
Tutorial: assessing metagenomics software
with the CAMI benchmarking toolkit
Fernando Meyer 1, Till-Robin Lesker1,2, David Koslicki 3, Adrian Fritz 1, Alexey Gurevich 4,
Aaron E. Darling 5, Alexander Sczyrba6, Andreas Bremges1,2 and Alice C. McHardy1✉

Computational methods are key in microbiome research, and obtaining a quantitative and unbiased performance estimate
is important for method developers and applied researchers. For meaningful comparisons between methods, to identify
best practices and common use cases, and to reduce overhead in benchmarking, it is necessary to have standardized
datasets, procedures and metrics for evaluation. In this tutorial, we describe emerging standards in computational meta-
omics benchmarking derived and agreed upon by a larger community of researchers. Specifically, we outline recent efforts
by the Critical Assessment of Metagenome Interpretation (CAMI) initiative, which supplies method developers and
applied researchers with exhaustive quantitative data about software performance in realistic scenarios and organizes
community-driven benchmarking challenges. We explain the most relevant evaluation metrics for assessing metagenome
assembly, binning and profiling results, and provide step-by-step instructions on how to generate them. The instructions
use simulated mouse gut metagenome data released in preparation for the second round of CAMI challenges and
showcase the use of a repository of tool results for CAMI datasets. This tutorial will serve as a reference for the
community and facilitate informative and reproducible benchmarking in microbiome research.

S ince the release of the first shotgun metagenome from the
Sargasso Sea by metagenomics pioneer Craig Venter1, the
field has witnessed an explosive growth of data and

methods. Microbiome data repositories2,3 host hundreds of
thousands of datasets, and numbers are still rising rapidly.

Metagenomics (see glossary; Table 1) created new compu-
tational challenges, such as the need to reconstruct the genomes
of community members from a mixture of reads originating
from potentially thousands of microbial, viral, and eukaryotic
taxa4. These taxa differ in their relatedness to each other, are
often absent from sequence databases, and present at varying
abundances. Genomes can be reconstructed by metagenome
assembly, which creates longer, contiguous sequence fragments,
followed by binning, which is usually a clustering method that
places fragments into genome bins. There have been spectacular
successes in recovering thousands of metagenome-assembled
genomes (MAGs) for uncultured taxa5–7. Identifying the taxa
and their abundances for a community is known as taxonomic
profiling; taxonomic ‘binners’ assign taxonomic labels to indi-
vidual sequence fragments. Both tasks are challenging, parti-
cularly for the lower taxonomic ranks8. Another challenge is the
de novo assembly of closely related genomes (>95% average
nucleotide identity)8. Finally, fragmentary assemblies with
many short contigs obtained from short read sequence data in
metagenomics have required adaptation of gene-finding

methods and complicate operon-level functional analyses of
genes. The maturation of long-read sequencing technologies9,10,
which for many years were characterized by low throughput,
high cost, and high error rates, has sparked further develop-
ment and is expected to lead to better solutions for some of
these challenges.

The relevance of standards for performance evaluation
and benchmarking
Methodological development is oftentimes accompanied by
performance evaluations. This has historically been done on an
ad hoc basis by developers, often using different datasets and
performance metrics, which are both critical choices in regard
to performance evaluation. This practice made it difficult to
compare results across publications and to identify suitable
techniques for specific datasets and tasks. It also made perfor-
mance benchmarking for developers tedious and ineffective.
For instance, performance might differ substantially for
reference-based methods using public databases across datasets,
depending on evolutionary divergence between the sampled
and the database taxa8. Similarly, organismal complexity,
strain-level diversity, realistic community genome abundance
distributions, the presence of non-bacterial genomic informa-
tion, and sequencing error profiles of datasets are some of the
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factors that may affect method performance. It became evident,
as in other fields11–13, that standards would greatly facilitate
comparisons across methods and articles, as well as unequivocal
determination of appropriate solutions and open challenges.

CAMI
To satisfy this need, CAMI, the community-driven initiative for
the Critical Assessment of Metagenome Interpretation, was
founded in 2014 by A. Sczyrba, T. Rattei, and A.C. McHardy
(http://blogs.nature.com/methagora/2014/06/the-critical-assess
ment-of-metagenome-interpretation-cami-competition.html)
during the metagenomics program at the Isaac Newton Insti-
tute in Cambridge (https://www.newton.ac.uk/event/mtgw01).
CAMI design decisions are based on feedback gathered in
community workshops, which ensures inclusion of a wide range
of expert inputs and establishes a community consensus. By
regularly interacting with scientists in workshops, during
hackathons, and at conferences such as the Microbiome track of
the international conference on Intelligent Systems for Mole-
cular Biology (ISMB), CAMI aims to identify and implement
best practices for benchmarking in microbiome research,
including (i) key properties of benchmark datasets (see also
refs. 14,15 for an overview of general benchmarking practices);
(ii) appropriate performance metrics for different tasks;
(iii) benchmarking procedures, that is, how to run bench-
marking challenges; and (iv) performance evaluation proce-
dures, to allow the most realistic, fair, and unbiased assessment.
(v) Reproducibility/reusability has been identified as the fifth
key criterion. We provide further details on these key aspects in
the sections below.

The first CAMI challenge took place in 2015 and provided
an extensive performance overview for commonly used data
processing methods, namely those for assembly, genome and
taxonomic binning, and taxonomic profiling8. The six bench-
mark datasets—reflecting a range of complexities—have since
been used extensively for further benchmarking in the field.
These include three ‘toy’ datasets created from public data and

provided before a challenge, as well as three ‘challenge’ datasets
derived exclusively from genomic data that were not publicly
available at the time. These genomic data are now in public
sequence repositories such as the National Center for Bio-
technology Information (NCBI). All CAMI benchmark datasets
are made available after the challenges with digital object
identifiers (DOIs) (Table 2) and are also downloadable from the
CAMI portal at https://data.cami-challenge.org/. Further
benchmarking studies have also provided valuable insights into
the performance of data processing methods16–19. The second
CAMI challenge (CAMI II) was launched in 2019 and offered
challenges for the same tasks on two large, multisample datasets
reflecting specific environments (marine, rhizosphere) and an
extremely high strain diversity dataset (strain madness). In
addition, a clinical pathogen detection challenge was offered.
The challenges on the marine, strain madness, and pathogen
datasets closed in October 2019, whereas the challenge on the
rhizosphere dataset, which was launched in 2020, will close in
early 2021. The results are expected to provide insights into
important questions such as the potential of long-read data for
metagenomics20.

