RANDOM VEERING TRIANGULATIONS ARE NOT GEOMETRIC

DAVID FUTER, SAMUEL J. TAYLOR, AND WILLIAM WORDEN

ABSTRACT. Every pseudo-Anosov mapping class ¢ defines an associated veering triangu-
lation 7, of a punctured mapping torus. We show that generically, 7, is not geometric.
Here, the word “generic” can be taken either with respect to random walks in mapping
class groups or with respect to counting geodesics in moduli space. Tools in the proof in-
clude Teichmiiller theory, the Ending Lamination Theorem, study of the Thurston norm,
and rigorous computation.

1. INTRODUCTION

In 2011, Agol introduced the notion of a layered veering triangulation for certain hyper-
bolic mapping tori [1]. Given a hyperbolic surface S and a pseudo-Anosov homeomorphism
¢: S — S, the mapping torus M, with fiber S and monodromy ¢ is always hyperbolic.
Drilling out the singularities of the ¢-invariant foliations on S produces a punctured sur-
face S and a restricted pseudo-Anosov map ¢ = ¢|g, whose mapping torus M = My
is a surgery parent of M,. Agol’s construction uses splitting sequences of train tracks to
produce an ideal triangulation of M (that is, a decomposition of McP into simplices whose
vertices have been removed) called the veering triangulation associated to .

In Section 2.5, we give a detailed description of the veering triangulation 7 = 7, from an
alternate point of view, introduced by Guéritaud [22]. For now, we mention that 7 has very
strong combinatorial and topological properties. The triangulation 7 is layered, meaning
that every edge is isotopic to an essential arc on the punctured fiber S. The triangulation 7
contains a product region ¥ x I for every large-distance subsurface ¥ ¢ S [40]. Finally, 7,
decorated with layering data is a complete invariant of the conjugacy class [¢] = Mod(S) [1,
Corollary 4.3], which yields a fast practical solution to the conjugacy problem for pseudo-
Anosovs [4, 34]. Given these combinatorial properties, it is natural to ask whether 7 also
has desirable geometric properties in the complete hyperbolic metric on ]\zp.

Since every edge of 7 is homotopically non-trivial, it is possible to homotope every ideal
tetrahedron t — 7 to a straight simplex ¥, whose lift to the universal cover H? is the convex
hull of 4 points on dH3. This homotopy is natural, in the sense that it extends continuously
to all of 7. The triangulation 7 is called geometric if the straightening homotopy can
be accomphshed by isotopy. Equivalently, 7 is called geometric if the complete hyperbolic
structure on M can be obtained by taking positively oriented tetrahedra in H? in bijection
with the 3— sunphces of 7, and gluing them by isometry in the combinatorial pattern of 7.

Agol asked whether veering triangulations are always geometric [1, Section 5]. Hodgson,
Issa, and Segerman showed that the answer can be negative [25], by finding a veering
triangulation with 13 tetrahedra, in which one tetrahedron is negatively oriented. (In the
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F1cure 1. For a simple random walk in Mod(.S), with generators shown in
Figure 4, the probability that the veering triangulation is geometric decays
exponentially with the length of the walk. Both graphs show the same data,
with a linear plot on the left and a log-linear plot on the right. Each dot
represents several thousand mapping classes. Figure from Worden [49].

straightening homotopy, two opposite edges of this tetrahedron must pass through each
other before the tetrahedron can become straight.) In describing their example, they write,

It seems unlikely that a counterexample would have been found without a
computer search, and it is still something of a mystery why veering triangu-
lations are so frequently geometric.

It is now clear that geometric veering triangulations are exceedingly rare. This was shown
experimentally by Worden [49], who tested over 800,000 examples on a high-performance
computing cluster. Given a hyperbolic surface S of complexity £(S) = 2, he found that for
randomly sampled long words in Mod(S), the probability of the associated veering trian-
gulation being geometric decays exponentially with the length of the word. See Figure 1.

The main result of this paper is a proof that the pattern of Figure 1 is indeed correct.
We prove this in two separate probabilisitic regimes: first, with respect to random walks
on Mod(S) (Theorem 1.1), and second, with respect to counting closed geodesics in moduli
space (Theorem 1.2).

We use the symbol X, ,, to denote the surface of genus g with n punctures. Every surface
S mentioned below is presumed homeomorphic to some Y, ,,; in particular, S is presumed
connected and orientable. We define the complexity £(3,,) = 3g — 3 + n.

For a surface S as above, we show that with overwhelming probability, a random walk on
Mod(S) produces a pseudo-Anosov mapping class with non-geometric veering triangulation.

Theorem 1.1. Let S be a surface of complexity £(S) = 2, and consider a simple random
walk on Mod(S) with respect to any finite generating set. Then, for almost every infinite
sample path (py,), there is a positive integer ng such that for all n = ng, the mapping class
pn 18 pseudo-Anosov and the veering triangulation of ]\Zf% s non-geometric.

In fact, the same result holds true for sample paths defined by a more general probability
measure. See Corollary 1.5 for a precise statement.
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We remark that every pseudo-Anosov on a surface satisfying £(S) < 2 has geometric
veering triangulation. (See Theorem 1.3 and the ensuing discussion.) Thus Theorem 1.1
applies to the largest possible collection of surfaces.

We will prove Theorem 1.1 by combining two separate, logically independent ingredients.
The first ingredient is Theorem 1.3: when £(S) > 2, there is at least one principal mapping
class on S whose associated veering triangulation is non-geometric. A pseudo-Anosov map-
ping class ¢ € Mod(S) is called principal if its invariant Teichmiiller geodesic lies in the
principal stratum. (See Section 2.1 for a discussion of strata and Teichmiiller geodesics.)
Equivalently, ¢ is principal if its stable foliation has 3—prong singularities at interior points
of S and 1-prong singularities at punctures of S. By a theorem of Gadre and Maher [20],
principal pseudo-Anosovs are generic from the point of view of random walks in Mod(S).

The second ingredient is a convergence result, Theorem 1.4, which shows that every
principal mapping class occurs in a suitable sense as the limit of a random process, where
the combinatorics of the triangulation and the geometry of the mapping torus both converge
to the desired limit. This result works for any hyperbolic surface. In particular, given a
principal mapping class ¢ with non-geometric veering triangulation, almost every sample
path of a random walk also has non-geometric veering triangulation.

By replacing random walk techniques with work of Hamenstédt [24] and Eskin-Mirzakhani
[13], we prove our second result concerning the scarcity of geometric veering triangulations.
For L > 0, let G(L) be the finite set of conjugacy classes of pseudo-Anosov mapping classes
in Mod(S) whose Teichmiiller translation length is at most L. Equivalently, G(L) is the set
of all conjugacy classes of pseudo-Anosovs whose dilatation is at most e”. Recall that the
veering triangulation 7, of the punctured mapping torus M«p only depends on the conjugacy
class ¢, i.e. on an element of G(L) for some L.

Theorem 1.2. Let S be a surface with complexity £(S) = 2. Then

lim 1 '{[cp] € G(L) : the veering triangulation of ]\oicp is not geometm‘c}‘ = 1.
L—w |G(L)]

Just as with Theorem 1.1, the proof of Theorem 1.2 combines an existence statement with
a convergence statement. The existence statement is again Theorem 1.3: there is a principal
mapping class ¢ € Mod(S) whose associated veering triangulation is non-geometric. The
convergence statement roughly says that the axis of a typical element of G(L) fellow-travels
the axis of ¢ for a very long distance. This statement, combined with ingredients from the
proof of Theorem 1.4, implies the desired result. We refer to Section 7 for more details.

1.1. Existence of non-geometric triangulations. As described above, we begin the
proof of Theorems 1.1 and 1.2 by finding some pseudo-Anosov element of Mod(.S) whose
associated veering triangulation is non-geometric. In fact, we show the following.

Theorem 1.3. Let S = X, be a hyperbolic surface. Then £(S) = 2 if and only if there
exists a principal pseudo-Anosov p € Mod(S) such that the associated veering triangulation

of the mapping torus M, is non-geometric.

The “if” direction of Theorem 1.3 is previously known. The only (connected, orientable)
hyperbolic surfaces with £(S) < 2 are X3, X0 4, and ;. Akiyoshi [2] and Lackenby [30]
proved that all pseudo-Anosov mapping classes on ¥ ; and ¥g4 have geometric veering
triangulations. Guéritaud gave a direct argument for the same conclusion [21]. Meanwhile,
Mod(Xo,3) is finite, hence ¥ 3 has no pseudo-Anosov mapping classes at all. Thus the new
content of Theorem 1.3 is the “only if” direction of the statement.
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In the proof of Theorem 1.3, we characterize geometric triangulations using shape pa-
rameters. Given a tetrahedron t ¢ M , endowed with an ordering of its ideal vertices, we
lift ¢ to H? and define the shape parameter z to be the cross-ratio of the 4 vertices on
the sphere at infinity. The cross-ratio z¢ determines the isometry type of the straightened
tetrahedron t' homotopic to t. In particular, t' is positively oriented if and only if Im(z¢) > 0.
Shape parameters can be computed using Snappy [10], making it possible to test whether
a particular triangulation 7 is geometric.

To prove the “only if” direction of Theorem 1.3 for a finite list of fiber surfaces, we
essentially follow the method of Hodgson—Issa—Segerman [25]. We find a suitable mapping
class ¢ € Mod(S) using a brute-force search, and use flipper [4] to certify that ¢ is a
principal pseudo-Anosov. Then, we use rigorous interval arithmetic in Snappy, assisted by
HIKMOT [27], to certify that the shape parameter of each t — 7, lies inside a small box in C.
One of these boxes has strictly negative imaginary part, implying that 7, is non-geometric.
See Section 8 for details.

To extend our knowledge from finitely many surfaces to all the surfaces in Theorem 1.3,
we exploit the fact that many fibered 3—manifolds fiber in infinitely many ways, organized
via the Thurston norm. (See Section 9 for definitions and further details). All the fibers that
appear in a single fibered cone of the Thurston norm ball have associated monodromies that
induce the same veering triangulation of the same drilled manifold M. As a consequence,
we can prove Theorem 1.3 for all g > 1, n > 1 (excluding ¥ ), using only two explicit
examples. That is, we find two fibered manifolds with principal pseudo-Anosovs whose
veering triangulations are non-geometric, and show that every such surface X, ,,, appears
as (a cover of) a fiber for at least one of our two examples. Similar tricks handle the other
surfaces with £(5) > 2.

1.2. Convergence to any principal pseudo-Anosov. The following convergence the-
orem is the main technical result of this paper. Although the statement here is for the
random walk model, it is derived from a more general result (Proposition 6.2) that also
applies to counting geodesics in moduli space.

Consider a probability measure g on Mod(S). We use the notation (Supp(u))+ to denote
the semigroup generated by the support of u. Say that (Supp(u))+ is non-elementary
if it contains at least two pseudo-Anosov elements with distinct axes. In the setting of a
simple random walk, p is the uniform probability measure on a symmetric generating set,
hence (Supp(u))+ = Mod(S) is non-elementary.

Theorem 1.4. Let S be a hyperbolic surface, and fix a principal pseudo-Anosov ¢ €
Mod(S). Lift the veering triangulation 7, of the mapping torus Mw to a triangulation T of
the infinite cyclic cover N@, corresponding to the fiber. Let K < T be any finite, connected
sub-complez.

Let p1 be a probability distribution on Mod(S) with finite first moment, such that (Supp(u))+
is non-elementary and contains ¢. Then, for almost every sample path w = (wy,), there is
a positive integer ng such that the following hold:

e For all n = ng, wy s a principal pseudo-Anosov.

e For allm = ng, K embeds as a sub-complex of the veering triangulation 7, of the
mapping torus Mwn.

o For every tetrahedron t — K, the shape of t in Mwn converges to the shape of t in
]iﬁp as n — o0.
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The argument used to prove Theorem 1.4 can be summarized as follows. The first two
conclusions are proven by combining a result about fellow-traveling of sample paths in
Teichmiiller space (Theorem 3.1, due to Gadre-Maher [20]), together with Corollary 5.6.
Informally, Corollary 5.6 states that if appropriate quadratic differentials ¢; converge to
q, then their associated veering triangulations also converge, in the sense appearing in
Theorem 1.4. A more precise formulation of this result requires Guéritaud’s construction
of the veering triangulation (given in Section 2.5), and is postponed until Section 5. The
upshot is that if ¢ and ¥ are pseudo-Anosov homeomorphisms whose axes in Techmiiller
space fellow travel for sufficiently long, then their associated veering triangulations of ]\04@
and ]\O@, have large isomorphic subcomplexes.

The third conclusion of Theorem 1.4 follows by relating the convergence of the qua-
dratic differentials referenced above to the convergence of the hyperbolic structures on the
associated manifolds. The main tool for this is the Ending Lamination Theorem of Brock—
Canary—Minsky [39, 8] together with a strengthening by Leininger—Schleimer [31]. In short,
algebraic convergence of the surface group representations implies convergence in H? of the
ideal endpoints of the veering tetrahedra, which means that the shapes of these tetrahedra
converge as desired. The details are given in Section 6.

