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Abstract

We show that strongly contracting geodesics in Outer space project to parameterized quasi-
geodesics in the free factor complex. This result provides a converse to a theorem of Bestvina–
Feighn, and is used to give conditions for when a subgroup of Out(F) has a quasi-isometric orbit
map into the free factor complex. It also allows one to construct many new examples of strongly
contracting geodesics in Outer space.

1 Introduction
A geodesic γ : I→ X in a metric space X is strongly contracting if the closest point projection to γ

contracts far away metric balls in X to sets of uniformly bounded diameter. Such geodesics exhibit
hyperbolic-like behavior and are thus important to understanding the structure of the space. This
paper further develops the theory of strongly contracting geodesics in Outer space with the aim of
understanding their behavior under the projection to the free factor complex. See §3 for precise
definitions.

Such geometric questions in Outer space are often motivated by their analogs in Teichmüller
space. In that setting, strongly contracting geodesics play an important role in our understanding of
the geometry of Teichmüller space and the mapping class groups. These geodesics are characterized
by the following result of Minsky describing both their structure in Teichmüller space and their
behavior in the curve complex. (The equivalence of 1. and 2. in Theorem 1.1 is the main result of
[Min] while the equivalence of 1. and 3. follows easily from Theorem 4.3 of [Min].)

Theorem 1.1 (Minsky [Min]). Let τ : I→ Teich(S) be a Teichmüller geodesic. Then the following
are equivalent:

1. There is an ε > 0 such that τ is entirely contained in the ε–thick part of Teich(S).

2. There is a D > 0 such that τ is a D–strongly contracting geodesic in Teich(S).

3. There is a K ≥ 1 such that τ projects to a K–quasigeodesic in C(S), the curve complex of S.

Moreover, the constants ε,D,K above depend only on each other and the topology of S.

Thus strongly contracting geodesics greatly illuminate the connection between Teichmüller space
and the curve complex, as it is along these geodesics that the projection Teich(S)→ C(S) is quasi-
isometric.

Our main result is a version of Theorem 1.1 for the Outer space X of a free group F and its pro-
jection πF to the free factor complex F of F. This projection has already proven to be highly useful
beginning with Bestvina and Feighn’s proof of hyperbolicity of the free factor complex [BF2] and
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continuing with, for example, [BR, Ham1, DT, Hor]. In fact, in the course of proving hyperbolicity
of F, Bestvina and Feighn show that folding path geodesics which make definite progress in F are
strongly contracting with respect to a specific projection tailored to folding paths. Combining with
Theorem 4.1 and Lemma 4.11 from [DT], this result of Bestvina and Feighn ([BF2, Corollary 7.3])
may be promoted to all geodesics:

Theorem 1.2. Let γ : I→ X be a geodesic whose projection to F is a K–quasigeodesic. Then there
exists D > 0 depending only on K (and the injectivity radius of the terminal endpoint of γ) such that
γ is D–strongly contracting in X.

Here we prove a converse to Theorem 1.2. Together, these establish an analog of Theorem 1.1
in the free group setting.

Theorem 1.3. For each D > 0 there exist constants K ≥ 1 and ε > 0 with the following property. If
γ : I→ X is a nondegenerate D–strongly contracting geodesic, then γ(I) lies in the ε–thick part Xε

and πF ◦ γ : I→ F is a K–quasigeodesic.

Recall that the Lipschitz metric on Outer space is not symmetric. Hence, a geodesic γ : I→ X

is not necessarily a (quasi) geodesic when traversed in the reverse direction. The condition that γ be
nondegenerate in Theorem 1.3 is, informally, that the backwards distance along γ meets a certain
threshold depending only on D. See §3 for a precise definition and discussion.

Remark 1.4 (Parameterized vs Unparameterized). In saying the projection of a geodesic to F is
a K–quasigeodesic, we always mean a parameterized quasigeodesic. For any directed geodesic
γ : I→ X, it is known that πF ◦ γ : I→ F is an unparameterized quasigeodesic in the sense that it
may be reparameterized to yield a uniform quasigeodesic [BF2, Proposition 9.2]. The same holds
for the projections of Teichmüller geodesics to the curve complex [MM, Theorem 2.3].

Remark 1.5 (Thick geodesics in X). Combining Theorem 1.3 with Theorem 1.2 gives the three
implications (3) ⇐⇒ (2) =⇒ (1) of Theorem 1.1 in the Out(F) setting. We stress that the impli-
cation (1) =⇒ (2) of Theorem 1.1 is in fact false in the Outer space setting. Indeed, it is well-known
that there are thick geodesics in X that nevertheless project to a bounded diameter subset of F. By
Theorem 1.3 such geodesics cannot be strongly contracting.

Remark 1.6 (Hyperbolic isometries of F). Combining Theorem 1.3 with Algom-Kfir’s result [AK]
that axes of fully irreducible automorphisms in X are strongly contracting gives an alternative proof
of the fact that fully irreducible automorphisms act as loxodromic isometries on F (i.e. they have
positive translation length). This result was proven by Bestvina and Feighn in [BF2] using results in
[BF1].

As an application of Theorem 1.3, we give conditions for when the orbit map from a finitely
generated subgroup Γ ≤ Out(F) into F is a quasi-isometric embedding. First, say that Γ ≤ Out(F)
is contracting in X if there exists G ∈X and D > 0 so that for any two points in the orbit Γ ·G there
is a D–strongly contracting geodesic joining them.

Theorem 1.7. Suppose that Γ ≤ Out(F) is finitely generated and that the orbit map Γ→ X is a
quasi-isometric embedding. Then Γ is contracting in X if and only if the orbit map Γ→ F to the free
factor complex is a quasi-isometric embedding.

We note that the “if” direction of Theorem 1.7 appeared first in our earlier work [DT] as a crucial
ingredient in the proof of the following result about hyperbolic extensions of free groups:
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Theorem 1.8 ([DT, Theorem 1.1]). If Γ≤ Out(F) is purely atoroidal and the orbit map Γ→ F is a
quasi-isometric embedding, then the corresponding F–extension EΓ is hyperbolic.

While the exact converse to Theorem 1.8 is false (see [DT, §1]), it would nevertheless be inter-
esting to obtain an partial converse, that is, to naturally characterize the hyperbolic extensions of F
that arise from subgroups of Out(F) that quasi-isometrically embed into F. It is our hope that the
equivalence provided by Theorem 1.7 will be a useful step towards establishing such a converse.

During the completion of this paper, Hamenstädt and Hensel proved a result [HH, Theorem 1]
that is related to Theorem 1.7 above. Their theorem pertains to Morse geodesics in X and relies
on Hamenstädt’s notion of lines of minima in X, introduced in [Ham2]. We remark, however, that
there is no a priori connection between strongly contracting and Morse geodesics in the asymmetric
metric space X without additional assumptions on the geodesic.

Remark 1.9. Theorem 1.7 can be used to give new examples of strongly contracting geodesics in
X, beyond those which are axes of fully irreducible elements of Out(F). Such axes were shown to
be contracting by Algom-Kfir [AK]. For the construction, begin with a finitely generated subgroup
Γ≤Out(F) for which the orbit map Γ→ F is a quasi-isometric embedding. Many examples of such
subgroups are constructed in Section 9 of [DT]. For R ∈X fixed, Theorem 1.7 implies that there is a
D > 0 such that for any g,h ∈ Γ, any directed geodesic [g ·R,h ·R] is D–strongly contracting. Using
the Arzela–Ascoli theorem, as in the proof of [DKT, Proposition 5.6], one may additionally take lim-
its of such geodesics to extract bi-infinite geodesics that are D–strongly contracting. The geodesics
constructed in this manner typically will not be axes for any fully irreducible automorphisms of F.

Outline of proof. Let us briefly describe our approach to Theorem 1.3. Bestvina and Feighn’s
[BF2] proof that F is hyperbolic relies on constructing for every folding path γ : I→X a correspond-
ing projection Prγ : F→ γ(I). The projection Prγ is defined in terms of the illegal turn structure on
the path γ(t), and a careful analysis of Prγ allows one to prove (i) that πF ◦Prγ is a coarsely con-
tracting retraction onto πF(γ(I)) [BF2, Proposition 7.2] and (ii) that Prγ ◦πF : X→ γ(I) coarsely
agrees with the closest-point projection provided γ makes definite progress in F (see [DT, Lemma
4.11]). This leads to Bestvina and Feighn’s result [BF2, Corollary 7.3] that folding paths which
make definite progress in F are strongly contracting in X (c.f. Theorem 1.2).

