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Abstract

This paper provides a detailed analysis of three common NMR probe circuits (untuned, tuned, and
impedance-matched) and studies their effects on multi-pulse experiments, such as those based on the
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The magnitude of probe dynamics effects on broad-
band refocusing pulses are studied as a function of normalized RF bandwidth. Finally, the probe circuit
models are integrated with spin dynamics simulations to design hardware-specific RF excitation and
refocusing pulses for optimizing user-specified metrics such as signal-to-noise ratio (SNR) in grossly

inhomogeneous fields. Preliminary experimental results on untuned probes are also presented.

Keywords: Spin dynamics, probe circuits, pulse design, optimal control theory, low-field NMR.

1. Introduction

Traditional NMR experimental apparatus utilizes impedance matching of the radio frequency (RF)
coil to the transmitter and receiver to ensure i) efficient transmission of RF power for spin manipulation,
and ii) significant voltage gain with out-of-band noise rejection during reception. We refer to such probes
as being impedance-matched. In addition, low-frequency systems, such as for NMR well-logging [1, 2],
often use probes that are tuned, but not impedance-matched. In either case, a typical tuning circuit
consists of a tuning capacitor (capacitance C') in parallel with the RF coil (inductance L). This LC circuit

acts as an analog band-pass filter with a resonance frequency w, ~ 1/v/LC and bandwidth BW =~ w,./Q,
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where R. and @ ~ w,L/R, are the series resistance and quality factor of the coil, respectively. The
value of () for typical coil geometries is usually > 50, which ensures that BW < w,. The dynamics
of such a narrow-band circuit begins to affect the measurement when the probe bandwidth becomes
comparable to the NMR signal bandwidth, which is approximately 2w; for extended samples in a static
field gradient. Here wy = vB; = 7/(2Ty) is the nutation frequency, where Bj is the amplitude of the
RF magnetic field seen by the spins, and Ty is the length of a 7/2 RF pulse.

In the time domain, limited probe bandwidth limits the speed at which transmit pulses can be turned
on and off. This effect becomes worse at lower frequencies or high @) coils, which can be illustrated by
looking at the rise or fall time of resonant circuits. For example, the voltage envelope across a parallel
RLC circuit driven on-resonance rises and falls as V(t) = Vg (1 — e "/?)) and V(t) = Voe =t/
respectively, where Vj is the steady-state amplitude. Thus, the setting time ~ 4@Q)/w, increases as w,
decreases or () increases, which eventually limits the modulation rate of phase- and amplitude-modulated
pulses. In receive mode, the probe band-pass filters the NMR signal. While such filtering removes out of
band noise, it also results in distorted and time-delayed waveforms at the receiver output. As for transmit
pulses, these effects becomes worse for low-frequency and or high-() systems. Thus, the severity of probe
dynamics effects is inversely proportional to the resonance frequency of the experiment and proportional
to coil Q). Many commercial MR tools operate at high frequencies where probe dynamics effects can be
ignored. However, these effects can be significant for low-field or high-Q) systems, particularly for phase-
and frequency-modulated pulses. Such finite bandwidth effects are also relevant for quantum computing
experiments which utilize extremely high @, superconducting detectors [3, 4].

Although most NMR hardware utilizes resonant circuits for transmission and reception, recent ad-
vancements have led to non-resonant or untuned probe circuits [5-9]. The transmitters and receivers
of such systems directly access the coil directly without the use of tuning and/or matching capacitors,
thus greatly increasing the probe bandwidth. However, the absence of impedance matching reduces the
power available at the coil, while the absence of voltage gain from a tuned circuit degrades receiver
noise figure (NF) and signal-to-noise ratio (SNR). In addition, the lack of tuning and matching does not

completely eliminate probe dynamics effects.
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Figure 1: Block diagram of a typical NMR hﬁardware platform. Separate transmit and receive probes are shown for clarity,
but are often combined in practice. Here E denotes the electric field induced within the sample, which generates eddy
currents. ADC = analog-to-digital converter; DAC = digital-to-analog converter.

The fundamental issue is that the transmitter does not directly control the B; field seen by the spins,
but rather the voltage fed into the probe circuit (whether matched, tuned, or untuned). Similarly, the
receiver does not directly sense the precessing magnetization M , but rather the voltage it induces in the
receive coil after it is filtered by the probe. Thus, the probe modifies both the transmit pulses (which
alters the spin dynamics) and also the received NMR signals, as shown in Fig. 1. The corresponding
transfer functions (TFs) are also sample-dependent due to the bidirectional coupling between the probe
and sample, which generates eddy currents (due to electrical conductivity of the sample) [10] and
radiation damping effects [11]. The situation is analogous to that for gradient coils in imaging: the
gradient amplifier controls either the voltage or current of the gradient coil, not the gradient vector G.

While a large body of work has focused on modeling the effects of the gradient TF and then removing
them using pre-emphasis (i.e., TF inversion) [12, 13], much less work has been carried out on analogous
methods for the RF transfer function [14, 15]. The qualitative effects of finite probe bandwidth on
RF pulses (known as phase transients or glitches) have long been recognized, particularly in solid-state
NMR [16], and pulse sequences that compensate and/or benefit from such “RF imperfections” have also
been developed [17]. However, earlier work on quantitatively modeling the effects of tuned and resonant
circuits on RF pulses [18, 19] has not directly connected such models to the spin dynamics. In fact,
while most NMR hardware on the market utilizes resonant probe circuits, spin dynamics simulators

generally do not take the probe dynamics into consideration [20]. This is unfortunate, since NMR, spin
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dynamics simulations play a crucial role in our understanding of NMR physics and help the development
of novel NMR/MRI technologies [20-22]. For example, such simulations have furthered our knowledge
of NMR in grossly inhomogeneous By fields [23, 24|, aided the development of broadband composite
NMR pulses [25-29], enabled modeling of solid-state NMR spectra [30, 31], facilitated studies of large
molecules [32], and formed the basis of new MRI techniques [33, 34]. This paper aims to fill the gap
between circuit models and spin dynamics by providing a comprehensive summary of probe dynamics and
their effects on NMR experiments. Our results are likely to be of particular interest for low-field NMR
(where probe dynamics effects are often significant), but they may also be useful for other applications.

Since non-resonant, tuned, and matched probes are all used for NMR measurements, the paper
provides a detailed analysis of each circuit. The results are used to study the effects of probe dynamics
on pulse transmission and signal reception in various scenarios, including i) single pulses, ii) multi-
pulse Carr-Purcell-Meiboom-Gill (CPMG) sequences in grossly-inhomogeneous fields, iii) broadband
refocusing pulses for CPMG sequences, and iv) axis-matched excitation and refocusing pulses designed
using optimal control theory (OCT). For simplicity, we do not include radiation damping effects, but
these can be included in the circuit models by adding a secondary resonator (modeling the spin system)
that is inductively-coupled to the RF coil [11, 35]. Also, while our results can be extended to more
complicated probe designs by interfacing spin dynamics code to a circuit simulation program such as
SPICE [36], we believe that our analytical treatment of several common designs provides useful insights®.

The paper is organized as follows. Sections 2, 3, and 4 analyze untuned, tuned, and matched probes,
respectively. Section 5 discusses the noise analysis and signal detection procedure for all three probe
circuits. Various simulation results are described in Section 6, while experimental results are presented

in Section 7. Finally, Section 8 concludes the paper.

LAll the simulation code used in the paper is available from the following public repository: https://github.com/
supertjhok/MATLABSpinDynamics.git.
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2. Untuned Probes

We start by analyzing the transmitter and receiver dynamics for an untuned probe. In its simplest
form, an untuned NMR probe simply consists of a coil, which can be modeled as an inductor L in
series with a resistor R.. Some parasitic capacitance C,, is always present in parallel with the coil,
but we assume the resultant self-resonant frequency wggpr =1/ \/m is much larger than the Larmor

frequency wy. In this case, Cpq, has negligible effects on the transmitter and receiver dynamics.

2.1. Transmitter Dynamics

The transmitted B; drives nonlinear spin dynamics, so the probe dynamics during transmission must
be modeled in the time domain. The main goal is to find the coil current I. (which is proportional to
By) in terms of the open-circuit transmitter voltage V. We use “switched linear” models, which are
common in power electronics, to study untuned probes during transmission. The probe is modeled using
N linear networks. At certain instants, a controller switches the system from one network to another.
The switching action is assumed to i) be much faster than the circuit dynamics, and ii) conserve energy.
Thus, it does not affect any state variables (capacitor voltages or inductor currents) in the circuit.

We only need two networks to create a first-order model of an untuned transmitter, as shown in
Fig. 2. The first network (Fig. 2(a)) models the transmitter “on” state using a sinusoidal voltage source
Vs in series with a resistor R;,,. Note that low-frequency NMR transmitters often use a square wave
input source. However, only the fundamental component affects the spin dynamics. Thus, a Fourier
expansion can be used to replace the square wave by a sinusoid with 4/7 = 1.27... times the amplitude.
The second network uses a resistor Ry ,¢¢ to ground to model the transmitter “off” state (Fig. 2(b)).
The value of ;¢ can be set to a low value just after an RF pulse to model a “Q-switch”.

The relevant circuit equations are identical for both networks if we use the appropriate value of R,
and recognize that V, = 0 when the transmitter is off. Defining V. as the voltage across the coil and

using Kirchoff’s current law, we have:

di. _ V@ -V
Vo= Lp+ Rl and [ = ——F—. (1)
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(b)
Figure 2: A first-order, two-state model of an untuned NMR, probe and transmitter with the transmitter (a) “on”, and
(b) “oft”. Here Cpq, is the parallel self-capacitance of the coil.
These equations can be combined into a first-order ordinary differential equation (ODE) given by
dy |y
— + = =f), (2)

at 7,

where y = 1., the probe time constant 7, = L/ (R. + Rs), and the input function f(¢t) = V;(¢)/L. While
the first-order dynamics modeled by eqn. (2) can be eliminated by replacing V; with a RF current source,
in practice such wideband current sources are difficult to realize.

We first find a general solution of the associated homogeneous equation by setting f(¢) — 0. Phys-
ically, this models the natural (not driven) dynamics of the system. The homogeneous equation has
the general solution yj,(¢t) = y(0)e~/™. Here the time constant 7, is a measure of how rapidly initial
conditions within the coil decay with time.

Next, we find a particular solution of the inhomogeneous (driven) ODE for a complex exponential
RF input f(t) = u(t)e’“*?®) where w is the RF frequency and u(t) is the unit step function. The latter

models the fact that the input turns on at ¢ = 0. A particular analytical solution to this problem is
ya(t) = u(t) Ae" 0 [t — e7t/m] (3)

Here the steady-state TF is A (w) ¢?’“) = 7,/ (1 +iwT,) and has the form of a first-order low-pass filter.
Also wt, = wL/ (R, + R,), which is the effective quality factor of the probe during transmission, is

usually > 1 at the Larmor frequency. Thus, the steady-state phase-shift is 0(w) ~ —m/2.
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The general solution to the driven ODE is the sum of the homogeneous and particular solutions:

y(t) = yn(t) + yalt) = u(®) A0 4 (y(0) — u(t) A" @) et/ (4)
Stead;/, state Tra;;ent

where we have decomposed the solution into its asymptotic (steady-state) and transient components.

2.2. Receiwer Dynamics

Assume that the probe and receiver have recovered from the effects of an RF pulse. The probe then
acts as a linear time-invariant (LTI) filter with a TF Gg (w) = Syz (w) /S¢ (w). Here S, (w) and S, (w)
are the signal spectra induced on the coil and across the receiver input terminals, respectively.

Since the NMR signal is detected using Faraday induction, the detected voltage is V.(t) = dy/dt
where ¢ is the magnetic flux generated by precessing spins within the receive coil. In the frequency
domain, this relationship becomes S.(w) = iw(B1/I)M(w) where B;/I is the coil sensitivity function
in receive mode [37] and M (w) is the magnetization of the sample (as predicted by spin dynamics

simulations). Thus, the modified receiver TF becomes

7) Ga(w). (5)

Eqn. (5) is valid for all probe designs. In the case of an untuned probe, Ggr(w) =~ 1, i.e., is constant

over the bandwidth of interest. Thus the received signal is identical to that induced on the RF coil.