One particular consequence of Theorem 1.4 is the following statement.

Corollary 1.5. Let S be a hyperbolic surface. Let ¢ € Mod(S) be a principal pseudo-Anosov
¢ € Mod(S) whose veering triangulation T, is non-geometric.

Let p1 be a probability distribution on Mod(S) with finite first moment, such that (Supp(u))+
is non-elementary and contains ¢. Then, for almost every infinite sample path w = (wy),
there is a positive integer ng such that for all n = ng, the veering triangulation 7, is also
non-geometric.

Proof. Let K < 7 be (the lift to Nso of) a single tetrahedron t c 7, whose shape is neg-
atively oriented. Theorem 1.4 says that t also appears as a tetrahedron in 7, for n » 0.
Furthermore, the shape of t in Mwn converges to a negatively oriented limit as n — oo,
hence t has to be negatively oriented in Mwn for all n » 0. ]

Now, observe that Theorem 1.1 follows immediately by combining Theorem 1.3 with
Corollary 1.5. The proof of Theorem 1.2 follows a similar pattern, but replaces Corollary 1.5
with Corollary 7.2. See Section 7 for the full details.

1.3. Organization. Section 2 lays out definitions and background material from Teichmiiller
theory that will be needed in most of the subsequent arguments.

The proof of Theorem 1.4 spans Sections 3 to 6. We discus convergence of quadratic
differentials in Sections 3 and 4, convergence of veering triangulations in Section 5, and
finally convergence of geometric structures on 3-manifolds in Section 6. In Section 7, we
combine these ingredients with measure-theoretic tools to prove Theorem 1.2.

Finally, Sections 8 and 9 contain the proof of Theorem 1.3.

1.4. Acknowledgements. We thank Matthias Goerner, Yair Minsky, Saul Schleimer, and
Henry Segerman for a number of enlightening conversations. We thank Matthew Stover for
his comments on an early draft of this paper. We also thank Vaibhav Gadre for suggesting
that we prove Theorem 1.2 and Ilya Gekhtman for help with the details.
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2. BACKGROUND

The primary goal of this section is to survey some background material on Teichmiiller
theory, quadratic differentials, and measured foliations that will be heavily used in the
following few sections. The reader is referred to [7, 14, 15, 44] for additional details. After
this general background, we describe Guéritaud’s construction of veering triangulations
from quadratic differentials [22].

Throughout, we let S = ¥,,, be a surface of genus g with n punctures, and assume that
€(S) =39 —3+n = 1. This assumption implies that the Teichmiiller space 7 (S), which is
the space of complex structures on S up to isotopy, has real dimension 2£(S) > 2.

2.1. Quadratic differentials and strata. Let X € 7(S) be a complex structure on S.
A quadratic differential g on X is a tensor locally defined in coordinates by q = ¢(z)dz?
for some meromorphic function ¢(z). The function ¢(z) is required to be analytic inside
S, but is allowed to have simple poles at the punctures of S. The poles and zeros of ¢
are called singularities. By changing coordinates, we may assume that ¢ = dz? in the
neighborhood of a regular value of ¢, and ¢ = 2¥dz? in the neighborhood of a singularity
(k = —1 for simple poles, and k > 0 for zeros). These are called natural coordinates and
have the property that, away from singularities of ¢, the transition functions have the form
z — +z + ¢, for some complex number c. In particular, these transition functions preserve
the standard Euclidean metric on C.

A quadratic differential ¢ determines a pair of transverse measured foliations F,~ and .7-"; ,
called the horizontal and vertical foliations. In the above natural coordinates z = = + iy
away from the singularities, these foliations are given by setting y and x (respectively) to
be constant, with transverse measures |dy| and |dz|. Near a zero of order k (where a pole
corresponds to k = —1), each of the horizontal and vertical foliations has a (k + 2)—pronged
singularity.

Away from singularities, the transverse measures |dz| and |dy| induce a Euclidean metric
v/ |dz|? + |dy|? on S. The completion of this metric on S is known as the singular flat
metric corresponding to q. The area of S endowed with this metric is denoted |¢|, and
defines a norm on the space QD(S) of quadratic differentials on S. We denote by QD(S)
the set of elements in ¢ € QD(S) with ||g| = 1. The projection QD(S) — T(S) send-
ing a quadratic differential to its underlying complex structure can be identified with the
cotangent bundle of T(.9).

The principal stratum of quadratic differentials GOD(S) is the subset of QD(S) that
consists of all those quadratic differentials whose zeros are of order 1 (that is, 3—prong
singularities), and whose punctures are all simple poles (that is, 1-prong singularities). In
general, QD(S) decomposes into strata characterized by the order of the zeros and poles
of ¢(z). When S 2 ¥ 1, the principal stratum is open and dense, while the other strata
have positive codimension. (When S =~ ¥ 1, the principal stratum as previously defined is
empty. All nonzero quadratic differentials belong to a single stratum with a single 2—prong
singularity at the puncture.)

2.2. Teichmiiller geodesics and flows. We recall the construction of the Techmiiller
geodesic flow, denoted ®': QD' (S) — QD! (S). Given a unit-area quadratic differential
q € QD(S), and a number ¢ € R, the image ®*(q) is defined as follows. The underlying
complex structure is X; = X;(q), whose coordinate charts (away from singularities) are
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given by composing the natural coordinates for ¢ with the affine map

(2.1) <‘g 69t> .

Then, ®t(¢q) € QD(9) is the quadratic differential on X; given by dz? in these coordinates.
The flow ® plays an important role in Section 7.

For a fixed ¢ € QD'(S), the map R — T(S) defined by t — X;(q) is called a Teichmiiller
geodesic. Indeed, this line in 7(S) is a parametrized geodesic for the Teichmiiller metric
d7. By Teichmiiller’s theorem, any pair of points X,Y in 7(S) are joined by a unique
segment of a Teichmiiller geodesic, of length d7(X,Y’), which we often denote by [X,Y].
The map X = Xy — X; =Y defined by Equation (2.1) is called the Teichmiiller map. If
the quadratic differential ¢ associated to a Teichmiiller geodesic + is in the principal stratum
GAOD(S), then we will say that  is in the principal stratum of Teichmiiller space.

Consider now a pseudo-Anosov mapping class ¢ € Mod(S). Bers [5] showed that ¢
preserves a unique geodesic axis v, < T(S) consisting of points X € T(S) such that
dr(X,o(X)) = log A, where A, > 1 is the dilatation of ¢. By Equation (2.1), the geodesic
7, corresponds to a one-parameter family ¢; of quadratic differentials. The complex struc-
ture X; underlying ¢; is a point along -, and the projective classes of F*(¢;) and F~(¢)
are constant and equal to the invariant foliations of (. If some (hence every) ¢; lies in the
principal stratum GOD(S), we say that ¢ is a principal pseudo-Anosov.

2.3. Curves, foliations, and laminations. One can study how conformal structures
change along Teichmiiller geodesics by understanding what happens to the lengths of curves
and arcs. This perspective will be important in Section 3.

The arc and curve graph AC(S) is the graph whose vertices are isotopy classes of
essential simple closed curves and simple proper arcs in S. Here, essential means that the
curve or arc is not isotopic into a small neighborhood of a point or a puncture. Two vertices
are joined by an edge in AC(S) if they have disjoint representatives. If we follow the same
construction with vertices restricted to be closed curves on S, we obtain the curve graph
C(S) < AC(S), and similarly restricting to arcs yields the arc graph A(S) c AC(S).

We have already encountered measured foliations as the vertical and horizontal foliations
of a quadratic differential. A singular measured foliation F on S is a singular foliation
endowed with a transverse measure (see [15] for a more thorough definition). A Whitehead
move on a foliation F introduces or contracts a compact singular leaf on F, by either split-
ting a singularity into a pair of singularities joined by a compact leaf, or by contracting such
a leaf to collapse two singularities into one. In general, we let MF(S) denote Thurston’s
space of measured foliations of S, up to Whitehead equivalence. The space PMF(S) of
projective measured foliations is obtained from MJF(S) by identifying measures which
differ by scaling. If the underlying topological singular foliation of F supports a unique
projective measure class, then F is called uniquely ergodic. The subspace of uniquely
ergodic foliations is denoted UE(S) = PMF(S).

By the Uniformization theorem, every conformal structure X is realized by a unique
hyperbolic metric. A geodesic measured lamination on a hyperbolic surface X is a
non-empty collection of disjoint simple geodesics of X whose union is closed in X, along
with a transverse measure that is invariant as we flow along the geodesics. There is an exact
correspondence between measured laminations and measured foliations (up to Whitehead
equivalence). For a precise treatment of this correspondence between foliations and lami-
nations, see Levitt [32]. We denote the space of (geodesic) measured laminations on S by
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ML(S). In analogy with PMF(S), we define the space PML(S) of projective measured
laminations to be ML(S) modulo scaling of the measure. We will use the identifications
MEF(S) = ML(S) and PMF(S) = PML(S) without further comment.

Let C°(S) be the vertex set of C(S). Endowing every curve with the counting measure
embeds C°(S) as a subset of ML(S). By the above correspondence, we also have a natural
embedding C°(S) = MF(S). Thurston proved that the projectivization of C%(S) is dense
in both PMF(S) and PML(S). Furthermore, PMF(S) and PML(S) are compact [15].

A filling lamination is one that intersects every (essential) curve. The space of ending
laminations of S, denoted £L£(S), is obtained by restricting to the subset of ML(S)
consisting of filling laminations, and quotienting by forgetting the measures. This space
plays an important role in the theory of Kleinian groups; see Section 6.

2.4. Intersection pairing. Given two vertices a,b € ACY(S), the geometric intersection
number of a and b is defined to be the minimal number of intersections between any pair
of curves/arcs representing of a and b. In symbols,

i(a,b) = min |a n G|

( ) ae B€b| '8|

)

Thurston showed that this function extends uniquely to a continuous, homogeneous function
it MF(S) x MF(S) — R, also called the geometric intersection number. See [45, 7].

For a quadratic differential ¢, recall the vertical and horizontal measured foliations ]-";
and F_ . For a € AC(S), let hy(a) denote the (horizontal) length of a with respect to the
transverse measure on F,. Similarly, vy(a) denotes the (vertical) length of a with respect
to the transverse measure on F_~. Then the ¢! length of a with respect to the flat structure
induced by ¢ is £;(a) = hy(a) + v4(a). The intersection pairing i(-, ) satisfies

hg(a) = i(]—";,a) and  vg(a) =i(F, ,a).

Hence, Eé(') =i(F, ;) +i(F, ,-) extends to a continuous function on MF(S). In Section 5,
we will need the stronger observation that the pairing

it OD(S) x MF(S) — R.
given by (¢, F) — éé (F) is continuous in both parameters. This follows from the continuity
of the intersection pairing along with the fact that the assignment ¢ — (]:(;r Fq ) induces
a homeomorphism QD(S) — Fill> ¢ MF(S) x MF(S) [28], where Fill> = {(Fy,F) :
i(a, F1) + i(a, F2) > 0 for all a € C(9)}.

2.5. Veering triangulations. We close this background section with a description of
Guéritaud’s construction of veering triangulations [22]. Before giving the details, we note
that this was not the original construction. Agol’s original definition used periodic train
track splitting sequences associated to the invariant foliations of a pseudo-Anosov map [1].
A very quick combinatorial characterization of veering triangulations appears in [26]. See
also [18, 40] for other perspectives.

Let S be a surface, and let ¢ € QD(S) be a quadratic differential. Let S be the complement
of the singularities of q. Then F~ and F*, the horizontal and vertical foliations of ¢, have
singularities only at punctures of S. Recall that q defines a singular flat metric on S,
which restricts to an incomplete metric on S. A saddle connection of q is a geodesic
arc in the singular flat metric on S, with singularities at the endpoints but no singularities
in its interior. Every saddle connection naturally yields in arc in S. For the following
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F1GURE 2. Guéritaud’s construction: a maximal singularity-free rectangle
R defines an oriented ideal tetrahedron in S x R with a projection to R.

construction, we will assume that ¢ has no horizontal or vertical saddle connections; that
is, no saddle connection is a leaf of F*.

Consider an immersed rectangle R — S, with horizontal boundary mapped to F—,
vertical boundary mapped to FT, and interior mapped to S. Tt follows that the interior of
R must miss all singularities of F*. We call R a maximal (singularity-free) rectangle
of ¢ if it is maximal with respect to inclusion. Since there are no horizontal or vertical
saddle connections, every side of a maximal rectangle must meet exactly one puncture of S.
Observe that the punctures of S must lie at interior points of edges: if a puncture occurred
at a corner, R could be extended, violating maximality. See Figure 2 and [40, Figure 2].

Every maximal singularity-free rectangle R defines an oriented tetrahedron t with a map
t —> R, as follows. The vertices of t map to the four preimages of punctures in 0R. The
edges of t map to the six saddle connections spanned by these four vertices. The orientation
of t is determined by the convention that the more-vertical edge (whose endpoints are on
the horizontal edges of R) lies above the more-horizontal edge. See Figure 2.

