z−1
x +z−1

y )+b2z−1
x z−1

y

1+s/Bλ2

· 1

1 + s/Bλ2
.

(6)

IV. SIMULATION RESULTS

We consider two examples with spatial oversampling factors
Ku = 3 and Ku = 5. In these cases, the cutoff frequency
ωc of the first-order low-pass Butterworth filter is selected as
0.33π rad/sample and 0.2π rad/sample, respectively. For the
case Ku = 3, α = 0.3632 and β = −0.2736, and for the case
Ku = 5, α = 0.2452 and β = −0.5095. MATLAB simulation
results for the magnitude frequency responses of the signal
transfer function Hp(zx, zy, s) and the noise transfer function
Hn(zx, zy, s) are shown in Fig. 6. It can be clearly seen that
the frequency responses of Hp(zx, zy, s) and Hn(zx, zy, s)
provide low-pass and high-pass rotationally (approximately
circularly) symmetric frequency responses, respectively, as
required for noise and distortion shaping at IF (or baseband)
across a square/rectangular array.

A. Analog-Circuit Realization of 3-D Transfer-Functions

In order to verify the practical realization of the proposed
3-D filters, the 3-D noise shaping system shown in Fig. 4 was
designed using an array of 8 × 8 operational amplifiers. The

system F (zx, zy, s) was realized as in Fig. 5. For simplicity,
ADCs and digital-to-analog converters (DACs) were modeled
as white Gaussian noise sources. In this case, other distribu-
tions such as uniform distribution, can also used for modeling.
The fully-differential op-amp used in the circuit was designed
using TSMC 180 nm CMOS technology [20]. This is a two-
stage design with a gain bandwidth product of 750 MHz and
a phase margin of 60◦. The differential open-loop DC gain
of the op-amp is ∼87 dB and the slew rate is 350 V/µs.
Simulated gain and phase characteristics of the op-amp and
its small-signal step responses are shown in Figs. 7 (a) and
(b) respectively.

System-level transient simulations were conducted using
Cadence Spectre. For this purpose, the circuit was exited
with a 50 mV input pulse of width 10 ns, and the output
of each op-amp was recorded at a sampling rate of 1 ns.
The resulting 3-D signal was converted to the 3-D discrete
frequency domain using a 3-D Fourier transform. Fig. 7 (c)-(h)
shows the simulated spatial frequency responses for the signal
transfer function Hp(zx, zy, s) and noise transfer function
Hn(zx, zy, s) at different temporal frequencies from DC to
50 MHz when Ku = 3. In each case, the frequency responses
obtained from circuit simulations are similar to the MATLAB
simulation results, which verifies the proposed approach.

V. CONCLUSIONS

This paper has described a 3-D spatio-temporal noise shap-
ing method for increasing the effective resolution of N2-port
ADCs that digitize plane waves received by N × N 2-D
square/rectangular antenna arrays. The method was imple-
mented using high-speed op-amps in 180 nm CMOS, and its
performance verified (in simulation) for temporal frequencies
up to 50 MHz. Future work will focus on implementing the
system with ADC/DAC circuits and improving the useful ADC
bandwidth by further increasing the gain bandwidth product
of the op-amps; this will be followed by layout, fabrication,
and experimental verification.
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