Advantages of benchmarking challenges
Challenges provide insights into method performance, suggesting
best practices as well as identifying open problems in the field.
They can also further the development and adoption of standards,
such as data input and output formats, or choice of reference
datasets, such as the NCBI taxonomy. Once standards are realized,
benchmarking competitions offer a low-effort opportunity for
extensive benchmarking, as datasets, other method results, and
evaluation methods do not have to be created by the developer of a
new metagenome analysis method.

Some participants might worry about publishing poor per-
formances, which is why CAMI challenge participants can opt
out of results publication and use them only for their own
benefit. Defining the evaluation metrics is also open for the
field; thus, all labs participating in these discussions can

Table 1 | Glossary

Term Definition

Assembly Reconstruction of complete or partial genomes or DNA sequence fragments, often by merging sequence
reads into longer pieces called contigs

Benchmarking Systematic comparison of (computational) techniques using performance metrics in specific scenarios

Binning Clustering or classification of sequences or contigs into bins representing genomes (genome binning) or
taxa (taxonomic binning) of the underlying microbial community

Coverage Number of sequence reads that cover a certain genomic position

Docker A software tool designed to make it easy to distribute and run applications by using software packages
(containers) and operating system-level virtualization

Metagenomics A set of techniques for recovering and sequencing of the genetic material of microbial communities and
their functional and taxonomic characterization

Profiling Microbial community characterization from a metagenomic sample in terms of presence and absence of
taxa and their relative abundances

Standard of truth/ground truth/
gold standard

The correct result, such as, for example, the correct taxon that a sequence originates from, which can be
used to compare with and benchmark other methods’ results
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contribute to the challenge evaluation. Participants can thus
suggest and define metrics that highlight the expected benefits
of their techniques, with these simultaneously being subjected
to peer group review. To ensure a maximum of objectivity in
these evaluations, CAMI challenges are performed blinded in
two ways. The standard of truth (see glossary; Table 1) for the
challenge dataset is provided only after the challenges end,
preventing performance optimization in any way on these
particular datasets. Challenge datasets include many genomes
that will become publicly available only after the challenge.
‘Toy’ datasets, for which a standard of truth is made available at
the outset, are provided before the actual challenges to enable
teams to familiarize themselves with the data structure and its
properties. The evaluation of the different challenge submis-
sions is also performed blindly, such that the evaluation panel
does not know the names of the submitters or information
about the submitted techniques, to tackle evaluator biases.
Evaluations are open to anyone wishing to participate, and a
consensus is reached in a workshop with a group of experts.

Benchmark datasets
Benchmark datasets should be as realistic and representative of
real meta-omics data as possible. For CAMI challenges,
experimental groups contribute unpublished genomes, includ-
ing some organisms from poorly characterized phyla without
any publicly available genomes of close relatives. These gen-
omes are used for benchmark data creation and are published
only after the challenge. Because many taxa present in real
environmental samples have unknown cultivation conditions
and no isolate genomes are available in reference databases,
measuring performance on novel organisms is essential. This is
particularly true for a comprehensive evaluation of reference-
based methods such as taxonomic profilers and binners, which
perform best for genomes closely related to those in public
databases8. The challenge datasets for CAMI I were created
entirely from newly sequenced genomes that were unpublished
at the time of the challenge with the CAMISIM microbial
community and metagenome simulator21. For CAMI II, both
unpublished and already-public high-quality genomes were
used to allow a more comprehensive assessment of assembly
qualities. CAMISIM allows the incorporation of many key
properties into datasets, such as varying experimental designs
(number of samples, sequencing depth, insert sizes, type of
experiment, including differential abundances, time series) and
sequencing technologies and community properties (orga-
nismal complexity, different genome abundance distributions,

strain diversity, taxa from different domains of life, viruses,
mobile circular elements). An alternative way to create bench-
mark data is to sequence lab-created DNA mixtures as in ref. 22,
which would enable a more realistic assessment of technical
variation and biases introduced in data generation. However,
creating communities with realistic organismal complexities is
currently impractical for many environments, which can have
hundreds to thousands of genomes at highly varying
abundances.

Metrics for performance evaluation
Choosing the appropriate (combination of) metrics for com-
paring method performances—such as fraction of correctly
assembled genomes and number of contigs, or number of
correctly identified taxa in taxonomic profiling and binning—is
a key task in benchmarking that directly influences the ranking
of methods. The metrics used in CAMI challenges8 are decided
on in public workshops and reassessed regularly. They should
be easy to interpret and meaningful to both developers and
applied scientists. A comprehensive assessment is achieved by
including multiple metrics that highlight the strengths of dif-
ferent approaches (see ‘Benchmarking demonstration’ section).
Furthermore, assessing properties such as runtime, disk space,
and memory consumption is important.

Reproducibility and FAIR (Findable, Accessible,
Interoperable, Reusable) principles
Imagine running a benchmarking contest and identifying the
top-performing technique by key criteria, potentially repre-
senting the new state-of-the-art for future studies. However, the
submitting team has unfortunately lost track of the software
version and parameter settings used, and is unable to reproduce
its own results. To avoid such issues, reproducibility has been
selected as a core principle in CAMI for all steps of bench-
marking, from data generation with CAMISIM21 to running
software benchmarked in the contest, and to evaluating results.
Evaluation metrics are extensively tested and implemented in
the MetaQUAST23, AMBER24, and OPAL25 benchmarking
packages (Table 3), available via Bioconda26. All software
released by CAMI is available as open source under the
appropriate licenses, such as Apache 2 or GPL. A key lesson
learned from the first challenge was that parameter settings
substantially affect program performance. A minimal require-
ment for public CAMI challenge results is therefore doc-
umenting the exact program versions and command-line calls
or, even better, using a workflow manager such as GNU Make

Table 2 | CAMI benchmark datasets and their respective DOIs

CAMI benchmark dataset DOI

CAMI I: low, medium, high complexity, and ‘toy’ datasets 10.5524/100344

CAMI II: human microbiome project and mouse gut toy datasets 10.4126/FRL01-006425518 and 10.4126/FRL01-006421672

CAMI II: marine, strain madness, rhizosphere, and pathogen detection
challenge datasets

10.4126/FRL01-006425521

All datasets are also downloadable from the CAMI portal at https://data.cami-challenge.org/.
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(https://www.gnu.org/software/make/), Snakemake27, Next-
flow28, or CWL (Figshare repository: https://doi.org/10.6084/
M9.FIGSHARE.3115156.V2). The ideal, although time-con-
suming, approach is to containerize the program, for example,
in Docker, Bioboxes29, or BioContainers30, as well as to docu-
ment and bundle dependencies to facilitate installation with pip
(https://pypi.org/project/pip/) or Bioconda26.