Performing this construction for all maximal rectangles gives a countable collection of
tetrahedra whose vertices map to punctures of S. If tetrahedra t and ¢ contain the same
triple of saddle connections (equivalently, if maximal rectangles R and R’ intersect along
a sub-rectangle that meets three punctures), we glue t to t' along their shared face. By a
theorem of Guéritaud [22] (see also [40, Theorem 2.1]), the resulting 3—complex is an ideal
triangulation 7, of S x R:

Theorem 2.1 (Guéritaud). The complex of tetrahedra associated to maximal rectangles of
q is an ideal triangulation 7, of S x R. The maps of tetrahedra to their defining rectangles
piece together to form a fibration m: S x R — §.

We call 7, the veering triangulation associated to ¢q. Observe that a saddle connec-
tion of ¢ corresponds to an edge of 7, if and only if it spans a singularity-free rectangle.
This is because every singularity-free rectangle can be expanded to a maximal one.

Now, suppose that the quadratic differential ¢ corresponds to a pseudo-Anosov homeo-
morphism ¢: S — S. Restricting ¢ to the punctured surface S produces a pseudo-Anosov
@ S — S. Then ¢ permutes the (maximal) singularity-free rectangles of ¢, and therefore
acts simplicially and m-equivariantly on the ideal triangulation 7, of S x R. Consequently,
T4 projects to an ideal triangulation of the punctured mapping torus

My = My = S 0.1/t 1)~ (p(a), 0)-

The resulting veering triangulation of My is denoted 7.
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3. CONVERGENCE OF QUADRATIC DIFFERENTIALS

In this section, we establish a statement about convergence of quadratic differentials that
will form a key component for proving Theorem 1.4. This statement requires a handful of
definitions.

For a pair of geodesics ;1 and 72 in a metric space X, we say that v is a p—fellow
traveler with v, for distance D centered at = = ~1(tp) if we have dx(v1(t),72(t)) < p
whenever dx (v1(t),z) < D/2, for some unit speed parameterizations of v; and 7s.

For a given constant € > 0, let 7.(S) denote the set of all X € T(S) such that the
hyperbolic metric defined by X contains a closed geodesic shorter than €. The complement
K¢ :=T(S)\Tc(S) is called the e-thick part of Teichmiiller space. Let vy be a Teichmiiller
geodesic in a thick part of Teichmiiller space, and let X, Y € Teich(S) be two points on .
By Masur’s Criterion [36], the horizontal and vertical foliations of vy are uniquely ergodic.
Let B,(X) and B,.(Y) be balls of radius r» about X and Y, respectively. Define I',.(X,Y")
to be the set of all oriented geodesics 7 passing first through B, (X), then through B, (Y),
such that the vertical and horizontal foliations F* and F~ associated to 7 are uniquely
ergodic. By a result of Hubbard and Masur [28], any pair of uniquely ergodic foliations
in PMF(S) = 0T (S) determine a unique Teichmiiller geodesic, so we can also think of
I'(X,Y) as a subset of UE(S) x UE(S).

Theorem 3.1 (Gadre-Maher). Let g € Mod(S) be a principal pseudo-Anosov, with invari-
ant geodesic 4. Let pu be a probability distribution on Mod(S) with finite first moment, such
that (Supp(u))+ is non-elementary and contains g. Then there exists p > 0 such that, for
any D > 0 sufficiently large and for almost every bi-infinite sample path w = (wy,), there is a
positive integer N such that for n = N, wy, is a principal pseudo-Anosov whose Teichmiiller
geodesic v, is a p—fellow traveler with hyyy for distance D, for some hy, € Mod(S).

In the above theorem, the statement that w, is principal appears in the statement of
Gadre and Maher’s [20, Theorem 1.1]. The statement that ~,,, fellow travels with a translate
of 74 forms a key ingredient in Gadre and Maher’s proof that w, is principal. The claim that
the fellow-traveling distance D can be taken arbitrarily large follows from examining their
argument, but is not explicitly stated. Since our application (Corollary 3.4) requires fellow
traveling for longer and longer distances, we write down a unified proof of Theorem 3.1 by
reassembling many of the same tools used by Gadre and Maher. We remark that a similar
theorem was obtained independently by Baik—Gekhtman-Hamenstédt [3, Theorem 6.8].

Proof of Theorem 3.1. Fix a basepoint X on the Teichmiiller geodesic ,. By Kaimanovich—-
Masur [29], w, X and w_, X converge to distinct uniquely ergodic measured foliations F
and F; asn — 0. Let v, be the unique Teichmiiller geodesic determined by these foliations,
parametrized so that ,(0) is the closest point on 7, to the basepoint X.

In the following argument, we will first establish fellow traveling between ~, and some
translate of v,. Then, we will establish fellow traveling between ~,, and -, for large n.
This will imply fellow traveling between +,,, and the translate of -,, which will also imply
that wy, is principal. As the proof involves many constants, we point the reader to Figure 3
for a sketch of how the ideas fit together.

Let € > 0 be small enough so that v, is in the e-thick part K.. Let [ > 0 be the drift
of the random walk. Given this €, let Fy > 0 and 0 < ¢y < % be the constants from [20,
Proposition 3.1]. For almost every w, and n sufficiently large, that proposition guarantees
the existence of points Yy and Y; on ~,,, and points ~,(7p), 7w (71) on 7, such that
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FiGURE 3. The logical structure of the proof of Theorem 3.1. First, establish
po—fellow traveling of 7, and some translate of v, (green). Then, establish
B-fellow traveling between ~,, and 7, (red), on an interval containing the
green interval. This implies p-fellow traveling between +,,, and the translate
of 74 (blue). Note that the points marked on the geodesic 7, are really t-
values: e.g. eplN should be 7, (eplN), and so on.

(1) dr(1u(T}),Y;) < Fy fori=0,1.
(2) To < epln < (1 —ep)in <Ty) <lIn
(3) 7w(T3) is in the thick part K, for i =0, 1.

That such constants Fp, ep exist was originally shown in the proof of [11, Theorem 2.6].

Let B = B(e, Fy) be the fellow traveling constant coming from [20, Theorem 2.3], orig-
inally due to Rafi [43, Theorem 7.1]. Since dr(7,(T3),Yi) < Fo and 7,(7;) is in the e~
thick part, this theorem guarantees B—fellow traveling between the segments [Yp, Y;] and
[Vw(Th), ¥ (T1)]. By [20, Lemma 4.1], there is a constant 7 > 0 such that for every Y, Z € ~,,
the probability P(w € I',.(Y, Z)) is strictly positive. Applying [20, Theorem 2.3] again, there
is a constant pg = po(€,7), such that any geodesic in ', (Y, Z) contains a sub-segment that
po—fellow travels with 7, on the entirety of [Y, Z].

Define p = B + pg, and let D; > 0 be the constant from [20, Proposition 4.3|, which
ensures that geodesics that p—fellow travel with v, for distance greater that D; lie in the
principal stratum. Now fix any D > D;.

Let & > 0 be the smallest positive integer such that

dr(g7"X,¢*X) = Do := D + p.

By our choice of pg = po(e, r), any geodesic in I',(¢7* X, g*X) will p—fellow travel with 7,
on an interval of length Dy centered at X. Let © < Mod(S)% consist of those sample paths
w such that the sequences w_, X and w, X converge to distinct uniquely ergodic foliations
(F7,FH) el (¢7*X,¢*X). By [20, Lemma 4.1], the subset Q has positive probability P.

Let o: Mod(S)? — Mod(S)? be the shift map. Ergodicity of ¢ implies that for almost
every w, there is some n > 0 such that o™ (w) € Q. For such n, we have that ~,, is a pp—fellow
traveler with wy,, for distance Dy, centered at w, X.

For almost every w, the probability that n € {1,..., N} satisfies 0" (w) € €2, tends to P
as N — oo0. For any ey satisfying eg < e1 < %, the probability that eeN <n < (1 —e1)N
satisfies 0™ (w) € Q also tends to P as N — oco. This implies that given w, there is an Ny
such that for all N > Ny, there exists an n such that e;N <n < (1 —e;)N and 0™ (w) € Q.
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By sublinear tracking in Teichmiiller space, due to Tiozzo [47], almost every w satisfies

1
lim —d7(wnX,vw(ln)) =0.

n—w n

(Recall that we have parametrized ~,, so that v, (0) is the closest point to X.) Now, choose
e1 and eg so that ey < e1 < eg < % and % —e1 < e; — eg. Possibly replacing Ny with a
larger number, we can then assume that d7(w, X, v, (In)) < (ea — e1)in for all n > e1 Ny.
Combining the preceding two paragraphs, there exists ng such that
(1) e1lN <lIng < (1 —e€1)IN and 0™ (w) € Q.
(2) dT(wnoXa %J(an)) < (62 - el)ln0~
Since 0™ (w) € Q, 7, and wp,v, are po-fellow travelers for distance Dy centered at the
closest point on 7y, to wp,X. Item (2) above guarantees that the point ~,(Ing) is within
2(e2 —e1)IN of the point on =, that is closest to wy,X. The key here is that (e2 —e1)IN is
small compared to (e; —ep)lN, so we can guarantee that this pp-fellow traveling all happens
between 7, (eol/N) and v,((1 — eg)IN) (by making N larger if necessary). See Figure 3.
Now, recall that we used [20, Proposition 3.1] to find Ty, T} satisfying

Ty < eplN < (1 — 60)ZN <Ti; <IN

so that the interval [y, (70), v, (71)] is a B—fellow traveler with 7, . It follows that ~,,, is
a p-fellow traveler with a translate of v, for a distance Dy — (B + pg) = Do — p = D. Since
D > D, |20, Proposition 4.3] implies that ~,,, lies in the principal stratum. O

We will use Theorem 3.1 in the form of Corollary 3.4 below. First, we need the fol-
lowing lemma which says that if a geodesic v fellow travels the axis of a pseudo-Anosov
for sufficiently long, v gets arbitrarily close to the axis. By [20, Proposition 4.3], if this
pseudo-Anosov axis is principal, then v will be as well.

Lemma 3.2. Let g be a pseudo-Anosov mapping class with axis v,. Fiz p > 0, and
suppose that v, is a sequence of Teichmiiller geodesics such that h,v, is a p—fellow traveler
with g for distance Dy, where h, € Mod(S) and D,, — . Then there is a choice of
quadratic differentials q, associated to points along v, such that h,q, converge to a quadratic
differential q associated to v,.

Proof. By replacing v, with h,v, and translating by a power of g, we may suppose that
Tn is a p-fellow traveler with v, for a length D,, subsegment of -, centered at some point
5 € 74. Let ¢ be the quadratic differential based at s associated to 7,. We first make the
following claim:

Claim 3.3. There are sy, € v, such that s, — s.

Proof of claim. If this were not the case, then after passing to a subsequence, v, converges
to a Teichmiiller geodesic v with the properties that

(1) ~ fellow travels ~,, and
(2) s has distance at least § > 0 from ~.

Now let v+ be a positive ray in . Since y* stays bounded distance from (the positive end of)
7g, it follows that v* accumulates in PMF () to foliations that are topologically equivalent
to the stable foliation of g [37, Theorem 3.8]. Since this foliation is uniquely ergodic, we see
that v* in fact converges to the stable foliation of g. Similarly, v~ converges to the unstable
foliation of g. Hence, the vertical and horizontal foliations defining v and v, agree, and so
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v and v, are equal, up to a reparametrization. This, however, contradicts (2), completing
the proof of the claim. O

Returning to the proof of the lemma, let ¢, be the quadratic differential associated to
Sn € Yn. Now we claim that ¢, — ¢ in @D(S). This follows exactly as in the proof of
the claim: if not, then after passing to a subsequence, ¢, — ¢ # g based at s. But then
~n would converge (uniformly on compact sets) to the Teichmiiller geodesics determined
by ¢'. Since we know that ~, converges to v, this gives a contradiction and completes the
proof. ]

Recall that GQD(S) denotes the principal stratum of quadratic differentials on S.

Corollary 3.4. Let g € Mod(S) be a principal pseudo-Anosov with Teichmiller axis 4. Let
w be a probability distribution on Mod(S) with finite first moment, such that {(Supp(u))+ s
non-elementary and contains g. Then for almost every sample path w = (wy) in Mod(S5),
there is a positive integer N such that for n = N, every wy, is a principal pseudo-Anosov
and hnqu,, — qq in GAD(S), where hy, € Mod(S) and qq is some quadratic differential along
the axis 7g.

Proof. Let p > 0 be the number guaranteed by Theorem 3.1. Let PPA < Mod(S) be the
set of principal pseudo-Anosovs and define the set

Gp = {w:3IN = 0 such that V¥n > N, w, € PPA and

Yo 18 a p—fellow traveler with a translate of ~, for distance D}.

By Theorem 3.1, P(Gp) = 1 for all sufficiently large D. Since Fp» < Fp for D < D', we set
G =) Gp and conclude that P(G) = 1.