In a similar spirit, our proof of Theorem 1.3 proceeds by constructing an appropriate projection
ργ : PL→ γ(I) for each geodesic γ : I→ X, where here PL is the complex of primitive conjugacy
classes in F (note that PL is Out(F)–equivariantly quasi-isometric to F; see §2). The map ργ : PL→
γ(I) has a very natural definition: simply send a conjugacy class α to the set of points along γ(I)
where the length of α is minimized. Our key technical results then show that for every D–strongly
contracting geodesic γ , (i) the composition ργ ◦πPL : X→ γ(I) coarsely agrees with closest-point
projection for distant points (Lemma 4.1) and (ii) ργ is uniformly coarsely Lipschitz (Lemma 4.3).

A fundamental technical difficulty arises from the fact that the Lipschitz distance dX is highly
asymmetric for points in the thin part of X (see §2). For example: since the standard Morse lemma
breaks down in the presence of boundless asymmetry, it is unclear whether strongly contracting
geodesics are necessarily stable in X (that is, uniform quasigeodesics a-priori need not fellow travel
strongly contracting geodesics with the same endpoints). To rule out such pathological behavior,
much of the work in our discussion is devoted to proving that all nondegenerate D–strongly con-
tracting geodesics lie in some uniform thick part of X (Corollary 7.3 and Lemma 7.4). With this key
tool in hand, we are able to show (Lemma 5.2) that the composition ργ ◦πPL : X→ γ(I) is a coarse
retraction, meaning that points on γ(I) move a uniformly bounded amount. Combining this with
the coarse Lipschitz property for ργ (Lemma 4.3) then easily leads to our main result that strongly
contracting geodesics in X make definite progress in F (see Proposition 5.1).
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2 Background
We briefly recall the necessary background material on the metric structure of Outer space; see
[FM, BF2, DT] for additional details.

Outer space. Let F denote the free group of rank r = rk(F)≥ 3. Let R denote the r–petal rose with
vertex v ∈ R, and fix an isomorphism F ∼= π1(R,v). For our purposes, a graph is a 1–dimensional
CW complex, and a connected, simply connected graph is a tree. A core graph is a finite graph all
of whose vertices have degree at least 2.

We now define Culler and Vogtmann’s [CV] Outer space X of marked metric graphs. A marked
graph (G,g) is a core graph G together with a marking g : R→ G, i.e. a homotopy equivalence. A
metric on G is a function ` : E(G)→ R>0 from the set of edges of G to the positive real numbers,
which assigns a length `(e) to each edge e ∈ E(G). The sum ∑e∈E(G) `(e) is called the volume of G.
With this setup, a marked metric graph is defined to be the triple (G,g, `); two triples (G1,g1, `1)
and (G2,g2, `2) are equivalent if there is a graph isometry φ : G1→ G2 that preserves the markings
in the sense that φ ◦g1 is homotopic to g2. Outer space, denoted X, is the set of equivalence classes
of marked metric graphs of volume 1.

The marking R→ G for G ∈ X allows us to view any nontrivial conjugacy class α in F as a
homotopy class of loops in the core graph G. The unique immersed loop in this homotopy class
is denoted by α|G, which we view as an immersion of S1 into G. The length of α in G ∈ X,
denoted `(α|G), is the sum of the lengths of the edges of G crossed by α|G, counted with multi-
plicities. The standard topology on X is the coarsest topology such that all of the length functions
`(α| · ) : X→ R+ are continuous [CV]. This topology agrees with other naturally defined topolo-
gies on X, including the one induced by the Lipschitz metric defined below. See [CV, Pau, FM] for
details.

A difference of markings from G ∈ X to H ∈ X is any map φ : G→ H that is homotopic to
h◦g−1, where g and h are the markings on G and H, respectively. The Lipschitz distance from G
to H is then defined to be

dX(G,H) := inf{log(Lip(φ)) | φ ' h◦g−1},

where Lip(φ) denotes the Lipschitz constant of the difference of markings φ . We note that while
dX is in general asymmetric (that is, dX(G,H) 6= dX(H,G)), it satisfies definiteness (dX(G,H) = 0
if and only if G = H) and the ordered triangle inequality (dX(E,H)≤ dX(E,G)+dX(G,H)) [FM].
We also have the following important result, originally due to Tad White, relating the Lipschitz
distance to the ratio of lengths of conjugacy classes in the two graphs:

Proposition 2.1 (See Francaviglia–Martino [FM] or Algom-Kfir [AK]). For every G∈X there exists
a finite set CG of primitive conjugacy classes, called candidates, whose immersed representatives in
G cross each edge at most twice and such that for any H ∈ X

dX(G,H) = max
α∈CG

log
(
`(α|H)

`(α|G)

)
= sup

α∈F
log
(
`(α|H)

`(α|G)

)
.
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Note that because each candidate α ∈ CG crosses each edge of G no more than twice, `(α|G)≤ 2.

Finally, a geodesic in X is by definition a directed geodesic, that is, a path γ : I→ X such that
dX(γ(s),γ(t)) = t− s for all s < t. Throughout, I will always denote a closed interval I⊂R, and we
write I± ∈ R∪{±∞} for the (possibly infinite) endpoints of the interval I.

Asymmetry and the thick part of Outer space. For ε > 0, we define the ε–thick part of X to
be the subset

Xε := {G ∈ X : `(α|G)≥ ε for every nontrivial conjugacy class α in F}.

It is also sometimes convenient to consider the symmetrization of the Lipschitz metric:

dsym
X (G,H) := dX(G,H)+dX(H,G)

which is an actual metric on X and induces the standard topology [FM]. Because the Lipschitz
metric dX is not symmetric, care must be taken when discussing distances in X. This asymmetry,
however, is somewhat controlled in the thick part Xε :

Lemma 2.2 (Handel–Mosher [HM], Algom-Kfir–Bestvina [AKB]). For any ε > 0, there exists
Mε ≥ 1 so that for all G,H ∈ Xε we have

dX(H,G)≤ dsym
X (H,G) = dsym

X (G,H)≤Mε ·dX(G,H).

For G,H ∈X, we also use the notation diamX(G,H) to denote diamX{G,H}=max{dX(G,H),dX(H,G)}.
Observe that diamX(G,H)≤ dsym

X (G,H)≤ 2diamX(G,H).

The factor complex. The main purpose of this paper is to show that strongly contracting geodesics
in X project to parameterized quasigeodesics in the free factor complex, which is defined as follows:
The factor complex F associated to the free group F is the simplicial complex whose vertices are
conjugacy classes of proper, nontrivial free factors of F. Vertices [A0], . . . , [Ak] span a k–simplex if,
after reordering, we have the proper inclusions A0 < · · · < Ak. This simplicial complex was first
introduced by Hatcher and Vogtmann in [HV]. Since we are interested in the coarse geometry of
F, we will only consider its 1–skeleton equipped with the path metric induced by giving each edge
length 1. The following theorem of Bestvina and Feighn is fundamental to the geometric study of
Out(F):

Theorem 2.3 (Bestvina–Feighn [BF2]). The factor complex F is Gromov hyperbolic.

The primitive loop complex. For our proof of Theorem 1.3, it is more natural to work with a
different complex that is nevertheless quasi-isometric to F. Recall that an element α ∈F is primitive
if it is part of some free basis of F. Thus α is primitive if and only if α generates a cyclic free factor
of F. We use the terminology primitive loop to mean a conjugacy class of F consisting of primitive
elements. The primitive loop complex PL is then defined to be the simplicial graph whose vertices
are primitive loops and where two vertices are joined by an edge in PL if their respective conjugacy
classes have representatives that are jointly part of a free basis of F. It is straightforward to show
that the natural inclusion map PL0 → F0 (each primitive conjugacy class is itself a free factor) is
2–biLipschitz. Since the image is 1–dense, this map is in fact a 2–quasi-isometry.
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Relating Outer space to the primitive loop graph, we define the projection πPL : X→ PL in the
following way: For G ∈ X, set

πPL(G) := {α ∈ PL : `(α|G)≤ 2}.

This is, of course, closely related to the projection πF : X→ F defined by Bestvina and Feighn in
[BF2] sending G ∈ X to the collection of free factors corresponding to proper core subgraphs of G.
They prove that diamF(πF(G))≤ 4 [BF2, Lemma 3.1] and that diamF(α∪πF(G))≤ 6`(α|G)+13
[BF2, Lemma 3.3] for every G ∈ X and every primitive conjugacy class α . These estimates imply
that πPL and πF coarsely agree under the 2–quasi-isometry PL→ F defined above. Combining
with the fact that πF is coarsely Lipschitz [BF2, Corollary 3.5] this moreover gives the existence of
a constant L≥ 1 such that

dPL(G,H) := diamPL(πPL(G)∪πPL(H))≤ LdX(G,H)+L

for all G,H ∈X. That is, the projection πPL : X→PL is coarsely L–Lipschitz. It is easily computed
that L≤ 260, but we prefer to work with the symbol L for clarity.