2.3. Generation of OCT Pulses
2.3.1. Eliminating switching transients

A variety of phase-modulated RF pulses can be designed using OCT to fulfill user-defined perfor-
mance goals, such as maximizing the fidelity of a state-to-state transfer or increasing SNR for a given
peak RF power level [25, 26]. For this purpose, the pulse is discretized into a set of segments, each
with uniform phase ¢,. We would like to remove the transient components produced by the untuned
probe during the resultant phase jumps ¢, — ¢,.+1. Let us assume that the output has reached its

steady-state value before the input phase changes from ¢ to ¢’ at time ¢ = T. We can simply change
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the effective RF phase to ¢err = wT + ¢ to use the solution derived earlier (for a step at t = 0) in this

situation (for a step at t = T). The initial amplitude of the transient component is then given by
(y(T) _ Aei(wT+¢>’+9)> — 4 <6i(wT+¢+9) _ ei(wT+¢>'+9)> — AT +0) (eid’ _ ew/) .

Unfortunately, this quantity is non-zero except for the trivial case of no phase change (¢ = ¢’). Therefore
the transient component cannot be removed.

However, the situation changes if the input voltage is a sinusoid, as when a single transmit coil is
used. In this case f(t) = u(t) cos (wt + @), i.e., the real part of the complex exponential RF input. Since
the system is linear, the resulting particular solution y4(t) is simply the real part of the complex solution

in eqn. (3). The general solution is thus given by

y(t) = u(t)Acos (wt + ¢+ 0) + [y(0) — u(t)Acos (¢ + 0)] e_t/TP/. (6)
Stea(i;rstate Tra;;ent

The initial amplitude of the transient component for a phase change at time ¢t = T' is given by

[y(T) — Acos (WT + ¢ +0)] = Alcos (WT + ¢+ 6) — cos (WT + ¢ +6)].

The condition for cancelling the transient is then given by cos (w1 + ¢ + 0) = cos (w1 + ¢’ + 0). This
equation is satisfied when the steady-state RF waveforms of the previous and current pulse segments
intersect. In addition to the trivial solution of no phase change (¢ = ¢'), the symmetry of the cosine

function about 0 (i.e., cos(x) = cos(—=z)) provides another solution:

(WI'+¢p+0)=—(WT'+¢ +6) = wT:—M—Q. (7)

The intersection points occur twice per RF cycle and are separated by half a cycle, i.e., by a time
AT such that w(AT) = £7. Since cos(x + 7) = — cos(z), the values of coil current at these points are

also inverses of each other. Thus, the transient components can be canceled by keeping track of the
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Figure 3: Graphical explanation of the transient elimination principle. The RF waveform corresponding to the initial
phase (assumed to be ¢ = 0) is shown as the solid line, while waveforms corresponding to various phase offsets are shown
as dashed lines. It is possible to switch to one of these phases without generating a transient at the times indicated by
circles, i.e., when the initial and final waveforms intersect.

absolute RF phase wT" when the phase is switched, as indicated in Fig. 3.
Since intersection points are separated by half an RF cycle, the maximum timing adjustment AT,y

required for phase-switching to occur at these points is one quarter of a cycle. Thus, w |[ATgg,| < 7/2

suffices to avoid transients. The values of ATy can be found by rewriting the intersection condition as

mod (w7, 7) = mod {—M —0, n}

- 5)

Il
e

Writing the absolute RF phase as wT = M + w (AT,q4;) where M is an integer, we find that

a, a<m/2,
w (AToq) = (9)

—(r—a), a>n/2.

Special conditions are required for the first and last pulse segments, as described below:

e First segment: Here the initial condition is y(0) = 0, so the design goal is cos (WT + ¢’ +6) = 0
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where ¢’ is the phase of the segment and T is its start time. This condition may be written as

mod(wT+¢’+9m):g or mod (WT + ¢ +6,7) :%T_

In the common case when w1 = 7M and 6 ~ —7/2, these conditions reduce to ¢’ = {0, 7}. The
input voltage Vi then reaches its maximum (or minimum) value at ¢ = 7. Since § ~ —m/2, the
steady-state coil current is in quadrature with V;, and thus is zero at ¢ = T'. Since the total coil

current must be zero at this point to remain continuous, its transient component is also zero.

e Last segment: We require this segment to end with zero coil current, such that no transient
response is excited afterwards. Thus, we need y(7”) = 0, where 7" is the time at which the last
segment ends. Assuming the current has reached steady-state by this point, this condition may

be written as cos (W1’ + ¢’ + 0) = 0, or alternatively

3
mod (WT" + ¢' +6,7) = g or mod (WI"'+ ¢ +0,7) = ?ﬂ

Spectrometers designed for low-field measurements often constrain the system clock frequency fux
to be a multiple of the RF frequency, since this provides control over the absolute phase of each RF
pulse?. Such control is important for obtaining accurate relaxation measurements using CPMG-like
multi-pulse sequences when the pulse lengths become comparable to the RF period [38]. In this case,
the value of f.; constrains the available phase angles and segment lengths to discrete sets of values.
Phases are quantized to the set k (2m/N,,) where N, is an integer, while pulse segment lengths and delays
are quantized to k (2m/ (wN;)) where N; is the number of steps per RF cycle. Thus, (¢ + ¢')/2 will be
quantized to 2N, uniformly-spaced values. If the steady-state phase shift 6 is quantized to this set, the
adjustment angle a for transient cancellation becomes quantized to 2N, values. As a result, 2N, time
steps per RF cycle are needed for transient cancellation (i.e., N, = 2N,). For example, we need 32 steps

per cycle (far = 32 X frr) to cancel the transients produced by switching between a set of 16 phases.

2General-purpose spectrometers typically do not impose this constraint, instead operating at a fixed value of f..

10
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The transient cancellation condition simplifies considerably when phase changes between adjacent
pulse segments are constrained to be +7. Examples include symmetric phase-alternating (SPA) refocus-
ing pulses and binary-phase (BPP) excitation pulses [27, 29]. In this case ¢’ = ¢ £, so the cancellation
condition becomes (w1 + ¢ +0) = £% and thus cos(wT + ¢ + 0) = 0. Thus, transients are cancelled
simply by switching phases at zero-crossings of the coil current. The pulse must also begin and end at
zero-crossings to prevent initial and final transients, respectively. Thus, all pulse segment lengths and
inter-pulse delays should be integer multiples of half the RF period.

—iwot

The coil current in the rotating frame is I.,.(t) = I.(t)e~*°". For sinusoidal inputs at a frequency w ~

wo, I.r(t) has three main components: i) Centered around DC: a co-rotating steady-state component of

amplitude Is/2 that drives the spin dynamics; ii) Centered around 2wy: a counter-rotating steady-state

component of amplitude I;,/2 that causes second-order effects such as the Bloch-Siegert shift [39]; and

iii) Centered around wy: probe transients of amplitude Ij,.4,. The second and third terms have negligible

effects on the spin dynamics if wy > w; and the coil only generates fields perpendicular to the static field.
However, the DC component of the transients (i.e., the third term) will effectively shift the resonance
frequency wy when the coil current generates a component along the static field, thus inducing a phase
shift in the transverse magnetization. In either case, eliminating the transients reduces transmitter

power consumption. The average power dissipated in the coil and transmitter over a duration 7T is

T T
Puiss = M / ]CQ(t)dt = w / [Iss CcoSs (wt + 0+ gb/) + Itmne_t/Tp} th, (10)
0 0

where I, = A(V,/L) = V;/ (R\/w?r2+1) is the steady-state amplitude of the coil current, while
Livan = 1.(0) — Isscos(0 + ¢') is the initial amplitude of the transient component. We assume that the

integration is performed over many RF cycles, such that wT > 1. The average power dissipation is then

P (R. + Ry) {—[2 I2 <—1 — e_mm)} (11)
diss ™~ c + S > + ran :
2 2T/,

For a phase-modulated pulse, T may be identified as the length of each constant-phase segment, i.e., the

inverse of the OCT control bandwidth. If each of these segments is long enough to reach steady-state,

11
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Livan =~ Iss[cos(0 + ¢) — cos(6 + ¢')]. If in addition the phases (¢ and ¢') are uniformly distributed
and uncorrelated random variables, the variance of I;,.,, becomes % =1 325. The fractional increase
in power dissipation due to the modulation is then simply 1 + 2 (1 —e™*) /z, where z = 27'/7,. For
example, Py, increases by 86.5% when T' = 7, (i.e., z = 2). However, this result should be viewed as

a worst-case estimate, since in practice the phases of adjacent segments (i.e., ¢ and ¢') are likely to be

correlated, which will reduce the value of 12 .

2.3.2. OCT pulse generation example

Consider an untuned probe with L = 10 pH, R. = 0.63 2, and a source resistance of Ry = [2,20]
in the transmitter “on” and “off” states, respectively. The transmitter time constant during the pulse
is 7, = L/(R. + Rson) = 3.8 ps. The Larmor frequency is assumed to be 0.5 MHz, resulting in a coil @
of 50. Our goal is to generate a phase-modulated, constant-amplitude OCT excitation pulse with 104
segments, each of length 7" = 4 us (i.e., 2 RF cycles). Since x = 2T'/7, ~ 2.10, we expect the average
transmitter power dissipation to increase by up to 83.5% if transients are not eliminated.

The pulse phases are quantized to one of N, = 32 uniformly-spaced values, corresponding to a
clock frequency of fur = 32 MHz. Fig. 4(a) shows the segment lengths required to eliminate the probe
transients. These are no longer constant, but vary slightly (by less than half an RF cycle, as expected)
depending on the sequence of phases. Figs. 4(b)-(c) show the simulated coil current in the rotating frame
before and after transient cancellation, respectively. The former has 47.9% higher power consumption
and ~2.2x higher peak current, in agreement with the analysis. Thus, transient cancellation is beneficial
from a power and safety point of view while also eliminating potential effects of the probe transients on

the spin dynamics (e.g., time-varying shifts in wy).

2.4. Non-Sinusoidal Coil Currents

The solution in eqn. (4) assumes a perfect sine wave across the coil. However, broadband NMR
amplifiers often generate distorted waveforms, such as square waves. An analysis of transient cancellation
in such situations is included in Appendix A. The analysis shows that the conditions are unaltered

when the coil current is symmetric (i.e., contains only odd harmonics), as is often the case in practice.

12
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Figure 4: (a) Segment lengths of a phase-modulated, constant-amplitude OCT pulse after the switching instants have been
adjusted to eliminate probe settling transients. The original length of each segment was 2 RF cycles. (b)-(c) Simulated
coil current in the laboratory frame during the pulse: (b) before, and (c) after transient cancellation. The results have
been normalized to a steady-state current magnitude of unity in the rotating frame.

3. Tuned Probes

A tuned NMR probe adds a tuning capacitor C), in parallel with the coil to form a LC “tank” circuit.
The tank circuit acts a narrow-band impedance transformer. It provides voltage gain to the induced
NMR signal near its resonant frequency, which lowers the noise figure (NF) of the receiver and thus
improves the SNR. The goal of this section is to solve for the current in a RF coil given an input voltage

during transmission as well as to derive how a tuned reception affects the received signal.

3.1. Transmitter Dynamics

The dynamics of a tuned probe during transmission can be studied analytically by assuming the
same type of two-state “switched linear” model, as shown in Fig. 5. For convenience, we define i) a
dimensionless time variable 7 = w,t where w, = 1/ V/LC' is the probe resonance frequency, and ii) the
characteristic impedance Zy = \/L/—C’ Solving for the coil current /. using circuit analysis (described
in Appendix B.1) then results in the second-order ODE

d?y

dy
g2 27% +wny = f(7), (12)

which is identical to that of a driven, damped harmonic oscillator. Table 1 summarizes the variables used
to define eqn. (12). Physically, w, is the natural oscillation frequency of the circuit, v is the damping

coefficient, and f(7) is the input (driving function). Note that the damping coefficient increases as

13
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R decreases. Many low-frequency NMR transmitters are based on MOSFETSs operated as switches.
These circuits have an equivalent source resistance R, where R, is approximately equal to the switch
on-resistance. Usually R; is very low (less than a few Ohms), resulting in a large value of v. In this case
the probe is “over-coupled” to the source, which suppresses its internal dynamics. The result is rapid

pulse rise and fall times at the expense of lower steady-state current, as shown later.

+ 1. + I,
Rs,on L Rs,off § L

Ve — C Ve —— C
Vs R. R.
(a) = (b) =

Figure 5: A first-order, two-state model of a tuned NMR, probe and transmitter with the transmitter (a) “on”, and (b)
“oft”. Here C is the sum of the tuning capacitor and the parallel self-capacitance of the coil.

Eqn. (12) can be analytically solved by decomposing it into homogeneous and particular components.

The homogeneous solution is the sum of two exponentials and is given by

AT

yn(T) = cre™” + ™27 (13)

where the variables are defined in Table 1. The values of A are found by plugging the solution back into
the homogeneous ODE and the coefficients ¢; and ¢y are found by using initial conditions, as described
in further detail in Appendix B.2.

