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Abstract

We show that strongly contracting geodesics in Outer space project to parameterized quasi-
geodesics in the free factor complex. This result provides a converse to a theorem of Bestvina—
Feighn, and is used to give conditions for when a subgroup of Out(F) has a quasi-isometric orbit
map into the free factor complex. It also allows one to construct many new examples of strongly
contracting geodesics in Outer space.

1 Introduction

A geodesic y: I = X in a metric space X is strongly contracting if the closest point projection to ¥
contracts far away metric balls in X to sets of uniformly bounded diameter. Such geodesics exhibit
hyperbolic-like behavior and are thus important to understanding the structure of the space. This
paper further develops the theory of strongly contracting geodesics in Outer space with the aim of
understanding their behavior under the projection to the free factor complex. See §3 for precise
definitions.

Such geometric questions in Outer space are often motivated by their analogs in Teichmiiller
space. In that setting, strongly contracting geodesics play an important role in our understanding of
the geometry of Teichmiiller space and the mapping class groups. These geodesics are characterized
by the following result of Minsky describing both their structure in Teichmiiller space and their
behavior in the curve complex. (The equivalence of 1. and 2. in Theorem 1.1 is the main result of
[Min] while the equivalence of 1. and 3. follows easily from Theorem 4.3 of [Min].)

Theorem 1.1 (Minsky [Min]). Let T : 1 — Teich(S) be a Teichmiiller geodesic. Then the following
are equivalent:

1. There is an € > 0 such that 7 is entirely contained in the e-thick part of Teich(S).

2. There is a D > 0 such that T is a D—strongly contracting geodesic in Teich(S).

3. There is a K > 1 such that T projects to a K—quasigeodesic in C(S), the curve complex of S.
Moreover, the constants €,D,K above depend only on each other and the topology of S.

Thus strongly contracting geodesics greatly illuminate the connection between Teichmiiller space
and the curve complex, as it is along these geodesics that the projection Teich(S) — C(S) is quasi-
isometric.

Our main result is a version of Theorem 1.1 for the Outer space X of a free group F and its pro-
jection g to the free factor complex F of F. This projection has already proven to be highly useful
beginning with Bestvina and Feighn’s proof of hyperbolicity of the free factor complex [BF2] and



continuing with, for example, [BR, Ham1, DT, Hor]. In fact, in the course of proving hyperbolicity
of &, Bestvina and Feighn show that folding path geodesics which make definite progress in F are
strongly contracting with respect to a specific projection tailored to folding paths. Combining with
Theorem 4.1 and Lemma 4.11 from [DT], this result of Bestvina and Feighn ([BF2, Corollary 7.3])
may be promoted to all geodesics:

Theorem 1.2. Let v: I — X be a geodesic whose projection to F is a K—quasigeodesic. Then there
exists D > 0 depending only on K (and the injectivity radius of the terminal endpoint of 'y) such that
v is D—strongly contracting in X.

Here we prove a converse to Theorem 1.2. Together, these establish an analog of Theorem 1.1
in the free group setting.

Theorem 1.3. For each D > 0 there exist constants K > 1 and € > 0 with the following property. If
y: I — X is a nondegenerate D—strongly contracting geodesic, then y(I) lies in the e—thick part X¢
and g oy: I — F is a K—quasigeodesic.

Recall that the Lipschitz metric on Outer space is not symmetric. Hence, a geodesic y: 1 — X
is not necessarily a (quasi) geodesic when traversed in the reverse direction. The condition that ¥ be
nondegenerate in Theorem 1.3 is, informally, that the backwards distance along ¥ meets a certain
threshold depending only on D. See §3 for a precise definition and discussion.

Remark 1.4 (Parameterized vs Unparameterized). In saying the projection of a geodesic to JF is
a K—quasigeodesic, we always mean a parameterized quasigeodesic. For any directed geodesic
y: I — X, it is known that g o y: I — F is an unparameterized quasigeodesic in the sense that it
may be reparameterized to yield a uniform quasigeodesic [BF2, Proposition 9.2]. The same holds
for the projections of Teichmiiller geodesics to the curve complex [MM, Theorem 2.3].

Remark 1.5 (Thick geodesics in X). Combining Theorem 1.3 with Theorem 1.2 gives the three
implications (3) <= (2) = (1) of Theorem 1.1 in the Out(FF) setting. We stress that the impli-
cation (1) = (2) of Theorem 1.1 is in fact false in the Outer space setting. Indeed, it is well-known
that there are thick geodesics in X that nevertheless project to a bounded diameter subset of F. By
Theorem 1.3 such geodesics cannot be strongly contracting.

Remark 1.6 (Hyperbolic isometries of ). Combining Theorem 1.3 with Algom-Kfir’s result [AK]
that axes of fully irreducible automorphisms in X are strongly contracting gives an alternative proof
of the fact that fully irreducible automorphisms act as loxodromic isometries on J (i.e. they have
positive translation length). This result was proven by Bestvina and Feighn in [BF2] using results in
[BF1].

As an application of Theorem 1.3, we give conditions for when the orbit map from a finitely
generated subgroup I' < Out(F) into JF is a quasi-isometric embedding. First, say that I" < Out([F)
is contracting in X if there exists G € X and D > 0 so that for any two points in the orbit I"- G there
is a D—strongly contracting geodesic joining them.

Theorem 1.7. Suppose that T' < Out(F) is finitely generated and that the orbit map I’ — X is a
quasi-isometric embedding. Then T is contracting in X if and only if the orbit map I — F to the free
factor complex is a quasi-isometric embedding.

We note that the “if” direction of Theorem 1.7 appeared first in our earlier work [DT] as a crucial
ingredient in the proof of the following result about hyperbolic extensions of free groups:



Theorem 1.8 ([DT, Theorem 1.1]). If T" < Out(FF) is purely atoroidal and the orbit map T — F is a
quasi-isometric embedding, then the corresponding F—extension Er is hyperbolic.

While the exact converse to Theorem 1.8 is false (see [DT, §1]), it would nevertheless be inter-
esting to obtain an partial converse, that is, to naturally characterize the hyperbolic extensions of F
that arise from subgroups of Out(F) that quasi-isometrically embed into JF. It is our hope that the
equivalence provided by Theorem 1.7 will be a useful step towards establishing such a converse.

During the completion of this paper, Hamenstddt and Hensel proved a result [HH, Theorem 1]
that is related to Theorem 1.7 above. Their theorem pertains to Morse geodesics in X and relies
on Hamenstidt’s notion of lines of minima in X, introduced in [Ham2]. We remark, however, that
there is no a priori connection between strongly contracting and Morse geodesics in the asymmetric
metric space X without additional assumptions on the geodesic.

Remark 1.9. Theorem 1.7 can be used to give new examples of strongly contracting geodesics in
X, beyond those which are axes of fully irreducible elements of Out(F). Such axes were shown to
be contracting by Algom-Kfir [AK]. For the construction, begin with a finitely generated subgroup
I' < Out(F) for which the orbit map I' — F is a quasi-isometric embedding. Many examples of such
subgroups are constructed in Section 9 of [DT]. For R € X fixed, Theorem 1.7 implies that there is a
D > 0 such that for any g, s € T, any directed geodesic [g- R, /- R] is D—strongly contracting. Using
the Arzela—Ascoli theorem, as in the proof of [DKT, Proposition 5.6], one may additionally take lim-
its of such geodesics to extract bi-infinite geodesics that are D—strongly contracting. The geodesics
constructed in this manner typically will not be axes for any fully irreducible automorphisms of F.