Now for each w € G, there is a sequence of mapping classes h,, such that h,y,, is a
p—fellow traveler with v, for distance D,,, where D,, — 00 as n — o0. Applying Lemma 3.2
and recalling that GOQD(S) is open in QD(S) completes the proof. O

Remark 3.5. The only property of the principal stratum that we used in this section is that
GOD(S) is open. As a consequence, all of the results in this section hold for S = ¥; 1, with
GOD(S) replaced by QD(S). In particular, Corollary 3.4 applies to every pseudo-Anosov
in Mod(31,1), with the word “principal” excised.

4. TRANSITION TO PUNCTURED SURFACES

Recall from Section 2.5 that the construction of a veering triangulation starts with a
quadratic differential ¢ € QD(S), punctures S along the singularities of ¢ to obtain a
surface S , and then builds an ideal triangulation of S x R. We need to analyze the veering
triangulations not just for one ¢ € QD(S), but for an entire convergent sequence ¢, — ¢
that comes from Corollary 3.4. To do this, we need a coherent way to map the sequence
gn — q to a convergent sequence ¢, — ¢ € QD(g).

Let QDp(g) denote the subspace of QD(S) consisting of quadratic differentials whose
singularities occur only at punctures. If § € QDI,(S') is a quadratic differential with at least
2 prongs at any puncture being filled in S, then ¢ defines a quadratic differential g € QD(SS).
Implicit in this definition is the observation that markings on S induce markings on S. The
following is immediate:
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Lemma 4.1. Let ¢, — q be a convergent sequence in a single stratum of QD(S), with all
singularities at the punctures. Let S be the result of filling some number of punctures of 5’,
where these quadratic differentials have at least 2 prongs. Then the sequence ¢, — q induces
a convergent sequence g, — q € QD(S). O

We need to go in the opposite direction, puncturing S at singularities of ¢ € QD(S) to
obtain . This is is not as straightforward, because the surjection Mod(S) — Mod(S) has
a large kernel, hence there is no consistent way to turn markings on S into markings on S.
Nevertheless, this can be done locally in the principal stratum.

Lemma 4.2. Let ¢ € GOD(S) be a quadratic differential in the principal stratum. Then

there is an open neighborhood U of q, with an embedding f: U — QD,(S) that forms a local
inverse to the map of Lemma 4.1.

Proof. Let X (q) € T(S) be the marked conformal structure underlying ¢. Let y{,...,y} €
X (q) be the singularities of q. Let € > 0 be such that there are pairwise disjoint regular
neighborhoods Ne(yf), ..., Ne(y}).

Now, let ¢ € GOD(S) be another quadratic differential in the principal stratum, with
singularities yg/, e ,yz/ € X(q). There is a unique Teichmiiller map h: X(¢') — X(q)
which maps the singularities of ¢’ to a k—tuple of points h(yf,), e h(yg/) € X(q). Because
h is uniquely defined by the pair (¢, ¢), these points of X (g) are uniquely determined up to
reordering. Thus there is an open neighborhood U of ¢ such that for ¢’ € U, the singularities
of ¢’ can be ordered so that h(y,?,) € Nc(y}), for a unique point .

Let S = X (q)~{¢7, .. .yi}. Forevery ¢’ € U, we will define a marked conformal structure

on S, as follows. Let X (¢') = X (¢') ~ {y?/, . ,ygl}. This conformal structure is marked by
the composition map

!

S=X(@)~ iyl == X (@)~ Ay, h(yh)}

h71 / / o

— X))~y ) = X(d).

where r is the identity on the complement of N¢(yf)uU... U Nc(y{). The composition A~ or
is well-defined up to isotopy because the mapping class group of a punctured disk is trivial.
Now, the quadratic differential ¢’ on the marked Riemann surface X (q') restricts to
a quadratic differential ¢’ on the marked Riemann surface X(¢’). By construction, all
singularities of ¢’ are at the punctures, hence ¢ € QD,(S). The map f: U — QD,(S)
defined via ¢’ — ¢ is continuous by construction. It is one-to-one because the map of
Lemma 4.1 provides an inverse. O

For the next two sections, we will work primarily in the punctured surface S.

5. CONVERGENCE OF VEERING TRIANGULATIONS

Let S be a surface with at least one puncture. The main result of this section, Corol-
lary 5.6, says that veering triangulations of S xR depend continuously on their defining
quadratic differentials. More precisely, we will show that given an appropriate convergent
sequence ¢, — q € QD(é), the corresponding veering triangulations 7,, agree with 7, on
larger and larger finite sets of tetrahedra, limiting to the entire triangulation 7.

Recall from Section 4 that QDP(S') is the subspace of QD(S) consisting of quadratic
differentials whose singularities occur at punctures of S. We define & QDP(S’) c QDP(SO’)
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to be the subspace of quadratic differentials without vertical or horizontal saddle connec-
tions. In Section 2.5, these are exactly the quadratic differentials on S that define veering
triangulations of S x R.

The following easy lemma will be useful in Section 6.

Lemma 5.1. For every q € EQDP(S’), the foliations F/ and F, are filling.

Proof. Suppose for a contradiction that F = .7-'; is not filling. Then there is some closed

essential curve a < S with i(co, F) = 0. The g-geodesic representative o, of o is a concate-
nation of saddle connections (see [42] or [12]) and since i(«, F) = 0, each of these saddle
connections must be vertical, a contradiction. The proof for F,~ is identical. U

As in Section 2.5, for each ¢ € £ QDP(,So') we have an associated veering triangulation
T =14 Of S x R. (Note that no further puncturing is necessary because all singularities are
already at the punctures of S.) Let A(7) = A(7,) the subset of A(S) consisting of arcs that
correspond to edges of 7,. As described immediately after Theorem 2.1, A(7,) is precisely
the set of saddle connections of ¢ that span singularity free rectangles.

Let a,aq,...,an € A(S) be arcs. We call the collection {ai,...,a,} a homotopical de-
composition of a, and write a ~ Y, a;, if these arcs have lifts @, @1, ..., @y to the universal
cover of S which bound an immersed ideal polygon. The decomposition is nontrivial if
n > 1.

Recall from Section 2.4 that the horizontal and vertical lengths of a are denoted hg(a)
and vg(a), whereas Eé(a) = hy(a) + vy(a) is the total ¢! length.

Lemma 5.2. Let q € SQDP(SD') and a € A(S). Then a € A(ry) if and only if for any
nontrivial homotopical decomposition a ~ . a; with a; € A(S), we have

(5.1) la(a) < D0 (as).

Proof. Suppose that a is homotopic to an edge o of the veering triangulation and a ~ )’ a;.
Since o spans a singularity free rectangle, the total horizontal or vertical length of the a;
must be strictly greater than that of ¢. This is because, after lifting to the universal cover
of S , all ¢! geodesics between the endpoints of o must lie in the rectangle spanned by o. As
we always have hq(a) < Y] hg(a;) and vg(a) < Y v4(a;), the strict inequality (5.1) follows.

The converse direction follows from the work of Minsky and Taylor [40]. First recall that
every arc a has a unique g-geodesic representative a,. See [40, Proposition 2.2 and Figure
6]. This geodesic a, follows a sequence of saddle connections, which we may call a1, ..., ay,
such that a ~ ) a;. Since a, is a geodesic, we have

h(a) = L3 (aq) = > Li(ay).
Thus we have proved the negation of (5.1), unless a is itself homotopic to a saddle connection
¢, i.e., the sum > a; has only one term.
Now, suppose that a = c is a saddle connection that is not an edge of 7,. Then ¢
does not span a singularity free rectangle of q. Hence, ¢ does not span a singularity free
right triangle to one of its sides. To this side, we apply the map t illustrated in [40,

Figure 12]. The resulting object t(c) is a concatenation of (not necessarily disjoint) saddle
connections c¢;, forming a non-trivial decomposition ¢ ~ Zj ¢j. By [40, Lemma 4.2], these

saddle connections have the property that, working in the universal cover of S , each leaf of



16 D. FUTER, S.J. TAYLOR, AND W. WORDEN

the vertical/horizontal foliation of ¢ meets the union U -c; at most once. Hence,

h(a) = L3(c) = > a(cs)
and the sum is non-trivial, contradicting (5.1). O

Lemma 5.3. Fiz q € EQDp(g). For any L > 0, there is a open neighborhood U of q in
QD(S) such that for any ¢ € U nEQD,(S), every arc o € A(ry) of length £3(0) < L is also
in A(ty).

Proof. For q € SQDP(SO') and L > 0, define Ay(L) = {a € A(S) - E}I(a) < L}. Note that
A,(L) is always finite. Now fix L > 0 and let

Up={q e QD(SO’) : Kclll(a) < L+1forallae Ay(L)}.

This is an open neighborhood of ¢ in QD(§ ). After making U; smaller if necessary, we can
ensure that the closure U; = QD(S) is compact. This is done for the following claim:

Claim 5.4. The set
B={ac A(S) : 63,(a) < L+1 for some ¢ € Uy}
is finite.

Proof. For any arc a < 5’, there is an essential (multi-)curve ¢, constructed as follows.
Consider the punctures of S to be marked points in a larger surface S; build a regular
neighborhood P of a and the marked points that it meets; then, take the S-essential
components 0P. We remark that P n Sisa pair of pants containing a as its only S—essential
arc, hence c, determines a. For any ¢, we have Eé(ca) <2- Eé(a) because a representative
of ¢4 is given by traversing the g—geodesic representative for a at most twice.

Now suppose that the claim is false. Then there would be an infinite collection a; € B
and ¢; € Uy with E}h (ai) < L+ 1. Setting ¢; = ¢,,, we obtain an infinite collection of distinct
multi-curves ¢; with El (ci) <2(L+1). Since U, is compact, we may pass to a subsequence
such that 4 — ¢ for some ¢’ € U;. Passing to a further subsequence and using compactness
of PMF(S), there are constants 2; > 0 such that z;c; converges in MF(S) to o # 0. It
is also easy to see that x; — 0 as i — 0. Indeed, for an arbitrary (but fixed) hyperbolic
metric p on S, x;¢; — o implies that z;¢,(c;) — £,(a) € R4. Since there are infinitely many
distinct multi-curves ¢;, we must have £,(c;) — oo, hence z; — 0.

Recall from Section 2.4 that the ¢'~length ¢}(a) is continuous in both ¢ and «. Thus

i(]:qf,a) +i(F,,0) = éé,(oz) = ili)lgféi(xici) = ili)r&miféi(ci) < 2(L+1)limz; = 0.

However, a measured foliation o cannot have intersection number 0 with both .7-";7 and .7-"(17,
a filling pair of foliations. This contradiction completes the proof of the claim. O

We now return to the proof of the lemma. For each a € A(7;) n Ay(L), we define the
function f,: U3 — R:

d el — falq mln{ZE a;) , (a) : a~2a¢ is nontrivial and aieB},
i
Since B is finite, this is a minimum of finitely many continuous functions, hence f, is
continuous on U;. Furthermore, since a € A(1;), Lemma 5.2 implies that f,(q) > 0. Set

U, =U1 n{q¢ : fo(¢") > 0}, which is open in QD(S’) and contains q.
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Finally, define
U= ({Ua:aeAlrg) nAy(L)},
which by construction is an open neighborhood of ¢ in QD(g). To show that this neigh-
borhood satisfies the conclusion of the lemma, let ¢ € U n & QDP(S’) and suppose that
o € A(ry) with £}(0) < L. If 0 is not in 74, then by Lemma 5.2 there is a decomposition
o ~ > o; with 8;,(0) => Z;,(oi). Since U < Uj, we have that Eé,(a) < L+1 and so similarly
63,(@) < L + 1 for all ¢. Hence, by definition of B, we have o; € B for each i. Then the

difference
D lh(oi) = Ly (o)

appears in the definition of f,. Since f;(¢') > 0, the difference Zf;,(ai) - Eé,(a) is strictly
positive, contradicting the choice of our decomposition of ¢. This completes the proof. [

Remark 5.5. An alternate proof of Claim 5.4 relies on the fact that there is a constant
K, depending only on the compact set U1, such that for any ¢1, g2 € U; the induced map

(S,G1) — (S, @) is a K—quasi-isometry. Then B Ay (K(L+1)+K), and the claim follows.
Lemma 5.3 has the following useful corollary:

Corollary 5.6. Let g € EQDP(S’), and let K < 74 be any finite sub-complex. Then there is
a neighborhood U of q in QD(S) such that K 1y for every ¢' € U n EQD,(S).

Proof. Define
L= max{ﬂé(a) ta€ K(l)} .

By Lemma 5.3, there is a neighborhood U such that every arc o € A(r,) with (3(0) < L

also belongs to A(ry) for ¢/ e Un & QD,(S). In particular, every arc in the 1-skeleton of
K belongs to A(7,). Since the edges of every tetrahedron t © K belong to A(7y), we have
tc Ty - ]

6. CONVERGENCE OF TETRAHEDRON SHAPES

In this section, we prove Theorem 1.4. To do so, we establish a technical result (Proposi-
tion 6.2) which states, roughly, that as quadratic differentials converge, so do the hyperbolic
shapes of the associated veering tetrahedra. This result will also be used in the proof of
Theorem 1.2 in Section 7. We begin by reviewing some needed background about doubly
degenerate representations of surface groups.