3 Strongly contracting geodesics
Suppose that γ : I→ X is a (directed) geodesic. Then for any point H ∈ X we write dX(H,γ) =
inf{dX(H,γ(t)) | t ∈ I} for the infimal distance from H to γ . The closest point projection of H to
γ is then defined to be the set

πγ(H) := {γ(t) | t ∈ I such that dX(H,γ(t)) = dX(H,γ)} ⊂ X.

Note that πγ(H) could in principle have infinite diameter: due to the asymmetry of dX, the di-
rected triangle inequality does not in general allow one to bound dX(γ(s),γ(t)) for times s < t with
γ(s),γ(t) ∈ πγ(H). On the other extreme, it is conceivable that the above infimum need not be real-
ized (since dX(H,γ(s)) could remain bounded as s→−∞), in which case πγ(H) = /0 by definition.

Definition 3.1 (Strongly contracting). A geodesic γ : I→ X is D–strongly contracting if for all
points H,H ′ ∈ X satisfying dX(H,H ′)≤ dX(H,γ) we have

• diamX

(
πγ(H)∪πγ(H ′)

)
≤ D, and

• πγ(H) = /0 if and only if πγ(H ′) = /0.

We say that γ is strongly contracting if it is D–strongly contracting for some D > 0.

We remark that the second condition is a natural extension of the first: πγ(H) = /0 only if there
is a sequence si ∈ I tending to I− = −∞ with dX(H,γ(si)) limiting to dX(H,γ). In this case, one
should morally view πγ(H) as being “γ(−∞)”; hence diamX(πγ(H)∪πγ(H ′)) is considered to be
infinite unless πγ(H ′) = /0 as well.

While πγ(H) may in principle be empty, our first lemma shows that the closest point projection
πγ(H) always exists when γ is strongly contracting:

Lemma 3.2. If γ : I→ X is D–strongly contracting, then πγ(H) is nonempty for all H ∈ X.

Proof. Let us first show that πγ(H) 6= /0 for all H in an open neighborhood of γ(I). Let t ∈ I
be arbitrary and let U ⊂ I be an open neighborhood of t whose closure U is a compact, proper
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subinterval of I. Then there exists C > 0 such that |s− t| ≥C and consequently dsym
X (γ(t),γ(s))≥C

for all s ∈ I \U . In particular, we have γ(s) 6= γ(t) and thus dX(γ(t),γ(s)) > 0 for all s ∈ I \U .
Moreover, it is easily shown that the infimum

εt = inf
{

dX(γ(t),γ(s)) : s ∈ I\U
}

is in fact positive.
Now consider any point H in the open neighborhood Vt = {y ∈X : dsym

X (y,γ(t))< εt/3} of γ(t).
If dX(H,γ(s))≤ εt/2 for some s ∈ I\U , the triangle inequality would give

dX(γ(t),γ(s))≤ dsym
X (γ(t),H)+dX(H,γ(s))< εt/3+ εt/2 < εt ,

which is impossible by definition of εt . Hence dX(H,γ(s))≥ εt/2 for all s∈ I\U . Since dX(H,γ)≤
dX(H,γ(t))< εt/3, it follows that

dX(H,γ) = inf{i ∈ I : dX(H,γ(i))}= inf{s ∈U : dX(H,γ(s))}.

The above infimum is necessarily realized by compactness; thus we conclude dX(H,γ)= dX(H,γ(s))
for some s ∈U . This proves that πγ(H) 6= /0 for all points H in the open neighborhood V = ∪t∈IVt
of γ(I). Note that we have not yet used the assumption that γ is strongly contracting.

Let us now employ strong contraction to complete the proof of the lemma. Let H ∈ X be arbi-
trary; we may assume H /∈ γ(I) for otherwise the claim is obvious. Choose any path µ : [a,b]→ X

from µ(a) = H to some point µ(b) ∈ γ(I). By restricting to a smaller interval if necessary, we
may additionally assume that µ(s) /∈ γ(I) for all a≤ s < b. Since πγ(G) is nonempty for all G in a
neighborhood of γ(I), there exists some c ∈ (a,b) such that πγ(µ(c)) is nonempty.

Now, for each t ∈ [a,c] we have µ(t) /∈ γ(I). In fact we claim that dX(µ(t),γ)> 0: otherwise, as
above, there would exist a sequence si ∈ I with dX(µ(t),γ(si))→ 0 and consequently γ(si)→ µ(t),
contradicting the fact that γ(I) is closed. Thus for each t ∈ [a,c] we may find an open neighborhood
Wt ⊂X of µ(t) such that dX(µ(t),G′)≤ dX(µ(t),γ) for all G′ ∈Wt . By compactness, there is a finite
subcollection W1, . . . ,Wk of these open sets that cover µ([a,c]). For each i the strongly contracting
condition now implies that either πγ(G′) = /0 for all G′ ∈Wi, or else πγ(G′) 6= /0 for all G′ ∈Wi. Since
these W1, . . . ,Wk cover the connected set µ([a,c]) and at least one Wi falls into the latter category
(namely, the set Wi containing µ(c)), the contingency “πγ(G′) 6= /0 for all G′ ∈Wi” must in fact hold
for every i. In particular, we see that πγ(H) = πγ(µ(a)) is nonempty, as claimed.

We will also need the following basic observation showing that the projection of a connected set
to a D–strongly contracting geodesic γ is effectively “D–connected” in γ(I):

Lemma 3.3. Let γ : I→ X be D–strongly contracting and let [a,b] ⊂ I be any subinterval with
|a−b| ≥ D. If A ⊂ X is connected and πγ(A) misses γ([a,b]) (that is πγ(A)∩ γ([a,b]) = /0), then
πγ(A) is either entirely contained in γ(I∩ (−∞,a)) or entirely contained in γ(I∩ (b,∞)).

Proof. Let us first establish the following

Claim. Each H ∈X admits a neighborhood U ⊂X with diamX(πγ(H)∪πγ(H ′))≤D for all H ′ ∈U.

To prove the claim, first suppose H /∈ γ(I) so that, as above, we have δ := dX(H,γ) > 0 (for
otherwise there is a sequence in γ(I) converging to H). Taking the open neighborhood to be U =
{y ∈X : dX(H,y)< δ}, the strongly contracting condition then ensures diamX(πγ(H),πγ(H ′))≤D
for all H ′ ∈U . Next suppose H ∈ γ(I) so that dX(H,γ) = 0 and πγ(H) = {H}. Choosing ε > 0
so that H ∈ X2ε , we may then choose δ > 0 sufficiently small so that δMε < D/2 and the entire
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neighborhood U = {y ∈ X : dsym
X (y,H) < δ} is contained in Xε (where Mε is the symmetrization

constant from Lemma 2.2). For any H ′ ∈ U we then have dX(H ′,γ) ≤ dX(H ′,H) < δ . Thus
any G ∈ πγ(H ′) satisfies dsym

X (G,H ′) ≤ Mε dX(H ′,G) < Mε δ < D/2. Note that we also have
dsym
X (H,H ′) < δ < D/2. Since πγ(H) = {H}, the triangle inequality therefore shows the desired

inequality diamX(πγ(H)∪πγ(H ′))≤ D. Since this holds for each H ′ ∈U , the claim follows.
We now prove the lemma. Let [a,b] ⊂ I and A ⊂ X be as in the statement of the lemma, so

that πγ(A) is disjoint from γ([a,b]). Since πγ(H) is always nonempty (by Lemma 3.2) and satisfies
diamX(πγ(H)) ≤ D, the hypothesis on πγ(A)∩ γ([a,b]) implies that each H ∈ A lies in exactly one
of two the sets

A− = {H ∈ A : πγ(H)⊂ γ(I∩ (−∞,a))} or A+ = {H ∈ A : πγ(H)⊂ γ(I∩ (b,∞))}.

Thus A = A− ∪A+ gives a partition of A. Moreover, the claim proves that A− and A+ are both
open. The connectedness of A therefore implies that either A− or A+ is empty, which is exactly the
conclusion of the lemma.

Finally, we say that a D–strongly contracting geodesic γ : I→X is nondegenerate if there exists
times s < t in I such that dX(γ(t),γ(s))≥ 18DL. Lemma 7.1 below shows that this mild symmetry
condition automatically holds in most natural situations.