QOutline of proof. Let us briefly describe our approach to Theorem 1.3. Bestvina and Feighn’s
[BF2] proof that F is hyperbolic relies on constructing for every folding path y: I — X a correspond-
ing projection Pry: ¥ — y(I). The projection Pry is defined in terms of the illegal turn structure on
the path ¥(¢), and a careful analysis of Pr) allows one to prove (i) that 75 o Pry is a coarsely con-
tracting retraction onto 75 (y(I)) [BF2, Proposition 7.2] and (ii) that Pryo 5 : X — y(I) coarsely
agrees with the closest-point projection provided ¥ makes definite progress in JF (see [DT, Lemma
4.11]). This leads to Bestvina and Feighn’s result [BF2, Corollary 7.3] that folding paths which
make definite progress in F are strongly contracting in X (c.f. Theorem 1.2).

In a similar spirit, our proof of Theorem 1.3 proceeds by constructing an appropriate projection
py: PL — y(I) for each geodesic y: I — X, where here PL is the complex of primitive conjugacy
classes in I (note that PL is Out(IF)—equivariantly quasi-isometric to J; see §2). The map p,: PL —
v(I) has a very natural definition: simply send a conjugacy class « to the set of points along y(I)
where the length of & is minimized. Our key technical results then show that for every D—strongly
contracting geodesic 7, (i) the composition pyo mp : X — y(I) coarsely agrees with closest-point
projection for distant points (Lemma 4.1) and (ii) py is uniformly coarsely Lipschitz (Lemma 4.3).

A fundamental technical difficulty arises from the fact that the Lipschitz distance d+ is highly
asymmetric for points in the thin part of X (see §2). For example: since the standard Morse lemma
breaks down in the presence of boundless asymmetry, it is unclear whether strongly contracting
geodesics are necessarily stable in X (that is, uniform quasigeodesics a-priori need not fellow travel
strongly contracting geodesics with the same endpoints). To rule out such pathological behavior,
much of the work in our discussion is devoted to proving that all nondegenerate D—strongly con-
tracting geodesics lie in some uniform thick part of X (Corollary 7.3 and Lemma 7.4). With this key
tool in hand, we are able to show (Lemma 5.2) that the composition py o p : X — ¥(I) is a coarse
retraction, meaning that points on y(I) move a uniformly bounded amount. Combining this with
the coarse Lipschitz property for p, (Lemma 4.3) then easily leads to our main result that strongly
contracting geodesics in X make definite progress in F (see Proposition 5.1).



Acknowledgments. The authors thank the referee for several helpful comments. The first named
author was partially supported by NSF grants DMS 1204814 and 1711089. The second named
author was partially supported by NSF grants DMS 1400498 and 1744551. We also acknowledge
support from NSF grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And
Representation varieties” (the GEAR Network) and from the GATSBY seminar at Brown & Yale.

2 Background

We briefly recall the necessary background material on the metric structure of Outer space; see
[FM, BF2, DT] for additional details.

Outer space. Let F denote the free group of rank » =1k(IF) > 3. Let R denote the r—petal rose with
vertex v € R, and fix an isomorphism IF 2 7y (R, v). For our purposes, a graph is a 1-dimensional
CW complex, and a connected, simply connected graph is a tree. A core graph is a finite graph all
of whose vertices have degree at least 2.

We now define Culler and Vogtmann’s [CV] Outer space X of marked metric graphs. A marked
graph (G, g) is a core graph G together with a marking g: R — G, i.e. a homotopy equivalence. A
metric on G is a function ¢: E(G) — R~ from the set of edges of G to the positive real numbers,
which assigns a length £(e) to each edge e € E(G). The sum ¥ cg (c) £(e) is called the volume of G.
With this setup, a marked metric graph is defined to be the triple (G, g, ¢); two triples (G1,g1,¢1)
and (G2, g2,¢>) are equivalent if there is a graph isometry ¢ : G; — G that preserves the markings
in the sense that ¢ o g1 is homotopic to g>. Outer space, denoted X, is the set of equivalence classes
of marked metric graphs of volume 1.

The marking R — G for G € X allows us to view any nontrivial conjugacy class ¢ in I as a
homotopy class of loops in the core graph G. The unique immersed loop in this homotopy class
is denoted by «|G, which we view as an immersion of S Uinto G. The length of ¢ in G € X,
denoted ¢(c|G), is the sum of the lengths of the edges of G crossed by |G, counted with multi-
plicities. The standard topology on X is the coarsest topology such that all of the length functions
(a]-): X — Ry are continuous [CV]. This topology agrees with other naturally defined topolo-
gies on X, including the one induced by the Lipschitz metric defined below. See [CV, Pau, FM] for
details.

A difference of markings from G € X to H € X is any map ¢: G — H that is homotopic to
hog™!, where g and h are the markings on G and H, respectively. The Lipschitz distance from G
to H is then defined to be

dx(G,H) :=inf{log (Lip(¢)) | ¢ ~hog~'},

where Lip(¢) denotes the Lipschitz constant of the difference of markings ¢. We note that while
dy is in general asymmetric (that is, d. (G, H) # dx.(H,G)), it satisfies definiteness (d(G,H) =0
if and only if G = H) and the ordered triangle inequality (dx (E,H) < dx(E,G)+dx(G,H)) [FM].
We also have the following important result, originally due to Tad White, relating the Lipschitz
distance to the ratio of lengths of conjugacy classes in the two graphs:

Proposition 2.1 (See Francaviglia—Martino [FM] or Algom-Kfir [AK]). For every G € X there exists
a finite set 6 of primitive conjugacy classes, called candidates, whose immersed representatives in
G cross each edge at most twice and such that for any H € X

a6 = ppio (i) = 2 (i )




Note that because each candidate @ € 6 crosses each edge of G no more than twice, {(o|G) < 2.

Finally, a geodesic in X is by definition a directed geodesic, that is, a path y: I — X such that
dx (y(s),y(t)) =t —s for all s < ¢. Throughout, I will always denote a closed interval I C R, and we
write I € RU{4oo} for the (possibly infinite) endpoints of the interval L.

Asymmetry and the thick part of Outer space. For € > 0, we define the e-thick part of X to
be the subset

Xe :={G € X : {(a|G) > ¢ for every nontrivial conjugacy class o in F}.
It is also sometimes convenient to consider the symmetrization of the Lipschitz metric:
d;é,m(GaH) = dDC(GaH) +dDC(H7G)

which is an actual metric on X and induces the standard topology [FM]. Because the Lipschitz
metric dy is not symmetric, care must be taken when discussing distances in X. This asymmetry,
however, is somewhat controlled in the thick part Xg:

Lemma 2.2 (Handel-Mosher [HM], Algom-Kfir—Bestvina [AKB]). For any € > 0, there exists
Mg > 1 so that for all G,H € X we have

dy(H,G) < di"(H,G) =dy"(G,H) < M¢ - dx(G,H).

For G,H € X, we also use the notation diamy (G, H) to denote diamx.{ G, H } = max{d (G,H),dx (H,G)}.
Observe that diamy (G,H) < dy" (G,H) < 2diamx (G, H).

The factor complex. The main purpose of this paper is to show that strongly contracting geodesics
in X project to parameterized quasigeodesics in the free factor complex, which is defined as follows:
The factor complex J associated to the free group F is the simplicial complex whose vertices are
conjugacy classes of proper, nontrivial free factors of F. Vertices [A¢], ..., [Ax] span a k—simplex if,
after reordering, we have the proper inclusions Ay < --- < A;. This simplicial complex was first
introduced by Hatcher and Vogtmann in [HV]. Since we are interested in the coarse geometry of
JF, we will only consider its 1-skeleton equipped with the path metric induced by giving each edge
length 1. The following theorem of Bestvina and Feighn is fundamental to the geometric study of
Out(FF):

Theorem 2.3 (Bestvina—Feighn [BF2]). The factor complex F is Gromov hyperbolic.