To maximize the scientific value, not only the methods, but
also all data required for reproducing and building on the
results of a study should be made available. CAMI commits to
the FAIR principles for scientific data management and stew-
ardship31. CAMI benchmark and reference datasets, program
results, and computed metrics are provided with DOIs on
Zenodo (https://zenodo.org/communities/cami) and GigaDB
(http://gigadb.org/dataset/100344). This improves reusability
and sustainability of the efforts, as others can directly build on a
study, for instance, by adding their own method’s results to the
existing results of a benchmarking effort or by adding calcu-
lation of new metrics to a benchmark study for more sophis-
ticated interpretation.

CAMI benchmarking workflow
A schematic representation of CAMI’s benchmarking workflow
is shown in Fig. 1. In the following, we demonstrate this
principle of convenient benchmarking by extending previous
results for the four software categories (assembly, genome and
taxonomic binning, and profiling) benchmarked on the CAMI
II multisample mouse gut dataset, creating a flexible bench-
marking resource for individual studies.

Benchmarking demonstration
We demonstrate how to benchmark in practice according to the
standards developed in the context of CAMI—for example, in
terms of benchmarking metrics and file formats—and realized
in benchmarking software (Table 3) for different challenges in

computational metagenomics, such as assembly, genome and
taxon binning, and taxonomic profiling. We analyze the mouse
gut metagenome ‘toy’ dataset21 provided to prepare for CAMI
II (Table 2), starting below with a description of its simulation.
Analyses of this dataset with several taxonomic profiling and
assembly methods were previously described21,25. The bench-
marked assemblers, taxon and genome binners, and taxonomic
profilers were chosen on the basis of popularity and perfor-
mance in the first CAMI challenge8. All method results for this
and other benchmark datasets can be obtained from a new
resource on Zenodo at https://zenodo.org/communities/cami,
and curated metadata are provided at https://github.com/
CAMI-challenge/data. Users can continue to add results to
these repositories, thus building a growing method result col-
lection for benchmarking.

Simulation of benchmark dataset
The mouse gut metagenome toy dataset was generated with
CAMISIM v.0.2 (ref. 21; Table 3) using a microbial community
genome abundance distribution modeled from 791 public
prokaryotic genomes marked as at least ‘scaffolds’ in the NCBI
RefSeq32. They comprise 8 phyla, 18 classes, 26 orders, 50
families, 157 genera, and 549 species. The community genome
abundance distribution matches as closely as possible the 16S
taxonomic profiles for 64 mouse gut samples. As such, this
dataset enables us to assess how well sequenced community
members can be characterized with different techniques from
the metagenomes of similar communities. On average, within
each of the 64 samples, 91.8 genomes are represented. Both
long- (PacBio) and short-read (Illumina HiSeq 2000) meta-
genome sequencing data are available, with 5 Gb of sequences
per sample, leading to an average genome coverage of 4.7×
(ref. 21). The runtime to generate these data was approximately
3 weeks using eight CPU cores of a computer with an AMD
Opteron 6378 CPU and 968 GB of main memory.

Table 3 | CAMI benchmarking software packages

Software Description

CAMISIM21 A microbial community and metagenome simulator that models different microbial abundance profiles, multisample
time series, and differential abundance studies, as well as real and simulated strain-level diversity, and generates
second- and third-generation sequencing data from taxonomic profiles or de novo. CAMISIM was used to generate
several benchmark datasets for CAMI challenges

MetaQUAST23 A quality assessment tool for metagenome assembly evaluation. It computes various quality metrics on the basis of
alignment of assemblies to a standard of truth or close reference genomes. A standard of truth is used in CAMI

AMBER24 Software for the comparative assessment of genome reconstructions and taxonomic assignments from metagenome
benchmark datasets. It calculates performance metrics such as (rank-specific taxon) bin completeness and purity,
average Rand index, assignment accuracy, and comparative visualizations used in CAMI challenges

OPAL25 A tool for computing performance metrics and creating visualizations for assessing taxonomic metagenome profilers.
The metrics include presence–absence metrics (number of true and false positives, false negatives, completeness,
purity, F1 score, Jaccard index) and abundance metrics such as UniFrac, L1 norm and the Bray–Curtis distance

Bioboxes29 Docker containers with standardized interfaces facilitating interchange of software in bioinformatics pipelines,
distribution of specific software versions with predefined parameter settings, and therefore reproducibility of results and
benchmarking. The Bioboxes standard was used to containerize the methods benchmarked in the CAMI I challenges and
are continuously used along with BioContainers30 and workflow and package managers such as Snakemake27,
Nextflow28, and Bioconda26
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CAMISIM can be installed according to the instructions at
https://github.com/CAMI-challenge/CAMISIM/ or by using
Docker with the following command:

docker pull cami/camisim

To generate the mouse gut dataset, use the following com-
mand:./metagenome_from_profile -p profile.biom
-o out/

profile.biom is a BIOM33
file storing the microbial

community genome abundance distribution for the
64 samples. It can be obtained together with the dataset
(Table 2). Per default, CAMISIM simulates 5 Gb of sequences
per sample.

If CAMI benchmark data generated with CAMISIM have
been downloaded, the following files and folders should appear:
● One folder per sample

○ Reads (anonymized and shuffled) as FASTQ files
○ Contigs (gold-standard assembly) as FASTA files

○ Gold-standard mappings (binning) in BAM and CAMI
formats (see format specifications at https://github.com/
CAMI-challenge/file_formats)

● For multisample simulations:
○ File containing contigs (gold-standard assembly) as FASTA files
○ File containing gold-standard mappings (binning and profil-
ing) in CAMI format

● Profiling gold standard per sample in CAMI format
● One folder (called ‘source genomes’) containing all reference
genome sequences as FASTA files

● One folder (called ‘distributions’) containing files with the absolute
abundances per genome for each sampled microbial community

● One folder (called ‘internal’) containing the input metadata and
a list of unused genomes

● Metadata (CAMISIM.ini config file)

Assembly
Cross-sample co-assemblies of the first 10 of 64 metagenome
samples were performed with MEGAHIT34 v.1.0.3, v.1.1.3 (with
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Fig. 1 | CAMI benchmarking workflow. The initial step is (1) the simulation of metagenome data from a sequence database with CAMISIM21, which
includes the microbial community design and generation of standards of truth. (2) The simulated metagenome data are stored in benchmark data
repositories with digital object identifiers (DOIs) or temporarily without DOIs for ongoing CAMI challenges, as the standards of truth are provided only
after the challenges. (3) The data can then be downloaded and (4) software tools such as metagenome assemblers, genome and taxonomic binners,
and profilers can be run on the data. This leads to the creation of a pool of software tool results. (5) These results can be submitted to an ongoing
challenge or uploaded to a public repository such as Zenodo. (6) Already-existing results can be downloaded and (7) integrated along with newly
generated results in benchmark analyses with MetaQUAST23, AMBER24, and OPAL25.
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default, meta-sensitive, and meta-large settings), and v.1.2.9, as
well as metaSPAdes35 v.3.13.0, as the computer main memory
was insufficient to run metaSPAdes on more than 10 samples.
The choice of the first 10 samples was analogous to the CAMI II
challenge specifications. All results and commands used are
available on Zenodo (Supplementary Table 1). The computer
specifications, memory usage, and runtimes are available in
Supplementary Tables 2 and 3.