4 Length minimizers
To control the nearest point projection of a graph H to a geodesic γ , we must understand where the
lengths of conjugacy classes in F are minimized along γ . To this end, we introduce the following
terminology: Firstly, given a directed geodesic γ : I→X and a nontrivial conjugacy class α ∈ F, we
typically write

mα = mγ

α := inf
t∈I

`(α|γ(t))

for the infimal length that the conjugacy class attains along γ . We then regard the set

ργ(α) = {x ∈ γ(I) | `(α|x) = mα}

as the projection of α to γ . Since it is possible to have ργ(α) = /0 in the case that I is not compact,
we also define a parameterwise-projection

ρ̂
′
γ(α) =

{
t | ∃si ∈ I s.t. si→ t and `(α|γ(si))→ mα} ⊂ [−∞,+∞].

For technical reasons, it is convenient to instead work with the following variant:

ρ̂γ(α) :=

{
ρ̂ ′γ(α)∩R, ργ(α) 6= /0
ρ̂ ′γ(α), else.

Thus ρ̂γ(α) is never empty and is exactly the set of parameters t ∈ I realizing mα when ργ(α) is
nonempty. Note also that γ(ρ̂γ(α)∩R) = ργ(α) in all cases.

As indicated above, we think of ργ as a projection from the set of conjugacy classes in F onto γ .
The next lemma shows that for strongly contracting geodesics, ργ is compatible with closest-point
projection πγ in the sense that graphs H ∈ X and embedded loops in H often coarsely project to the
same spot. First, notice that every metric graph in X contains an embedded loop of length at most
2/3, and that this loop necessarily defines a primitive conjugacy class of F.
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Lemma 4.1 (Projections agree). Let γ : I→ X be a D–strongly contracting geodesic. Suppose that
H ∈ X is such that dX(H,γ) ≥ log(3). Then for every conjugacy class α corresponding to an
embedded loop in H with `(α|H)≤ 2/3, we have that ργ(α) 6= /0 and that

diamX(ργ(α)∪πγ(H))≤ D.

Moreover, there exists a primitive conjugacy class α satisfying these conditions.

Proof. Lemma 3.2 ensures the existence of a time t ∈ I so that dX(H,γ) = dX(H,γ(t)). Write
G = γ(t). Let α be a conjugacy class corresponding to an embedded loop in H with `(α|H)≤ 2/3.

To prove that α satisfies the conclusion of the lemma, for 0 < σ ≤ 1, let Hσ denote the metric
graph obtained from H by scaling the edges comprising α|H ⊂ H by σ and scaling all other edges
by 1−σ`(α|H)

1−`(α|H) (so as to maintain vol(Hσ ) = 1). It follows that

dX(H,Hσ )≤ log
(

1−σ`(α|H)

1− `(α|H)

)
≤ log

(
1

1− `(α|H)

)
≤ log(3).

Since γ is D–strongly contracting and dX(H,γ) ≥ log(3) by hypothesis, we may conclude that
diamX(πγ(H)∪πγ(Hσ ))≤ D for all 0 < σ ≤ 1.

First suppose that ργ(α) 6= /0. Letting B ∈ ργ(α) be arbitrary, we then have `(α|B) = mα . Let C
be the set of candidates of H; this is also the set of candidates for each Hσ . Since α is embedded in
H, it is the only candidate whose edge lengths all tend to zero as σ → 0. Thus for every candidate
z 6= α ∈C , there is a positive lower bound on `(z|Hσ ) as σ → 0. On the other hand, `(α|Hσ ) clearly
tends to zero as σ → 0. For σ > 0 sufficiently small, Proposition 2.1 therefore gives

log
(

mα

`(α|Hσ )

)
= log

(
`(α|B)
`(α|Hσ )

)
= log

(
max
z∈C

`(z|B)
`(z|Hσ )

)
= dX(Hσ ,B).

The fact that mα is the minimal length achieved by α along γ moreover implies that dX(Hσ ,γ) ≥
log(mα/`(α|Hσ )). Therefore dX(Hσ ,B) = dX(Hσ ,γ), and so we may conclude B ∈ πγ(Hσ ). This
shows that ργ(α)⊂ πγ(Hσ ) and therefore that diamX(ργ(α)∪πγ(H))≤D in the case that ργ(α) is
nonempty.

It remains to rule out the possibility that ργ(α) is empty. Since in this case the infimal length
mα is only achieved by sequences of times tending to ±∞, we may choose ε > 0 sufficiently small
so that for any s ∈ I we have the implication

`(α|γ(s))< mα + ε =⇒ |s− t|> 2D.

Let us choose such a time s0 ∈ I with `(α|γ(s0))< mα + ε . As above, by taking σ > 0 sufficiently
small we may be assured that

dX(Hσ ,γ(s0)) = log
(

max
z∈C

`(z|γ(s0))

`(z|Hσ )

)
= log

(
`(α|γ(s0))

`(α|Hσ )

)
.

Since πγ(Hσ ) is nonempty by Lemma 3.2, there exists a time s ∈ I for which γ(s) ∈ πγ(Hσ ). Since
this is a closest point on γ from Hσ , we necessarily have dX(Hσ ,γ(s)) ≤ dX(Hσ ,γ(s0)) which
in turn requires `(α|γ(s)) ≤ `(α|γ(s0)) < mα + ε . By the choice of ε , this implies |s− t| > 2D
and consequently diamX(γ(s),γ(t)) > 2D. However, since γ(s) ∈ πγ(Hσ ) and γ(t) ∈ πγ(H), this
contradicts the fact that diamX(πγ(H)∪πγ(Hσ ))≤D for all 0 < σ ≤ 1. Therefore ργ(α) cannot be
empty, and the lemma holds.
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A priori, it could be that ργ(α) is empty for every nontrivial conjugacy class in F and, in keeping
with Lemma 4.1, that all points of X lie within log(3) of γ(I). Our next lemma rules out such
pathological behavior.

Lemma 4.2 (Some projection exists). Let γ : I→ X be a strongly contracting geodesic. Then there
exists a primitive conjugacy class α ∈ PL0 such that ργ(α) is nonempty and mα > 0.

Proof. It suffices to find H ∈ X with dX(H,γ) ≥ log(3), for then Lemma 4.1 will provide a class
α ∈ PL0 with ργ(α) 6= /0. However, note that if dX(H,γ)≤ log(3), then dPL(H,γ)≤ L · log(3)+L,
where L is the coarse Lipschitz constant for the projection πPL : X→ PL.

By Proposition 9.2 of [BF2] the projection πPL(γ) is a uniform unparameterized quasigeodesic
in PL. Since PL has infinite diameter and is not quasi-isometric to Z (see, for example, Theorem 9.3
of [BF2]), we can use surjectivity of πPL : X→ PL to choose H ∈X with dPL(H,γ)> 2L · log(3).
Combining this fact with the observation above completes the proof of the lemma.

With these basic properties of ργ established, we now turn to the main ingredient in the proof of
Theorem 1.3. Restricting to the primitive conjugacy classes, our construction of ρ̂γ (or alternately
ργ) thus gives a projection ρ̂γ : PL→P(I) for each geodesic γ : I→ X. Our next lemma shows
that ργ is in fact uniformly Lipschitz provided γ is strongly contracting. Note that this does not yet
show that the projection ργ is a retraction.

Lemma 4.3 (ργ is coarsely Lipschitz). Suppose that γ : I→X is a D–strongly contracting geodesic
and let α,β ∈ PL0 be primitive loops. Then ργ(α) is nonempty (so ρ̂γ(α)⊂ R) and

diamX

(
ργ(α)∪ργ(β )

)
≤ D ·dPL(α,β )+D.

Proof. The lemma will follow easily from the following fact:

Claim. If ργ(α) 6= /0 and β ∈PL0 is adjacent to α , then ργ(β ) 6= /0 and diamX

(
ργ(α)∪ργ(β )

)
≤D.

Indeed, since PL is connected and there exists α0 ∈ PL0 with ργ(α0) 6= /0 by Lemma 4.2, the
claim shows that ργ(β ) is nonempty for every primitive loop β ∈ PL0. One may thus deduce the
lemma by applying the claim inductively with the triangle inequality to obtain the desired bound
diamX(ργ(α)∪ργ(β ))≤ D ·dPL(α,β )+D for all α,β ∈ PL0.

It remains to prove the claim. First, we may choose a free basis {e1, . . . ,en} of F in which e1
represents the conjugacy class α and e2 represents the conjugacy class β . Let (R,g) be the marked
rose with petals labeled by the basis elements e1, . . . ,en. By Proposition 2.1 there is a finite set C of
candidate conjugacy classes represented by immersed loops in R such that for any metric ` on R the
distance to any other point H ∈ X is given by

dX((R,g, `),H) = log
(

sup
z∈C

`(z|H)

`(z|(R,g, `))

)
.