The primitive loop complex. For our proof of Theorem 1.3, it is more natural to work with a
different complex that is nevertheless quasi-isometric to J. Recall that an element & € IF is primitive
if it is part of some free basis of . Thus « is primitive if and only if & generates a cyclic free factor
of F. We use the terminology primitive loop to mean a conjugacy class of I consisting of primitive
elements. The primitive loop complex P is then defined to be the simplicial graph whose vertices
are primitive loops and where two vertices are joined by an edge in PL if their respective conjugacy
classes have representatives that are jointly part of a free basis of F. It is straightforward to show
that the natural inclusion map PL° — F0 (each primitive conjugacy class is itself a free factor) is
2-biLipschitz. Since the image is 1—dense, this map is in fact a 2—quasi-isometry.



Relating Outer space to the primitive loop graph, we define the projection 7y : X — PL in the
following way: For G € X, set

Ty (G) :={a e PL: l(a|G) < 2}.

This is, of course, closely related to the projection g : X — F defined by Bestvina and Feighn in
[BF2] sending G € X to the collection of free factors corresponding to proper core subgraphs of G.
They prove that diamg (75 (G)) <4 [BF2, Lemma 3.1] and that diamg (o Un5(G)) < 6£(a|G) + 13
[BF2, Lemma 3.3] for every G € X and every primitive conjugacy class ¢. These estimates imply
that mp, and 7wy coarsely agree under the 2—quasi-isometry PL — F defined above. Combining
with the fact that w5 is coarsely Lipschitz [BF2, Corollary 3.5] this moreover gives the existence of
a constant L > 1 such that

dps(G,H) := diamyp g (Tp . (G)Unp (H)) < Ldx(G,H) +L

for all G, H € X. That s, the projection p : X — PL is coarsely L-Lipschitz. It is easily computed
that L < 260, but we prefer to work with the symbol L for clarity.

3 Strongly contracting geodesics

Suppose that y: I — X is a (directed) geodesic. Then for any point H € X we write dy(H,y) =
inf{dy(H,y(t)) | t € I} for the infimal distance from H to Y. The closest point projection of H to
7 is then defined to be the set

mty(H) :={y(t) | t € I'such that dx (H,¥(t)) =dx(H,y)} C X.

Note that m,(H) could in principle have infinite diameter: due to the asymmetry of dx, the di-
rected triangle inequality does not in general allow one to bound dx ((s),y(r)) for times s < t with
Y(s),Y(t) € my(H). On the other extreme, it is conceivable that the above infimum need not be real-
ized (since d (H,¥(s)) could remain bounded as s — —oo), in which case 7y(H) = 0 by definition.

Definition 3.1 (Strongly contracting). A geodesic v: 1 — X is D-strongly contracting if for all
points H H' € X satisfying dy.(H,H") < dx.(H,7y) we have

e diamy (7,(H)Umy(H')) <D, and
o my(H)=0ifand only if my(H') = 0.
We say that 7y is strongly contracting if it is D—strongly contracting for some D > (.

We remark that the second condition is a natural extension of the first: m,(H) = @ only if there
is a sequence s; € I tending to I_ = —oo with d(H, ¥(s;)) limiting to d (H,7y). In this case, one
should morally view 7y(H) as being “y(—e)”; hence diamx (7y(H) U mty(H')) is considered to be
infinite unless 7y (H') = 0 as well.

While 7, (H) may in principle be empty, our first lemma shows that the closest point projection
my(H) always exists when ¥ is strongly contracting:

Lemma 3.2. If y: I — X is D—strongly contracting, then m,(H) is nonempty for all H € X.

Proof. Let us first show that m,(H) # 0 for all H in an open neighborhood of y(I). Lett €I
be arbitrary and let U C I be an open neighborhood of ¢ whose closure U is a compact, proper



subinterval of I Then there exists C > 0 such that |s — | > C and consequently d~ " ((t),(s)) > C
for all s € I\ U. In particular, we have y(s) # y(¢) and thus dx(y(¢),¥(s)) > 0 for all s e I\ U.
Moreover, it is easily shown that the infimum

& = inf {dx ((1),¥(s)) : s eI\U}

is in fact positive.
Now consider any point H in the open neighborhood V; = {y € X : d" (y,¥(1)) < &/3} of ¥(t).
If dy (H,y(s)) < & /2 for some s € I\ U, the triangle inequality would give

doc(y(1),¥(s) < dy" (v(t), H) +dx(H,y(5)) < &/3+&/2 < &,

which is impossible by definition of &. Hence d (H,¥(s)) > & /2 forall s € I\ U. Since dy (H,y) <
dyx(H,y(t)) < &/3, it follows that

dy(H,y) = inf{i € I: dx(H, (i)} = inf{s € U : do (H, y(s))}.

The above infimum is necessarily realized by compactness; thus we conclude dy (H,y) = dx (H, ¥(s))
for some s € U. This proves that 7ry(H) # @ for all points H in the open neighborhood V = U1V,
of y(I). Note that we have not yet used the assumption that ¥ is strongly contracting.

Let us now employ strong contraction to complete the proof of the lemma. Let H € X be arbi-
trary; we may assume H ¢ y(I) for otherwise the claim is obvious. Choose any path u: [a,b] — X
from p(a) = H to some point p(b) € y(I). By restricting to a smaller interval if necessary, we
may additionally assume that i (s) ¢ y(I) for all a < s < b. Since my(G) is nonempty for all G in a
neighborhood of y(I), there exists some ¢ € (a,b) such that 7y (u(c)) is nonempty.

Now, for each t € [a,c] we have p(7) ¢ y(I). In fact we claim that dx (i(¢), ) > 0: otherwise, as
above, there would exist a sequence s; € I with d (1 (1), ¥(si)) — 0 and consequently y(s;) — p(z),
contradicting the fact that y(I) is closed. Thus for each ¢ € [a,c] we may find an open neighborhood
W; C X of pu(t) such that dy (1 (¢),G") < dx(u(z),y) for all G’ € W;. By compactness, there is a finite
subcollection Wi, ..., W, of these open sets that cover u([a,c]). For each i the strongly contracting
condition now implies that either 77,(G") = 0 for all G’ € W;, or else m,(G") # 0 for all G’ € W;. Since
these Wi, ..., W, cover the connected set 11([a,c]) and at least one W; falls into the latter category
(namely, the set W; containing fi(c)), the contingency “m,(G’) # 0 for all G’ € W;”” must in fact hold
for every i. In particular, we see that 7, (H) = m,((a)) is nonempty, as claimed. O

We will also need the following basic observation showing that the projection of a connected set
to a D-strongly contracting geodesic v is effectively “D—connected” in y(I):

Lemma 3.3. Let y: I — X be D-strongly contracting and let [a,b] C 1 be any subinterval with
la—b| > D. If A C X is connected and m,(A) misses y([a,b]) (that is m,(A) N¥([a,b]) = 0), then
mty(A) is either entirely contained in y(IN (—oo,a)) or entirely contained in y(IN (b,o0)).

Proof. Let us first establish the following
Claim. Each H € X admits a neighborhood U C X with diamx (7ty(H)Umy(H')) <D forall H' € U.

To prove the claim, first suppose H ¢ y(I) so that, as above, we have 6 := dx.(H,7) > 0 (for
otherwise there is a sequence in y(I) converging to H). Taking the open neighborhood to be U =
{y e X :dy(H,y) < 8}, the strongly contracting condition then ensures diamx (7y(H),m,(H')) <D
for all H' € U. Next suppose H € y(I) so that dx(H,y) = 0 and my(H) = {H}. Choosing € >0
so that H € X5¢, we may then choose 6 > 0 sufficiently small so that 6M, < D/2 and the entire



neighborhood U = {y € X : dY" (y,H) < 8} is contained in X¢ (where M is the symmetrization
constant from Lemma 2.2). For any H' € U we then have dy(H',y) < dx(H',H) < §. Thus
any G € m,(H') satisfies d5" (G,H') < Medy(H',G) < M6 < D/2. Note that we also have
dy"™(H,H') < 8§ < D/2. Since my(H) = {H}, the triangle inequality therefore shows the desired
inequality diamx (7y(H) U my(H')) < D. Since this holds for each H' € U, the claim follows.