Assemblies were evaluated by mapping them against the
gold-standard assembly, defined as the fraction of the genome
covered by at least one read in the set of analyzed samples,
using MetaQUAST23 v.5.0.2. The gold-standard genomes are
known through the simulation with CAMISIM and provided to
MetaQUAST for the evaluation. In the case that the underlying
genomes are unknown, such as when assessing de novo
assemblies from less studied environments, reference-free
methods36–38 can be considered.

MetaQUAST can be installed with Bioconda using the fol-
lowing command:

conda create --name quast quast

This requires Conda to be installed and the Bioconda
channel configured; see https://bioconda.github.io/user/install.
html for details. Other installation methods are described in the
MetaQUAST GitHub repository at https://github.com/ablab/
quast/. To run MetaQUAST, type:

conda activate quast
metaquast -r /path/to/set0-9/ref-genomes \
-t 24 --unique-mapping --no-icarus -o /path/
to/output_dir \
-l megahit-103-df,megahit-113-df,megahit-
113-ml,\

megahit-113-ms,megahit-129-df,metaSPAdes \
/path/to/megahit103-Sample0-9-default/
final.contigs.fa \
/path/to/megahit113-Sample0-9-default/
final.contigs.fa \
/path/to/megahit113-Sample0-9-meta-large/
final.contigs.fa \
/path/to/megahit113-Sample0-9-meta-
sensitive/final.contigs.fa \
/path/to/megahit129-Sample0-9-default/
final.contigs.fa \
/path/to/metaSPAdes3130-Sample0-9/contigs.fasta

For evaluating assembly quality, we rely on the metrics
provided by MetaQUAST. Figure 2 shows the metrics we focus
on here, whereas Supplementary Results shows all metrics
computed by MetaQUAST. Performance values are calculated
for the whole assembly versus the combined reference (i.e.
concatenation of all provided references).

Overall, the performance of the MEGAHIT and MetaS-
PAdes assemblers is quite similar. MEGAHIT v.1.0.3 shows
poor performance for high coverage (i.e. high abundance)
genomes. This effect has been described for earlier versions of
MEGAHIT before8. The more recent versions of MEGAHIT
(1.1.3 and 1.2.9) handle high coverage genomes much better
and show similar performance to MetaSPAdes. For coverages of
16× and above, the fraction of the recovered genomes is above
75% with some outliers for coverage higher than 250x. The
NGA50 metric shows similar performance for MEGAHIT and
metaSPAdes, reaching 32 kb and more for coverage of 32x and
above (Fig. 3a–c). MetaSPAdes delivers fewer fragmented
assemblies (fewer contigs and higher NGA50, Fig. 3d,e) than
the newer MEGAHIT versions with only slightly lower genome
fraction (Fig. 3d).

Worst Median Best

Genome statistics MEGAHIT 1.0.3 df MEGAHIT 1.1.3 df MEGAHIT 1.1.3 ml MEGAHIT 1.1.3 ms MEGAHIT 1.2.9 df metaSPAdes 3.13.0

+ Genome fraction (%) 23.507 26.164 26.039 26.292 26.691 23.262
+ Duplication ratio 1.023 1.037 1.046 1.05 1.034 1.017
+ Largest alignment 354703 904953 859640 753008 787657 1034619
+ Total aligned length 436725459 492514960 493969107 500306789 500856984 429280747
+ NGA50 ... ... ... ... ... ...
+ LGA50 ... ... ... ... ... ...

Misassemblies

+ # misassemblies 5770 8685 5336 9381 8807 3488

+ Misassembled contigslength 10879967 43068359 34576388 56221107 50536067 25409676

Mismatches

+ # mismatches per 100 kbp 542.07 580.14 887.27 945.71 585.26 405.65

+ # indels per 100 kbp 2.39 4.17 3.92 4.75 4.3 2.57
+ # N's per 100 kbp 0 0 0 0 0 0

Statistics without reference

+ # contigs 225585 220757 278807 282136 225167 174693
+ Largest contig 354703 904953 859640 754056 788697 1034619
+ Total length 438032656 494653238 496722592 503491159 503073431 430847014
+ Total length (>= 1,000 bp) 342669622 399682035 368806791 372764886 405211262 354794894
+ Total length (>= 10,000 bp) 154362921 228640882 192818790 198110070 236255195 225930387
+ Total length (>= 50,000 bp) 38821616 102990325 82724532 83865010 106551070 119684054

Fig. 2 | MetaQUAST assembly benchmarking metrics. Genome fraction is the total number of aligned bases in the reference, divided by the genome
size; # contigs is the number of contigs in the assembly; NG50 is the contig length, such that contigs of that length or longer cover half (50%) of
the bases of the reference genome; NGA50 is NG50 such that the lengths of aligned blocks are counted instead of contig lengths; and LGA50 is the
minimal number of alignment blocks covering half of the bases of the reference genome. NG50, NGA50 and LGA50 are shown per genome in the
Supplementary Results.
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When assessing different settings for MEGAHIT v.1.1.3 (Fig.
3d–f), smaller, but notable differences were found. For instance,
the settings meta-sensitive (ms) and meta-large (ml) delivered
higher genome fractions for low coverage genomes, at the cost
of higher genome fragmentation rates (decreased NGA50 and
more contigs).