For a surface S, let AH(S) denote the space of conjugacy classes of discrete and faithful
representations p: m1(S,z9) — PSL2(C) such that peripheral elements map to parabolic
isometries. In the algebraic topology on AH(S), conjugacy classes [p,] converge to [p] if
and only if there are conjugacy representatives p,: m(S) — PSL(2,C) such that for every
finite set of elements v1,...,v; € m1(S), the images p,(7;) converge to p(y;) for every i.

Setting T') = p(m1(S, 2¢)), the manifold N, = H3/T', is then homeomorphic to S x R by
work of Bonahon [6]. The limit set A, is defined to be the smallest nonempty closed I',—
invariant set in dH?. The space DD(S) = AH(S) of doubly degenerate representations
of 71 (S, z¢) is the subspace of AH(S) consisting of conjugacy classes [p] such that A, = JH3
and such that p(v) is parabolic if and only if v € 71(S, x¢) is peripheral. For such a p, the
manifold N, has geometrically infinite ends, which can be characterized by saying that
for each end, there are closed geodesics in N, that exit that end.
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By work of Bonahon and Thurston [6, 45], there are unique, distinct end invariants
F,F, € EL(S) associated to the positive and negative ends of N, such that if {a;} is
a bi-infinite sequence of closed geodesics exiting both ends, then a; — F~ as ¢ — o0 and
a; —> FT as i — +o0. (Here, as in Section 2.3, we pass freely between foliations and
laminations.) Hence we get a well-defined function £: DD(S) — £L£(S) x EL(S) — A, where
A is the diagonal.

Thurston conjectured that £ is a bijection. This conjecture was proved by Minsky [39]
and Brock—Canary—Minsky [8]. Subsequently, Leininger and Schleimer observed that £ is
actually a homeomorphism [31, Theorem 6.5].

Theorem 6.1 (Ending Lamination Theorem, parametrized). The end invariant function
E: DD(S) — EL(S) x EL(S) — A sending p to the pair (F, ,F,) is a homeomorphism.

We now specialize to the case of the punctured surface S. Recall from Section 5 that
& QDP(SO' ) is the subspace of QD(S) consisting of quadratic differentials whose foliations have
singularities only at punctures and which have no horizontal or vertical saddle connections.
As described in Section 2.5, every quadratic differential ¢ € £ QDP(SO') has an associated
veering triangulation 7, of S x R.

Every q € £ QDP(SO’) defines a doubly degenerate hyperbolic structure on S x R, con-
structed as follows. By Lemma 5.1, there is a map F: EQDP(S’) — EL(S)x EL(S)—A send-
ing ¢ to the pair (]:(;r, F, ) of filling foliations/laminations. By Theorem 6.1, 5_1(]:;, F)
is a doubly degenerate representation pg: Wl(g) — PSL(2,C), unique up to conjugation.
Then N, = H3/ p(m S ) is a marked hyperbolic 3-manifold triangulated via 7;. In summary,
the composition

EloF: £9D,(S) — DD(S)
is a continuous function mapping g to a conjugacy class of doubly degenerate represen-
tations, which we denote by [ps]. This map is Mod(S)-equivariant by construction and
continuous by a combination of [28] and Theorem 6.1.

We remark that the end invariants (F,, F,) of Ny can be recovered directly from the
edge set of 7;,. By a theorem of Minsky and Taylor [40, Theorem 1.4], the edge set A(7,) is
totally geodesic in AC (S ). Furthermore, this edge set is quasi-isometric to a line, which has
two endpoints at infinity. Any sequence of edges of A(7,) whose slope in ¢ approaches oo
will exit the positive end of N, and limit to .7-"; , while any sequence in A(7,) whose slope
in g approaches 0 will exit the negative end of Ny and limit to F .

With this background, we can state and prove the main result of this section.

Proposition 6.2. Fiz q¢€ EQDp(g) and a finite, connected sub-complex K < 7,. Then the
following holds for any convergent sequence ¢, — q, where q, € SQDP(SD'):
e For alln » 0, K is a sub-complex of the veering triangulation 7, .
e For every tetrahedron t © K, the shape of t in Ny, converges to the shape of t in Ny
asn — 0.

In particular, if T4 is not geometric, then neither is 1,,, for n sufficiently large.

Proof. Fix q € £ QDp(g) and a finite, connected sub-complex K < 7,. We may assume
without loss of generality that the dual 1-skeleton of K is connected (otherwise, add some
number of tetrahedra). Let Y be a maximal tree in the dual 1-skeleton. Fix a base vertex
vg € Y, which corresponds to the barycenter of an oriented tetrahedron ty < K.
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By construction, every vertex v € Y is a barycenter of some tetrahedron t ¢ K, which
has 4 ideal vertices at punctures of S. We use this structure to construct finitely many
group elements in m; (S x R, vp). For every vertex v € Y, follow the unique path in Y from
vg to v. Walk from v to the neighborhood of an ideal vertex of the ambient tetrahedron ¢,
walk around the corresponding puncture of S , and then return to v and back to vyg.

This construction gives a collection of loops v1,...,vk, where & = 4V (Y). Not all of
these loops are homotopically distinct, but all of them are peripheral in S.

Now, let [p,] be the conjugacy class of doubly degenerate representations corresponding
to q. For every representation in this conjugacy class, the image of each peripheral element
~; must be parabolic, with a single fixed point on 0H?.

Next, consider a convergent sequence g, — ¢, where g, € £ QDp(g). By Theorem 6.1,
there is a convergent sequence

E7HF(an)) = [pg.] = [pd].

After choosing a representative p, € [p,], this means there are choices of representatives
Pan € [Pgn] such that pg (vi) = pg(vi) for 1 <i < k.

Let t ©¢ K be a tetrahedron, with ideal vertices x1,...,x4. By the above construction,
every z;j corresponds to a peripheral group element ~;; in the chosen collection. Let p € oH3
be the parabolic fixed point of py, (7i,), and let p; be the parabolic fixed point of py(v;; ).
Since pg, (7i) — p(7i), we also have convergence of the parabolic fixed points: pj — pj as
n — 0.

For every gy, let 7, be the veering triangulation of N, = S x R. Since n — 4,
Corollary 5.6 implies that K embeds into 7,, for all n » 0. (The marking of N, makes
this embedding unique.) The shape parameter of t in the hyperbolic metric on N, is the
cross-ratio [pT,ph,p4,p)]. As n — oo, these cross-ratios converge to [p1,p2,p3,pa], hence
the shape of t converges as well. O

Remark 6.3. Proposition 6.2 gives a concrete way to see that, with suitably chosen base-
points, the manifolds Ny, converge geometrically to N;. Let z € N; be an arbitrary base-
point, and let Br(z) < N, be a metric R-ball about z. Since the edges of 7, eventually exit
the ends of N, there are only finitely many edges (hence finitely many tetrahedra) in 7,
that intersect Br(z). By Proposition 6.2, the shapes of these tetrahedra in N, converge to
the shape in NNy, hence for n » 0, there is a metric ball in N,, almost-isometric to Br(z).

The statement that the algebraic and geometric limits of N, agree is due to Canary [9],
and is used in the proof of continuity in Theorem 6.1. Hence this remark does not give a
new proof of geometric convergence.

We can now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Let S be a hyperbolic surface, and let ¢ € Mod(S) be a principal
pseudo-Anosov. Let p be a probability distribution on Mod(S) with finite first moment,
such that (Supp(u))+ is non-elementary and contains ¢. According to Corollary 3.4, for
almost every sample path w = (wy) of the random walk on Mod(S) we have for n » 0,

(1) wy is a pseudo-Anosov with Teichmiiller geodesic 7, in the principal stratum,

(2) hnguw, — qp in GAD(S) for quadratic differentials ¢, along ~,,, and g, along =,

and h,, € Mod(95).

Since hnquw, = qp, hols and w,, defines the same unmarked mapping torus as hpw,h;, !, the
veering triangulations associated to the w,, are simplicially isomorphic to those associated
to hnwnhgl. Let ¢ = hnquw,, -
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By Lemma 4.2, for sufficiently large n, we can pass from the sequence ¢, — ¢, to a
sequence ¢, — (, in QDP(SO’), where $ is the surface obtained by puncturing S at the
singularities of g,. By construction, ¢, is a quadratic differential along the Teichmiiller axis
of p € Mod(S’), and similarly for the ¢,. Thus, in fact, ¢, — ¢, € SQDP(SO').

Let 7, = 74, be the veering triangulation of Ng, = S x R associated to the quadratic
differential ¢, and let 7, be the veering triangulation of N, associated to g,. Now let
K < 74, be any finite connected subcomplex as in the statement of the theorem. Applying
Proposition 6.2, we conclude that for n sufficiently large, K is a subcomplex of the veering
triangulation 7, and that for every tetrahedron t ¢ K, the shape of t in Vg converges to
the shape of t in N;, as n — .

Hence, it only remains to show that K embeds as a subcomplex of 7,, the veering
triangulation of the mapping torus M, . That is, we must show that the covering map
Ng, — My, is injective on K, once n is sufficiently large. For this, we use a result of
Mabher [33], which implies that the Teichmiiller translation length of w,, grows linearly in n.
Since dilatation, and hence Teichmiiller translation length, is unchanged after puncturing
along singularities, we also have that the translation length of @, grows linearly in n. If
Ng, — My, fails to be injective on K then there are edges k1 and ko of K which, when
viewed as arcs of S, satisfy (@,)'k; = ko for some i > 0. Since these arcs represent saddle
connections of ¢, this implies that the stretch factor of w,, is no more than the quantity

maXge (1) Vgp (k) maXy.c g (1) Vg, (k)
ming (1) Vg, (k) ’ ming ) Vg (k)

as n — 00. Since this implies that the stretch factors of w, are eventually bounded, we
obtain a contradiction and the proof is complete. ]

which converges to

Remark 6.4. Theorem 1.4 also holds for S = Y1 1, without the hypothesis that ¢ is prin-
cipal. Recall that the principal stratum of QD(X; 1) is empty. In this setting, Corollary 3.4
holds for every pseudo-Anosov ¢. (See Remark 3.5.) There are no interior singularities,
so S = S and Section 4 is not needed. Now, the rest of the proof of Theorem 1.4 using
Proposition 6.2 applies verbatim.

7. COUNTING NON-GEOMETRIC VEERING TRIANGULATIONS

In this section, we prove Theorem 1.2, showing that geometric veering triangulations are
atypical from the point of view of counting closed geodesics in moduli space. The proof
of this result uses many of the same ingredients as the proof of Theorem 1.4. The main
difference is that the appeal to Gadre and Maher’s Theorem 3.1 will be replaced with results
from Hamenstadt [24] and Eskin-Mirzakhani [13].

Fix a surface S such that £(S) = 1. As in the introduction, let G(L) denote the set of
conjugacy classes of pseudo-Anosov mapping classes in Mod(S) whose Teichmiiller trans-
lation length is no more than L > 0. Since the veering triangulation 7, depends only on
the conjugacy class of the pseudo-Anosov, each [¢] € G(L) uniquely determines a veering
triangulation of ]\04@. As in Baik—Gekhtman—Hamenstédt [3], say that a typical pseudo-
Anosov conjugacy class in Mod(S) has a property P if

iy P1€G(L) © ¢ has PY|
L— G(L)]

In this terminology, Theorem 1.2 is implied by the following, slightly stronger statement.

1.
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Theorem 7.1. Let S be a surface with £(S) = 2. Then a typical pseudo-Anosov conjugacy
class [¢] = Mod(S) is principal and defines a non-geometric veering triangulation T,.

For the proof of Theorem 7.1, let 7: QD'(S) — T(S) be the projection map sending a
unit area quadratic differential to its underlying Riemann surface. As in Section 2.2, denote
the Techmiiller geodesic flow by ®t: QD! (S) — QD! (S). We will use the same notation to
denote the corresponding flow on MQD!(S) = QD (S)/Mod(S), namely the moduli space
of unit area quadratic differentials.

Let g € Mod(S) be a pseudo-Anosov with Teichmiiller axis 4. For each p,T > 0 we
define the following subset of QD! (S):

V(g 0, T) = {g € QD(S) : mo®'(q) € N,(v,), ¥t € [T, T},

where N,(-) denotes an open p-neighborhood with respect to the Teichmiiller metric. Ob-

serve that ‘N/(vg, p,T) is nonempty and open.
Our proof of Theorem 1.4 has the following corollary.

Corollary 7.2. Let g € Mod(S) be a principal pseudo-Anosov with non-geometric veering
triangulation. For every p > 0 there is a number T = T(p,g) > 0, such that if ¢ € Mod(S5)
is a pseudo-Anosov with an associated quadratic differential q, and ®'(q,) € ‘N/(’yg, p,T) for
some t € R, then ¢ is principal and the veering triangulation 7, is also non-geometric.