Furthermore, both α and β are candidates since they label petals of R.
Choose an arbitrary point G = γ(t) ∈ ργ(α). If ργ(β ) is empty, then ρ̂γ(β )⊂ {−∞,+∞} mean-

ing that the infimal length mβ of β is only achieved by sequences of times tending to ±∞; in which
case we may chose ε0 > 0 sufficiently small so that for any s0 ∈ I we have the implication

`(β |γ(s0))< mβ + ε0 =⇒ |s0− t|> 2D. (1)

We now fix a time parameter s ∈ I as follows: If ργ(β ) 6= /0, then we choose s ∈ ρ̂γ(β ) arbitrarily;
if ργ(β ) = /0, we instead let s ∈ I be any time for which `(β |γ(s)) < mβ + ε0. In either case we set
H = γ(s).
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Let us now define

K :=max
{
`(z|Y ) | z ∈ C and Y ∈ {G,H}

}
and

k :=min
{
`(z|Y ) | z ∈ C and Y ∈ {G,H}

}
to be the maximal and minimal lengths achieved by any candidate z ∈ C at either G or H. Notice
that K ≥ k > 0. Choose a small parameter 0 < δ < k

2rK ≤
1
2 . For each 0 < σ < 1 we let Rσ denote

the marked metric graph (R,g, `σ ) in which the petals of R corresponding to α and β have lengths
`(α|Rσ ) = σδ and `(β |Rσ ) = (1−σ)δ , respectively, and every other petal of Rσ has length 1−δ

r−2 (so
that vol(Rσ ) = 1). Notice that we then have `(z|Rσ ) ≥ 1−δ

r−2 ≥
1
2r for every candidate z ∈ C except

for the candidates α and β .
Let us now estimate the distance from Rσ to points along γ(I). Firstly, at G ∈ γ(I) we have

`(α|G) = mα and `(z|G)≤ K for all other candidates z ∈ C . Thus we have

dX(Rσ ,G) = logsup
z∈C

`(z|G)

`(z|Rσ )
≤ logsup

{
`(α|G)

δσ
,

K
(1−σ)δ

,2rK
}
.

Since `(α|G)≥ k and σδ < δ < k
2rK , when σ

1−σ
< k

K the above estimate reduces to

dX(Rσ ,G) = log
(
`(α|G)

σδ

)
= log

(mα

σδ

)
.

Since mα is the minimal length of α achieved on γ(I), we also have

dX(Rσ ,γ(u))≥ log
(
`(α|γ(u))
`(α|Rσ )

)
≥ log

(mα

σδ

)
= dX(Rσ ,G) (2)

for all u ∈ I. Therefore G ∈ πγ(Rσ ) whenever σ

1−σ
< k

K .
A similar argument shows that

dX(Rσ ,H) = logsup
{

K
δσ

,
`(β |H)

(1−σ)δ
,2rK

}
= log

(
`(β |H)

(1−σ)δ

)
(3)

whenever 1−σ

σ
< k

K . If ργ(β ) is nonempty, so that `(β |H) = mβ by choice of H, we again conclude
H ∈ πγ(Rσ ) whenever 1−σ

σ
< k

K . Otherwise, we note that any closest point Hσ ∈ πγ(Rσ ) satisfies
dX(Rσ ,Hσ )≤ dX(Rσ ,H) and consequently `(β |Hσ )≤ `(β |H)< mβ + ε0 by the choice of H.

Let us now specify parameters 0 < σα < σβ < 1 by the formulas

σα

1−σα

=
k

2K
and

1−σβ

σβ

=
k

2K
.

Setting Rα = Rσα
and Rβ = Rσβ

, equation (2) ensures that G ∈ πγ(Rα). A comparison of lengths of
candidates at Rα and Rβ shows that

dX(Rα ,Rβ ) = log
(
`(α|Rβ )

`(α|Rα)

)
= log

(
σβ δ

σα δ

)
= log

(
2K
k

)
and similarly dX(Rβ ,Rα) = log

(
1−σα

1−σβ

)
= log(2K/k). Since this is independent of δ , by choosing

δ sufficiently small we can ensure that

dX(Rα ,Rβ ) = log(2K/k)< log(mα/δσα) = dX(Rα ,γ).
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Therefore, the D–strongly contracting property implies that

diamX(πγ(Rα)∪πγ(Rβ ))≤ D. (4)

We now finish proving the claim: First consider the case ργ(β ) 6= /0, so that s ∈ ρ̂γ(β ) by the
choice of s and consequently H = γ(s) ∈ πγ(Rβ ) by equation (3). Therefore equation (4) ensures
diamX(H,G) ≤ D. Since G = γ(t) ∈ ργ(α) and H = γ(s) ∈ ργ(β ) were chosen arbitrarily, this
proves the claim in the case that ργ(β ) is nonempty. It remains to rule out the possibility ργ(β ) = /0,
in which case our choice of H = γ(s) gives `(β |H)<mβ +ε0. Let H ′= γ(s′)∈ πγ(Rβ ) be any closest
point from Rβ . We then have dX(Rβ ,H ′)≤ dX(Rβ ,H) which, by equation (3), in turn implies

`(β |H ′)≤ `(β |H)< mβ + ε0.

Our choice of ε0 (1) then ensures that |s′− t| > 2D. However, since γ(s′) ∈ πγ(Rβ ) and γ(t) ∈
πγ(Rα), this contradicts (4). Thus the contingency ργ(β ) = /0 is impossible and the claim holds.

Remark 4.4. Lemma 4.3 and the fact that πPL : X→ PL is coarsely L–Lipschitz together imply,
as in the proof of Proposition 5.1 below, that any D–strongly contracting geodesic in X in fact has
D≥ 1/L or else has uniformly bounded diameter. However we will not use this fact going forward.

5 The progression of thick, strongly contracting geodesics
In this section, we prove our main theorem in the case that the geodesic is contained in some definite
thick part of X. The arguments in this case are made easier by the fact that we can first prove that
the diameter of times for which a fixed conjugacy class has bounded length is uniformly controlled.
This is the content of Lemma 5.2.

Proposition 5.1 (Thick strongly contracting geodesics make progress in F). For each D > 0 and
ε > 0 there exists a constant K = K(D,ε) ≥ 1 with the following property. If γ : I→ X is a D–
strongly contracting geodesic and γ(I)⊂ Xε , then πF ◦ γ : I→ F is a K–quasigeodesic.

Before proving Proposition 5.1, recall that given a directed geodesic γ : I→ X and a nontrivial
conjugacy class α ∈ F, we write mα = inft∈I `(α|γ(t)) for the infimal length that the conjugacy class
attains along γ . In the case of a thick strongly contracting geodesic, the set of times where α is short
is controlled as follows:

Lemma 5.2 (Transient shortness). Suppose that γ : I→X is a D–strongly contracting geodesic with
γ(I)⊂ Xε , and set ε ′ = ε/(1+2ε−1). Then for every primitive element α ∈ F we have

diamX

{
γ(s) : s ∈ I and `(α|γ(s))≤ mα +2

}
≤ 2Mε(1+Mε ′) log

(
1+ 2

ε

)
+2D

where Mε is the symmetrization constant provided by Lemma 2.2.

Proof. Suppose that G,H ∈ γ(I) are points for which `(α|G), `(α|H) ≤ mα + 2. Fix a free basis
A = {e1, . . . ,er} of F with e1 = α and let (R,g) be the marked rose with petals labeled by elements
of A. Let C = CR denote the finite set of candidates of R. For each 0 < σ < 1/2, let Rσ ∈ X denote
the marked metric graph (R,g, `σ ) in which the petal labeled α has `(α|Rσ ) = σ and every other
petal has length (1−σ)/(r− 1). Notice that C is the set of candidates for each metric graph Rσ ,
and that we moreover have `(z|Rσ )≥ (1−σ)/(r−1)≥ 1

2r for every candidate z ∈ C except for α .
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We henceforth suppose our parameter satisfies σ < mα . By definition of mα we thus have
`(α|γ(t))/`(α|Rσ )≥ mα

σ
for all t ∈ I; hence dX(Rσ ,γ)≥ log(mα/σ). Now consider the maximum

length

M = max
z∈C
{`(z|G), `(z|H)}

achieved by any candidate at the two points G,H. If σ is additionally chosen so that σ <mα/(2rM),
then we see that for all candidates α 6= z ∈ C we have

`(α|G)

`(α|Rσ )
≥ mα

σ
≥ M

1/2r
≥ `(z|G)

`(z|Rσ )
and

`(α|H)

`(α|Rσ )
≥ mα

σ
≥ M

1/2r
≥ `(z|H)

`(z|Rσ )
.