Genome binning
Genome binning can be seen as a clustering problem, where
sequences are grouped into bins without taxon labels. We
reconstructed genome bins from the cross-sample gold-stan-
dard assembly with the popular binners MaxBin v.2.2.7 (ref. 39),
MetaBAT v.2.12.1 (ref. 40), CONCOCT v.1.0.0 (ref. 41), and
DAS Tool v.1.1.2 (ref. 42). DAS Tool combines the genome bins
of individual methods to further improve bin quality. All results
and commands used are available on Zenodo (Supplementary
Table 4). Runtimes and memory usage are provided in Sup-
plementary Table 5. Binning quality was evaluated with
AMBER v.2.0.2 (ref. 24) (Table 3), which computes binning
performance metrics for metagenome data with a ground truth
available, i.e., for which the correct assignment of sequences to
genome bins is known (see glossary in Table 1). The binning file
format used in CAMI is described at https://github.com/CAMI-
challenge/file_formats. To reproduce the evaluation, the bin-
ning results must first be downloaded from Zenodo, then
AMBER installed using Bioconda, as follows:

conda create --name amber cami-amber

Other installation methods are described at https://github.
com/CAMI-challenge/AMBER/. To run AMBER, type:

conda activate amber
amber.py --gold_standard_file /path/to/
cami2_mouse_gut_gsa_pooled.binning \
/path/to/cami2_mouse_gut_maxbin2.2.7.
binning \
/path/to/cami2_mouse_gut_metabat2.12.1.
binning \
/path/to/cami2_mouse_gut_concoct1.0.0.
binning \
/path/to/cami2_mouse_gut_dastool1.1.2.
binning \
--labels "MaxBin 2.2.7, MetaBAT 2.12.1,
CONCOCT 1.0.0, DAS Tool 1.1.2" \
--genome_coverage /path/to/cami2_mouse_
gut_average_genome_coverage.tsv \
--output_dir /path/to/output_dir

The file cami2_mouse_gut_average_genome_
coverage.tsv above contains the average coverage of
the genomes in the CAMI II mouse gut dataset and is also
available on Zenodo (Supplementary Table 4). This file is
optional and is used by AMBER to generate performance
plots relative to the average genome coverage (Fig. 4a,b).

In the evaluation of genome binning, several metrics are
often jointly assessed. For each genome, completeness, or recall,
is evaluated from the predicted bin containing the largest
number of base pairs (bp) of the genome. It is the number of
base pairs (or contigs) in the genome in that bin divided by the
genome size (in base pairs or contigs). Sequences of that gen-
ome assigned to other bins are considered false positives for
those bins. Completeness can be zero, in the case that no part of
a genome has been binned by the respective binner. Purity
denotes how ‘clean’ predicted bins are in terms of their assigned
content. It is computed as the fraction of contigs, or base pairs,
coming from one genome, for the most abundant genome in
that bin. Contamination is defined as 100% minus purity. As
genomes can differ in their abundances, it is also common to
consider sample-wise metrics, such as the overall percentage of
assigned base pairs and the adjusted Rand index (ARI) on that
assigned fraction. The ARI reflects the overall resolution of the
underlying ground truth genomes by a binner on the binned
part of the sample. The ARI gives more importance to ‘large’
bins, that is, bins of large and/or abundant genomes, than do
completeness or purity, where each gold-standard genome (for
completeness) and predicted bin (for purity) contributes the
same, irrespective of its size. In the following, all evaluations are
based on base pair counts.

Completeness was high for all methods and was highest
for CONCOCT. Binners recovered the abundant genomes
better, with average completeness >90% for genomes at more
than threefold coverage (Fig. 4a). Purity was also high (Fig. 4b),
except for CONCOCT, and was highest for MetaBAT,
which was further improved by DAS Tool. Completeness was
>90% for genome bins with an average of 3.5 Mb for most
binners (Fig. 4c). CONCOCT and MetaBAT predicted bins
that were larger than their true sizes. This can be seen in Fig. 4d,
as the pink and green lines exceed the blue (gold-standard)
line on the x axis. Purity was >90% for predicted genomes bins,
with an average of 2.6 million to 3.5 million bp (Fig. 4d). Both
purity and completeness were much lower for smaller and
larger bins. CONCOCT assigned the most base pairs (Fig. 4e),
although to fewer bins. Low purity and fewer bins indicate
‘underbinning’, that is, multiple genomes being placed together
in one bin. The other extreme, ‘overbinning’, occurs
when genomes are split across multiple bins, resulting in low

Fig. 3 | Assessing metagenome cross-sample assembly quality with MetaQUAST for the CAMI II mouse gut dataset. a–c, Genome-wide
MetaQUAST metrics (genome fraction (a), NGA50 (b), # contigs (c)) for assemblies generated with MEGAHIT versions 1.0.3, 1.1.3, 1.2.9 and
metaSPAdes 3.13.0 versus sum of read coverages for individual genomes (dots) in ten cross-sample gold-standard assemblies. The higher the genome
fraction and NGA50, the better the assembly quality. Higher values of # contigs can indicate a higher amount of assembled data but also more
fragmented assemblies, whereas lower values of # contigs can indicate aggressive traversal of repeats by an assembler, leading to incorrect junctions
of sequence fragments and thus misassemblies. d–f, MetaQUAST metrics (genome fraction (d), NGA50 (e), # contigs (f)) for assemblies generated
with different settings of MEGAHIT 1.1.3 (default (df), meta-sensitive (ms) and meta-large (ml)) and metaSPAdes 3.13.0. All lines are fitted with local
regression using the R stats::LOESS (locally estimated scatterplot smoothing) function.
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completeness. After DAS Tool, MaxBin predictions had the
highest ARI, followed by MetaBAT. DAS Tool substantially
improved bin purity and ARI relative to the individual
methods—at the cost of completeness and binning a lower
percentage of base pairs than CONCOCT or MaxBin. MaxBin

and DAS Tool recovered the most high-quality genomes,
defined as genomes with >50% completeness and <10%
contamination (Table 4). The total number of predicted
bins per method was 867 (MaxBin), 592 (MetaBAT), 344
(CONCOCT), and 577 (DAS Tool).
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Fig. 4 | Assessing genome binners on the gold-standard assembly of the CAMI II mouse gut dataset. a, Average genome coverage (x axis) versus
completeness per genome (y axis). b, Average genome coverage (x axis) versus purity per bin (y axis). The lines in a and b show the rolling average
completeness or purity over 50 bins. c, Genome size in thousands of bp (x axis) versus completeness per genome (y axis). d, Bin size in kilobase pairs
(kb (x axis) versus purity per bin (y axis). e, Adjusted Rand index (x axis) versus percentage of assigned base pairs (y axis). f, Average purity (x axis)
versus average completeness (y axis) of all predicted bins per method assessed with AMBER (circles) and CheckM (diamonds), with the whiskers
showing the variance. For all metrics, except genome and bin sizes, the range is between 0% (worst) and 100% (best).
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We compared the bin quality metrics obtained with AMBER
with those returned by the commonly used CheckM software
v.1.1.2, which assesses bin quality on the basis of the presence of
lineage-specific marker genes43 (Fig. 4f, Supplementary Note).
The results were largely consistent. CheckM overestimated
purity by 4% (MetaBAT and DAS Tool) to 21% (MaxBin) and
completeness by 2% (MetaBAT and CONCOCT) to 7%
(MaxBin) (Fig. 4f, Supplementary Tables 6 and 7). Because of
CheckM’s known bias of overestimating completeness and
underestimating contamination43, we also computed the
averages of only those bins with >90% completeness and <10%
contamination according to AMBER’s assessment. In this case,
CheckM’s purity overestimates dropped to only up to 3% for all
methods except CONCOCT, for which it increased to 29%. On
the other hand, completeness was underestimated for most
methods, by 9% (CONCOCT) to 17% (MaxBin).