As described in more detail in Appendix B.3, a particular solution of the inhomogeneous ODE in
eqn. (12) was found for a complex exponential input f(7) = u(7)e’ %), where w is the normalized (i.e.,

dimensionless) RF frequency. The result is the sum of asymptotic (steady-state) and transient terms:

u(T)e - (A —iw) (A1 —iw)
_ WT 1T 2T 14
al7) [(wn? — w?) + 2iyw] & T ¢ 2 ’ (14)

Steady state ~~ -
Transient

where the variables are described in Table 1. As in Section 2, the particular solution for a sinusoidal
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Table 1: Variable definitions for eqn. (12)

Variable | Definition
T t/vVLC

Y I

Wn, 1+ g—g
[
fo) R

! 72 — w2
A2 ==X

input f(7) = u(7) cos (wr + ¢) is simply the real part of the solution y4(7) obtained for the corresponding
complex exponential input, i.e., eqn. (14) in this case. Finally, the general solution is the sum of the
homogeneous and particular solutions, which is given by y(7) = yn(7) + ya(7) in the laboratory frame

~iwo7) in the rotating frame. The resulting expressions are summarized in Appendix B.4.

and y(7)e
The fact that the internal dynamics of a tuned probe are suppressed in the over-coupled case suggests
that it should be possible to suppress its transients, as for untuned probes. The analysis in Appendix

B.5 confirms that this is indeed the case for tuned probes that are strongly over-coupled. In fact, the

transient cancellation condition is identical to that derived in Section 2.

3.2. Receiver Dynamics

The effects of a tuned probe on the induced NMR signal, v,,,,, are again expressed through an
LTI filter Gg (w) = Sy (w) /S¢ (w), where S, (w) is the spectrum of the NMR signal and S, (w) is the
spectrum seen by the receiver. We model the receiver admittance as a parallel RC' circuit, as is common
at typical NMR frequencies. A schematic of the system is shown in Fig. 6(a).

For a simple tuned probe, circuit analysis shows that G (w) = [1 + (iwL + Re) (iwC 4+ Gq + Yi)] ',
where Gy = 1/R,; denotes the conductance of any damping resistor across the probe and Y;, = 1/Z;,

is the input admittance of the receiver. Because the receiver is modeled by a parallel RC' circuit,
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Figure 6: Model of a tuned NMR probe during receive mode for calculating signal (a) and noise (b) transfer functions.

Table 2: Variable definitions for eqn. (15)

Variable | Definition
1
Ao (S A(TEzem)
Tr \/A()L (C ‘|— Cm>

Y, = iwCy, + G4, and the receiver TF can be written as

Grlw) = (iw)*72 +iw (1./Q,) +1 (1 —w?7?) +i(wr/Qy)’ )

where the variables are defined in Table 2. The TF is that of a second-order resonant low-pass filter
where A is the DC gain, 7, is the natural time constant, and (@), is the probe quality factor in receive
mode. The resonant frequency and 3 dB bandwidth of the filter are 1/7, and 1/(Q,7.), respectively. If
@, > 1, this frequency also results in the largest signal gain, given by |G (w)|,,.. = AoQr-

For many low-frequency NMR systems, the input impedance of the receiver is much larger than
that of the probe, ie., C;, < C' and G;,R. < 1. The constants in the receiver TF then simplify to
Ay =~ m ~1,7.~VLC =1 Jw, (such that the probe resonant frequencies are identical in transmit

and receive mode) and @, ~ ) where @ = Zy/R. is the quality factor of the coil at w,. Thus,

. Q
1+Q(Zo/ Ry
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the —3 dB bandwidth of the receive-mode TF becomes BW =~ w, /), which is much smaller than the

transmit-mode bandwidth. This is because the input and source impedances are different; typically

|Zin] > Rs, such that the probe is under-coupled in receive mode but over-coupled in transmit mode.
The phase of the receiver TF is 0, = —tan™! [(w7,./Q,) / (1 — w?7?)], which starts from 0 at DC,

reaches —m/2 at resonance (w7, = 1), and ends at —7 at high frequencies. The resulting group delay is

_dgr_ Tr 1+w27'3 - T, ) -
YT T (@) (L= w22 + (wr /@) (@rA()?) Gr@I (L+e7r). (16)

The group delay is maximized at resonance, where it is equal to 75 = 2Q,7,, and decreases to 7,0/2
when the signal gain decreases by 3 dB; the average delay over the 3 dB receiver bandwidth is ~ 0.757.

Maximum voltage gain for on-resonance NMR signals occurs when the probe is tuned, i.e., when
woT, = 1 where wq is the nominal Larmor frequency. In this case the received echoes are time-delayed
by 7, = (74, where 0 < S < 1 depends on their bandwidth relative to the probe; 8 increases as
echo bandwidth decreases, and approaches 1 when the echoes become much more narrowband than
the probe. The resulting time delay can be significant for high-Q) probes at low Larmor frequencies.
Additionally, the frequency-dependent delay introduces an imaginary component to the echo spectrum
that is anti-symmetric about wp, and therefore not removable by simple phase rotation. Instead, a
frequency-dependent phase correction, exp (iAwgT,(w)), must be applied, where 7,(w) is the signal delay
and Awy = w — wp is the NMR offset frequency. To first order, one can replace 7,(w) with its average

value over the signal bandwidth, which is also equivalent to time-shifting the signal acquisition window.

4. Matched Probes

An impedance-matched NMR probe requires both a parallel tuning capacitor and a series matching
capacitor, as depicted in Fig. 7 where C; and Cy are the tuning and matching capacitors respectively.
The capacitors C and Cy ensure impedance matching (and thus maximum power transfer) at the Larmor
frequency wy. Impedance matching implies that Z;,(wy) = R, where Z;, is the input impedance “looking
into” the probe. Note that while other capacitive matching circuits are possible, we consider this “shunt

tuned, series matched” design since it works well for a wide range of coils. However, neither very small
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low-() coils, nor very large high-Q) coils can be impedance-matched using this circuit. In the latter case,

a “series-tuned, shunt matched” circuit (i.e., an input-output reversed version) is often used instead.

Figure 7: Circuit model of a matched NMR probe during transmission.

4.1. Transmitter Dynamics

A matched transmitter can be modeled as a voltage source V; in series with a fixed resistance
R (typically 50 €2), so a two-state model is not required. The relationship between the open-circuit
transmitter voltage V; and the coil current /. can thus be derived using the circuit shown in Fig. 7. Here

Zinp is the input impedance of the probe; for a perfectly matched probe, Z;, , = R;.

4.1.1. Solving for the coil current

Given the capacitor values, the coil current can be found in a similar manner as for untuned and
tuned probes. In the Laplace domain, the relevant circuit equations are V, = (sL+R.) 1., I = sC1V.+1.,
and V, =V, — I,LR, — SICSQ, where V. is the coil voltage and I is the current supplied by the source. As

described in detail in Appendix C.1, we define a dimensionless time variable 7 = t/\/LC} = w,t and

then use an inverse Laplace transform to obtain the third-order ODE

a1, N d?I. n dl, el 1 dV,
— te3—stg— ol = — ,
dr3 3 dr2 2dr ! R, dr

(17)

where ¢y, ¢z, and c3 are constants defined in Table 3. Note that w, is not equal to the impedance-matched

(i.e., resonant) frequency of the probe, which is again denoted by w,; typically w, > w,.

18



327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

Table 3: Variable definitions for eqn. (17)

Variable | Definition

Wp VLCy

T wpt

Zy VL/Ci

m c

1 mR—fO

o 02:<(m+1)§—§+1
C3 Cy3 = ((m+1)§—2+§—;)

Eqn. (17) can be further simplified by normalizing the coil current I, to its steady-state value for a
perfectly-matched probe (denoted by I). In Appendix C.1, we use an energy conservation argument

to find that Iy = Vi/ (2\/ RCRS), where Vg is the amplitude of V,. Thus, the normalized ODE becomes

A1 n d*I ., n dl., el 2 |R.dV;s (18)
c c il = ——\5—.
ars " Pdrr T dr T Voo V R, dr
In general, we are interested in complex exponential inputs Vi(7) = Vie!@™+%) where w is the

normalized RF frequency (i.e., scaled by 1/w,) and ¢ is the phase of the pulse in the rotating frame.
The resulting complex coil current is denoted by I.,(7). In some cases (e.g., for very short RF pulses) the
absolute phase, v, of the input waveform should also be considered [38], such that V,(7) = V,oe' @ t¢+¥),

Finally, the current in the rotating frame can be estimated as I,,.(7) = Lo, (7)e~"@o7¥),

4.1.2. Effects of discontinuities

In practice the input voltage waveform V,(7) has discontinuities, e.g., at the start and end of
each RF pulse. Additional discontinuities can also occur within composite RF pulses due to am-
plitude and phase modulation. The derivative dV;/dr for the real part of the input waveform at
such discontinuities has an additional term proportional to the size of the jump that is given by
M7 —m) [Aisin(wT + ¢; + ) — A1 sin(wT + ¢ip1 + )], where 7; is the instant at which the discon-

tinuity occurs, (A;, ¢;) and (A;+1, ¢i+1) are the pulse amplitudes and phases before and after the
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discontinuity, respectively, and §(7) is the Dirac delta function. A similar term occurs for the imaginary
part of the input waveform, but with sin(-) replaced by cos(-). The response of the coil current to each
perturbation is a scaled version of the impulse response h(7) of a linear system with TF given by

TF(o) = I(o) _ &( ! ) (19)

oVi(o) Ry \ 03 + 302 + co0 + ¢4

where 0 = s/w, is a normalized (i.e., dimensionless) Laplace-domain variable. These impulse responses
(which are sinusoidal oscillations with decaying exponential envelopes) should be added to the solution
of the ODE before it is converted to the rotating frame. Finally, note that the transients arise from a
third-order system and thus depend on the initial values of I. and its first two derivatives. Since is not
possible to ensure that all these quantities remain continuous by simply adjusting the switching instants,

in general these transients cannot be removed (unlike for untuned and over-coupled tuned probes).

4.2. Receiver Dynamics
The relationship between the coil voltage V;,, induced by the precessing nuclear spins and the voltage
Vout seen by the receiver can be modeled using the circuit shown in Fig. 8(a). We have assumed that

the receiver input impedance Z;, is equal to the transmitter output impedance R,, as is often the case.

Vc || i Vout
I, i
C, |
Re © o T &
: % Rs RC : /KI%K\ ) || : Vout
L _[ | : I
p—— C1 : | 1 R
! Vin 1 C1I ! s
VIn — Zln 1 Rc—i—> — 4—5— RS

— i Impedance transformer
(a) (b)

Figure 8: Circuit model of a matched NMR probe during reception: (a) typical view, (b) redrawn to emphasize its function

as an impedance transformer.

Circuit analysis (described in detail in Appendix C.2) shows that the resulting TF is

V;mt o o
‘/; 03+C3U2+020+C1’

Gr(o) = (20)
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where ¢; (i = {1,2,3}) has the same definitions as in the transmitter model.

The frequency-domain receiver TF, Gg(w), is found by substituting ¢ = iw/w, in eqn. (20). The
maximum steady-state voltage gain of the probe (i.e., the peak magnitude of Gr(w)) can be estimated
via an energy conservation argument. For this purpose, consider the redrawn version of the probe
circuit shown in Fig. 8(b). Under impedance-matched conditions, the impedance seen looking into
the LC network (i.e., the impedance transformer) from its input and output ports must be equal
to R. and Rj, respectively. Thus, a voltage of V},/2 appears across the input port, such that the
power supplied to the LC network is P, = (Vi,/2)?/(2R.) = V2/(8R,.). Assuming the network is
lossless, all the power is delivered to the output port, such that P, = V2,/(2R,) = P;,. As a result,
IGr(W)],ue = Vout/Vin) = (1/2)\/Rs/R,. Finally, it can be shown that the —3 dB bandwidth of the
receive-mode TF is BW ~ 2w, /Q, which is 2x larger than for a tuned probe at the same frequency?.

It is also interesting to compare the expression for the receiver TF with that in transmit mode.

Using our earlier results, we find that

I. o (21)
‘/S/Rs - 0-3_'_630-2_'_620-—’_61'
Thus, the voltage-mode TF Ggr(0) = Vyui/Vin in receive mode is identical to the current-mode TF

I./ (Vs/Rs) in transmit mode. This is because the LC network (excluding the terminal resistances R,
and Ry) is passive and lossless and thus conserves energy. As a result, Vi, L, = Voulow and Vi, /Vip =
Lin/Iout, i.e., the circuit behaves as an ideal transformer. This explains why we get the same TF when

we reverse the input and output ports and replace voltage with current.