We now prove the lemma. Let [a,b] C I and A C X be as in the statement of the lemma, so
that 7y(A) is disjoint from y([a,b]). Since 7y(H) is always nonempty (by Lemma 3.2) and satisfies
diamy (my(H)) < D, the hypothesis on 7,(A) N y([a,b]) implies that each H € A lies in exactly one
of two the sets

A_={HecA:my(H)C yIN(—o,a))} or A, ={HecA:m(H)CyIN(b,))}.

Thus A = A_ UA, gives a partition of A. Moreover, the claim proves that A_ and A are both
open. The connectedness of A therefore implies that either A_ or A is empty, which is exactly the
conclusion of the lemma. O

Finally, we say that a D—strongly contracting geodesic y: I — X is nondegenerate if there exists
times s < ¢ in I such that dx (y(¢),(s)) > 18DL. Lemma 7.1 below shows that this mild symmetry
condition automatically holds in most natural situations.

4 Length minimizers

To control the nearest point projection of a graph H to a geodesic ¥, we must understand where the
lengths of conjugacy classes in F are minimized along Y. To this end, we introduce the following
terminology: Firstly, given a directed geodesic y: I — X and a nontrivial conjugacy class o € F, we
typically write

Mg = my :=infl(a|y(t))
tel
for the infimal length that the conjugacy class attains along y. We then regard the set

py(a) = {x € y(I) [ £(at|x) = mq}

as the projection of « to y. Since it is possible to have py(a) = 0 in the case that I is not compact,
we also define a parameterwise-projection

ﬁ;,(a) = {t|3si €Is.t. s; =t and £(ct|y(s;)) = mq} C [—o0, +od].

For technical reasons, it is convenient to instead work with the following variant:

(B @nR, pyla) 20
prie) = {ﬁz(a), else.

Thus p,() is never empty and is exactly the set of parameters ¢ € I realizing mq when py(c) is
nonempty. Note also that y(p, () "R) = py(cx) in all cases.

As indicated above, we think of py as a projection from the set of conjugacy classes in IF onto .
The next lemma shows that for strongly contracting geodesics, py is compatible with closest-point
projection 7y in the sense that graphs H € X and embedded loops in H often coarsely project to the
same spot. First, notice that every metric graph in X contains an embedded loop of length at most
2/3, and that this loop necessarily defines a primitive conjugacy class of F.



Lemma 4.1 (Projections agree). Let y: I — X be a D—strongly contracting geodesic. Suppose that
H € X is such that dx(H,7y) > log(3). Then for every conjugacy class a corresponding to an
embedded loop in H with {(a|H) < 2/3, we have that py(a) # 0 and that

diamy (py(a) Umy(H)) < D.
Moreover, there exists a primitive conjugacy class « satisfying these conditions.

Proof. Lemma 3.2 ensures the existence of a time ¢ € I so that dy(H,y) = dy(H,y(r)). Write

G = (r). Let o be a conjugacy class corresponding to an embedded loop in H with ¢(a|H) < 2/3.
To prove that a satisfies the conclusion of the lemma, for 0 < ¢ < 1, let Hs denote the metric

graph obtained from H by scaling the edges comprising a|H C H by ¢ and scaling all other edges

b %g)flfg) (so as to maintain vol(Hg) = 1). It follows that

e (H, Hy) < log (llj"ffgfﬂf))) < log (%) < log(3).

Since 7y is D-strongly contracting and dy (H,y) > log(3) by hypothesis, we may conclude that
diamy (my(H) Unty(Hs)) < Dforall0 <o < 1.

First suppose that py(o) # 0. Letting B € py(c) be arbitrary, we then have /(x|B) = mq. Let €
be the set of candidates of H; this is also the set of candidates for each Hs. Since « is embedded in
H, it is the only candidate whose edge lengths all tend to zero as 0 — 0. Thus for every candidate
7# o € €, there is a positive lower bound on £(z|Hg) as ¢ — 0. On the other hand, ¢(ot|H) clearly
tends to zero as 6 — 0. For o > 0 sufficiently small, Proposition 2.1 therefore gives

) e ) ) s

The fact that m, is the minimal length achieved by o along y moreover implies that dy (Hg,Y) >
log(mg /¢(ct|Hs)). Therefore do (Hs,B) = dx (Hs,7), and so we may conclude B € my(Hs). This
shows that py(a) C my(Hg) and therefore that diamy (py(ct) Um,(H)) < D in the case that py () is
nonempty.

It remains to rule out the possibility that py(c) is empty. Since in this case the infimal length
myg, is only achieved by sequences of times tending to 4-oo, we may choose € > 0 sufficiently small
so that for any s € I we have the implication

Laly(s)) <mg+e = |s—t| >2D.

Let us choose such a time s € I with £(a|y(so)) < mg + €. As above, by taking o > 0 sufficiently
small we may be assured that

i (Ho, Y(s0)) = log (max W“”) ~ log (

¢ {(z|Hs)

5(067’(80)))
lalHs) )

Since 7my(Hg) is nonempty by Lemma 3.2, there exists a time s € I for which y(s) € my(Hs). Since
this is a closest point on y from Hs, we necessarily have d (Hs,Y(s)) < dx(Hs,¥(so)) which
in turn requires £(a|y(s)) < £(ct|y(s0)) < mg + €. By the choice of &, this implies |s—¢| > 2D
and consequently diamx (¥(s),y(r)) > 2D. However, since y(s) € my(Hs) and y(r) € my(H), this
contradicts the fact that diamx (7,(H) U m,(Hs)) < D for all 0 < o < 1. Therefore py(ct) cannot be
empty, and the lemma holds. O



A priori, it could be that py(a) is empty for every nontrivial conjugacy class in F and, in keeping
with Lemma 4.1, that all points of X lie within log(3) of y(I). Our next lemma rules out such
pathological behavior.

Lemma 4.2 (Some projection exists). Let y: I — X be a strongly contracting geodesic. Then there
exists a primitive conjugacy class o € PLO such that py() is nonempty and mg, > 0.

Proof. 1t suffices to find H € X with dx(H,7y) > log(3), for then Lemma 4.1 will provide a class
o € PLY with py(a) # 0. However, note that if dx (H,y) < log(3), then dp ¢ (H,7) < L-log(3) +L,
where L is the coarse Lipschitz constant for the projection wp g : X — PL.

By Proposition 9.2 of [BF2] the projection 75 (¥) is a uniform unparameterized quasigeodesic
in PL. Since PL has infinite diameter and is not quasi-isometric to Z (see, for example, Theorem 9.3
of [BF2]), we can use surjectivity of p . : X — PL to choose H € X with dp (H,y) > 2L -1og(3).
Combining this fact with the observation above completes the proof of the lemma. O

With these basic properties of py established, we now turn to the main ingredient in the proof of
Theorem 1.3. Restricting to the primitive conjugacy classes, our construction of py (or alternately
py) thus gives a projection py: PL — (1) for each geodesic y: I — X. Our next lemma shows
that py is in fact uniformly Lipschitz provided ¥ is strongly contracting. Note that this does not yet
show that the projection py is a retraction.

Lemma 4.3 (py is coarsely Lipschitz). Suppose that y: 1 — X is a D—strongly contracting geodesic
and let o, B € PLY be primitive loops. Then py(a) is nonempty (so py(a) C R) and

diamyx (py(a) Upy(B)) < D-dp(a,B)+D.
Proof. The lemma will follow easily from the following fact:
Claim. If py(ot) #0and B € PLY is adjacent to o, then py(B) # 0 and diamy (py(a) Upy(B)) < D.