Taxonomic binning
A taxon bin is a set of sequences, either contigs or reads,
with the same taxonomic label. Taxonomic binning
can be evaluated as a multiclass classification problem at indi-
vidual taxonomic ranks, where one of many possible taxon
labels from a reference taxonomy is assigned to each metage-
nomic sequence. The quality of a taxon binning is assessed
by comparing predicted and ground truth taxon bins with
each other.

We predicted taxon bins from the cross-sample gold-stan-
dard assembly with DIAMOND v.0.9.24 (ref. 44), Kraken v.2.0.8
beta (ref. 45), PhyloPythiaS+ v.1.4 (ref. 46), CAT v.4.6 (ref. 47),
and MEGAN v.6.15.2 (ref. 48). All results and commands used
are available on Zenodo (Supplementary Table 8). Runtimes
and memory usage are given in Supplementary Table 9. The
release date of the NCBI taxonomy used by each method is
indicated on Zenodo and can vary slightly, depending on the
reference database of the method. Method performances were
assessed with AMBER v.2.0.2, for all major taxonomic ranks
(Figs. 5 and 6), using the NCBI taxonomy database from 2018/
02/26. This reference taxonomy is provided with the mouse gut

dataset of the CAMI II challenge (Table 2). To run AMBER,
type the following command:

amber.py --gold_standard_file /path/to/
cami2_mouse_gut_gsa_pooled.binning \
--desc "CAMI 2 toy mouse gut data set" \
/path/to/cami2_mouse_gut_diamond0.9.24.
binning \
/path/to/cami2_mouse_gut_kraken2.0.8beta.
binning \
/path/to/cami2_mouse_gut_ppsp1.4.binning \
/path/to/cami2_mouse_gut_cat4.6.binning \
/path/to/cami2_mouse_gut_megan6.15.2.
binning \
--labels "DIAMOND 0.9.24, Kraken 2.0.8 beta,
PhyloPythiaS+ 1.4, CAT 4.6, MEGAN 6.15.2" \
--ncbi_nodes_file /path/to/nodes.dmp \
--ncbi_names_file /path/to/names.dmp \
--ncbi_merged_file /path/to/merged.dmp \
--filter 1 \
--output_dir /path/to/output_dir

For comparing predicted taxon bins to the ground truth,
completeness and purity can be calculated. The completeness,
or recall, for a taxon bin found in the ground truth is the
fraction of ground truth contigs, or base pairs, that have been
assigned to that taxon by a method. Completeness is averaged
over all ground truth taxon bins at a particular rank and
undefined for predicted taxon bins not present in the ground
truth. The purity of a predicted taxon bin is the fraction of
contigs, or base pairs, belonging to that taxon in the ground
truth. Taxon bins without any correctly assigned sequences
accordingly have a purity of zero. Purity is averaged over all
predicted taxon bins at a particular rank. Contamination is
defined as 100% minus purity. Finally, the accuracy is the
fraction of contigs, or base pairs, that have been assigned by a
method to the correct taxa for a taxonomic rank. Accuracy is a

Table 4 | Number of high-quality genomes and corresponding percentages recovered by genome binners from the gold-
standard assembly of the CAMI II mouse gut dataset

Genome binner % Contamination Predicted bins (% completeness)

>50% >70% >90%

Gold standard 791 (100) 791 (100) 791 (100)

MaxBin 2.2.7 <10 439 (55) 419 (53) 342 (43)

<5 401 (51) 386 (49) 319 (40)

MetaBAT 2.12.1 <10 353 (45) 318 (40) 240 (30)

<5 339 (43) 309 (39) 236 (30)

CONCOCT 1.0.0 <10 95 (12) 95 (12) 84 (11)

<5 88 (11) 88 (11) 79 (10)

DAS Tool 1.1.2 (ensemble method) <10 460 (58) 449 (57%) 354 (45)

<5 422 (53) 416 (53) 334 (45)

The best result per bin completeness of an individual (non-ensemble) method and among all methods is indicated in bold. In the gold standard, all 791 bins have 100% completeness and 0%
contamination.
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Fig. 5 | Assessing taxonomic binning results on the CAMI II mouse gut dataset. a, Average completeness and purity (1% filtered and unfiltered;
see text), accuracy, and percentage of false-positive bins (number of bins with zero precision, normalized by the maximum bin number
among all binners and ranks) per taxonomic rank for each binner. The shaded bands show the standard error of the metrics. b, Score
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sample-specific metric to which larger taxon bins contribute
more strongly than small ones, which is different from average
completeness and purity.

DIAMOND and CAT, which relies on DIAMOND’s output,
obtained the highest average completeness for all ranks. This
was >90% from superkingdom to order and continuously
dropped at lower ranks (Fig. 5a). MEGAN, which also uses
DIAMOND, achieved lower completeness for phylum level and
below, but had the highest average purity at all ranks, except for
superkingdom, at which PhyloPythiaS+ performed best. As
purity can be reduced for small bins, we filtered out the smallest
predicted bins per method and rank, removing overall 1% of
the binned data in base pairs. This can be done with AMBER
(using the --filter 1 option) on the predicted bins, requiring
no knowledge of the underlying gold standard. Across all ranks,
the average size of the removed taxon bins was 1.9 Mb, whereas
the average size of all bins was 235.8 Mb (Supplementary Table
10), with larger bins accumulating at higher ranks. DIAMOND
and CAT profited most from this, with CAT reaching almost
100% filtered purity at all ranks. Researchers interested in taxa
with small genomes, such as viruses, should keep in mind that
filtering could remove these along with false-positive bins.
Purity and completeness were also influenced by contig length
and were higher overall for longer contigs (Supplementary
Fig. 1). In terms of accuracy, all methods performed similarly
well, with PhyloPythiaS+ being the most accurate at the
species level.