Proof. Fix p > 0. Once T is larger than the constant D = D(p, g) given by [20, Proposition
4.3], every q, € XN/(’yg, p,T) must be principal.

Now, suppose for a contradiction that no 7" > 0 suffices for the other conclusion of the
corollary. Then there is a sequence T;, — o0 and an associated sequence of principal pseudo-
Anosovs ¢y, such that the invariant axis v, is a p-fellow traveler of v, for distance 27;,,
but the veering triangulation 7., is geometric. By Lemma 3.2, there is a choice of quadratic
differentials ¢, associated to points along 7, , which converge to a quadratic differential ¢
associated to 4. By Lemma 4.2, for sufficiently large n, we can pass from the sequence
Gn — q to a sequence ¢, — ¢ in 5QDP(§ ), where S is the surface obtained by puncturing
S at the singularities of g. By Proposition 6.2, the veering triangulation 7, covering 7, is
non-geometric for n sufficiently large. But this contradicts our assumption about ¢,. Thus
some T > 0 must suffice. g

We finish the proof of Theorem 7.1 (hence also Theorem 1.2) with the following argument,
whose idea was suggested by I. Gekhtman.

Proof of Theorem 7.1. We identify a conjugacy class of pseudo-Anosovs on S with the cor-
responding closed orbit of the Teichmiiller flow ®*: MQD(S) — MQD!(S). Following
this identification, it makes sense to refer to typical closed orbits of the Teichmiiller flow.

Let g € Mod(S) be a principal pseudo-Anosov whose associated veering triangulation
is not geometric. (Such a mapping class exists by Theorem 1.3, which will be proved in
Sections 8 and 9.) Fix p =1, and let ' = T'(1,g) > 0 be given by Corollary 7.2. Finally,
let V' be the image of ‘7(79, p,T) in MQD'(S). This set is also open and nonempty. We
will show that a typical closed orbit of ®¢: MQD(S) — MQOD(S) meets V.

Set h = 2£(S) = dim T(S). For each closed orbit v of ®¢, let §(v) be the ®!~invariant
Lebesgue measure QD(S), supported on «, of total mass £(y). Thus, for a Lebesgue
measurable set £ < QDY(S), we have 6(7)(E) = £(y n E). Hamenstidt [24] proved that as
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L — o0, the measures
he ™37 6(7)
veG(L)

converge weakly to Masur—Veech measure A on MQD!(S). (See also [23, Theorem 5.1].)
The probability measure A is in the Lebesgue measure class, has full support, and is ergodic
for the Teichmiiller flow ®° [48, 35].

Next, we recall the geodesic counting theorem of Eskin and Mirzakhani [13], which states
that as L — oo,

IG(L)| - hLe M — 1.
Combining the above displayed equations, we have that the measures

1
= o) 2,0

converge weakly to A. This convergence is also noted in the proof of [3, Proposition 5.1].

Let A < MQD!(S) be the union of all closed orbits of the flow ®¢ that are disjoint from
V. Then the closure A is closed, flow-invariant, and disjoint from V because V is open. By
the ergodicity of A, we must have A\(4A) = 0. Since A is closed, weak convergence vy — A
and the Portmanteau Theorem imply that lim sup vz, (A4) < A(A4) = 0.

Now, we wish to show that a typical closed orbit is not contained in A. To that end, fix
e > 0 and choose ¢ > 0 so that e™? < €. In the following computation for fixed L > o,
the symbol v denotes both a pseudo-Anosov conjugacy class and the corresponding closed

orbit in MQD!(S). We have

{reG(L):vnV =} =[{y:7vc A l(y) <L}
={v:ive A lly) <L-o}[+[{v:vc A L-0o<L(y) <L}
=|{v:vy<c A l(y)<L—-0o}+ 2 1

ycA
L—o<t(y)<L

<gL-o + Y

h L—o
L—o<{(y)<L
l(yn A
<lw-o + oy 0o

L—o<{(y)<L

L S iy n )

T

=|G(L —0)| + Lj,'Jg_(i)' vr(4).

<l6L-0) +

Dividing by |G(L)| and taking limits as L — o0, we obtain

: {yeG(L):vnV =0} IG(L — o) L —
lim sup G <tmewp (FZ + T 2on)
= e 4 limsup vy (A)

L—

<e+0.
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Since € > 0 was arbitrary, this shows that a typical closed orbit meets V.

By the definition of V and V', this means that a typical pseudo-Anosov conjugacy class has
a representative ¢ with associated quadratic differential g, such that ®(g,) € YN/('yg, p,T)
for some t € R. By Corollary 7.2, this implies that a typical pseudo-Anosov conjugacy class
[¢] is principal and produces a non-geometric veering triangulation 7.,. ]

8. A FEW NON-GEOMETRIC TRIANGULATIONS, VIA COMPUTER

Our remaining goal in this paper is to prove Theorem 1.3: for every surface S of complex-
ity £(S) = 2, there exists a principal pseudo-Anosov map ¢ so that the veering triangulation
of Mg is non-geometric. We will prove this result in two stages.

(1) In this section, we use rigorous computer assistance to find a finite collection of
non-geometric triangulations. See Proposition 8.4.

(2) In Section 9, we use Thurston norm methods to show that (finite covers of) the
finitely many mapping tori described in Proposition 8.4 account for all fibers of
complexity at least 2. This will prove Theorem 1.3.

FIGURE 4. The mapping class group Mod(X,,,), for g > 0, is generated by
full Dehn-twists about the a;, b;, ¢;, and p; curves, and half-twists about the
r; curves.

We begin by describing how the computer programs flipper, SnapPy, and Regina are
used to show that certain triangulations are non-geometric. Given a mapping class ¢ on a
hyperbolic surface ¥, described by a composition of left Dehn twists and/or half twists in
the generators shown in Figures 4 and 5, we first use flipper to verify the Nielsen-Thurston
type of ¢. For a pseudo-Anosov mapping class, flipper computes the invariant measured
foliation associated to ¢, and thereby the order of singularities at both interior points and
punctures, telling us whether ¢ is principal. Finally, flipper punctures the surface at the
singularities of ¢ and computes the veering triangulation 7, of the mapping torus M. All
of the above flipper computations are rigorous.

The program SnapPy can find an approximate solution to the gluing equations for the
veering triangulation 7, (see discussion below). This approximate solution is a good heuris-
tic indication that 7, is not geometric. To rigorously certify that 7, is not geometric, we
follow the method of Hodgson, Issa, and Segerman [25], relying on Theorems 8.1 and 8.2.

Let 7 be an ideal triangulation of a hyperbolic 3-manifold M with k tetrahedra, and
let Z = (z1,...,2;) be a vector of complex numbers in bijection with the tetrahedra in 7.
Every z; has an associated algebraic volume Vol(z;) € R, computed via the dilogarithm
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FIGURE 5. Left: The mapping class group of the n—punctured sphere ¥ ,,
for n > 4, is generated by half-twists about the r; curves shown. Right:
A half twist about 7; fixes r; and transposes the punctures in the twice-
punctured disc bounded by r;.

2-3 move

3-2 move

FIGURE 6. In a Pachner 2-3 move, two tetrahedra meeting at a face A are
replaced by three tetrahedra meeting at an edge dual to A. A Pachner 3-2
move is the reverse of a 2-3 move.

function [41]. In particular, Vol(z;) has the same sign as Im(z;). We define the algebraic
volume Vol(Z) = Zi?:l Vol(z;).

The gluing and completeness equations for 7 are a system of polynomial equations
in z1,...,2; [45, Chapter 4]. Any solution Z = (z1,...,2;) to this system of equations
defines a representation p: m; M — PSL(2, C), unique up to conjugacy, in which peripheral
elements map to parabolics. In the resulting structure on M, the shape parameter of the
tetrahedron t; is exactly z;. If 2 is geometric, meaning Im(z;) > 0 for each 4, then p is the
discrete, faithful representation that gives the complete hyperbolic metric on M. In general,
at most one solution to the gluing and completeness equations corresponds to the complete
metric on M. By Francaviglia’s theorem [16], this is the solution with the largest algebraic
volume. The following statement combines [16, Theorem 5.4.1 and Remark 4.1.20].

Theorem 8.1 (Francaviglia). Let 7 be an ideal triangulation of a hyperbolic 3-manifold
M. Then there exists at most one solution Z to the gluing and completeness equations for
T such that Vol(Z) = Vol(M), where Vol(M) is the hyperbolic volume of M.
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Now, suppose the triangulation 7 changes as follows. Let A be a 2-simplex in 7 which is
the face of distinct tetrahedra t; and t;. We can obtain a new triangulation 7’ by replacing
A by a dual edge e, and adding three faces each meeting e and a distinct vertex of A.
Then 7 — 7’ is called a Pachner 2-3 move, while the reverse operation 7/ — 7 is called a
Pachner 3-2 move. See Figure 6.

An ideal tetrahedron t in a hyperbolic 3—manifold M is called degenerate if some edge
of t is homotopic into a cusp of M. If t is non-degenerate, its lift to M =18 is homotopic
to a straight tetrahedron, hence t can be assigned a shape parameter z; € C \ {0,1}. A
triangulation 7 is called non-degenerate if all of its tetrahedra are non-degenerate.

If a triangulation 7 is equipped with a solution z of the gluing and completeness equations,
and 7’ is obtained from 7 via a Pachner move, then from Z we get an associated solution
Z’ to the gluing and completeness equations for 7/. Furthermore, if 7 and 7’ are both
non-degenerate, we get algebraic volume information as well. The following result, due to
Neumann and Yang [41, Proposition 10.1], is a consequence of the “five-term relation,” an
identity of the dilogarithm function.

Theorem 8.2 (Neumann—Yang). Let M be a hyperbolic 3-manifold with ideal triangulation
7, and let Z be a solution to the gluing and completeness equations for T. Let T’ be an ideal
triangulation obtained from T by a Pachner move, with no degenerate tetrahedra. If Z’
is the solution to the gluing equations for 7' corresponding to the solution Z for T, then
Vol(2) = Vol(Z').

Combining Theorems 8.1 and 8.2, we get the following corollary:

Corollary 8.3. Let M be a hyperbolic 3-manifold, and let 11, ..., T, be a sequence of non-
degenerate ideal triangulations such that ; is obtained from 1;—1 via a Pachner move. Sup-
pose that 7 has a non-geometric solution Z| to the gluing and completeness equations, and
let Z; be the solution for 1; obtained from Z;_1 wvia the corresponding Pachner move. If Z,
is a geometric solution (i.e., T, is geometric), then T is non-geometric.

To establish that a given veering triangulation 7 is non-geometric, we will first find a
Pachner path from 7 = 7| to a triangulation 7, that has a geometric solution Z,. For each
tetrahedron in 7,, SnapPy gives a rigorously verified complex interval in C containing its
shape parameter, using an algorithm derived from HIKMOT [27]. In other words, we get
a box K, c Cl™l which is guaranteed to contain a geometric solution to the gluing and
completeness equations. We then follow the path backwards, from 7, to 7, obtaining for
each intermediate triangulation 7; a box K;  CI7l containing the corresponding solution Z;.
This certifies that 7; is non-degenerate. When 7 is reached, we check that the corresponding
box K has at least one coordinate (i.e., at least one shape parameter) whose imaginary
part is negative. Since K; is guaranteed to contain the solution 27, it follows that this
solution is non-geometric, so by Corollary 8.3 the triangulation 7 = 7 is non-geometric.

In practice, a path to a geometric triangulation is found by randomly choosing Pachner
moves based at edges and faces of negatively oriented tetrahedra. In our examples, the paths
we find range in length from 4 to 18. We use Regina to help keep track of the labeling of
edges on the reverse path from 7, to 7.

The following proposition gives a list of mapping classes which have been rigorously
verified to be principal pseudo-Anosovs with non-geometric veering triangulations. These
mapping classes are described as words in the left Dehn twists and half-twists about the
curves shown in Figures 4 and 5.
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Proposition 8.4. For each of the following surfaces S;, the mapping class @; described
below is a principal pseudo-Anosov. Furthermore, the veering triangulation of My, is non-
geometric.

o S1 =90 and @1 = Tu, T Ty, Tos Ty T T Ty -

ail-co
o Sy =o1 and @y = Tey Ty *Tey Tay Ty, Ty, Tay T, -
o Sy =12 and 3 = T, 2T T T 1Ty T, T
o S5 = 2075 and p5 = TTEQTT;3T1?1TT;1TT;1TT4‘

o Sg =06 and g = T, T T T, Ty M 10 M 1, T, T

5 T1"1rg 31y T2"ry

o S7 =Yo7 and @7 = T2 T, T, 1, T, T, 0T, T, T

T4+ 173 T4+ 1ry T1 7ro

Proof. For each S;, flipper certifies that ; is a principal pseudo-Anosov. Then, SnapPy
combined with Corollary 8.3 certifies that the veering triangulation of My, is non-geometric.
A detailed certificate of non-geometricity, including a path from the veering triangulation
to a geometric triangulation, appears in the ancillary files [19].