Indeed, since PL is connected and there exists oy € PLY with py(oo) # 0 by Lemma 4.2, the
claim shows that py(B) is nonempty for every primitive loop 8 € PL’. One may thus deduce the
lemma by applying the claim inductively with the triangle inequality to obtain the desired bound
diamy (py(at) Upy(B)) < D-dp s (a,B) +D for all o, B € PLO.

It remains to prove the claim. First, we may choose a free basis {ej,...,e,} of F in which e;
represents the conjugacy class « and e; represents the conjugacy class 3. Let (R, g) be the marked
rose with petals labeled by the basis elements ey, ...,e,. By Proposition 2.1 there is a finite set € of
candidate conjugacy classes represented by immersed loops in R such that for any metric ¢ on R the
distance to any other point H € X is given by

((z|H)
e ((R,,0),H) = log <sup |
ZEE E(Z|(Rag7€))
Furthermore, both o and 3 are candidates since they label petals of R.
Choose an arbitrary point G = ¥(t) € py(a). If p,(B) is empty, then py(B) C {—oo, +-00} mean-
ing that the infimal length mg of B is only achieved by sequences of times tending to +0; in which
case we may chose & > 0 sufficiently small so that for any s € I we have the implication

L(Bly(s0)) <mp+& = [so—t| >2D. (D

We now fix a time parameter s € I as follows: If p,(B) # 0, then we choose s € py(B) arbitrarily;
if py(B) = 0, we instead let s € I be any time for which £(B|y(s)) < mg + &. In either case we set

H=19(s).
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Let us now define

K:=max {{(z|]Y)|z€ € andY € {G,H}} a
k:=min{{(z]Y)|z€ € andY € {G,H}}

to be the maximal and minimal lengths achieved by any candidate z € ¥ at either G or H. Notice
that K > k > 0. Choose a small parameter 0 < § < 2rK < 1 . For each 0 < 0 < 1 we let R denote
the marked metric graph (R, g,{s) in which the petals of R corresponding to o and 3 have lengths
¢(a|Rs) =00 and ¢(B|Rs) = (1 — 0)0J, respectively, and every other petal of Rs has length 1*‘; (so
that vol(Rs) = 1). Notice that we then have ¢(z|Rs) > ‘S > 4 for every candidate z € ¢ except
for the candidates o and 3.

Let us now estimate the distance from Rs to points along y(I). Firstly, at G € y(I) we have
U(at|G) = mg and £(z|G) < K for all other candidates z € €. Thus we have

((z|G) {é(a|G) K }
dy(Rs,G) =logsu <logsu ,——=,2rK ;.
x(Ro.G) =logsup g 5 S 108suPy =55 (75757
Since £(0t|G) > kand 60 < 6 < 2rK’ when = < ¢ the above estimate reduces to

dx(Rs,G) =log <€(Z|6G)> =log (%) .

Since my is the minimal length of o achieved on y(I), we also have

£(ay(u))
{(alRg)

for all u € I Therefore G € 7,(Rs) whenever 1% < £
A similar argument shows that

dx(Rg,H)zlogsup{SI;,m,ZrK}:log (m> 3)

(. 1(0) > tog (AT > tog (2 = (k. ) @

whenever 1_—6 < % If py(B) is nonempty, so that £(B|H) = mg by choice of H, we again conclude
H e ny(Rg) whenever =2 < £ Otherwise, we note that any closest point Hs € 7y(R;) satisfies
dx(Rs,Hs) < dx(Rs,H ) and consequently ¢(B|Hs) < {(B|H) < mg + & by the choice of H.

Let us now specify parameters 0 < 0y < 0g < 1 by the formulas

= — d = .
-0, 2k ™ o5 2K

Setting Ry = Rg, and Rg = Roy, equation (2) ensures that G € m,(Ry). A comparison of lengths of
candidates at R, and Rg shows that

dx(Rq,Rp) = log (ﬁg;ﬁi;) =log (:ig) =log (2/:()

and similarly dx (Rg,Rq) = log (1 "a) =log(2K /k). Since this is independent of &, by choosing
o sufficiently small we can ensure that

dx(Ra,Rp) =1og(2K /k) < log(ma/864) = dx(Ra,7)-

11



Therefore, the D—strongly contracting property implies that
diamy (7y(Ro) UTty(Rp)) < D. (4)

We now finish proving the claim: First consider the case py(f) # 0, so that s € py(B) by the
choice of s and consequently H = ¥(s) € my(Rg) by equation (3). Therefore equation (4) ensures
diamy (H,G) < D. Since G = ¥(t) € py(o) and H = ¥(s) € py(B) were chosen arbitrarily, this
proves the claim in the case that py(f3) is nonempty. It remains to rule out the possibility p,(f) =0,
in which case our choice of H = y(s) gives £(B|H) < mg +&. Let H' = y(s') € my(Rg) be any closest
point from Rg. We then have dx (Rg,H’) < dx (Rg,H) which, by equation (3), in turn implies

UBIH') < C(BIH) < mg + eo.

Our choice of & (1) then ensures that s’ —¢[ > 2D. However, since ¥(s') € my(Rg) and y(t) €
Tty(Rq ), this contradicts (4). Thus the contingency py() = 0 is impossible and the claim holds. [J

Remark 4.4. Lemma 4.3 and the fact that wp : X — PL is coarsely L-Lipschitz together imply,
as in the proof of Proposition 5.1 below, that any D—strongly contracting geodesic in X in fact has
D > 1/L or else has uniformly bounded diameter. However we will not use this fact going forward.

S The progression of thick, strongly contracting geodesics

In this section, we prove our main theorem in the case that the geodesic is contained in some definite
thick part of X. The arguments in this case are made easier by the fact that we can first prove that
the diameter of times for which a fixed conjugacy class has bounded length is uniformly controlled.
This is the content of Lemma 5.2.

Proposition 5.1 (Thick strongly contracting geodesics make progress in F). For each D > 0 and
€ > 0 there exists a constant K = K(D, &) > 1 with the following property. If y: 1 — X is a D-
strongly contracting geodesic and y(I) C X, then nyoy: 1 — F is a K—quasigeodesic.

Before proving Proposition 5.1, recall that given a directed geodesic y: I — X and a nontrivial
conjugacy class o € IF, we write mg = inf,cy £(ct|y(¢)) for the infimal length that the conjugacy class
attains along 7. In the case of a thick strongly contracting geodesic, the set of times where « is short
is controlled as follows:

Lemma 5.2 (Transient shortness). Suppose that y: 1 — X is a D—strongly contracting geodesic with
¥(I) C X¢, and set € = &/(1+2¢e~"). Then for every primitive element o € F we have

diamyc? ¥(s) : s € Tand €(ct|y(s)) < mg+2 ¢ < 2Mg(14+Mg)log (14 2) +2D
€

where Mg is the symmetrization constant provided by Lemma 2.2.