Based on a quality score defined as completeness – (5 ×
contamination), as in refs. 7,49, we determined the number of

high-quality bins found by each method with a score of >90,
>70, and >50 at different taxonomic ranks (Fig. 6). DIAMOND,
CAT, and PhyloPythiaS+, in this order, identified the most
high-quality bins (>50) at all taxonomic ranks. CAT, followed
by DIAMOND, found the most bins with a score >90.

Taxonomic profiling
Taxonomic profiling can be considered a multilabel problem at
a given rank, where multiple taxon labels are assigned to a
single sample and the relative taxon abundances are estimated.
Profiling differs from binning in that individual reads are not
necessarily assigned taxon labels. We predicted taxonomic
identities and relative abundances of microbial community
members for the 64 short-read samples of the mouse gut dataset
with MetaPhlAn v.2.9.21 (ref. 50), mOTUs v.2.5.1 (ref. 51), and
Bracken v.2.5 (ref. 52). We assessed these together with results
for MetaPhlAn v.2.2.0, mOTUs v.1.1, MetaPalette v.1.0.0,
MetaPhyler v.1.25, FOCUS v.0.31, TIPP v.2.0.0, and
CAMIARKQuikr v.1.0.0 from ref. 25. The profiling results and
commands used can be obtained from Zenodo (Supplementary
Table 11). Runtimes and memory usage are given in Supple-
mentary Table 12. Performance metrics and results visualiza-
tions were calculated with OPAL v.1.0.9 (ref. 25) (Table 3),
which uses the CAMI file format described at https://github.
com/CAMI-challenge/file_formats. It can be installed with the
following command, if Bioconda is configured:

conda create --name opal cami-opal
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Fig. 6 | Number of high-quality taxon bins predicted from the CAMI II mouse gut dataset for the phylum to species ranks. Counted are the bins with
score (i.e., Completeness – (5 × contamination)) higher than 90, 70, and 50. A number of bins closer to the number of taxa per rank in the gold
standard (i.e., 8 phyla, 18 classes, 26 orders, 50 families, 157 genera, and 549 species) is better.
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Other installation methods are described in the OPAL
GitHub repository at https://github.com/CAMI-challenge/
OPAL/. We then ran OPAL as:

conda activate opal
opal.py --gold_standard_file /path/to/
cami2_mouse_gut_gs.profile \
/path/to/cami2_mouse_gut_metaphlan2.2.0.
profile \
/path/to/cami2_mouse_gut_metaphlan2.9.21.
profile \
/path/to/cami2_mouse_gut_motus1.1.profile \
/path/to/cami2_mouse_gut_motus2.5.1.profile \
/path/to/cami2_mouse_gut_bracken2.5.profile \
/path/to/cami2_mouse_gut_metapalette1.0.0.
profile \
/path/to/cami2_mouse_gut_metaphyler1.25.
profile \
/path/to/cami2_mouse_gut_focus0.31.profile \
/path/to/cami2_mouse_gut_tipp2.0.0.profile \
/path/to/cami2_mouse_gut_camiarkquikr1.0.0.
profile \
--labels "MetaPhlAn 2.2.0, MetaPhlAn 2.9.21,
mOTUs 1.1, mOTUs 2.5.1, Bracken 2.5, MetaPal-
ette 1.0.0, MetaPhyler 1.25, FOCUS 0.31, TIPP
2.0.0, CAMIARKQuikr 1.0.0" \
-d "2nd CAMI Challenge Mouse Gut Toy Dataset" \
--filter 1 \
--output_dir /path/to/output_dir

OPAL computes performance metrics and creates visuali-
zations for profiling results on a benchmark dataset.
It also generates weighted summary scores for ranking
methods based on these metrics (see ref. 25 for a complete
overview and formal definitions). For a taxonomic rank, the
purity and completeness assess how well a profiler identified the
presence and absence of taxa, without considering relative
abundances. Purity, or precision, denotes the ratio of correctly
predicted taxa to all taxa predicted at a taxonomic rank,
whereas completeness, or recall, is the ratio of correctly iden-
tified taxa to all ground truth taxa at a taxonomic rank. A
commonly used, heuristic approach designed to increase purity
is to filter out low-abundance predictions on the basis of some
threshold. To explore the effect of such heuristic post-
processing of predictions on purity, we filtered low-
abundance taxon predictions as we did for taxonomic binners
(ref. 8): by removing predictions with the lowest relative
abundances, summing up to 1% of the total predicted orga-
nismal abundances per taxonomic rank.

For quantifying relative abundance estimates, the L1 norm
and weighted UniFrac error are determined. The L1 norm
assesses relative abundance estimates of taxa at a taxonomic
rank, on the basis of the sum of the absolute differences
between the true and predicted abundances across all taxa. The
weighted UniFrac error computed by OPAL uses a taxonomic
tree storing the predicted abundances at the appropriate nodes
for eight major taxonomic ranks. The UniFrac error is the total
amount of predicted abundances that must be moved along the

edges of the tree to cause them to overlap with the true relative
abundances. Branch lengths in the taxonomic tree can be set to
1 or to any function of the depth of the edge in the taxonomic
tree. This choice is motivated by the fact that harmonizing
phylogenetic trees (which express evolutionary distance
with branch lengths) and taxonomic trees (which do not
inherently have branch length information) remains an
open problem under active investigation53–56. A low UniFrac
error indicates good accuracy of abundance estimates. L1
norm and weighted UniFrac error are computed using
unnormalized relative abundances; that is, their sum may be <1
if some data remain taxonomically unassigned. Normalization
(optional in OPAL) can simplify the comparison of the L1
norm between methods (https://github.com/CAMI-challenge/
firstchallenge_evaluation/tree/master/profiling); however, it
may skew results for profilers with low recall that left many taxa
unassigned. Assessment results with normalized relative abun-
dance estimates are available in the OPAL GitHub repository
at https://cami-challenge.github.io/OPAL/cami_ii_mg_filter1_
normalized.