5. Noise and Signal Detection

By itself, the linear filtering provided by G'gr(w) does not preclude accurate measurements since it can
be estimated and removed via inverse filtering (i.e., deconvolution). In particular, the received signal,

which is denoted by S,.(w) = Se(w)Ggr(w), can be passed through an inverse filter G3'(w) to recover

3The factor of 2 arises from the fact that R, and R, dissipate equal amounts of power when the probe is impedance-
matched.
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S.(w), the induced NMR signal on the coil. In general G'(w) will not be causal, but this is acceptable
for pre-recorded data. In practice, however, the inversion process is numerically ill-conditioned for noisy

inputs. Thus, it is important to analyze how measurement noise is affected by the probe.

5.1. Noise Model

Both the winding resistance R, of the coil and losses within the sample contribute additive noise to
the NMR signal. Both the skin and proximity effects cause winding resistance to increase with frequency
approximately as R, (w) o< w'/2, although analytical expressions are generally not available [40]. In
addition, dielectric and conductive losses within the sample result in effective series resistances that
increase with frequency as R.(w) o w? and R,,(w) o w?, respectively [10, 37]. However, the bandwidth of
interest for NMR is usually no larger than +5w; around the Larmor frequency. Thus, these fundamental
noise sources can be assumed to be nearly frequency-independent (i.e., white) over the measurement
bandwidth as long as wy > w;. Their combined effects are therefore modeled by R.(wp) = Ry (wo) +
Re(wp) + Ry (wp), the total Larmor frequency-dependent series resistance of the coil. The power spectral
density (PSD) of the noise voltage v2, generated by R, is given by Ny = 4kTR,..

The noise generated by R. (known as “probe noise”) has the same TF Gg (w) to the receiver input
as the NMR signal. Thus, Gg (w) is given by 1, Eqn. (15), and Eqn. (C.10) for untuned, tuned, and
matched probes, respectively. In general |Gy (w)| varies with frequency, so the receiver sees colored
probe noise with a frequency-dependent PSD Ny|Gr (w)]*.

The total noise at the receiver is the sum of probe noise and the receiver’s own input-referred noise.
The latter is usually modeled by two noise sources: a series voltage source v,; (“receiver voltage noise”)
and a shunt current source i,; (“receiver current noise”), as shown in Fig. 6(b) for a tuned probe.

Assuming that the two sources are uncorrelated for simplicity, the total voltage noise PSD is given by

ni

Nw)= NlGr)]> +  Zw)  + ZW)ZWw) . (22)

Colored probe noise  Receiver voltage noise  Receiver current noise

Here v2,(w) and i2,(w) are the PSDs of the receiver voltage and current noise sources, respectively, and

Zs (w) is the effective impedance across the receiver terminals. The latter is defined as Z; = Z,||Z;,,
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where Z, is the impedance seen by looking into the probe and Z;,, is the input impedance of the receiver.
The noise figure (NF) of the receiver is defined as the ratio of input and output SNR, and should be

as close to 1 (0 dB) as possible. In our case it is given by

(Se (W) /No) __NW)

M) = 6 @) G PN @)~ NolGr@)

where S, (w) is the spectrum of the NMR signal on the coil.

5.2. Signal Detection Model

In reality, signal acquisition only occurs over a finite acquisition time 7j.,. This fact can be modeled
by windowing the time-domain signal s(t), resulting in the acquired signal s,(t) = s(t)w(t) where w(t) is
a rectangular (i.e., boxcar) window function of length 7,.,. Alternatively, one can convolve the frequency-
domain signal with the spectrum of w(t), resulting in the acquired spectrum S,(w) = S(w) * W(w)
where ‘x’ denotes convolution and W (w) = F{w(t)} is a sinc function (with F{-} denoting the Fourier
transform). The main effect of such windowing is to “smooth out” S,(w) by removing fine spectral
details (i.e., features on frequency scales smaller than 1/7,.,, the bandwidth of W (w)).

In practice, the acquired data has finite SNR, as described in the previous section. When the noise
is additive, white, and Gaussian, it is well-known from the signal processing literature that the SNR can
be maximized by applying a matched filter [41]. Let us denote the acquired data as r4(t) = s,(t) +n4(t),
where s,(t) and n,(t) are the windowed signal and noise components, respectively. The impulse response
of the matched filter is a time-reversed version of the noise-free data, i.e., is given by hy(t) = s&(—t),

while its frequency response is Hjy(w) = Si(w). Thus, the signal component after filtering is given by

[e.9]

Yy (t) = sa(t) * hpr(t) = / So(T)sh(T — t)dT (24)

—00

in the time-domain and Yy;(w) = Sq(w)Hy(w) = |Sa(w)]? in the frequency-domain, respectively. Note
that in practice the range of integration in eqn. (24) is limited to [—Theq/2, Tucq/2], Which does not

change the result since s,(t) = 0 outside this range. It is easy to show that the SNR of the filtered
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time-domain output is maximal at ¢ = 0, where the signal component is given by

o) (o)

su=ul0) = [ sumsindr = [ s i - 7 1Saf) s, (25)

and the final equality follows from Parseval’s theorem. Eqn. (25) shows that sj, the peak output of the
matched filter, is a measure of total signal energy in both the time and frequency domains®.

The matched filter described above is sub-optimal when the receiver noise PSD N(w) predicted by
eqn. (22) is noticeably frequency-dependent (i.e., not white). The effects of such “colored” noise become
significant when the probe has less bandwidth than the signal, in which case N(w) varies significantly
across the signal bandwidth. The optimum solution is to add a “whitening” filter Hy (w) o< 1/1/N(w)
before the matched filter Hj/(w). The whitening filter converts N(w) into white noise, after which the

signal can be filtered in the usual way by a modified matched filter Hy,'(w) = S*(w) |Hw ().

6. Simulation Results

In this section, we use the analytical solutions derived in the earlier sections to compare the perfor-
mance of untuned, tuned, and matched probes in various scenarios. In general, we expect the importance
of probe dynamics to increase with normalized B field strength wy,, = wy/ (w,/Q), where the numerator
and denominator are proportional to the NMR and probe bandwidths, respectively. However, scaling
with wy, is only approximate, since the probe dynamics also depend on other circuit parameters (source
resistance, receiver input impedance, etc.). Thus, to facilitate a fair comparison, we assume (unless

specified otherwise) that both wy, and the sample coil properties are identical for all three probe types.

41t is worth noting that the term “matched filter” carries a slightly different meaning in NMR spectroscopy. In this
context, matched filtering (also known as apodization) refers to time-domain multiplication of a free-induction decay (FID)
ra(t) by the expected FID shape s,(t) (generally, a decaying exponential) to maximize SNR in the frequency domain.
However, the peak output of a conventional matched filter is obtained by summing the same time-domain product 7, (t)s,(t)
(see eqn. (25)), so the two concepts are clearly related. In fact, it can be formally shown that apodization is a special case
of conventional matched filtering and yields the same maximum SNR [42].
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6.1. Rectangular Pulses

To simulate the actual waveform of an RF pulse with a nominal amplitude profile k[n], we vary the
input RF amplitude Vi[n] = Vipa[n] in the sequence a[n| = [0, k[n],0]. For example, a[n] = [0, k, 0] for a
nominally-rectangular pulse. The coil current is then computed assuming zero initial conditions for the
first non-zero segment in a[n] - either using the analytical solution (for untuned and tuned probes), or by
numerically solving the ODE (for matched probes). Using zero initial conditions amounts to assuming
that the coil current has completely decayed following the previous RF pulse, which is usually a good
assumption. The same solution procedure is applied to later segments a[n], but with appropriate initial
conditions. The final zero-amplitude segment allows the pulse ring-down to be included.

Consider an example in which a coil with L = 10 gH and @ = 50 is driven by a rectangular
input pulse at wy = 27 x 0.5 MHz. Typical values were chosen for the source resistance, namely
[Rs.on, Rsoff] = [2,20] Q (untuned and tuned probes) and R, = 50 Q (matched probe). The value of
Rs op¢ was chosen to minimize the pulse ring-down time. The relationship C' = 1/ (w?L) was used to
choose a tuning capacitor C' = 10.1 nF for the tuned probe, with w, = wy. Finally, least-squares function
minimization was used to estimate capacitor values of C; = 9.0 nF and C5; = 2.5 nF for the matched
probe, again with w, = wy.

Fig. 9 shows the simulated coil current in the laboratory frame (top row) and rotating frame (bottom
row) for all three probes. The input was a nominally-rectangular pulse with normalized amplitude k£ = 1
and duration tp = 25 us, corresponding to w; = 27 x 10 kHz and wy,, = 1 for a 7/2 pulse. Both the
untuned and tuned probes have minimal effect on the pulse profile in the rotating frame. This is because
the untuned probe has little dynamics around wy, while those of the tuned probe are strongly suppressed
by the low source resistance. However, the limited bandwidth of the matched probe results in relatively
long rise and fall times for the pulse. Also, in each case, any discontinuities in dV;(7)/dr that are present

at the beginning and end of the pulse have little effect on the coil current in the rotating frame.

6.2. Receiver Transfer Functions
Next, we consider the receive-mode TFs Gr(w) = S,./S. for untuned, tuned, and matched probes

using the same coil parameters assumed in the earlier section. The untuned and tuned probes use a
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Figure 9: Simulated coil currents generated by (a)-(b) untuned, (c¢)-(d) tuned, and (e)-(f) matched probes for a nominally-
rectangular pulse of length tp = 25 ps at w, = wg = 27 x 500 kHz. (Top row): RF waveforms, (bottom row): rotating
frame waveforms. Coil parameters: L = 10 pH and @ = 50 at w,., resulting in wy,, = 1 for a 7/2 pulse. Both untuned and
tuned transmitters have a source impedance of [Rs on, Rs,off] = [2,20] , while the matched transmitter has Ry = 50 Q.

26



467

469

470

471

472

473

474

475

476

477

478

479

480

481

high-input-impedance receiver (such that @, ~ @, the quality factor of the coil), while the matched
probe uses an impedance-matched receiver (Z;, = 50 2). The results are shown in Fig. 10 as a function
of the frequency offset Aw, = (w — w,.) for w, = 27w x 500 kHz. The untuned probe has a nearly constant
signal gain of |Gr(w)| ~ 4; this is set by the turns ratio of a step-up transformer added before the

receiver [8]. The tuned probe has a peak gain of |Gr(w)|, .. ~ @ and —3 dB and —10 dB bandwidths

of approximately w, /@ and 3w, /@, respectively when the coil () > 1. Finally, the matched probe has
a peak gain of |Gr(W)|, .. = (1/2)\/Rs/R.~ 4.5 and a —3 dB bandwidth of = 2w, /Q.

For moderate- and high-Q) coils, the voltage gain of the tuned probe exceeds the peak gain of the
matched probe over a broad frequency range (approximately 5wy in this case, where w; = 27 x 10 kHz).
Fundamentally, this is due to the relatively low value of characteristic impedance (Zy, = 50 €2) used by
standard RF cables and test equipment. Thus, if we assume similar receiver noise parameters, the NF
of the tuned probe will always be better than that of the matched probe, as shown in Fig. 10(b). As a
result, receive-mode impedance matching is only beneficial if the distance between probe and receiver,

d is large enough for transmission line effects to be significant (roughly, when d > /20, where X is the

electromagnetic wavelength in the cable).
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Figure 10: (a) Receive-mode TF, and (b) noise figure (NF) for untuned, tuned, and matched probes at w, = 27 x 500 kHz,
assuming wi maz = 27 x 10 kHz (corresponding to Tyy = 25 us) and the same coil parameters as in the earlier section
(resulting in wy, = 1). The untuned probe uses a 1 : 4 step-up transformer to obtain broadband voltage gain before the

receiver, as in [8]. Both tuned and untuned probes use a high-input-impedance receiver with \/wa = 0.5 nV/Hz'/? and
\/E =2 fA/Hz'/2. The matched probe uses an impedance-matched receiver with NF(0) = 1 dB.
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Figure 11: Schematic of CPMG-like pulse sequences, which consist of an initial excitation sequence (denoted by the
rotation Rez.) and several refocusing cycles of duration ¢g (denoted by rotations R). Echoes form at the end of refocusing
cycles. Each cycle consists of an RF pulse (duration ¢p) and two free precession periods (duration tpp = (tg —tp)/2).