We remark that for working with ¢; in f1ipper, we actually consider this mapping class
on Yo 1, with the puncture located as in Figure 4. Then we fill the puncture, recovering the
closed surface o . For the other ¢;, we work with surface S; exactly as given. ]

9. NON-GEOMETRIC TRIANGULATIONS VIA THE THURSTON NORM

In this section, we use Thurston norm theory to show the existence of a mapping class
with non-geometric veering triangulation for every hyperbolic surface of complexity at least
2. The eventual result will be that (finite covers of) the mapping tori of the classes @1, ..., 7
from Proposition 8.4 contain fibers homeomorphic to every surface S with {(S5) > 2. This
will imply Theorem 1.3 from the Introduction.

We begin by reviewing some classical results about the Thurston norm, and then proceed
to find the desired fiber surfaces in the mapping tori of ¢1,..., 7.

9.1. The Thurston norm. Let M be a compact orientable 3—-manifold with 0M a possibly
empty union of tori, such that the interior of M is hyperbolic. We will pass freely between
M and its interior. Thurston [46] showed that there is a norm | - ||: Hao(M,0M;R) — R on
second homology, defined on integral classes by the property

|z = min {—x(S) : S is an embedded surface without S? components representing z} .

He proved that this norm, now called the Thurston norm, has the following properties:
(1) The unit ball B = {z : ||z|| < 1} is a centrally symmetric polyhedron.
(2) If M is a fibered 3—manifold with fiber F', then the class [F] € Hy(M,0M) lies on
a ray from the origin that passes through an open top-dimensional face F < ¢B. In
this case, F is called a fibered face, and the open cone R, F is called a fibered

cone.
(3) If x € R4 F is a primitive integral homology class lying in a fibered cone, then z
is represented by a fiber surface S. Furthermore, |z| = —x(S). In particular, if

dim(Hy(M,0M)) = 2, then R F contains infinitely many fibered classes.
When M is fibered with fiber F', the pseudo-Anosov monodromy ¢: F' — F of M induces
a suspension flow 1 on M. We also have n-invariant 2-dimensional foliations A%, which
are suspensions of the invariant foliations F* associated to ¢. Let R, F be the fibered cone
containing F. Then F determines AT and the flow 1 (up to isotopy), independent of the
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fiber F'. Moreover, for every fiber S in R, F, the foliations AT and A~ are transverse to
S < M, and the intersections AT N S are isotopic to the stable and unstable foliations F ;-r
associated to the monodromy of S. See Fried [17] and McMullen [38] for more details.

A slope on a torus T is an isotopy class of simple closed curves, or equivalently an
(unsigned) primitive homology class in H;(T;Z). In a fibered 3-—manifold M, with boundary
tori 11,...,T,, any fibration of M determines two slopes on each torus T;. First, a fiber
F must meet every T; in a union of disjoint, consistently oriented simple closed curves.
The isotopy class of these simple closed curves is called the boundary slope of F' on T;.
Second, the orbit under the flow 7 of a singular leaf of F* is a (2-dimensional) singular
leaf of AT. Every singular leaf traces out a simple closed curve on some 7}, whose slope is
called the degeneracy slope on 7T;. We emphasize that the degeneracy slope is entirely
determined by AE, hence by the fibered cone containing F.

Lemma 9.1. Let M = M, be the mapping torus of a principal pseudo-Anosov ¢: F' — F.
Then, on every component of OM, the boundary slope of F intersects the degeneracy slope
once. If S < M is another fiber surface in the same fibered cone as F', then the monodromy
of S is principal if and only if the boundary slope of S intersects the degeneracy slope once.

Proof. Let F ; be the stable foliation of ¢ on F. Since ¢ is principal, F ; has 3-prong
singularities at interior points of F. Thus AT also has 3-prong singularities at interior
points of M. In addition, every puncture of F' meets exactly one singular leaf of .7-';. Thus,
on every cusp torus T; < M, a loop about the puncture of F' intersects the degeneracy
slope in exactly one point.

Let S be another fiber surface in the same fibered cone as F. As mentioned above,
the stable foliation .7-"; is isotopic to AT N S, hence has 3-prong singularities at interior
points of S. Meanwhile, the singular prongs of F. ; at a given puncture of S are in bijective
correspondence with points of A* N v;, where v; denotes a loop about the puncture. Thus
the monodromy of S is principal if and only if every ~; intersects the degeneracy slope
once. U

For a pseudo-Anosov ¢: S — S, recall that ¢: S — S denotes the restricted map obtained
by puncturing S at the singularities of ¢. The mapping torus M = M can be constructed
by drilling M,, along the singular flow-lines of A¥, i.e. the orbits of the singularities of F*
under the flow n; in particular, M depends only on the face F containing S. Furthermore,
the fibered face of M; whose cone contains S depends only on F.

The following lemma is a special case of [40, Proposition 2.7].

Lemma 9.2 (Agol). Let M be a fibered hyperbolic 3-manifold with fibered face ¥. Then any
two fibers F1, Fo € Ry F produce the same veering triangulation of M, up to isotopy. U

We close this background section with two easy but useful observations that date back
to Thurston [46].

Fact 9.3. For x,y € Hy(M,0M;R), the equality |z + y| = ||=| + ||y| holds if and only if =
and y are in the same cone over a face of the unit Thurston norm ball.

This follows by the definition of a norm, combined with the property that the unit ball
B is a polyhedron.

Fact 9.4. If S represents x € Ho(M,0M;7Z), then ||z| = —x(S) mod 2.
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[F] o[F]
7 T'=11+1, T 1'.’:x1+x2 z T'=214+2,
2 2 o2
1T, 1z, 1,
—X —y -tz
(a) (b) (c)

FIGURE 7. (a) For the case F' =~ 3, the assumption |z’| = 1 leads to a
contradiction. (b) When F' = 31, the Thurston norm ball is the rhombus
shown. (c¢) When F' =~ ¥ 5, the Thurston norm ball is either the polygon
shown, or the mirror image of this polygon across the vertical axis.

This follows from the existence of the boundary map 0: Ho(M,0M;7Z) — Hi(0M,Z),
and the fact that the number of components of an embedded multi-curve representing an
element of Hy(0M,Z) is invariant mod 2.

9.2. Finding desired fibers. The following lemma will be used to find fibers of almost
every topological type.

Lemma 9.5. Let M be a one-cusped fibered hyperbolic manifold with Ho(M,0M;R) = R?,
and suppose M contains embedded surfaces S1 = ¥1,1 and Sy = ¥g o representing non-trivial
classes in Ho(M,0M).

(1) If M has a fiber F' = 31, then the vertices of the unit Thurston norm ball are
+[S1] and i%[SQ]. Furthermore, the fibered cone containing F' also contains fibers
homeomorphic to g, for all g = 2 and n > 1 such that (g — 1,n) are relatively
prime. All of these fibers have the same boundary slope as F'.

(2) If M has a fiber F =~ 3, then the vertices of the unit Thurston norm ball are
+[S1], and either £([S2] + [S1]) or £([S2] — [S1]). Furthermore, the fibered cone
containing F' also contains fibers homeomorphic to X1, for all n > 2. All of these
fibers have the same boundary slope as F.

Proof. Let 1 = [S1] and xp = [S2]. Since x(X11) = —1 and |z1| > 0, we conclude that
|z1| = 1. Similarly, since x(32,0) = —2 and |z2| > 0, Fact 9.4 implies that ||z2| = 2. Thus
the four classes +x1 and i%xz all lie in 0B, where B is the unit ball of the norm.

Recall the boundary homomorphism 0: Hy(M,0M) — Hyi(0M), and fix the class [ =
dry € Hi1(0M;Z). Note that £+l are the unique primitive classes in H;(0M;Z) that are
trivial in Hy(M). Observe as well that x1 # x9 because 0x1 =1 # 0 = dxy € H1(OM;Z).

Now consider ' = z1 + x2 and 2" = x; — x9. Since 2’| < |x1] + |z2] = 3 and
2| = x(21,1) + x(X2,0) mod 2, we have |2’ € {1,3}. Similarly, |z”| € {1,3}.

Case 1: M has a fiber F' = %5, which implies J[F] = +l.
Suppose for a contradiction that |2’ = 1. Then, by Fact 9.3, the points —z1, %CL‘Q, x' € 0B
determine a line segment contained in a face of dB. Since M has a cusp, and the interior
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point %:1:2 is represented by (half) the closed surface Sy =~ 33, this cannot be a fibered
face. Similarly, the points x1, %xg, —1' € 0B determine a line segment in a non-fibered
face of 0B. (See Figure 7a.) It follows that the fiber F' lies in a cone over some other face,
which we may assume is in the first quadrant by changing the orientation of F' if necessary.
Hence we can write [F] = ax; + b/, for some a,b € Q. Since 2’ = 1 + x2, we have

0x' = 0x1 + 0wy = 0wy =1 € H1(OM),

implying
+1 = 0[F] = d(az1 + bx') = (a + b)l.

Hence a + b = +1, but a + b > 0, so we must have a + b = 1. It follows that [F'] lies on the
line segment joining x1 and ', which is impossible since ||[F]| = 3. From this contradiction,
it follows that ||2/| = 3.

If we consider 2" = x1 — x5 in place of 2/, and assume that |z”|| = 1, then the argument
above with the obvious modifications again gives a contradiction. Hence |z; — x3| = 3 =
|zo — 21| Therefore the points £z1, +3zo, i%m’, J_r%x” all have norm 1, hence Fact 9.3
implies that these points determine the unit norm ball. It follows that the vertices are
tvy, 9, where v = 21 = [S1] and vy = %xg = %[Sg]. See Figure 7h.

Now, let F be the face containing F. Without loss of generality, F has vertices {v1, va}.
Fix a pair (g,n) where g = 2 and n > 1, and where ged(g — 1,n) = 1. Let y = ax1 + bxa,
where a = n and b = g — 1. Since ged(a, b) = 1, the homology class y is primitive and hence
represented by a fiber F’. Since the norm is linear on faces by Fact 9.3, |y| = a|z1|+b|z2| =
a + 2b. Furthermore, F’ has exactly a = n boundary components, since So is closed and
S1 has one boundary component. Thus a + 2b = |y| = —x(F') = 2¢9(F’') — 2 + a, giving
g(F") =b+1 =g, as desired.

Case 2: F = X 9, which implies 0[F] = £2I.

Suppose, for a contradiction, that ||2/| = |z” = 3. Then the points +z1, +3zs, +32/,
+12” all have norm 1, and determine the unit norm ball must be as shown in Figure 7b.
Hence, up to changing signs, we may assume that [F] = az1 + b(%l’g) for some a,b e Q..
Then

20 = J[F] = 0(az1 + b(322)) =al = a=+2.
Since the Thurston norm is linear in the cone over a face, we have
2 =|[F]] = laz1 + b(z22)]| = la| + [0| =2+ )] = b=0,

which is impossible, because the fiber F' must be in the interior of a fibered cone. This
contradiction implies that either |2/ =1 or |2”] = 1.

If | 2’| = 1, the unit sphere 0B contains the segments connecting +2’ and Fx1, as shown
in Figure 7c. As above, we observe that %:cg cannot lie in the interior of a fibered face, so
(after possibly reversing the orientation on F') we must have [F| = axy + ba’ for a,b e Q5.
Applying the boundary homomorphism gives

2l = O[F] = d(axy + bx'") = (a + b)l
which implies
a+b=2=|[F]| <a|zi] +b]2| = a+bd.

Since the norm is only linear in the cone over a face (Fact 9.3), the segment joining x; to
x' must lie in a face of dB. It follows that +x1, +x’ are the only vertices.
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If |2"|| = 1, an identical argument applies with 2’ replaced by z”. In this case, the vertices
of 0B are +x1,+2”. Thus, in both cases, the vertices of the unit norm ball are +v; and
+vg, where v; = [S1], and v9 is either [Sa] + [S1] or [S2] — [S1]-

Now, let F be the face containing F. Without loss of generality, say vy = [S1] + [S2] and
F has vertices {v1,v2}. The norm-realizing surface P representing ve has x(P) = —1 and
O[P] = l. Thus P is either a pair of pants or a one-holed torus. If P is a pair of pants, then
two boundary components of P must cancel in Hy(0M), which means they can be tubed
together to obtain an embedded one-holed torus. Thus, in either case, vs is represented by
an embedded X ;. Fix an integer n > 2, and let y = v1 +(n—1)vy = n[S1]+ (n—1)[Sz]. As
before, y is primitive and therefore represented by a fiber F’. Since the Thurston norm is

linear on the fibered cone, |y|| = |v1|+(n—1)|ve|] = n. Furthermore, since dS2 = &, F’ must
have exactly n boundary components. This gives that n = |y|| = —x(F’') =29(F') =2 +n
which implies g(F') = 1. We conclude that F’ = ¥ ,,, as required. O

Before proving Theorem 1.3, we need a straightforward lemma about covers.

Lemma 9.6. Let ¢: S — S be a pseudo-Anosov homeomorphism and f: S Sa degree
d < oo covering. Then the following holds.

(1) There ezists a pseudo-Anosov @ : S — S that is a lift of some power ©* of .