Proof. Suppose that G,H € y(I) are points for which ¢(a|G),¢(a|H) < my + 2. Fix a free basis
A={ey,...,e;} of F with ¢; = a and let (R, g) be the marked rose with petals labeled by elements
of A. Let € = %k denote the finite set of candidates of R. For each 0 < ¢ < 1/2, let Rz € X denote
the marked metric graph (R, g,/s) in which the petal labeled a has ¢(ot|Rs) = o and every other
petal has length (1 — o)/(r — 1). Notice that € is the set of candidates for each metric graph Rg,
and that we moreover have £(z|[Rs) > (1—0)/(r— 1) > 5 for every candidate z € € except for c.
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We henceforth suppose our parameter satisfies ¢ < my. By definition of my we thus have
£(aly(t))/t(a|Rs) > =& for all t € I; hence dx (Rs,Y) > log(mg /o). Now consider the maximum
length

M =max{{(z|G),L(z|H)}
€€
achieved by any candidate at the two points G, H. If ¢ is additionally chosen so that ¢ < mg /(2rM),
then we see that for all candidates o # z € € we have

UalG) _ma M _ (EG) i)

UalRo) = 0 ~ 1~ (ARs) " U(alRo)

It now follows from Proposition 2.1 that

m
>—2>
(o2

dy(Rs,G) =log Z(%‘RG))
mg+2
) <log ( ) .

log< ) <dx(Rs,7) <

Lo
dx(Rs,H) =log (|Rs)
Choose a directed geodesic p : [0,K] — X from Ry to G, where K = dy (R, G). Since e?x(Ro:0) —
% and p is a geodesic for the Lipschitz metric, it follows that £(a|p (7)) = o€ for all ¢t € [0,K].

Hence if we define G’ = p (log(mg/0)) (so that £(ct|G') = mg), we see that
dx(Ro,G') =log ("2) < dx(Ro,y) and dx(G',G) = log (‘%G)) <log(1+2). (5

Defining H' (on the geodesic from Rs to H) similarly, we obtain analogous inequalities for H'. By
the strongly contracting condition, the first inequality of (5) shows that diamx (7,(G’) Umy(Rs)) and
similarly diamy (7,(H') U mty(Rs)) are both bounded by D. Whence

diamy (7,(G') Umy(H')) < 2D. (6)

On the other hand, the second inequality of (5) shows G',H' € X/, where €' = ¢/(1+2¢~"). There-
fore, we also have

dx(G,G), dx(H,H") < Mg log(1+2).

Choose any points Gy € m,(G’) and Hy € m,(H'). Since these are by definition closest points,
dx (G',Go) and dx (H', Hy) can be at most log (1+ %) By the triangle inequality, it follows that

dx(G.Gy), dx(H,Ho) < (1+Mg)log (1+2).

Symmetrizing (Lemma 2.2) to obtain bounds on diamy (G, Gy) and diam« (H,Hp) and combining
with (6), another application of the triangle inequality now gives

diamy (G, H) < 2M¢(1+Mg)log (1+ 2) +2D. O

Since each primitive loop & in the projection wp ¢ (G;) of G; = ¥(¢) satisfies £(a|G;) < mg +2
by definition, Lemma 5.2 shows that the composition

y(1) 25 pL 21 (1)

moves points a uniformly bounded distance depending only on D and €. That is, for each thick
strongly contracting geodesic y: I — X, the composition 7y, o py gives a coarse retraction from
PL onto the image 7p (y(I)) of y. Combining this with the fact that p, is coarsely Lipschitz
(Lemma 4.3) now easily implies our main result of this section:

13



Proof of Proposition 5.1. We write G, = y(¢) fort €I, and fix s,7 € I with s <. Since the projection
7wy : X — F is coarsely 80-Lipschitz [DT, Lemma 2.9] and 7 is a geodesic, we immediately have
d5(Gy,G;) < 80|s—1t|+ 80 for all s,z € I. Thus it remains to bound dg(Gy,G;) from below. Let
acPLbe any primitive conjugacy class represented by an embedded loop in Gy (i.e., any class for
which |Gy — Gy is an embedding). Then o € w5(G,) by definition of the projection g : X — F.
Similarly choose B € PL" represented by an embedded loop in G;, so that B € 75(G,).

Notice that £(t|Gs) < 1 and £(B|G;) < 1 (since the loops are embedded). Thus Lemma 5.2 gives
a constant D¢, depending only on € and D, such that

diamy ({ G} Upy(a))
diamy ({G, } Upz(ﬁ)) } =D

Then by Lemma 4.3 we have

|s —t| = dx(Gs, G;)
< diamy ({Gs} UPV(O‘)) + diamy (Py(a) Upy(ﬁ)) + diamy (Py(ﬁ) U {Gz})
<2D¢+D-dps(a,B)+D <2D:+2D-ds(ct,f)+ D
<2D-dg(G;s,G;) +2De + D.

This completes the proof. O

6 Backing into thickness

In light of Proposition 5.1, to prove our main result Theorem 1.3 it now suffices to show that every
nondegenerate strongly contracting geodesic ¥ lives in some definite thick part of X. We begin by
showing that the portion of ¥ where the lengths of primitive loops are minimized is contained in
some definite thick part of X. Arguments in §§7-8 will then show that all of 7 must be thick.

First, recall that L denotes the coarse Lipschitz constant of the projection wps: X — PL. In
particular, dp s (o, B) < L for any a, B € PL with £(a|G),4(B|G) < 2 for some G € X.

Proposition 6.1. Let v: I — X be a D—strongly contracting geodesic and suppose there exist 0y €
PL and sy € 1 such that sy € py(0) and £(0p|Y(so)) < 2. If diamx (¥(t0),¥(s0)) > 8DL for some
to < 8o, then

YN (—ee,50]) C Xg,
for some thickness constant & > 0 depending only on D.

Proof. Suppose that we are given s; € I and oy € PL" such that s; € py(0y) and £(og|y(sy)) < 2.
Suppose additionally there exists #; < s with diamy (y(#),¥(sx)) > 8DL (note that this holds for
k = 0). We claim there exists an earlier time 53, < s; and a conjugacy class o € PLC again
satisfying the conditions sy € Py(01) and £(0y1|Y(sk+1)) < 2 together with the inequalities

4DL < diamy (¥(sgi1),7(sx)) < D(L+8DL?>+1), and

3L < dpe(ogop) < L+8DL2. )

Indeed, by continuity of ¥ there exists s}, 41 <5k with

diamx(x§(+1,xk) = 8D|_7
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where x; = ¥(s) and xj_ | = ¥(s ;). Since yis a directed geodesic, there exists a candidate oy ;1 on
X, such that £(0g1|y(sj, +1)) = €'€(041]x; ) for all £ > 0. Therefore, if we choose any time
Sk+1 € Py(041) realizing the minimal length mg,, ,, we may be assured that si; 1 occurs to the left of
S;H—l' Letting x4 = ’}/(Sk+1) we thus find that s < S;<+1 < s, and Z(ak—}—l \xk_H) < é(akﬂ |x;(+1) <2,
as desired.

To prove the claim it remains to verify the inequalities in (7). First note that diamy (xg41,x%) >
%diamx(x§C +1,Xk) > 4DL by the triangle inequality and the fact that 7 is a directed geodesic. Hence,
using Lemma 4.3 we see that

| P
dp g (Os1,04) > B(dlamx(xk+1;xk) —D) >3L.
On the other hand, we may use the fact that £( oy |xx), £(0411|x),;) < 2 to conclude that
dpg (Gir, 0%) < dpe (Key ) < Ldao(xpy ) +L < 8DL* + L.
Another application of Lemma 4.3 then yields,

diamx(xk+1,xk) <D- dg)L (ak+17 (Xk) +D
<D(L+8DL?)+D,

which completes the proof of the claim.
Now let E := 2D(L+8DL? + 1) and note that E > 8DL by (7). Set

—-E 2E

g =e and g=e
We claim that y([si41,5¢]) C Xg,. First observe that if x; ¢ X, , then we may find 8 € PL0 with
£(B|xx) < €. In this case (7) would give (S |x;+1) < 1 showing that f is contained in both projec-
tions 7p 2 (xx) and wp ; (xx11). However, by (7), this contradicts the fact that these diameter L sets
contain o and o, respectively. Whence x; € X, and similarly x;; € X¢,. Another application
of (7) then shows

UBIY(1)) > £(Blx)e M > ereF > g

for all 7 € [sy41,5k]. Thus ¥([sir1,5]) C Xg, as claimed.