6.3. CPMG-Like Pulse Sequences

In this section, we discuss the effects of probe dynamics on the CPMG pulse sequence in inhomoge-
neous By and B fields. For simplicity, we assume that the system is well-modeled by a set of uncoupled
spin-1/2 nuclei. We also assume that the echo spacing, tg, is much shorter than the transverse relax-
ation time, 75, and also short enough to make diffusion effects negligible. The propagator from echo to
echo for any single member of the ensemble is then accurately approximated by an effective rotation,
R(n,0), where n is the rotation axis, 6 is the nutation angle, and both depend on Awy (the local offset
of the Larmor frequency from the RF frequency w), w; (the local strength of the RF field), and tp [23].
Physically, R(n,0) is the overall rotation (in the rotating frame) for a single refocusing cycle, as shown
in Fig. 11. Each cycle consists of two periods of free precession and a refocusing pulse; denoting the
corresponding rotations by Ry and R, respectively, the overall rotation is R = RoR1Ry.

The NMR signal produced by the pulse sequence is modeled using the independent evolution of a
large number of isochromats that are distributed over the (Awp,w;) plane. Denoting the underlying
distribution as f(Awg,w;) and the initial magnetization due to the excitation pulse as Mem(Awo, wi),

the magnetization at the nominal center of the k-th echo is then given by
S(Dwo, wi) = f(Awy, wi)R(1, kO){ Meyeye e/ Taers, (26)

where R(#, k0){ M.,.} is the magnetization after k rotations, and Ty g is the effective time constant
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for transverse relaxation.

In a grossly inhomogeneous field, § varies significantly over Awg and wy, and these variations accu-
mulate with echo number k. Thus, after the first few echoes, the detected magnetization is dominated
by the component of M.,. that was aligned with the refocusing axis n; this is known as the asymptotic
magnetization. Mathematically, R(n, k@){]\_jem} 2 (ﬁ . Mexc> n, where n, = n,+1in, is the component
of n that is transverse to By [23, 28, 29]. Thus, the normalized (i.e., dimensionless) spectrum of the

asymptotic echoes detected by the receiver coil is given by

Sasy(Awo) = (Cd() + Aa}g> / Sk(AWO, wl)wldwl = (WO —+ AWO) /f(AWO, (,4)1) <ﬂ . Mexc) fuwldwl, (27)

where the factor of (wy + Awg) = w arises from Faraday detection®, the factor of w; is proportional to
the coil sensitivity function B/l [37], and we have omitted decay due to relaxation for convenience.
After filtering by the receive-mode TF Ggr(w), the signal spectrum at the receiver is S,.(w) =

GRr(w)Sasy(w). Finally, the SNR (in rms units) for asymptotic echoes after matched filtering becomes

ffooosa(w)HM(w)dw \/ 0o ’Sa(OJ)‘2
SNR = _ [Sa(@)l 1 N
\/fiN(w)ngj(w)Pdw /oo N(w) (28)

where S,(w) = S,z (w) * W(w) is the received signal after convolution with the acquisition window, and

Hy'(w) = S*(w) |Hw (w)|? is the modified matched filter discussed in Section 5.

6.3.1. Effects of Probe Type

We first simulate the asymptotic magnetization and spin echoes generated by an “ideal” CPMG
sequence using rectangular pulses for a linear By gradient field and uniform B; amplitude; in this
case f(Awp,w;) reduces to a constant. This type of field distribution is a good approximation to that

generated by many single-sided magnets, including well-logging tools [2] and low-field imagers [43]. In

®The (wo + Awp) term is nearly constant unless the offset frequency range of interest (approximately 45w;) is a
significant fraction of the nominal Larmor frequency wpy. At such low frequencies (and/or high RF power levels), the fact
that the initial magnetization (at thermal equilibrium) is proportional to w should also be included.
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this context, “ideal” implies that probe dynamics effects are ignored. These results are then compared
to simulations that do include our probe models.

Fig. 12 summarizes the asymptotic CPMG magnetization spectra and time-domain echoes (which
are Fourier transform pairs) for a normalized RF bandwidth of wy, = 1. Here (a) and (b) refer to the
ideal system with no probe effects, (c) and (d) refer to an untuned probe, (e) and (f) refer to a tuned
probe, and (g) and (h) refer to a matched probe, respectively. Note that the z-axis in Figs. 12(a), (c),
(e), and (g) is in units of the normalized offset frequency, i.e., Awy = (w — 7 |Bo|) /w1 .max Where w is
the excitation frequency (assumed to be equal to both the average Larmor frequency wy and the probe
tuning frequency w,) and wy max is the nominal nutation frequency (assumed to be uniform across the
sample). The latter is defined as wimax = YBiemaxs Where Biemax is the steady-state magnitude of the
circularly polarized component of the RF magnetic field that is orthogonal to Bj.

The simulated spectra (left-hand column of Fig. 12) highlight the main effects of probe circuits on
NMR measurements. Firstly, we notice that both the asymptotic magnetization spectrum (S,s,) and the
received spectrum (.S,,) of the untuned probe are very similar to that of the ideal system (Fig. 12(a)),
with the exception of a ~ m/2 phase rotation. This is because the untuned probe is broadband during
both transmission and reception, as shown in Figs. 9 and 10, respectively. Secondly, for the tuned probe
Sasy Temains similar to that of the ideal system, while S,, is a band-pass filtered version of it. This
is because the tuned probe is broadband during transmission (since the low-impedance transmitter is
over-coupled to the probe and suppresses its dynamics) but narrowband during reception. Finally, for
the matched probe both S,, and S, are band-pass filtered because the circuit is narrowband during
both transmision and reception. The time-domain echoes (right-hand column of Fig. 12) provide some
additional information. Notably, both tuned and matched probes generate asymmetric echo shapes
(with fast rise times and slow fall times) due to their causal and band-limited receive-mode TFs Gg(w),
which result in positive group delay (as analyzed for tuned probes in Section 3). However, the effect is

smaller for matched probes due to their larger bandwidth.
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Figure 12: Simulated asymptotic magnetization spectrum (Sgsy), received spectrum (.S,,), and echo shapes for CPMG
sequences for a linear By field gradient and uniform B;, assuming (a)-(b) no probe dynamics, (c)-(d) an untuned probe, (e)-
(f) a tuned probe, and (g)-(h) a matched probe. Spectra and echoes are shown in the left and right columns, respectively;
Sy has been divided by the peak receive-mode gain for clarity. Other parameters: wy = 27 x500 kHz, w1 ymae = 27 x10 kHz
(such that Tyy = 25 us), and the same coil (L = 10 pH, @ = 50), thus resulting in w;,, = 1 for all the probe designs.
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6.3.2. Effects of Probe Bandwidth and Tuning Errors

In this section, we simulate asymptotic echo shapes and SNR of CPMG sequences using nominally-
rectangular pulses as a function of coil (). Other probe and pulse sequence parameters were kept identical
to those in the previous section. The results are shown in Figs. 13(a) and (b) for tuned and matched
probes, respectively, while Figs. 13(c) summarizes the SNR obtained in both cases. The figure shows
that the asymptotic echo shapes become broader in the time-domain as coil () increases; this is due to
reduced probe bandwidth (i.e., increased wy,). The tuned probe also exhibits increasing group delay
x @, as expected. However, since the thermal noise PSD generated by the coil decreases o< 1/Q), the
SNR (in rms units) continues to increase as v/@. It is also worth noting that the tuned probe provides
significantly more SNR (= 50% in rms units) over the entire range of (). This is because of its lower NF

over the entire measurement bandwidth, as shown in Fig. 10(b).
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Figure 13: Simulated asymptotic echo shapes for CPMG sequences in a linear By field gradient and uniform B; as a function
of coil @ for: (a) a tuned probe, and (b) a matched probe. (c¢) Signal-to-noise ratio (SNR) in voltage units for the two
cases. The following probe and pulse sequence parameters were used: L = 10 pH, Q = [10—100], [R5 on, Rs,of ] = [2,20] 2
(tuned probe) or Ry = 50 Q (matched probe), wy = 27 x 1 MHz, w1 mas = 27 x 10 kHz (such that Tyy = 25 ps and
Win = [01 - 1]), Tigo = 2 X Tgo, and Tacq =3 X Tigp-

In the earlier simulations, we assumed that the probe tuning (or impedance-matching) frequency w,
was equal to both the nominal RF frequency, w, and the average Larmor frequency of the sample, wy.
Here we study the effects of probe tuning error, i.e., non-zero offset Aw, = (w — w,.). In particular, we
assume that Aw, (normalized to the nominal probe bandwidth of w,/Q) varies over the [—5, 5] range.

The resulting asymptotic magnetization spectra S,,(w) are shown in Figs. 14(a)-(b) for tuned and

matched probes, respectively, while Fig. 14(c) summarizes the SNR obtained from the two designs. The
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figure shows that in both cases the received signal amplitude decreases as Aw, increases, as expected.
The signal gain of the matched probe is more robust to mis-tuning since it has about 2x more —3 dB
bandwidth. However, the SNR of the matched probe degrades much more quickly with mis-tuning; this
is because its NF is a much stronger function of Aw,., as shown in Fig. 10(b). Thus, the high signal gain

of the tuned probe, which minimizes its NF, also makes its SNR more robust to mis-tuning.
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Figure 14: Simulated asymptotic received spectrum S, for CPMG sequences in a linear By field gradient and uniform B,
as a function of probe tuning error Aw, for: (a) a tuned probe, and (b) a matched probe. (c) Signal-to-noise ratio (SNR)

in voltage units for the two cases. Probe and pulse sequence parameters are identical to those in Fig. 13, apart from fixed
coil @ =50 (such that wy, = 0.5).

6.4. CPMG-Like Sequences using SPA Refocusing Pulses

This section analyzes the effects of probe dynamics on CPMG-like sequences that use broadband SPA
refocusing pulses to improve SNR. In particular, we consider the SPA pulses of various lengths described
in [29], which were numerically optimized without including any probe-related effects. For convenience,
we denote these pulses as SPA, where x is the normalized pulse length (in units of Tigy = m/wy). It is
also known that phase or amplitude modulation is not beneficial for short refocusing pulses with = < 1,
so we use nominally-rectangular pulses (denoted by Rect,) in this case.

Fig. 15 summarizes the asymptotic SNR provided by CPMGe-like pulse sequences as a function of
refocusing pulse length (¢,.r) for untuned, tuned, and matched probes when wy, < 1 and probe dy-
namics effects are expected to be negligible. A short nominally-rectangular excitation pulse (normalized
amplitude k& = 6, length t.,. = Too/6) was used to generate broadband initial magnetization M,,.. The

figure shows that longer SPA pulses (tp > Tig9) provide up to 2x higher SNR (in rms units) than the
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Figure 15: Asymptotic SNR of CPMG-like pulse sequences for untuned, tuned, and matched probes as a function of
refocusing pulse length ¢,y when wy,, < 1, such that probe dynamics effects are small. Filled and open symbols correspond
to rectangular and SPA refocusing pulses, respectively; a short nominally-rectangular excitation pulse (teze = T90/6)
was used in both cases. The following probe and pulse sequence parameters were assumed: L = 1.25 pH, @ = 50,
[Rs,on: Rs,orf] = [2,20] Q (tuned probe) or Ry = 50 2 (matched probe), a uniform By gradient around wy = 27 x 8 MHz,
W1,maz = 27 % 10 kHz (such that Tog = 25 ps and wi, = 0.0625), tg = trep + 6 X Thgp, and Tyeq = 4 x Tigo.

default refocusing pulses (nominally-rectangular with ¢,.; = 1 x Tig). Also, the relative amount of
SNR improvement is similar for all three probes, as expected in the absence of probe dynamics effects.
However, the tuned probe provides the highest absolute SNR due to its lower NF' in receive-mode, as
described in the previous section.

Next, we simulate the same CPMG-like sequences for different values of normalized RF bandwidth
wi,. In addition to SNR, we define and plot two additional performance metrics that are relevant for
low-field experiments in inhomogeneous fields, such as single-sided imaging [44]. The first, the time
figure of merit (FOM,), is inversely proportional to the total time required to obtain a certain “target”
SNR. Since SNR o< /N,, where N, is the number of scans being averaged, FOM; « (SNR)2. In
addition, the SNR per scan for amplitude and 75 measurements is o< 1/tg where tg is the echo period,
since smaller values of tg allow more echoes to be generated per scan. Including this term, we get
FOM, = (SNR)?/tg, where larger values are better. The second metric, the energy figure of merit
(FOM,), is inversely proportional to the total RF energy required to obtain a certain SNR. Since all
SPA and rectangular pulses have the same nominal RF amplitude, the energy per pulse is o< ¢,.f, the

pulse length. Thus, we get FOM, = (SNR)?/(tgt,cr), where larger values are again better.