It now follows from Proposition 2.1 that

log
(mα

σ

)
≤ dX(Rσ ,γ)≤

 dX(Rσ ,G) = log `(α|G)
`(α|Rσ )

dX(Rσ ,H) = log `(α|H)
`(α|Rσ )

≤ log
(

mα+2
σ

)
.

Choose a directed geodesic ρ : [0,K]→X from Rσ to G, where K = dX(Rσ ,G). Since edX(Rσ ,G)=
`(α|G)
`(α|Rσ )

and ρ is a geodesic for the Lipschitz metric, it follows that `(α|ρ(t)) = σet for all t ∈ [0,K].
Hence if we define G′ = ρ (log(mα/σ)) (so that `(α|G′) = mα ), we see that

dX(Rσ ,G′) = log
(mα

σ

)
≤ dX(Rσ ,γ) and dX(G′,G) = log

(
`(α|G)

mα

)
≤ log

(
1+ 2

ε

)
. (5)

Defining H ′ (on the geodesic from Rσ to H) similarly, we obtain analogous inequalities for H ′. By
the strongly contracting condition, the first inequality of (5) shows that diamX(πγ(G′)∪πγ(Rσ )) and
similarly diamX(πγ(H ′)∪πγ(Rσ )) are both bounded by D. Whence

diamX

(
πγ(G′)∪πγ(H ′)

)
≤ 2D. (6)

On the other hand, the second inequality of (5) shows G′,H ′ ∈Xε ′ , where ε ′ = ε/(1+2ε−1). There-
fore, we also have

dX(G,G′), dX(H,H ′)≤Mε ′ log
(
1+ 2

ε

)
.

Choose any points G0 ∈ πγ(G′) and H0 ∈ πγ(H ′). Since these are by definition closest points,
dX(G′,G0) and dX(H ′,H0) can be at most log

(
1+ 2

ε

)
. By the triangle inequality, it follows that

dX(G,G0), dX(H,H0)≤ (1+Mε ′) log
(
1+ 2

ε

)
.

Symmetrizing (Lemma 2.2) to obtain bounds on diamX(G,G0) and diamX(H,H0) and combining
with (6), another application of the triangle inequality now gives

diamX(G,H)≤ 2Mε(1+Mε ′) log
(
1+ 2

ε

)
+2D.

Since each primitive loop α in the projection πPL(Gt) of Gt = γ(t) satisfies `(α|Gt) ≤ mα +2
by definition, Lemma 5.2 shows that the composition

γ(I) πPL−→ PL
ργ−→ γ(I)

moves points a uniformly bounded distance depending only on D and ε . That is, for each thick
strongly contracting geodesic γ : I→ X, the composition πPL ◦ ργ gives a coarse retraction from
PL onto the image πPL(γ(I)) of γ . Combining this with the fact that ργ is coarsely Lipschitz
(Lemma 4.3) now easily implies our main result of this section:
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Proof of Proposition 5.1. We write Gt = γ(t) for t ∈ I, and fix s, t ∈ I with s≤ t. Since the projection
πF : X→ F is coarsely 80–Lipschitz [DT, Lemma 2.9] and γ is a geodesic, we immediately have
dF(Gs,Gt) ≤ 80 |s− t|+ 80 for all s, t ∈ I. Thus it remains to bound dF(Gs,Gt) from below. Let
α ∈PL0 be any primitive conjugacy class represented by an embedded loop in Gs (i.e., any class for
which α|Gs→ Gs is an embedding). Then α ∈ πF(Gs) by definition of the projection πF : X→ F.
Similarly choose β ∈ PL0 represented by an embedded loop in Gt , so that β ∈ πF(Gt).

Notice that `(α|Gs)≤ 1 and `(β |Gt)≤ 1 (since the loops are embedded). Thus Lemma 5.2 gives
a constant Dε , depending only on ε and D, such that

diamX({Gs}∪ργ(α))
diamX({Gt}∪ργ(β ))

}
≤ Dε

Then by Lemma 4.3 we have

|s− t|= dX(Gs,Gt)

≤ diamX

(
{Gs}∪ργ(α)

)
+diamX

(
ργ(α)∪ργ(β )

)
+diamX

(
ργ(β )∪{Gt}

)
≤ 2Dε +D ·dPL(α,β )+D≤ 2Dε +2D ·dF(α,β )+D

≤ 2D ·dF(Gs,Gt)+2Dε +D.

This completes the proof.

6 Backing into thickness
In light of Proposition 5.1, to prove our main result Theorem 1.3 it now suffices to show that every
nondegenerate strongly contracting geodesic γ lives in some definite thick part of X. We begin by
showing that the portion of γ where the lengths of primitive loops are minimized is contained in
some definite thick part of X. Arguments in §§7–8 will then show that all of γ must be thick.

First, recall that L denotes the coarse Lipschitz constant of the projection πPL : X→ PL. In
particular, dPL(α,β )≤ L for any α,β ∈ PL with `(α|G), `(β |G)≤ 2 for some G ∈ X.

Proposition 6.1. Let γ : I→ X be a D–strongly contracting geodesic and suppose there exist α0 ∈
PL and s0 ∈ I such that s0 ∈ ρ̂γ(α0) and `(α0|γ(s0)) ≤ 2. If diamX(γ(t0),γ(s0)) ≥ 8DL for some
t0 < s0, then

γ(I∩ (−∞,s0])⊂ Xε0

for some thickness constant ε0 > 0 depending only on D.

Proof. Suppose that we are given sk ∈ I and αk ∈ PL0 such that sk ∈ ρ̂γ(αk) and `(αk|γ(sk)) ≤ 2.
Suppose additionally there exists tk < sk with diamX(γ(tk),γ(sk)) ≥ 8DL (note that this holds for
k = 0). We claim there exists an earlier time sk+1 < sk and a conjugacy class αk+1 ∈ PL0 again
satisfying the conditions sk+1 ∈ ρ̂γ(αk+1) and `(αk+1|γ(sk+1))≤ 2 together with the inequalities

4DL ≤ diamX(γ(sk+1),γ(sk)) ≤ D(L+8DL2 +1), and
3L ≤ dPL(αk+1,αk) ≤ L+8DL2.

(7)

Indeed, by continuity of γ there exists s′k+1 < sk with

diamX(x′k+1,xk) = 8DL,
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where xk = γ(sk) and x′k+1 = γ(s′k+1). Since γ is a directed geodesic, there exists a candidate αk+1 on
x′k+1 such that `(αk+1|γ(s′k+1 + t)) = et`(αk+1|x′k+1) for all t ≥ 0. Therefore, if we choose any time
sk+1 ∈ ρ̂γ(αk+1) realizing the minimal length mαk+1 , we may be assured that sk+1 occurs to the left of
s′k+1. Letting xk+1 = γ(sk+1) we thus find that sk+1≤ s′k+1 < sk and `(αk+1|xk+1)≤ `(αk+1|x′k+1)≤ 2,
as desired.

To prove the claim it remains to verify the inequalities in (7). First note that diamX(xk+1,xk)≥
1
2 diamX(x′k+1,xk)≥ 4DL by the triangle inequality and the fact that γ is a directed geodesic. Hence,
using Lemma 4.3 we see that

dPL(αk+1,αk)≥
1
D

(
diamX(xk+1,xk)−D

)
≥ 3L.

On the other hand, we may use the fact that `(αk|xk), `(αk+1|x′k+1)≤ 2 to conclude that

dPL(αk+1,αk)≤ dPL(x′k+1,xk)≤ LdX(x′k+1,xk)+L≤ 8DL2 +L.

Another application of Lemma 4.3 then yields,

diamX(xk+1,xk)≤ D ·dPL(αk+1,αk)+D

≤ D(L+8DL2)+D,

which completes the proof of the claim.
Now let E := 2D(L+8DL2 +1) and note that E ≥ 8DL by (7). Set

ε1 = e−E and ε0 = e−2E .