Let us now prove the proposition. If I_ = —eo, the above shows that we may find an infinite
sequence of times sg > s > --- tending to —eo such that y([si11,s:]) C Xg, for each i > 0. Thus the
proposition holds in this case. Otherwise I_ # —eo and we may recursively construct a sequence
s > --- > s terminating at a time s € I for which diamy (y(I-),¥(sx)) < 8DL and y(s;) € X,
(since k > 1 by the hypotheses of the proposition). But this implies £(B|y(¢)) > €e~3P" for every
conjugacy class f and time ¢ € [I_,s]. Thus y([I_,sx]) C Xg, as well and the proposition holds. [

7 Nondegeneracy and thickness

We have now developed enough tools to both establish nondegeneracy for typical strongly con-
tracting geodesics and to show that each nondegenerate strongly contracting geodesic has a uni-
formly thick initial segment. We first establish Lemma 7.1, which implies that strongly contracting
geodesics are automatically nondegenerate except possibly in the case of a short geodesic with a
very thin left endpoint:
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Lemma 7.1. Suppose that y: 1 — X is a D—strongly contracting geodesic. Then either of the fol-
lowing conditions imply that 7y is nondegenerate:

e |I| > A for some constant A depending only on D and the injectivity radius of y(I1_).
o 1 is an infinite length interval

Proof. Let v: I — X be a D-strongly contracting geodesic. First suppose that ¥ is not infinite
to the left (i.e., that I_ # —oco) and let € be the injectivity radius of y(I_). Take A = M 18DL,
where £ = ge~18PL. We claim that 7 is nondegenerate provided [I| > A; this will establish the first
item of the lemma. Indeed, consider the points H = y(I_) and G = y(I_ +A). If G ¢ X, then
we automatically have d(G,H) > log(g/€') > 18DL by definition of the Lipschitz metric, and
otherwise G € X so that dy(G,H) > dy(H,G) /Mg = 18DL by Lemma 2.2.

To prove the second item of the lemma, it remains to consider the case I_ = —oo. Choose 59 € I
arbitrarily and let o € PL be a primitive conjugacy class with £(ct|y(s9)) < 2 (e.g., a candidate).
Next choose a time s € py(«) and note that £(c|y(s)) < 2. The fact that I_ = —co ensures we may

find t < s such that diamy (H, G) > Mg, 18DL, where H = ¥(t), G = ¥(s) and & > 0 is the thickness
constant from Proposition 6.1. Then y(IN (—eo,s]) lies in Xg, by Proposition 6.1, and so we may
conclude dx (G,H) > diamy (H,G)/Mg, > 18DL by Lemma 2.2. O

Our next task is to show that nondegeneracy implies that the hypotheses of Proposition 6.1 are
satisfied, and consequently that the initial portion of any such geodesic is uniformly thick. The
following lemma will aid in this endeavor.

Lemma 7.2. Let y:1— X be a D—strongly contracting geodesic in X and suppose that there are o, €
PLO and 5,1, € X such that s < t; and (a|y(t1)) < e Pl(a|y(s)). Then o has its length minimized
to the right of s € 1, i.e. s <r forall r € py(a).

Proof. Set H=y(t;) and J =IN[s—D,s]. Then o can stretch by at most ¢ along J (since 7y is a
directed geodesic), and so for each j € J we have

Ualy(j)) = e Pe(aly(s)) > ((alH).

Let r € py() be any time minimizing the length of . Fix a marked rose R with a petal corre-
sponding to the conjugacy class o.. For 0 < 0 < 1, let R; denote the metric graph obtained from
R by setting the length of the a—petal to ¢ and the length of each other petal to %. As in the
proof of Lemma 4.3, ¢ can be taken sufficiently small so that « is the candidate of Ry realizing the
distance from Ry to H. Consequently, if [Rs, H| denotes a directed geodesic from R to H, then a
also realizes the distance from G to H for each point G € [Rs, H]. It now follows that for each j € J

and G € [Rs,H| we have

ax(Gr(h) = og (TN ) > t0g (550 ) = ax(G.h).

In particular the entire projection 7y([Rs, H]) is disjoint from the interval y(J).

Taking o smaller if necessary, we may also assume that ¢ realizes the distance from R to y(r).
Since 4(ct|y(r)) = mg is the minimal length of ¢, this forces y(r) € my(Rs). Whence r cannot lie
in J by the above. Now, if / =IN[s— D, s] contains the initial endpoint I_, this observation forces
r > s as desired. Otherwise J is the length—D interval J = [s — D, s|, and we may apply Lemma 3.3
to conclude that r € m,([Rs,H]) is contained in ¥(IN (s,o0)). Thus r > s and the lemma holds. [J
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Corollary 7.3. Given D there exists €y > 0 with the following property. If v: 1 — X a nondegenerate
D-strongly contracting geodesic, then there exists so € I such that y(IN (—eo,s0]) C Xg,.

Proof. By definition, nondegeneracy implies that there are times 7o < #; in I so that dx (y(#1), y(t0)) >
18DL. Letting s € I be such that 7y < s < #; and d(¥(r1),Y(s)) = 2D, the triangle inequality then
gives

dx (¥(s),¥(to)) = dx(¥(t1),¥(to)) —2D > 16DL.

Let o € PLY denote the candidate of y(r;) that realizes the distance to y(s), i.e. £(a|y(r)) =
e 2PU(aly(s)). If we choose any time s € Py(0) minimizing £(ct|y(-)), then s < so by Lemma 7.2.
Since £(a|y(f1)) < 2, we have that £(cot|y(so)) < 2. Finally, since 7y < s < s¢ and ¥ is a directed
geodesic, we find that

16DL < dx(¥(s),7(to)) < dxc(¥(s),7(s0)) +dox (¥(s0), ¥(t0))
<dx(¥(t0), ¥(s0)) +dx(¥(s0),¥(t0)) < 2diamx (¥(to), ¥(s0))-

Therefore diamqy (Y(1), ¥(so)) > 8DL and we may apply Proposition 6.1 to complete the proof. [J

Finally, we show that if a strongly contracting geodesic in X has its initial portion contained in
some definite thick part of X, then the entire geodesic remains uniformly thick.

Lemma 7.4. Suppose that €y,D > 0 and that v: 1 — X is a D-strongly contracting geodesic with
Y(IN (—o0,b]) C X, for some b € L. Then y(X) C X¢, for € = Le*P".

Proof. Write G, = y(t) for t € I. Without loss of generality we assume & < 1. It suffices to prove
mg > € where a is an arbitrary primitive loop a. Note that mq > 0 and py(a) # 0 by Lemma 4.3. If
mg > €/2 then we are done. Otherwise we choose 7 € Py(er) and note that /(a|G,, ) < &/2. Since
£(a|Gy) is continuous in ¢ and at least & for all ¢ < b, there is some s < f¢ so that £(ot|Gy) = &.

Let B be a candidate of Gy such that {(B|G,y) = €'4(B|G;) for all r > 0. If r € p,(B) is any
time minimizing the length of 3, we then necessarily have r <s. Since & and 8 each have length
less than 2 at G, € X, it follows that dp ; (o, ) < L. Lemma 4.3 then implies that

diamyc (G, Gy, ) < D-dpr(a,B)+D < DL+D < 2DL.
Since 7 is a directed geodesic, dy (G, Gs) < dyx (G, Gy, ) and so

dI)C(GtomGs) < dDC(Gta7Gr) +di)C(Gracs)
<dx(Gy,,Gy) +dx(Gy,Gy,) <4DL.