The simulation results are summarized in Fig. 16 for wy,, values ranging from 0.0625 to 2. Each plot
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Figure 16: Summary of probe dynamics effects on CPMG-like pulse sequences generated by untuned, tuned, and matched
probes as a function of normalized field strength wy,, (obtained by varying w, while keeping w; and coil @ fixed). The plots
show the refocusing pulses that optimize the following metrics: (a) asymptotic SNR, (b) inverse of total measurement time
FOM,, and (c) inverse of total measurement energy FOM,.. All metrics have been normalized to values for nominally-
rectangular refocusing pulses (t.o; = 1x Tig0) at the same value of wy,. Probe and pulse sequence parameters are identical
to those in Fig. 15, except the following: w, = wp = 27 x [0.25 — 8] MHz and coil inductance L = 10 x (27 x 10¢/wg) pH.
shows the best available value of a given performance metric (SNR, FOM,, and FOM, for Figs. 16(a)-(c),
respectively) as a function of wy,, and also the corresponding refocusing pulse (either SPA or nominally-
rectangular). All values have been normalized to those from the default Rect; o pulse. These plots
highlight some interesting trends. The SNR plot (Fig. 16(a)) shows that the normalized SNR (i.e., the
improvement relative to the Rect; o pulse) decreases with wy, for all three probe designs. However, the
effect is weak for the untuned probe (since it is broadband in both transmit and receive), intermediate
for the tuned probe (since it is broadband in transmit, narrowband in receive), and strongest for the
matched probe (since it is narrowband in both transmit and receive). Also, relatively long SPA pulses
(tref > 3.1 x Tigo) provide the best SNR in all cases, as expected from Fig. 15.

The FOM; plot (Fig. 16(b)) shows that measurement time increases with wy,, for all three probes, i.e.,
as probe dynamics effects become more significant. Again, the effect is weakest for untuned probes and
strongest for matched ones. The SPAj3; pulse always maximizes FOM; for untuned and tuned probes,
but the nominally-rectangular Rect; o pulse is optimal for matched probes at high values of wy,. This
is because of the relatively slow RF rise and fall times in matched probes, which prevents modulated
pulses (such as SPA) from being accurately generated as wy, increases.

Finally, the FOM, plot (Fig. 16(c)) shows that short nominally-rectangular pulses (Recto ) generally

minimize the total energy consumption. The only exception is matched probes at low values of wy,,
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Figure 17: Block diagram of the proposed hardware-aware RF pulse optimization procedure.

for which a relatively short SPA pulse (SPA;, which is similar to the RP2 pulse described in [27])
is optimal. Also, the normalized value of FOM, is nearly independent of wy, for untuned and tuned
probes, but decreases with wy,, for matched probes (which shows that the Rect; o pulse becomes closer
to optimal).

Returning to Fig. 16(a), note that while the highest value of normalized SNR is always obtained for
small values of wy, (i.e., when w; is much smaller than the probe bandwidth), this does not imply that
w1 should be reduced to improve the measurement SNR. On the contrary, matched filtering ensures that
the effective sample volume (and thus SNR) in inhomogeneous fields is maximized by using the largest
available w;. Fig. 16(a) simply shows that the relative improvement in SNR that is possible by using
SPA pulses tends to increase as wy, decreases, i.e., as probe dynamics effects become less significant. In
other words, the optimal choice of pulse for a given value of w; depends on the nominal probe bandwidth

w,-/Q. Similar remarks apply for the other metrics (FOM;, and FOM,).

6.5. Design of OCT Pulses for CPMG-Like Pulse Sequences

In this section we describe the design of excitation and refocusing pulses for CPMG-type sequences
that are optimized for different probe designs. For this purpose, we integrated our models for the
transmitter, spin dynamics, and receiver within an OCT framework as shown in Fig. 17.

Eqn. (27) shows that the asymptotic magnetization spectrum Sgs,(Awy) for a given field distribution
f(Awyg, wy) is proportional to the inner product (7 - Mewc), where M.,. and 7 are solely determined by

the excitation pulse and refocusing cycle, respectively. Thus, we optimize the excitation and refocusing
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pulses separately, as in our earlier work [27-29]. Our goal is to maximize measurement SNR for a given

peak RF power level (i.e., value of wy e ). The specific optimization steps are described next.

6.5.1. Refocusing pulses

The received signal spectrum can be found by including the receiver TF in eqn. (27), resulting in
Sra(Awg) = Gr(Awg)Sasy(Awp). The magnitude of Sy, (Awp) is maximized for ideal axis-matching
excitation (AMEX) pulses that transfer 2 — 7, thus generating M... = 7 at all offset frequencies 28].

In this case, the expression for the received spectrum reduces to

rT

S(AMEX)(AW()) = Gr(Awp) (wo + Awp) /f(AwO,wl)ﬁLwldwl. (29)

We denote the resulting SNR for asymptotic echoes by SNRAMEX) ' By contrast, traditional broadband
excitation pulses (such as the short nominally-rectangular pulses used in the previous section), ideally
transfer 2 — n, within the refocusing bandwidth; this results in lower SNR.

Refocusing pulses were discretized into M fixed-length segments (each of length AT = 27 /w, i.e.,
one RF cycle) for optimization purposes. The transmitter voltage waveform for the m-th segment was
assumed to have an arbitrary phase ¢;,,(m), while the transmitter voltage amplitude V; was kept constant
during the pulse to i) simplify the optimization problem, and ii) allow the optimized pulses to be easily
generated by power-efficient switching power amplifiers. Thus, the optimization variables consist of
the M-element list of input phases, which in turn determine n, in eqn. (29). The field distribution

AMEX) was chosen as the cost function.

f(Awg,w,) was assumed to be constant, and —SN R

Optimized pulse shapes with a nominal length of ,.r = 1.5 x Ty are shown in Figs. 18(a), (c), and (e)
for untuned probes (wy, = 1), tuned probes (w;, = 1), and matched probes (w1, = 0.5), respectively®,
while the corresponding asymptotic magnetization spectra (Sus, and S,,) are shown in Figs. 18(d), (e),
and (f). The rate of phase modulation within the pulse is highest for the untuned probe and lowest
for the matched probe, as expected. The pulse optimized for tuned probes (Fig. 18(c)) is similar to a

phase-alternating approximation to a swept-frequency pulse, while that for matched probes (Fig. 18(c))

6 A smaller value of wy,, was used for matched probes due to their significantly slower pulse rise and fall times.
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Figure 18: Optimized refocusing pulses in a linear By field gradient and uniform B; for (a)-(b) an untuned probe, (c¢)-(d)
a tuned probe, and (e)-(f) a matched probe. In each case, the top plot shows coil current in the rotating frame, while
the bottom plot shows asymptotic magnetization spectra at the coil (Sgsy(w), dashed lines) and the receiver (S,4(w),
solid lines). For clarity, S,,(w) was divided by the peak receiver gain |Gr(w)|,,.- Probe and pulse sequence parameters
were as follows: L = 10 pH, Q = 50, [Rs on, Rs,off] = [2,20] Q (tuned probe) or Ry = 50 © (matched probe), w, =
wo = 27 X 0.5 MHz, w1 maes = 27 x 10 kHz (such that Too = 25 ps and wy, = 1), pulse length tp = 1.5 x Tig9, and
Tacq = 3 X T1go-
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Figure 19: Refocusing pulse optimization results for untuned, tuned, and matched probes in a uniform By gradient at
wr = wo = 27 x 500 kHz: (a) normalized SNR for asymptotic echoes, and (b) relative SNR compared to rectangular
input pulses of length 1.6 x Tpo. Coil parameters are identical to those in earlier sections, while w) ez = 27 x 10 kHz
(Too = 25 ps, win = 1) for tuned and untuned probes and 27 x 5 kHz (Too = 50 s, wip = 0.5) for the matched probe.
is similar to a three-segment SPA or RP2 pulse. Both untuned and tuned probes generate significant
amounts of off-resonance magnetization (Sgsy), but S,, for the latter is significantly more narrowband
due to the resonant receive-mode TF. Finally, both S, and S,, are narrowband for the matched probe.
The optimization procedure was repeated for t,.; varying between Tigp and 2 x Tigy. The resulting
SNR values are summarized in Fig. 19(a) for untuned, tuned, and matched probes with the same values
of wy,, as before (1, 1, and 0.5, respectively). The results show that SNR increases with t,.¢, as expected,
and is highest for tuned probes due to their low receive-mode NF. Fig. 19(b) shows the same data, but
normalized to the SNR provided by the default nominally-rectangular pulse (Rect;). These results
show that the relative amount of SNR improvement is lowest for matched probes, intermediate for
tuned probes, and highest for untuned probes, as expected based on their dynamics. For example,

optimized pulses with ¢,.; = 2 x Tigy can provide approximately 40%, 60%, and 80% higher SNR than

the default pulse, respectively, resulting in FOM; improvements of approximately 1.6, 2.5x, and 3.2x.

6.5.2. Ezxcitation pulses
A similar procedure was used for optimizing AMEX excitation pulses. The main difference is that
the asymptotic signal spectrum is given by eqn. (27), with M.ye varying during the optimization while n

and n, remain fixed at values corresponding to one of the optimized refocusing pulses described in the
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Figure 20: Optimized AMEX pulse sequence in a uniform By gradient for a tuned probe at w, = wg = 27 x 500 kHz: (a)
coil current for the excitation pulse in the rotating frame (length te.. = 8 x Tisg), (b) received magnetization spectrum
Sye(w), and (c) asymptotic time-domain echo. The AMEX excitation pulse was matched to the broadband refocusing
pulse of length tp = 1.5 x Tigo shown in Fig. 18(c), with tg = 7 x Tygo. Coil parameters are identical to those in earlier
sections. The value of wy maz = 27 x 10 kHz (such that Tyg = 25 ps and wi, = 1).

previous section. The pulse was again discretized into fixed-length segments (each of length AT = 47 /w,
i.e., two RF cycles), and —SNR was chosen as the optimization cost function. The pulse length was
chosen to be slightly larger than the echo period tg, namely t.,. = 8 X Tigg when tg = 7 X Tigg. This is
because AMEX pulses need to be comparable or longer than ¢z to generate a M., vector that matches
n (which is approximately periodic with a period 1/tg), Finally, during this step we only considered
tuned probes (with wy, = 1) for conciseness.

Fig. 20(a) shows an optimized AMEX pulse that is matched to the previously-optimized refocusing
pulse (t..; = 1.5 x Tis9) for an echo period tp = 7 x Tis9. We denote the resulting CPMG-like pulse
sequence as AMEX 5. Figs. 20(b) and (c) show the corresponding asymptotic magnetization spectrum
(Sy2) and time-domain echo, respectively.

The optimization procedure was repeated for refocusing pulses of lengths between Tigy and 2 x Tigg.
The optimized SNR values were normalized to those from the default CPMG sequence, which uses
nominally-rectangular excitation and refocusing pulses (feze = Too, tref = 1.6 X Tyo)". The normal-

ized SNR is up to 65% higher than the default sequence (resulting in 2.7x lower FOMy), as shown in

Fig. 21(a). These results show that OCT-based pulse optimization can significantly improve measure-

TA value of t,. = 1.6 x Tyy was chosen since it provides slightly higher SNR in a grossly inhomogeneous field than the
more common tp.r =2 X Tyy (see Fig. 15).
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Figure 21: (a) Summary of CPMG optimization results for a tuned probe in a uniform gradient at w, = wp = 27 x 500 kHz.
The figure shows relative improvement in asymptotic SNR for AMEX pulse sequences (echo period tg = 7xT1g0) compared
to a CPMG sequence that uses rectangular input pulses (fezc = Too, tref = 1.6 X Tog). (b) The corresponding PSD, N(w),
of total input-referred noise at the receiver. Coil parameters are identical to those in earlier sections. The value of
W1,maz = 27 X 10 kHz (such that Tyg = 25 ps and wq, = 1).
ment metrics (such as SNR and FOM,) even when probe dynamics effects are significant (wy, = 1),
Interestingly, much of the improvement is due to using H),(w), the optimal matched filter for colored
(i.e., frequency-dependent) noise. The noise power spectrum N(w) of high-@ tuned probes is strongly
frequency-dependent, as shown in Fig. 21(b); the peak near the tuning frequency is due to resonant
amplification of noise from the coil. As a result, H},(w) provides higher SNR than Hj;(w), the matched
filter for white noise. This effect is much stronger for the AMEX sequence since it generates much more

off-resonance magnetization. For example, using the correct filter increases the SNR of the AMEX| 5

sequence by 81%, compared to only 14% for the default sequence.