Using all these metrics, OPAL ranks the assessed profilers
by their relative performance. For each metric, sample,
and major taxonomic rank (from superkingdom to species),
the best-performing profiler is assigned score 0; the second
best, 1; and so on. These scores are then added over the
taxonomic ranks and samples to produce a single score
per metric for each profiler. OPAL can also assign different
weights to the metrics, such that the importance of a
metric, defined by the user, is reflected in the overall score
and rank of a profiler. In our assessment, all metrics were
weighted equally.

mOTUs v.2.5.1, Bracken v.2.5, MetaPhyler v.1.25, and
TIPP v.2.0.0, in this order, achieved the overall highest com-
pleteness (Fig. 7c). mOTUs v.2.5.1 achieved high completeness
up to genus level, whereas the other profilers performed well
with this metric up to family level (Fig. 7a,b). Along with
completeness, purity also drops for lower taxonomic ranks.
Filtering low-abundant taxon predictions greatly improved
purity, most strongly for MetaPhyler and Bracken v.2.5, which
was ranked seventh instead of last with this metric. MetaPhlAn
v.2.2.0 and mOTUs v.1.1 had the highest filtered purity across
ranks, followed by mOTUs v.2.5.1 and MetaPhlAn v.2.9.21.
mOTUs v.2.5.1 showed both high (filtered and unfiltered)
purity and completeness and improved considerably in terms
of completeness compared with its previous version. mOTUs
v.2.5.1, MetaPhlAn v.2.9.21, MetaPhyler v.1.25, and MetaPhlAn
v.2.2.0, in this order, best estimated the relative abundances
measured with the L1 norm, with MetaPhlAn v.2.9.21 out-
performing all methods at the species level. MetaPhlAn
v.2.9.21also obtained the lowest UniFrac error, followed
by mOTUs v.2.5.1 and MetaPhlAn v.2.2.0. Considering the sum
of scores of all metrics, mOTUs v.2.5.1 ranked first, followed
by MetaPhlAn v.2.2.0 and v.2.9.21. Notably, normalization of
abundance estimates had almost no effect on the L1 norm error
of the methods (Supplementary Fig. 2), as the estimates
covered almost 100% of the data (Supplementary Table 13).
This may differ for metagenome data with many taxa being
distant from those found in genome sequence repositories.
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We note that performance estimates may differ strongly,
depending on metric definitions. For instance, contrary
to the results reported here, mOTUs and MetaPhlAN

performed poorly in terms of the fraction of sample
reads that they classified19, which is a task that they were not
designed for.
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Fig. 7 | Assessing taxonomic profiling results on the CAMI II mouse gut dataset. a, Comparison per taxonomic rank of methods in terms of
completeness, purity (1% filtered; see main text), L1 norm error, and weighted UniFrac error. b, Performance per method at all major taxonomic ranks,
with the shaded bands showing the standard deviation of a metric, and percentage of false-positive taxa (normalized by the maximum taxon number
among all profilers and ranks). In a and b, completeness and purity range between 0 and 1. The L1 norm error is normalized to this range, and the
weighted UniFrac error is rank independent and normalized by the maximum value obtained by the profilers. The higher the completeness and purity,
and the lower the L1 norm and weighted UniFrac error, the better the profiling performance. c, Method rankings and scores obtained for the different
metrics over all samples and taxonomic ranks. For score calculation, all metrics were weighted equally. FP, false-positive.
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Summary and conclusions
Microbiome research using meta-omics technologies is a
rapidly progressing field producing highly complex and het-
erogeneous data. For developing and assessing data processing
techniques, adoption of benchmarking standards in the field is
essential. We here outlined key elements of benchmarking and
best practices developed by a larger group of scientists within
CAMI for common computational analyses in metagenomics.
Community-driven benchmarking challenges are a key com-
ponent of unbiased performance evaluations, in addition to the
assessments by individual developers that are commonly
done. To facilitate the latter, we describe a benchmarking
tool resource and the mechanisms to use and add to this
resource, as indicated in ref. 8, in a flexible way. We show how
to apply the best practices for benchmarking defined by the
community within CAMI using the CAMI benchmarking
toolkit and benchmark datasets. For profiling methods, we
demonstrated the value of incremental benchmarking by
reusing and combining tool results from different studies and
saving these in the CAMI tool result repositories on Zenodo
(https://zenodo.org/communities/cami). Curated metadata and
instructions on how to contribute reproducible results are
provided at https://github.com/CAMI-challenge/data. As these
new resources grow, individual benchmarks of meta-omics
software will become increasingly more efficient, informative,
and reproducible.

Using the 64-sample simulated metagenome dataset from
mouse guts as an example, we performed a comparative eva-
luation of metagenome assembly (for the first 10 samples),
genome binning, and taxonomic binning and profiling on these
data. Overall, the evaluation included 25 results for 19 com-
putational methods: 2 assemblers, with 6 different settings and
versions evaluated, 4 genome and 5 taxon binners, as well as 8
profilers, including 2 different versions. Seven of the profiling
results originate from a previous evaluation study on the data,
demonstrating the value of incremental data analysis. Notably,
as the dataset was generated from genomes included in public
databases, the results for reference-based methods, such as
taxonomic binning and profiling techniques, are to be taken as
representative only for microbial community members repre-
sented by close relatives in public database content. This is only
true for a fraction of most microbial communities, if not con-
sidering computationally reconstructed MAGs as a reference.
Accordingly, for reference-based techniques, that is, taxonomic
binners and profilers, results were consistent with prior studies
on data generated from publicly available genomes25 and less
congruent with performances on benchmark data including
genomes more distantly related to public database content8.
Performance on species that are distantly related to those with
genomes in public databases continues to be an important point
to keep in mind when selecting the most suitable method for
analysis.

With the CAMI benchmarking resources in place, we invite
researchers to make full use of these for tackling the big chal-
lenges in the field57. These include developing strain-resolved
assembly; binning and profiling techniques for strain-specific
genome reconstructions58,59; making use of long-read

metagenomic sequencing data60; evaluating methods for other
meta-omics, for example, metatranscriptomics, metapro-
teomics61; and metametabolomics. The applications of meta-
genomics are diverse and growing, and the best way to tackle
them is via a large collaborative framework supported by good
collaborative infrastructure, which CAMI aims to provide.

Data availability
The results of all benchmarked methods and gold standards are
available at https://zenodo.org/communities/cami. Links to
individual results and DOIs are available in Supplementary
Tables 1, 4, 8, and 11. The gold-standard assembly is provided
with the CAMI II mouse gut dataset (Table 2). Assembly results
and code used to generate Fig. 3 are available at https://github.
com/CAMI-challenge/BenchmarkingToolkitTutorial. Genome
and taxonomic binning, and taxonomic profiling results used in
Figs. 4–7 are available, respectively, in the AMBER and OPAL
GitHub repositories at https://github.com/CAMI-challenge/
AMBER and https://github.com/CAMI-challenge/OPAL. The
code in this paper has been peer-reviewed.
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