We claim that γ([sk+1,sk]) ⊂ Xε0 . First observe that if xk /∈ Xε1 , then we may find β ∈ PL0 with
`(β |xk)< ε1. In this case (7) would give `(β |xk+1)< 1 showing that β is contained in both projec-
tions πPL(xk) and πPL(xk+1). However, by (7), this contradicts the fact that these diameter L sets
contain αk and αk+1, respectively. Whence xk ∈ Xε1 and similarly xk+1 ∈ Xε1 . Another application
of (7) then shows

`(β |γ(t))≥ `(β |xk)e−|sk−t| ≥ ε1e−E ≥ ε0

for all t ∈ [sk+1,sk]. Thus γ([sk+1,sk])⊂ Xε0 as claimed.
Let us now prove the proposition. If I− = −∞, the above shows that we may find an infinite

sequence of times s0 > s1 > · · · tending to −∞ such that γ([si+1,si])⊂ Xε0 for each i > 0. Thus the
proposition holds in this case. Otherwise I− 6= −∞ and we may recursively construct a sequence
s0 > · · · > sk terminating at a time sk ∈ I for which diamX(γ(I−),γ(sk)) < 8DL and γ(sk) ∈ Xε1
(since k ≥ 1 by the hypotheses of the proposition). But this implies `(β |γ(t)) ≥ ε1e−8DL for every
conjugacy class β and time t ∈ [I−,sk]. Thus γ([I−,sk])⊂Xε0 as well and the proposition holds.

7 Nondegeneracy and thickness
We have now developed enough tools to both establish nondegeneracy for typical strongly con-
tracting geodesics and to show that each nondegenerate strongly contracting geodesic has a uni-
formly thick initial segment. We first establish Lemma 7.1, which implies that strongly contracting
geodesics are automatically nondegenerate except possibly in the case of a short geodesic with a
very thin left endpoint:
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Lemma 7.1. Suppose that γ : I→ X is a D–strongly contracting geodesic. Then either of the fol-
lowing conditions imply that γ is nondegenerate:

• |I| ≥ A for some constant A depending only on D and the injectivity radius of γ(I−).

• I is an infinite length interval

Proof. Let γ : I → X be a D–strongly contracting geodesic. First suppose that γ is not infinite
to the left (i.e., that I− 6= −∞) and let ε be the injectivity radius of γ(I−). Take A = Mε ′18DL,
where ε ′ = εe−18DL. We claim that γ is nondegenerate provided |I| ≥ A; this will establish the first
item of the lemma. Indeed, consider the points H = γ(I−) and G = γ(I−+A). If G /∈ Xε ′ , then
we automatically have dX(G,H) ≥ log(ε/ε ′) ≥ 18DL by definition of the Lipschitz metric, and
otherwise G ∈ Xε ′ so that dX(G,H)≥ dX(H,G)/Mε ′ = 18DL by Lemma 2.2.

To prove the second item of the lemma, it remains to consider the case I− =−∞. Choose s0 ∈ I
arbitrarily and let α ∈ PL0 be a primitive conjugacy class with `(α|γ(s0)) ≤ 2 (e.g., a candidate).
Next choose a time s ∈ ρ̂γ(α) and note that `(α|γ(s)) ≤ 2. The fact that I− = −∞ ensures we may
find t < s such that diamX(H,G)≥Mε018DL, where H = γ(t), G = γ(s) and ε0 > 0 is the thickness
constant from Proposition 6.1. Then γ(I∩ (−∞,s]) lies in Xε0 by Proposition 6.1, and so we may
conclude dX(G,H)≥ diamX(H,G)/Mε0 ≥ 18DL by Lemma 2.2.

Our next task is to show that nondegeneracy implies that the hypotheses of Proposition 6.1 are
satisfied, and consequently that the initial portion of any such geodesic is uniformly thick. The
following lemma will aid in this endeavor.

Lemma 7.2. Let γ : I→X be a D–strongly contracting geodesic in X and suppose that there are α ∈
PL0 and s, t1 ∈ I such that s≤ t1 and `(α|γ(t1)) < e−D`(α|γ(s)). Then α has its length minimized
to the right of s ∈ I, i.e. s < r for all r ∈ ρ̂γ(α).

Proof. Set H = γ(t1) and J = I∩ [s−D,s]. Then α can stretch by at most eD along J (since γ is a
directed geodesic), and so for each j ∈ J we have

`(α|γ( j))≥ e−D`(α|γ(s))> `(α|H).

Let r ∈ ρ̂γ(α) be any time minimizing the length of α . Fix a marked rose R with a petal corre-
sponding to the conjugacy class α . For 0 < σ < 1, let Rσ denote the metric graph obtained from
R by setting the length of the α–petal to σ and the length of each other petal to 1−σ

r−1 . As in the
proof of Lemma 4.3, σ can be taken sufficiently small so that α is the candidate of Rσ realizing the
distance from Rσ to H. Consequently, if [Rσ ,H] denotes a directed geodesic from Rσ to H, then α

also realizes the distance from G to H for each point G ∈ [Rσ ,H]. It now follows that for each j ∈ J
and G ∈ [Rσ ,H] we have

dX(G,γ( j))≥ log
(
`(α|γ( j))
`(α|G)

)
> log

(
`(α|H)

`(α|G)

)
= dX(G,H).

In particular the entire projection πγ([Rσ ,H]) is disjoint from the interval γ(J).
Taking σ smaller if necessary, we may also assume that α realizes the distance from Rσ to γ(r).

Since `(α|γ(r)) = mα is the minimal length of α , this forces γ(r) ∈ πγ(Rσ ). Whence r cannot lie
in J by the above. Now, if J = I∩ [s−D,s] contains the initial endpoint I−, this observation forces
r > s as desired. Otherwise J is the length–D interval J = [s−D,s], and we may apply Lemma 3.3
to conclude that r ∈ πγ([Rσ ,H]) is contained in γ(I∩ (s,∞)). Thus r > s and the lemma holds.
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Corollary 7.3. Given D there exists ε0 > 0 with the following property. If γ : I→X a nondegenerate
D–strongly contracting geodesic, then there exists s0 ∈ I such that γ(I∩ (−∞,s0])⊂ Xε0 .

Proof. By definition, nondegeneracy implies that there are times t0 < t1 in I so that dX(γ(t1),γ(t0))≥
18DL. Letting s ∈ I be such that t0 ≤ s ≤ t1 and dX(γ(t1),γ(s)) = 2D, the triangle inequality then
gives

dX(γ(s),γ(t0))≥ dX(γ(t1),γ(t0))−2D≥ 16DL.

Let α ∈ PL0 denote the candidate of γ(t1) that realizes the distance to γ(s), i.e. `(α|γ(t1)) =
e−2D`(α|γ(s)). If we choose any time s0 ∈ ρ̂γ(α) minimizing `(α|γ(·)), then s≤ s0 by Lemma 7.2.
Since `(α|γ(t1)) ≤ 2, we have that `(α|γ(s0)) ≤ 2. Finally, since t0 < s ≤ s0 and γ is a directed
geodesic, we find that

16DL≤ dX(γ(s),γ(t0))≤ dX(γ(s),γ(s0))+dX(γ(s0),γ(t0))

≤ dX(γ(t0),γ(s0))+dX(γ(s0),γ(t0))≤ 2diamX(γ(t0),γ(s0)).

Therefore diamX(γ(t0),γ(s0))≥ 8DL and we may apply Proposition 6.1 to complete the proof.

Finally, we show that if a strongly contracting geodesic in X has its initial portion contained in
some definite thick part of X, then the entire geodesic remains uniformly thick.

Lemma 7.4. Suppose that ε0,D > 0 and that γ : I→ X is a D–strongly contracting geodesic with
γ(I∩ (−∞,b])⊂ Xε0 for some b ∈ I. Then γ(I)⊂ Xε , for ε = ε0

2 e−4DL.

Proof. Write Gt = γ(t) for t ∈ I. Without loss of generality we assume ε0 < 1. It suffices to prove
mα ≥ ε where α is an arbitrary primitive loop α . Note that mα > 0 and ργ(α) 6= /0 by Lemma 4.3. If
mα ≥ ε0/2 then we are done. Otherwise we choose tα ∈ ρ̂γ(α) and note that `(α|Gtα )< ε0/2. Since
`(α|Gt) is continuous in t and at least ε0 for all t ≤ b, there is some s < tα so that `(α|Gs) = ε0.

Let β be a candidate of Gs such that `(β |Gs+t) = et`(β |Gs) for all t > 0. If r ∈ ρ̂γ(β ) is any
time minimizing the length of β , we then necessarily have r ≤ s. Since α and β each have length
less than 2 at Gs ∈ X, it follows that dPL(α,β )≤ L. Lemma 4.3 then implies that

diamX(Gr,Gtα )≤ D ·dPL(α,β )+D≤ DL+D≤ 2DL.

Since γ is a directed geodesic, dX(Gr,Gs)≤ dX(Gr,Gtα ) and so

dX(Gtα ,Gs)≤ dX(Gtα ,Gr)+dX(Gr,Gs)

≤ dX(Gtα ,Gr)+dX(Gr,Gtα )≤ 4DL.

In particular, `(α|Gs)
`(α|Gtα ) ≤ e4DL, and so we find mα ≥ ε0e−4DL as desired.