6.5.3. Phase cycling

An important practical concern with pulse sequences based on OCT pulses is their support of phase
cycling, which is very useful for i) selecting the desired coherence pathways, and ii) removing unwanted
signals due to steady-state magnetization, probe ring-down, and detector offset. Standard phase cycles
use a 7 phase shift of the excitation pulse to invert Mem but in fact this inverts only the transverse
component of the vector. As a result, only this component contributes to the signal after the phase cycle.
Since AMEX pulses deliberately create both transverse and longitudinal magnetization, generalized

phase cycling of AMEX pulses requires a method to invert both components of Mexc. In general,
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this requires two matched AMEX excitation pulses that transform Z magnetization onto n and —n,
respectively. In the special case of SPA refocusing pulses, a modified form of phase cycling, known
as phase inversion, can be applied to the corresponding AMEX pulses; this is because the asymptotic
magnetization is symmetric about Awy = 0 [29]. However, the proposed hardware-optimized refocusing
pulses are not of the SPA type, so phase inversion does not apply.

Thus, here we use our optimization framework to design inverse excitation pulses. Such pulses
generate initial magnetization vectors Mem and asymptotic magnetization spectra S,.,(Awy) that are,
ideally, additive inverses of those produced by a previously-optimized AMEX pulse. Basic phase cycling
can then be performed by subtracting the signals generated by pairs of scans that use the same refocusing
cycle but the original and inverse AMEX pulses, respectively; this is similar to the phase-alternating

pair (PAP) cycle. Given an AMEX pulse, its inverse was found by minimizing the cost function
C= /d (Awp) |Sra (Awp) + Sraorig (Awp)| + @ |SNR — SN Rypig| (30)

where ‘orig’ subscripts refer to the original pulse and « is a constant. The first term ensures that the
magnetization spectra are inverses of each other, while the second term prevents the optimizer from
getting stuck in local optima that have poor asymptotic SNR.

For this step, we used the same probe model as that in the previous sub-section (tuned, wy, = 1).
Optimization results for an AMEX o sequence are shown in Fig. 22. Both the asymptotic magnetization
spectrum and time-domain echo are nearly perfect inverses of the original (correlation coefficient p =
—0.998), as desired. Interestingly, the fact that the spin dynamics are nonlinear ensures that the
waveforms of the original and inverse excitation pulses have no simple relationship to each other: the
actual coil currents are almost completely uncorrelated (p = 0.04 + 0.03¢). The inverted pulses do tend
to have slightly lower SNR than the original pulses (9.7% in this case), resulting in a small drop in SNR

after phase cycling. The value of « in the cost function (eqn. 30) can be increased to reduce this drop.
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Figure 22: Performance of an optimized inverse AMEX pulse sequence compared with the original: (a) received mag-
netization spectra Sy, (w) (dashed: original sequence, solid: inverse sequence), and (b) asymptotic time-domain echoes
(dashed: original sequence, solid: negative of the inverse sequence). The AMEX excitation pulses were matched to a
broadband refocusing pulse of length tp = 1 x Tigg, with tg = 7 x T1g9. Coil parameters are identical to those in earlier
sections. The values of w, = wy = 27 x 500 kHz and wy ymaee = 27 X 10 kHz (such that Tyo = 25 us and wy, = 1).

7. Experimental Results

This section describes some experiments using an untuned transmitter and probe to verify our tran-
sient cancellation results (described in Section 2). The system, which has been described elsewhere [8],
consists of a broadband “H-bridge transmitter” that drives an untuned solenoid coil containing the
sample. The duplexer and receiver electronics were not used during the experiments.

Constant-amplitude RF pulses were fed into the transmitter from a Kea2 benchtop spectrometer
(Magritek). The transmitter contains circuitry that converts these low-level pulses (< 0 dBm) into
logic-level drive signals for the MOSFET switches in the H-bridge. The resultant coil current was
measured with a current probe and displayed on a digital oscilloscope. Typical results obtained with
rectangular input pulses at 250 kHz are shown in Fig. 23(a). The second pulse displays turn-on and
turn-off transients; the former is well-fit by an exponential decay with time-constant 7, = 6.0 us, as
shown on the figure. The untuned probe model in Section 2 predicts 7, = L/(R. + Rson), which agrees
with the measurement given that L = 15 pH, R. ~ 0.5 Q, and R;,, ~ 2.0 €.

Interestingly, the turn-off transient is noticeably non-exponential - in fact, it is approximately linear.
This is because no resistive “Q-switch” was used after the pulse turns off, unlike in our analysis (shown

in Fig. 2(b)). Instead, the inductor current discharges through extender and MOSFET source-drain
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Figure 23: (a) Measured coil currents produced by an untuned NMR transmitter at 250 kHz. The transmitter voltage
was set to 30 V. The input consisted of two rectangular (constant amplitude and phase) RF pulses, each 40 us long. Pulse
locations are indicated by the “gate” pulses shown above each current waveform. (b) Simplified schematic of the untuned
NMR transmitter and probe (left), and its equivalent circuit during pulse ring-down (right). For simplicity, the differential
transmitter and probe circuit has been split into two parts down its axis of symmetry (the center of the coil), and only
one of the two half-circuits is shown. (c) Same as (a), but with the second pulse delayed by 1 us.

reverse diodes, as shown in Fig. 23(b). This process (known as “free-wheeling”) can be modeled by
assuming that the voltage across each diode remains constant at its “on” value. This results in a linear

decrease in coil current, in good agreement with the measurements:

tY s v, s 1) = 1(0) — (VL") t, (31)

where Vi, = 2 (Von,sp + Vonestender) 1s the total diode voltage. The factor of two appears because of
the other half of the H-bridge circuit (not shown in Fig. 23(b)).The measured slope of the coil current
during turn-off is 0.21 A /us, which corresponds to V,,, = 3.15 V. This result is in good agreement with
the predicted value of V,, ~ 3.4 V.

Fig. 23(c) shows that both turn-on and turn-off transients disappear when the second pulse is delayed
by 1 us, i.e., one quarter of an RF cycle. In addition, the amplitude of the transient varies periodically
as the delay is further increased. The observed period is half of an RF cycle (2 us in this case), as
predicted by the theoretical analysis.

In the next set of experiments, we generated SPA pulses with three segments at a frequency at
500 kHz. Fig. 24(a) shows that large transients are generated at the beginning and end of each pulse,

as well as every time the phase changes within a pulse. Fig. 24(b) shows that these transients disappear
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Figure 24: Measured coil currents produced by an untuned NMR transmitter at 500 kHz. The transmitter voltage was set
to 30 V. The input consisted of two constant-amplitude SPA pulses, each 60 us long. Each pulse consisted of 3 segments
of length 20 us, with phases of {0, 7, 0}, respectively. Pulse locations are indicated by the “gate” pulses shown above each
current waveform. (a) Using default delay settings. (b) Same as (a), but with the initial delay increased by 0.5 ps.

when the delay before the first pulse is increased by 0.5 us, i.e., one quarter of an RF cycle. Further
examination of the resulting pulse waveform confirms that all phase transitions occur at zero-crossings
of the coil current, as required by the theoretical analysis for phase jumps of 7. In addition, the

amplitude of the transient again repeats periodically with a period of half an RF cycle (1 us in this

case) as the delay is further increased.

8. Summary and Conclusions

This paper has analyzed the effects of limited probe bandwidth on multi-pulse measurements on
ensembles of uncoupled spin-1/2. To simplify the analysis, we have created analytical models of three
common probe circuits, referred to as untuned, tuned, and impedance-matched, respectively. Our
analytical and simulation results show that the dynamics of untuned probes during transmission can be
suppressed using careful timing of the phase transitions. Such behavior can also be approximated using
tuned probes that are over-coupled (i.e., use low-impedance transmitters), but it cannot be obtained
using matched probes. In receive-mode, untuned probes exhibit a broadband TF, while the others have
resonant (narrowband) TFs. The resulting signal gain (assuming moderate- or high-Q coils) is much
larger for tuned probes than the others, which results in the lowest NF and highest SNR as long as

transmission-line effects between the probe and receiver can be ignored.
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The probe models were integrated with spin dynamics simulations to study their effects on measure-
ment metrics such as SNR. Our results show that these effects increase with normalized RF bandwidth
w1, and are generally weakest for untuned probes, intermediate for tuned probes, and strongest for
matched probes. Finally, the models were incorporated into an OCT pulse optimization framework
and used to derive hardware-specific excitation and refocusing pulses for CPMG-like pulse sequences
in grossly inhomogoeneous fields. The results show that the optimized pulses can significantly improve
SNR and other metrics even when probe dynamics effects are significant.

Future work will focus on verifying our pulse sequence optimization results on suitable probe hard-
ware. We would also like to extend our theoretical analysis to additional probe circuits, such as balanced
and transmission-line designs. Finally, we will also study the impact of probe dynamics on pulse designs

for studying coupled networks of spins, such as pulses for decoupling and sub-spectral editing.
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Appendix A. General Solution for Transient Cancellation in Untuned Probes

The general solution for the resulting non-sinusoidal coil current can be found by replacing the

driving function in eqn. (4) with a Fourier series

f(t) = ult) i e @to) (A1)

where the coefficients a,, depend on the transmitter voltage waveform. Note that we have implicitly

assumed that the average (DC) term is zero by starting the series from n = 1. Using superposition, the
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general solution for the coil current is now given by

y(t) = yn(t) + (Yar (t) + ya (1)) /2. (A.2)

_ y(o)e—t/Tp + U,(t) Z Ar;an ei(n¢+6n) [einwt . e—t/Tp:| + u(t) Z Ar;an e—z‘(nqﬁ-f—@n) [e—inwt _ e_t/Tp]
n=1

n=1

= Z Apay, cos (n(wt+ @) +6,)+ |y(0) — u(t) i Apay cos (ng +6,) | e/ .

Steady state Tra;srient
Here A,e“" = 7,/ (1 +inwT,) is the TF between transmitter voltage and coil current for the n-th

harmonic of the fundamental frequency. Assuming that the previous pulse segment has reached steady-

state, the condition for transient cancellation at ¢t = T is given by
ZA a, cos (n (Wl + ¢) +6,) ZA ay, cos (n (W + ¢') +6,). (A.3)

This equation requires the two steady-state waveforms to cross each other at the switching instant
t = T. In general it must be solved numerically. However, the situation is considerably simplified if
0, ~ —(m/2) Vn and the coil current contains only odd harmonics. Both requirements are usually
satisfied in practice. The first only requires that wr, > 1, while the second requires the coil current
to have half-wave symmetry. In this case the waveform is anti-symmetric about zero within every
cycle. More precisely, it satisfies the condition y (t £ T'/2) = —y(t) where T' = 27 /w is the period of
the fundamental component. For two-phase switching transmitters such as H-bridges and half-bridges,
the half-wave symmetry condition is satisfied if identical switching waveforms are used for both phases
within a single RF cycle. In such cases a symmetric square wave voltage waveform is applied across the
coil, so the coil current becomes a triangle wave.

If both requirements are satisfied, the condition for eliminating transients at ¢ = T is given by

;Z—Z)COS <n(wT+¢)—g) :;Z—Z}COS (n(wT—l—¢')—g). (A.4)
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795 Here we have used the fact that A, ~ 1/ (nw) Vn if wr, > 1. We also note that
cos(n(wl'£m+ ¢) —7/2) = —cos (n(wT + ¢) —7/2)

76 for any odd value of n, so there are still two solutions within each RF cycle that are separated by w1 =

707 (although there may be more). In addition, we see that

- cos(n(wT+¢—’—2')),n:1,5,9...
cos (n (WT + ¢) — —> = (A.5)

2
— COoS (n (wT—|—¢— g)), n=3,711..

798 We can therefore write the condition for transient cancellation as

(n 1)/2 (nfl)/Z

S oo ) -5

n=1 n=1

cos (n <wT + ¢ — g)) (A.6)

799 Since cos(x) is an even function, this equation will be satisfied for the n-th harmonic if the corre-
s sponding phases on both sides are inverses of each other, i.e., if (WT + ¢ —7/2) = — (WT + ¢’ — 7/2).

801 The latter condition is independent of the value of n. It is also identical to the condition derived
so earlier for the sinusoidal case (after substituting # = 7/2). As a result, waveform intersections are
s3 unaffected by the presence of harmonics, and coil current transients can be cancelled by applying the
ss  Same timing corrections as derived for the fundamental component. However, the amount of transmitter

ss  power saved by this procedure will depend on the shape of the input waveform.

s Appendix B. Derivation of Coil Current in Tuned Probes

sor  Appendiz B.1. Derivation of the Differential Equation

808 Using Kirchoft’s current law, the relevant circuit equations for the circuit shown in Fig. 5 are
dl,
= B.1
o (B.1)
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and
av., Vi(t) = Ve

I, = —F—,
a R.