(2) The veering triangulation T, z';s* a geometric triangulation of My if and only if 75 is
a geometric triangulation of Mg.

(3) If ¢ is principal and each peripheral curve of S has d lifts to S, then @ is also
principal.

Proof. Conclusion (1) is standard. Let d be the degree of the cover. Then the finitely many
index d subgroups of m1(S) are permuted by the induced isomorphism ¢,. Thus some
power of ¢, must stabilize the subgroup fxm (S) < m1(S), allowing the lifting criterion to
be applied.

Conclusion (2) follows from the fact that every simplex in the veering triangulation 7, of
]\04@ lifts to a simplex in the veering triangulation 75 of ]\04@, with the same shape.

For conclusion (3), note that since ¢ is principal, every singularity of ¢ is either 3—pronged
and occurs at an interior point of § or 1-pronged and occurs at a puncture. Since each

peripheral curve of S has d lifts to S, the same is true for ¢. Thus @ is principal. O

We can now begin proving Theorem 1.3, case by case.

Proposition 9.7. Let S = ¥4, be a hyperbolic surface of genus g = 1, excluding X1 .
Then there exists a principal pseudo-Anosov ¢ € Mod(S) such that the associated veering
triangulation of the mapping torus M, is non-geometric.

Proof. We consider three different cases.

Case 1: g=1and n > 2. Let ' = ¥15 and let ¢ = 3 be the third mapping class
described in Proposition 8.4. By Proposition 8.4, ¢ is a principal pseudo-Anosov, such that
the veering triangulation of M is non-geometric.

Let M, be the mapping torus of ¢: F' — F. According to Regina, M, contains embedded
surfaces S = ¥ 1 and Sy = 3y ¢ which are non-trivial in Ha (M, 0My; R) =~ R2. To verify
this, Regina computes the complete list of embedded vertex normal surfaces for M,. Among
these vertex normal surfaces are 51 = 311 and So = Y3 . Cutting M, along these surfaces
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ensures that they are homologically non-trivial. The dimension of the homology is also
rigorously computed by Regina. See the ancillary files [19] for full details.

Thus, by Lemma 9.5, the fibered cone containing F' also contains fibers homeomorphic
to Y1, for all n > 1. All of these fibers have the same boundary slope as F', hence the
mapping classes of these fibers are all principal by Lemma 9.1. Finally, Lemma 9.2 says
that all of these fibers induce the same non-geometric veering triangulation of M.

Case 2: g >2and n = 0. Let F' = X3, and let ¢ = 1 € Mod(F) be the first mapping
class described in Proposition 8.4. By that proposition, ¢ is a principal pseudo-Anosov,
such that the veering triangulation of M is non-geometric. Now, recall that every closed
hyperbolic surface S is a finite cover of F'. Thus Lemma 9.6 gives the desired result for S.

Case 3: g>2and n > 1. Let F' = ¥y and let ¢ = g2 be the second mapping class
described in Proposition 8.4. By Proposmon 8.4, ¢ is a principal pseudo-Anosov, such that
the veering triangulation of Mg is non-geometric.

Let M, be the mapping torus of ¢: F' — F. Using Regina, as in Case 1, we check
that M, contains embedded surfaces S; =~ ¥1; and S = ¥ which are non-trivial in
Hy(M,,0My;R) = R2. By Lemma 9.5, the fibered cone containing F' also contains fibers
homeomorphic to ¥4, for all g > 2 and n > 1, where (g — 1,n) are relatively prime. All of
these fibers have the same boundary slope as F'. Thus, by Lemmas 9.1 and 9.2, we obtain
the desired conclusion for all g > 2 and n > 1 such that ged(g — 1,n) = 1.

Finally, suppose S =~ X, ,, with ged(g —1,n) = d > 1. Then ¢’ —1 = (g — 1)/d and
n' = n/d are relatively prime, with ¢’ > 2 and n’ > 1. Thus, by the above paragraph, the
fibered cone of M, containing F' also contains a fiber F’ =~ X ,,». Observe that S is a d-fold
cyclic cover of F' (realize S with d groups of ¢'—1 doughnut holes and n’ punctures, arranged
symmetrically around a central doughnut hole). By construction, peripheral curves of F’
lift to peripheral curves of S. Thus, by Lemma 9.6, a power of the monodromy of F’ lifts
to a principal pseudo-Anosov on S, and the non-geometric veering triangulation of M lifts
to a non-geometric veering triangulation of the corresponding finite cover of M. O

Proposition 9.8. Let S = Yy, be a surface of genus g = 0, with n = 5 punctures.
Then there exists a principal pseudo-Anosov ¢ € Mod(S) such that the associated veering
triangulation of the mapping torus M, is non-geometric.

Proof. If n = 5 or n = 6, the mapping classes @5 and g described in Proposition 8.4 satisfy
the desired conclusion. From now on, we treat planar surfaces with n > 7 punctures.
Let F' = X 7, and let ¢ be the mapping class
o7 =121, T\ T\ T, T, T, T, T,

T4+ 173 T4+ 179 1+ 7rg

given in Proposition 8.4. By Proposition 8.4, ¢ is a principal pseudo-Anosov and the veering
triangulation of the mapping torus M is non-geometric. We will show that the fibered cone
of Hy(M,, 0M,) containing [F'| also contains a fiber homeomorphic to ¥q,, for every n > 7.
Then, we will show that all of these fibers have principal monodromy.

To begin the proof, we embed M = M, as a link complement in S3. Note that the
generators T}, and 7T, do not appear in ¢, hence one of the punctures of F'is fixed. We can
therefore think of ¢ as a mapping class on the 6—punctured disk. More precisely, let By be
the braid group on k strands, and consider the natural homomorphism By, — Mod(Xg k+1)
defined by o; — T}.,. Then ¢ is the mapping class corresponding to the braid

2 -1 -1 1 —1
B = 050405 0] 0405 030105 .
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FIGURE 8. The mapping torus M, of ¢ = TT25TT4T,T31TT_11T7n4TT_21TT3TT1TT_21
has many embeddings as a link complement in S3. In the left panel, we
realize @ as a braid word 3, whose braid generators are read from the bottom
up. In the top center panel, we cut, twist, and reglue along the twice-
punctured disk S7, giving a re-embedding of M. In the bottom right panel,
we twist along S in the opposite direction, making it easier to see the fiber
F5 that is homologous to F' + 51 and compute the monodromy of Fb.

Consequently, the mapping torus M, is homeomorphic to S3 (B U La), where 8 is the
braid closure of 8 and Ls is the braid axis. See the left panel of Figure 8. In this embedding
of M, the fiber F' becomes the 6-punctured disk shown in green.

Next, we re-embed M into S® via a Rolfsen twist. That is: cut M along the twice-
punctured disk S; (colored pink in Figure 8), perform one counter-clockwise full twist from
the underside, and re-glue along S;. After this operation, we have M, =~ S \ L, where
L = Li u Ly u Lj is the three-component link in the upper center of Figure 8. The image
of the fiber F' under this re-embedding is shown again in light green.

The link L allows a clear view of two surfaces that will be important for our homo-
logical computations: the 2—punctured disk S7 bounded by L, and the 5—punctured disk
Sy bounded by Ls. The top center of Figure 8 shows their (transverse) orientations: we
are looking at the back side of S7 and the front side of Sy. Then, setting =1 = [S1] and
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T2 T2

d

T Ty

FIGURE 9. The homological sum adzx; + dze € Hi(0M). The left frame
shows a- 051 N (Th U Ts) in red and 0S5y N (T} U 1) in green. After the sum
(right), there is a curve of slope 1/a on T} and a curve of slope a on T.

x9 = [S2], we have [F] = x1 + x2. Since
5= |[F]l < llza] + 22| <1+4 =5,

we learn that |z1]| = 1 and |z2]| = 4. Furthermore, since the Thurston norm is only linear
in the cone over a face (see Fact 9.3), it follows that the segment joining x; to xo must lie
in the fibered cone containing [F].

Now, let a € N and consider y = ax1 + 2. Since y is primitive, it is represented by a fiber
F,. We wish to compute the topological type of F,, starting with the number of punctures.

Let 0: Ho(M,0M) — H;(0M) be the boundary homomorphism [S] — [0S]. To compute
0y = d(axy + x2) = adxry + Oxg, it suffices to take the homological sum (in H;(0M)) of
a copies of [0S1] and one copy of [0S2]. Let T; be the torus of M corresponding to link
component L;. Then the only intersections of 957 with ¢Ss occur on 77 and 75. On the
torus 77, there are a copies of the longitude, coming from a[dSi], and one copy of the
meridian, coming from [0S2]. The homological sum of these is a single curve of slope 1/a.
The situation on 75 is similar: there are a copies of the meridian, and one copy of the
longitude, giving a single curve of slope a. Figure 9 demonstrates this for a = 3. Since
L3 intersects S7 once and Sy four times, the boundary of y also contains a + 4 copies of
the meridian on the torus 73. Furthermore, the orientations on S; and Sy induce the same
orientation on each of these a +4 copies of the meridian, so none of them cancel in Hy(0M).
We conclude that the number of boundary components of F, is 1 + 1+ (a +4) = a + 6.

Since the norm is linear on the cone over a face, we get |y| = alz1| + |z2] = a + 4.
Furthermore, since F, = Y, ,, is a fiber, hence norm-realizing, we have

a+4=|y|l=—-x(Fu)=29—2+n=29g—2+ (a+6) =29+ (a +4).

We conclude that the genus of Fj, is g = 0. Hence Fj, = ¥g,46. By varying the value
of a € N, we get all surfaces g, for n > 7. By Lemma 9.2, the veering triangulation
associated to the monodromy for F, is the same as the veering triangulation for F' = F,
hence non-geometric.

Next, we compute the monodromy of F5 and show that it is principal. Since [F| = [F1] =
1 + 2, we have

[FQ] =21 +2x1+2x9 = [Sl] + [F]

The fiber F5 is shown in the bottom center frame of Figure 8. We may visualize the
monodromy of F, by again re-embedding M into S3, via a Rolfsen twist in the opposite
direction. That is: cut M along the twice-punctured disk So, perform a full clockwise twist
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(from the underside), and reglue. This realizes M as the complement of a new link, shown in
Figure 8, bottom right. This link is 3’ U Lo, where 8’ = 0305040510f1040510301051 € By.
After the re-embedding, the fiber Fy becomes the green 7-punctured disk shown, with
monodromy 1) corresponding to by the braid word 3’:

Y =121, 1., 1, .1, T, T, T, T,

T1"1rg

Using flipper, we confirm that v is in fact principal.

It remains to show that the monodromy of F, is principal for every a € N. We already
know this for F} and Fy. We finish the proof using Lemma 9.1 and linear algebra. For
each cusp torus T; of M, let §; be a simple closed curve realizing the degeneracy slope of
F, oriented in the direction of the flow 7. Then, for i € {1,2,3}, we have a sequence of
homomorphisms (Z coefficients are presumed):

Ha(M,0M) ~2> Hy(0M) " Hy(T;) %), 7,
where m;: Hi(0M) — H;(T;) is the projection map to the i-th component and (-, d;) is
the algebraic intersection pairing. The composition of these homomorphisms is a linear
functional v;: Ho(M,0M) — Z. Consider its values for [F1] and [Fb].

On the torus 71, both fibers F; and F; have a single boundary component (see Figure 9,
right). Since the monodromies of F} and Fy are principal, both 0F; and 0F; intersect d;
once. With our orientations, v1([F1]) = vi([F2]) = 1. Thus, by linearity, we have vy ([F,]) =
1 for every a. By an identical argument, vo([F1]) = v2([F2]) = 1, hence 1»([F,]) = 1 for
every a. Finally, on the torus T3, we have seen that 0F, consists of a+4 parallel components
whose slope is independent of a. Since Fj is principal, each of these components intersects
03 once. Since every boundary component of F, intersects the degeneracy slope once,
Lemma 9.1 implies that the monodromy of Fy, is principal for every a € N. ([l

Remark 9.9. flipper has the capability to compute degeneracy slopes from a veering
triangulation, using [18, Observation 2.9]. A combination of flipper and Snappy shows
that in M =~ S3~ (L; U Ly U L3), the degeneracy slope 6; agrees with the longitude of Ly,
while do and d3 are meridians of Ly and Ls, respectively. This fact, combined with Figure 9,
shows that every Fj, is principal. The above argument using the linear functionals v; avoids
the need to ever identify ¢;.

Proof of Theorem 1.3. Let S be a hyperbolic surface. If £(S) = 0, then S =~ ¥ 3, hence
Mod(S) is finite. If £(S) = 1, then S = ¥y 4 or ¥ 1, and the work of Akiyoshi [2], Lackenby
[30], and Guéritaud [21] shows that all pseudo-Anosov mapping classes in Mod(S) have
geometric veering triangulations.

Now, assume that £(S) > 2. Under this hypothesis, Propositions 9.7 and 9.8 show
that there exists a principal pseudo-Anosov ¢ € Mod(S) such that the associated veering
triangulation of the mapping torus ]\OLO is non-geometric. O
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