: {(a|Gy) 4DL
In particular, G <e

, and so we find mg > goe *PL as desired. O

tor

8 Characterizing strongly contracting geodesics

We now combine the previous results to complete the proof of our main theorem:

Theorem 1.3 (Strongly contracting geodesics make progress in F). For each D > 0 there exist
constants K > 1 and € > 0 with the following property. If v: 1 — X is a nondegenerate D—strongly
contracting geodesic, then y(1) lies in the e-thick part X¢ and g oy: 1 = F is a K—quasigeodesic.
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Proof. Suppose y: I — X is nondegenerate and D—strongly contracting. By nondegeneracy, Corol-
lary 7.3 and Lemma 7.4 together give y(I) C X for some € = €(D) > 0. Proposition 5.1 then
provides a constant K = K(D, ¢) for which 75 o y: I — F is a K—quasigeodesic. O

We next discuss the converse Theorem 1.2 and explain how the Bestvina—Feighn result [BF2,
Corollary 7.3] on folding lines that make definite progress in § may be promoted to arbitrary
geodesics. While this promotion essentially follows from our earlier work [DT], we have opted
to include a proof here for completeness. In this discussion we assume the reader is familiar with
folding paths and standard geodesics in X; for background on this see [FM, BF2, DT].

Theorem 1.2 (Progressing geodesics are strongly contracting). Let ¥: I — X be a geodesic whose
projection to F is a K—quasigeodesic. Then there exists D > 0 depending only on K (and the injec-
tivity radius of the terminal endpoint of ) such that 'y is D—strongly contracting in X.

Proof. Lety: I— X be an arbitrary directed geodesic such that 75 oy: I — F is a K—quasigeodesic,
and let H,H' € X be metric graphs satisfying d (H,H’) < d.(H,Y). Lemma 4.3 of [DT] shows that
¥(I) C X, for some € > 0 depending only on K (and the injectivity radius of y(I;) when I # +o0).
Using the coarse symmetry of dy in X¢ (Lemma 2.2), one may easily show that m,(G) is never
empty. Hence to prove the theorem it suffices to choose p € my(H) and p’ € m,(H') arbitrarily and
bound diam« (p, p’) in terms of K and €.

Choose a finite subinterval J = [a,b] C I with p, p" € y(J) and let ¥ = 7y|;. Notice that p € 7y(H)
and p’ € my(H'). If p: J — X is any standard geodesic from ¥(a) to ¥(b), then Theorem 4.1 of
[DT] ensures 5o p is a K' = K'(K,€)—quasigeodesic and that p(J) C X, where €’ = €'(K, €).
Consequently, Proposition 7.2 of [BF2] and Lemma 4.11 of [DT] (see also [DT, Proposition 2.11]
and the following remark) immediately show that p is D’ = D/(K, €)—strongly contracting.

Theorem 4.1 of [DT] additionally shows that 7(J) and p(J) have symmetric Hausdorff distance
at most A’ = A’(K, ). Consequently, we claim that there exists B’ = B'(A’, D', &’) such that

diamy (17(G) U, (G)) < B’ ®)

for all G € X. To see this, choose Yy € 7y(G) arbitrarily and let Y € 7, (¥y) be a closest point
projection of ¥y to p. Noting that dy(G,Yy) < dx(G,p) +A’ and dx(¥y,Y) < A’, we see that
dy(G,Y) < dx(G,p)+2A’. Thus, as in the proof of Lemma 5.2, we may find Y’ € X along a
directed geodesic from G to Y such that dy(G,Y') < dy(G,p) and dy(Y',Y) < 2A’. The strong
contraction property for p now gives diamx (7, (Y') U, (G)) < D', and the fact that ¥ is &'-thick
and near Y’ bounds diamy ({Y} U7, (Y’)) in terms of € and A’. Hence diamy ({Y} U 7, (G)) is
bounded and, since diamy (Y,Yy) < A’, the claimed inequality (8) holds.
We next claim that 7, is coarsely 1-Lipschitz. That is, there exists C' = C'(D’, €’) such that

diamy (7, (G1) Uy (G2)) < diamy(G1,Ga) +C' 9)

for all G, G, € X. Indeed, first consider the case that there exists a directed geodesic [Gy, G>] with
dx(Y,p) > D' for all Y € [G1,G,). Dividing [Gy,G,] into n = [dx(G1,G2)/D’] subgeodesics of
equal length (at most D’) and applying strong contraction to each, one finds that

dx(G1,G2)

diamx(np (Gl) Ump (Gz)) <nD' < ( 7] + 1) D' < diamx(G1,G2) +D'.

Next consider the case that dx (G;,p) < D' for each i = 1,2. Choosing G/ € m,(G;) arbitrarily,
Lemma 2.2 and the thickness of G/ € X/ together bound diamy (G;, G}) in terms of €’ and D'. Thus
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the difference |diamy (G}, G,) — diamx (G, G>)| is bounded in terms of €’ and D'. The general case
now follows by subdividing an arbitrary directed geodesic [G}, G2| into at most three subgeodesics
that each fall under the cases considered above.

To complete the proof of the theorem, note that since dy (H,p) > dy(H,¥) —A’ we can find a
point Hy € X (say on a geodesic from H to H') such that dy (H,Hy) < dx.(H,p) and dx (Hy,H') <A’.
Then diamx (7, (H) U, (Hp)) < D' by strong contraction and diamx (7, (Ho) U7y (H')) < A"+’
by (9). Combining these with (8) gives the desired bound on diam (p, p’). O

9 Contracting subgroups of Out(IF)

In this section we apply Theorems 1.2-1.3 to characterize the finitely generated subgroups of Out(IF)
that quasi-isometrically embed into &F. Recall that a subgroup I' < Out(IF) is said to be contracting
in X if there exists R € X and D > 0 such that any two points in the orbit I"- R are joined by a D—
strongly contracting geodesic. Using Theorems 1.2 and 1.3 and [DT, Theorem 4.1], one may show
that this definition is in fact equivalent to the following stronger condition: for each R € X there
exists D > 0 such that every directed geodesic between points of I"- R is D—strongly contracting;
alternately, under the hypothesis of Theorem 1.7, this follows from the proof below.

Theorem 1.7 (Contracting orbits). Suppose that T' < Out(F) is finitely generated and that the orbit
map I = X is a quasi-isometric embedding. Then I is contracting in X if and only if the orbit map
' — T to the free factor complex is a quasi-isometric embedding.

Proof. The “if” direction was essentially obtained by the authors in [DT]: Supposing that I" ad-
mits an orbit map into F that is a quasi-isometric embedding, Theorem 5.4 of [DT] implies that
for each R € X the orbit I' - R is A—quasiconvex for some A > 0. This means that any directed
geodesic ¥: I — X between orbit points lies in the symmetric A—neighborhood of I'-R. Since
I' — ¥ is a quasi-isometric embedding, it follows easily that the projection 750 7y: I — JF is a pa-
rameterized quasigeodesic with uniform constants. Therefore ¥ is uniformly strongly contracting by
Theorem 1.2.

For the “only if” direction, suppose that I" is contracting with respect to R € X and D > 0 and
that the assignment g — g - R defines a C—quasi-isometric embedding. Choose g,h € I' and let
y: [a,b] — X be a D—strongly contracting geodesic from g-R to h-R. Lemma 7.4 then ensures
¥([a,b]) C X¢ for some € > 0 depending on D and the injectivity radius of R, and so Proposition 5.1
implies that 75 o ¥ is a K = K(D, €)—quasigeodesic. Since dr(g,h) and d5(gms(R),hns(R)) both
coarsely agree with dx (y(a),y(b)) =dx(g-R,h-R), there is a constant E = E(K,C) > 1 such that

1
Edr(gah) —E< diam&"(g”?(R)ahﬂ?(R)) < Ed[‘(g,h) +E

Thus the assignment g — g- A, where A € w5 (R), defines a quasi-isometric embedding ' — F. [
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