C (B.2)

where V, is the voltage across the coil, L is the inductance of the coil, R, is the series resistance of the
coil, I, is the current through the coil, C' is the sum of the capacitance of the tuning capacitor and the
parallel parasitic capacitance of the coil, and Vj is the open-circuit voltage of the transmitter.

These first-order ODEs can be combined into a single second-order ODE given by

d?1, L\ dl, R, Vi(t)
LC 7+ <RCC+E> i (1+E) I, = R (B.3)

We define i) a dimensionless time variable 7 = w,t where w, = 1/+/LC is the probe resonance frequency,

and ii) the characteristic impedance Z, = y/L/C. In terms of these variables, eqn. (B.3) is written as

PRI (R Zy\ dI R,  Vi(®)
He 2o 1y g, = 2 B.4
d72+(ZO+RS> d7+( +Rs> (B-4)

Eqn. (B.4) is mathematically identical to that of a driven, damped harmonic oscillator given by

d*y dy 2

where the following identifications apply: y = I, w, = /1 + g—z, y=1 <§—0 + é—g), and f(7) = V}f:).

Appendiz B.2. Homogeneous Solution

The solution to eqn. (B.4) can be found by separately finding the homogeneous and inhomogeneous
(non driven and driven respectively) solutions to the equation. We start by finding the general solution
of eqn. (B.4) for the homogeneous case, which is obtained by setting f(7) = 0 on the right-hand

side. Physically, this corresponds to the natural (not driven) dynamics of the system. The resulting
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homogeneous ODE has a general solution of

AoT

Yn(T) = c1eM7 + coe and

Un(T) = i M eMT + codgeT, (B.6)

where the coefficients ¢; and ¢y depend on the initial conditions of the system.
By substituting the solution in (B.6) back into the ODE, we find that the exponential rates \; and

Ao must satisfy the quadratic equation

M4+ 2Y)A+w? =0, (B.7)

which has the solutions

AMeg=—vEV/V?—-wli=—-y+ta (B.8)

Given the initial conditions (i.e., the values of y and dy/dr at 7 = 0), the coefficients ¢; and ¢y can be

found by solving the following set of linear equations:

yh(O) 1 1 C1
Z)h(o) Al A2 Co
1
c 1 1 yr(0) 1 Ay —1 yr(0) ) —X2yn(0) + 75 (0)
= - — Da—M) ~ 2a
o A1 Ao yn(0) A1 7 (0) AMYn(0) — 9r(0)
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Appendiz B.3. Inhomogeneous (Driven) Solution

We now find a particular solution of the inhomogeneous (driven) ODE for a complex exponential

RF input f(7) = u(7)e’® ). The analytical solution is found to be

6i¢—('y+a)7' [(zw + '7) (1 _ eQaT) + o (_1 . 62047' 4 26(iw+’y+a)7')}

2a [(wn? — w?) 4 2iyw| ’ (B.10)

Ya(T) = u(r)

where a = /7?2 — w2 as defined earlier. From eqn. (B.10), the derivative of y4 with respect to time is

. Z'ei¢—(7+a)7' [(zwi _ ,Yw) (1 _ 62017') T aw (_1 _ 62ar + 26(iw+'y+a)‘r)}
ga(7) = 2 (0 F — )+ 270 , T7>0. (B.11)

As an example, the real and imaginary parts of y and dy/dr corresponding to these expressions are
shown in Fig. B.25 for the following set of parameters: ¢ =0, w, =1, w = 1.1, and v = {0.1,0.2,...0.9}.
Each solution starts from zero and then builds up to a steady-state over a few cycles. This build-up
(or settling) period is of great interest for NMR applications, since it determines the maximum rate at

which the RF pulse can be amplitude or phase modulated.
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Figure B.25: Simulated step response of the real coil current (a) and imaginary coil current (b) for various values of the
damping parameter v. We assumed the following set of parameters: ¢ =0, w, =1, w = 1.1, and v = 0.1, 0.5, and 0.9.
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The particular solution can be rewritten as the sum of asymptotic (steady-state) and transient terms:

yd(T) _ u<7—>ei¢ ein + <)\2 B ZU.)) 6)\17' _ ()\1 — ZW) 6)\27‘
[(wn? — w?) + 2iyw] ~~ e 20 B
Steady state -~~~
L Transient
6i¢ [ ; )\1 (/\2 — zw) A /\2 ()\1 — ’L(,d)
g — . WwT 1T AT > 0.
al7) [(wn? — w?) + 2iyw] _zwe N 2a ‘ 2 T TE

(B.12)

For single-coil systems, the RF input is a sinusoid given by f(7) = u(7)cos (wr + ¢). Since this

is the real part of the complex exponential RF input and the governing ODE is linear, the resulting

particular solution is simply the real part of the complex solution shown in (eqn. B.12).

Defining the steady-state gain and phase shift as A(w) = [(w2 — w?)? + (29w)?] /? and O(w) =

—tan~! (wgz'yt’dg), respectively, the particular solution for sinusoidal inputs can be written as

ya(7) = A(w)u(7) |cos (wT + ¢+ 0) + a1 + axe™7 |

e .
Steady state Transient

where
Ao cos (¢ + 0) +wsin (¢ + 0) A1 cos (¢ + 0) +wsin (¢ + 0)
a; = and ap; = — .
200 200
Note that § = —7/2 when w = w,,. Also, the time derivative of the inhomogeneous solution is

Ja(1) = A(w) [~wsin (wr 4+ ¢ + 0) + ar\e™ + azXoe™™], 7 >0,

Appendiz B.4. General Solution

(B.13)

(B.14)

(B.15)

The general solution to eqn. (B.5) is the sum of the homogeneous solution (eqn. (B.6)) and inhomo-

geneous solution (eqn. (B.13)):

(1) = yn(7) + ya(7) = A(w)u(r) |cos (wr + ¢+ 0)+ (a1 + ¢1) ale’\”v—i— (as + c2) e&t

~
Steady state Transient

92

(B.16)
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The driven solution must have y,4(0) = 0 and 34(0) = 0, so y(0) = y,(0) and y(0) = y,(0). Thus,

-1

o 1 v | | | =2ey(0) +§(0)
_ - . (B.17)

C2 Al A y(0) Ay(0) —4(0)

Appendiz B.5. Eliminating Switching Transients

Let us assume that the coil current has reached steady-state before the input phase changes from
¢ to ¢ at time 7 = T. In this case the initial amplitudes of the transient components due to the

homogeneous solution are ¢; and cy. Thus,

ya(T) = Acos (WT + ¢+ 6) and

9a(T) = —Awsin (WT + ¢+ 0) . (B.18)

Plugging eqn. (B.18) into eqn. (B.9), we get

1 A | Aecos(WI'+¢+0)+wsin(wl'+ ¢ +6)
- , (B.19)

20
Ca —A1cos (WI'+ ¢+ 0) —wsin (wT + ¢ + 6)

where we have used the fact that A\ — Ao = 2« to simplify the expression. The initial amplitudes of the

transient components due to the particular solution are

a A | Aecos(WI'+¢' +0) +wsin (WI'+ ¢ +6)
= — : (B.20)

as =X cos (Wl + ¢ +60) —wsin (WT + ¢ +6)
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In order to cancel out the transients, we need to have + =0, which implies that:

Ay cos (WT + ¢ +0) + wsin (WT + ¢ +0) = Ay cos (WT + ¢+ 6) + wsin (wT + ¢ + 6),

Ay cos (WT + ¢ 4+ 0) +wsin (WT + ¢ + 0) = Ay cos (wT + ¢+ 0) + wsin (WT + ¢+ 0). (B.21)

These equations have no general solutions apart from the trivial case of no phase change (¢’ = ¢).
Unlike in the case of the untuned coil, there is therefore no general way to cancel the transients produced
by a phase-modulated RF pulse. However, these conditions are simplified in the over-coupled case, i.e.,

when v > 1. In this case \; = 0 and Ay &~ —2, resulting in

—27ycos (WT' + ¢' +0) + wsin (wT + ¢ + 0) = — 2y cos (WT + ¢+ 0) + wsin (WT + ¢+ 6)

wsin (wT + ¢' +0) = wsin (WT + ¢ +6) . (B.22)

The second condition can be ignored for operation around probe resonance (w ~ 1). In this case,
v > w and the transient elimination condition reduces to cos (w1 + ¢’ + 0) = cos (wT + ¢ + 0), which
is identical to that of an untuned coil. This result confirms that over-coupled tuned probes and untuned

probes have similar dynamics in transmit mode.

Appendix C. Derivation of Coil Current in Matched Probes

Appendiz C.1. Calculation of Coil Current

Given the circuit equations, some algebra results in a single equation that connects V to I,

Co Vs
SI—2 = 830102R5L + 82 (L(Cl + CQ) + ClchsRc) + s ((Cl + OQ)RC + 02R3> —+ 1. (Cl)

In order to simplify eqn. (C.1), we define a normalized (dimensionless) time variable 7 = w,t, where

o4
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wp, = +/LCi. The corresponding normalized Laplace transform variable is ¢ = s/w,, resulting in

0'02 E . 0_3 ClchsL 0_ ( (01 —+ CQ) + C’lC'gR R ) ((Cl -+ CQ)RC + CQRS)
Vv LCY 1. (LCI)3/2 LOl LCy

+1. (C2)

Next, we define the dimensionless variable m = C/Cy (generally m = 4 — 10), which results in

oCy V5 Ci’R,L 2@&%+D+Q%£Q+JQW+D&+Q&)

IR Mt ki 1
m~/LCY I, ’ (LC’1)3/2 to mLCY m~/LC T

01 V . Cl 2 Cl g 01
m Lf_c_ m LR +— ((m+1)+fRsRc> +E\/f((m+1)Rc+RS). (C.3)

Next, we define the characteristic impedance of the probe as Zy = \/L/C1; this variable has dimensions

of Ohms. Eqn. (C.3) now simplifies to

o Vi o3 o? R.R. o
- 1 1 c S)
mZe T mZOR -+ ((m+ )+ 7 >+mZO((m+ JR. + Ry)
O'V ZO R Rc mZO
— = 1 1)— +1 . 4
o o® +o° ((m+ )R+ZO)+O((m+ )R5+>+Rs (C.4)

We can now directly write the corresponding differential equation in the normalized time domain by
remembering that £ (f'(t)) = sF(s) — f(0) where £(-) denotes the Laplace transform. Thus, assuming

zero initial conditions, we can simply make the transformation o <+ d/dr to get

d3I. dQI dl, 1 dVj

= +c 552 +C2d +ale= R, dt’ where
Zy  R. R, Z
C3 = ((m+1)ﬁo+7)7 Co = ((m—kl)ﬁ—i-l), and 61220- (C.5)
s 0 s s

This is a simple third-order ODE with constant coefficients that can be solved using standard ODE
solvers. For simplicity, the coil current I. is further normalized to its ideal value I, for a perfectly-
matched probe in steady-state. The latter can be derived by using an energy conservation argument. For
perfect matching, the input impedance of the probe is Ry, so the source current is Iy = Vio/ (Rs + Zin) =

Vso/(2Rs) where V;, is the amplitude of the source voltage. Thus, the power delivered by the source is

%)
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P, = I%R,/2 = V2 /(8R,). The same power must be dissipated in the coil’s series resistance R., so

V2 I.%R 1%
P=—2%2_p-"2"°= o ] =—2_ C.6
SR, 2 °  2VR.R, (C.6)

Appendiz C.2. Calculation of the Receiver Transfer Function

We solve for the receiver TF from V;, to V,,; by breaking the circuit into two voltage dividers. The

first is from V;,, to V. and the other is from V. to V,,;. The first TF is solved in the s-domain to be

1 1 m+sCh Rs
v (EI(rrE) e

- - m+sCi1Rs  °
Vi sL4 Rt (ll (Rot o)) L +sORe+ G0

(C.7)

We now use the results from eqn. (C.7) to solve for the TF between V,,; and V,. The resulting TF is

V:)ut ch RS VvC SClRS
V; ‘/;n Rs + 5Cy ‘/zn m + SOIRS
Plugging eqn. (C.7) into eqn. (C.8) and simplifying the expression, the resulting TF is
Vou C1 Ry
t_ A (C.9)

V [sC1Rs + (m + 1)] [s2LCy + sC1R.] 4+ sC1Rs +m
The normalized Laplace transform variable is o = s/w, = s/LC}, resulting in a normalized TF of

o ‘/out o o
V; 0'3+C30-2+020-+01’

(C.10)

where ¢; (i = {1,2,3}) has the same definitions as in the transmitter model.
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