8 Characterizing strongly contracting geodesics
We now combine the previous results to complete the proof of our main theorem:

Theorem 1.3 (Strongly contracting geodesics make progress in F). For each D > 0 there exist
constants K ≥ 1 and ε > 0 with the following property. If γ : I→ X is a nondegenerate D–strongly
contracting geodesic, then γ(I) lies in the ε–thick part Xε and πF ◦ γ : I→ F is a K–quasigeodesic.
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Proof. Suppose γ : I→ X is nondegenerate and D–strongly contracting. By nondegeneracy, Corol-
lary 7.3 and Lemma 7.4 together give γ(I) ⊂ Xε for some ε = ε(D) > 0. Proposition 5.1 then
provides a constant K = K(D,ε) for which πF ◦ γ : I→ F is a K–quasigeodesic.

We next discuss the converse Theorem 1.2 and explain how the Bestvina–Feighn result [BF2,
Corollary 7.3] on folding lines that make definite progress in F may be promoted to arbitrary
geodesics. While this promotion essentially follows from our earlier work [DT], we have opted
to include a proof here for completeness. In this discussion we assume the reader is familiar with
folding paths and standard geodesics in X; for background on this see [FM, BF2, DT].

Theorem 1.2 (Progressing geodesics are strongly contracting). Let γ : I→ X be a geodesic whose
projection to F is a K–quasigeodesic. Then there exists D > 0 depending only on K (and the injec-
tivity radius of the terminal endpoint of γ) such that γ is D–strongly contracting in X.

Proof. Let γ : I→X be an arbitrary directed geodesic such that πF ◦γ : I→F is a K–quasigeodesic,
and let H,H ′ ∈X be metric graphs satisfying dX(H,H ′)≤ dX(H,γ). Lemma 4.3 of [DT] shows that
γ(I)⊂Xε for some ε > 0 depending only on K (and the injectivity radius of γ(I+) when I+ 6=+∞).
Using the coarse symmetry of dX in Xε (Lemma 2.2), one may easily show that πγ(G) is never
empty. Hence to prove the theorem it suffices to choose p ∈ πγ(H) and p′ ∈ πγ(H ′) arbitrarily and
bound diamX(p, p′) in terms of K and ε .

Choose a finite subinterval J = [a,b]⊂ I with p, p′ ∈ γ(J) and let γ̄ = γ|J. Notice that p ∈ πγ̄(H)
and p′ ∈ πγ̄(H ′). If ρ : J→ X is any standard geodesic from γ̄(a) to γ̄(b), then Theorem 4.1 of
[DT] ensures πF ◦ ρ is a K′ = K′(K,ε)–quasigeodesic and that ρ(J) ⊂ Xε ′ , where ε ′ = ε ′(K,ε).
Consequently, Proposition 7.2 of [BF2] and Lemma 4.11 of [DT] (see also [DT, Proposition 2.11]
and the following remark) immediately show that ρ is D′ = D′(K,ε)–strongly contracting.

Theorem 4.1 of [DT] additionally shows that γ̄(J) and ρ(J) have symmetric Hausdorff distance
at most A′ = A′(K,ε). Consequently, we claim that there exists B′ = B′(A′,D′,ε ′) such that

diamX(πγ̄(G)∪πρ(G))≤ B′ (8)

for all G ∈ X. To see this, choose Y0 ∈ πγ̄(G) arbitrarily and let Y ∈ πρ(Y0) be a closest point
projection of Y0 to ρ . Noting that dX(G,Y0) ≤ dX(G,ρ) + A′ and dX(Y0,Y ) ≤ A′, we see that
dX(G,Y ) ≤ dX(G,ρ) + 2A′. Thus, as in the proof of Lemma 5.2, we may find Y ′ ∈ X along a
directed geodesic from G to Y such that dX(G,Y ′) ≤ dX(G,ρ) and dX(Y ′,Y ) ≤ 2A′. The strong
contraction property for ρ now gives diamX(πρ(Y ′)∪πρ(G)) ≤ D′, and the fact that Y is ε ′–thick
and near Y ′ bounds diamX({Y} ∪ πρ(Y ′)) in terms of ε ′ and A′. Hence diamX({Y} ∪ πρ(G)) is
bounded and, since diamX(Y,Y0)≤ A′, the claimed inequality (8) holds.

We next claim that πρ is coarsely 1–Lipschitz. That is, there exists C′ =C′(D′,ε ′) such that

diamX(πρ(G1)∪πρ(G2))≤ diamX(G1,G2)+C′ (9)

for all G1,G2 ∈ X. Indeed, first consider the case that there exists a directed geodesic [G1,G2] with
dX(Y,ρ) ≥ D′ for all Y ∈ [G1,G2]. Dividing [G1,G2] into n = ddX(G1,G2)/D′e subgeodesics of
equal length (at most D′) and applying strong contraction to each, one finds that

diamX(πρ(G1)∪πρ(G2))≤ nD′ ≤
(

dX(G1,G2)

D′
+1
)

D′ ≤ diamX(G1,G2)+D′.

Next consider the case that dX(Gi,ρ) ≤ D′ for each i = 1,2. Choosing G′i ∈ πρ(Gi) arbitrarily,
Lemma 2.2 and the thickness of G′i ∈Xε ′ together bound diamX(Gi,G′i) in terms of ε ′ and D′. Thus
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the difference |diamX(G′1,G
′
2)−diamX(G1,G2)| is bounded in terms of ε ′ and D′. The general case

now follows by subdividing an arbitrary directed geodesic [G1,G2] into at most three subgeodesics
that each fall under the cases considered above.

To complete the proof of the theorem, note that since dX(H,ρ) ≥ dX(H, γ̄)−A′ we can find a
point H0 ∈X (say on a geodesic from H to H ′) such that dX(H,H0)≤ dX(H,ρ) and dX(H0,H ′)≤A′.
Then diamX(πρ(H)∪πρ(H0)) ≤ D′ by strong contraction and diamX(πρ(H0)∪πρ(H ′)) ≤ A′+C′

by (9). Combining these with (8) gives the desired bound on diamX(p, p′).

9 Contracting subgroups of Out(F)
In this section we apply Theorems 1.2–1.3 to characterize the finitely generated subgroups of Out(F)
that quasi-isometrically embed into F. Recall that a subgroup Γ≤ Out(F) is said to be contracting
in X if there exists R ∈ X and D > 0 such that any two points in the orbit Γ ·R are joined by a D–
strongly contracting geodesic. Using Theorems 1.2 and 1.3 and [DT, Theorem 4.1], one may show
that this definition is in fact equivalent to the following stronger condition: for each R ∈ X there
exists D > 0 such that every directed geodesic between points of Γ ·R is D–strongly contracting;
alternately, under the hypothesis of Theorem 1.7, this follows from the proof below.

Theorem 1.7 (Contracting orbits). Suppose that Γ≤ Out(F) is finitely generated and that the orbit
map Γ→ X is a quasi-isometric embedding. Then Γ is contracting in X if and only if the orbit map
Γ→ F to the free factor complex is a quasi-isometric embedding.

Proof. The “if” direction was essentially obtained by the authors in [DT]: Supposing that Γ ad-
mits an orbit map into F that is a quasi-isometric embedding, Theorem 5.4 of [DT] implies that
for each R ∈ X the orbit Γ · R is A–quasiconvex for some A > 0. This means that any directed
geodesic γ : I → X between orbit points lies in the symmetric A–neighborhood of Γ · R. Since
Γ→ F is a quasi-isometric embedding, it follows easily that the projection πF ◦ γ : I→ F is a pa-
rameterized quasigeodesic with uniform constants. Therefore γ is uniformly strongly contracting by
Theorem 1.2.

For the “only if” direction, suppose that Γ is contracting with respect to R ∈ X and D > 0 and
that the assignment g 7→ g · R defines a C–quasi-isometric embedding. Choose g,h ∈ Γ and let
γ : [a,b]→ X be a D–strongly contracting geodesic from g ·R to h ·R. Lemma 7.4 then ensures
γ([a,b])⊂Xε for some ε > 0 depending on D and the injectivity radius of R, and so Proposition 5.1
implies that πF ◦ γ is a K = K(D,ε)–quasigeodesic. Since dΓ(g,h) and dF(gπF(R),hπF(R)) both
coarsely agree with dX(γ(a),γ(b)) = dX(g ·R,h ·R), there is a constant E = E(K,C)≥ 1 such that

1
E

dΓ(g,h)−E ≤ diamF(gπF(R),hπF(R))≤ E dΓ(g,h)+E

Thus the assignment g 7→ g ·A, where A ∈ πF(R), defines a quasi-isometric embedding Γ→ F.
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