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Abstract7

This paper provides a detailed analysis of three common NMR probe circuits (untuned, tuned, and

impedance-matched) and studies their effects on multi-pulse experiments, such as those based on the

Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The magnitude of probe dynamics effects on broad-

band refocusing pulses are studied as a function of normalized RF bandwidth. Finally, the probe circuit

models are integrated with spin dynamics simulations to design hardware-specific RF excitation and

refocusing pulses for optimizing user-specified metrics such as signal-to-noise ratio (SNR) in grossly

inhomogeneous fields. Preliminary experimental results on untuned probes are also presented.

Keywords: Spin dynamics, probe circuits, pulse design, optimal control theory, low-field NMR.8

1. Introduction9

Traditional NMR experimental apparatus utilizes impedance matching of the radio frequency (RF)10

coil to the transmitter and receiver to ensure i) efficient transmission of RF power for spin manipulation,11

and ii) significant voltage gain with out-of-band noise rejection during reception. We refer to such probes12

as being impedance-matched. In addition, low-frequency systems, such as for NMR well-logging [1, 2],13

often use probes that are tuned, but not impedance-matched. In either case, a typical tuning circuit14

consists of a tuning capacitor (capacitance C) in parallel with the RF coil (inductance L). This LC circuit15

acts as an analog band-pass filter with a resonance frequency ωr ≈ 1/
√
LC and bandwidth BW ≈ ωr/Q,16
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where Rc and Q ≈ ωrL/Rc are the series resistance and quality factor of the coil, respectively. The17

value of Q for typical coil geometries is usually > 50, which ensures that BW � ωr. The dynamics18

of such a narrow-band circuit begins to affect the measurement when the probe bandwidth becomes19

comparable to the NMR signal bandwidth, which is approximately 2ω1 for extended samples in a static20

field gradient. Here ω1 = γB1 = π/(2T90) is the nutation frequency, where B1 is the amplitude of the21

RF magnetic field seen by the spins, and T90 is the length of a π/2 RF pulse.22

In the time domain, limited probe bandwidth limits the speed at which transmit pulses can be turned23

on and off. This effect becomes worse at lower frequencies or high Q coils, which can be illustrated by24

looking at the rise or fall time of resonant circuits. For example, the voltage envelope across a parallel25

RLC circuit driven on-resonance rises and falls as V (t) = V0
(
1− e−ωrt/(2Q)

)
and V (t) = V0e

−ωrt/(2Q),26

respectively, where V0 is the steady-state amplitude. Thus, the setting time ∼ 4Q/ωr increases as ωr27

decreases or Q increases, which eventually limits the modulation rate of phase- and amplitude-modulated28

pulses. In receive mode, the probe band-pass filters the NMR signal. While such filtering removes out of29

band noise, it also results in distorted and time-delayed waveforms at the receiver output. As for transmit30

pulses, these effects becomes worse for low-frequency and or high-Q systems. Thus, the severity of probe31

dynamics effects is inversely proportional to the resonance frequency of the experiment and proportional32

to coil Q. Many commercial MR tools operate at high frequencies where probe dynamics effects can be33

ignored. However, these effects can be significant for low-field or high-Q systems, particularly for phase-34

and frequency-modulated pulses. Such finite bandwidth effects are also relevant for quantum computing35

experiments which utilize extremely high Q, superconducting detectors [3, 4].36

Although most NMR hardware utilizes resonant circuits for transmission and reception, recent ad-37

vancements have led to non-resonant or untuned probe circuits [5–9]. The transmitters and receivers38

of such systems directly access the coil directly without the use of tuning and/or matching capacitors,39

thus greatly increasing the probe bandwidth. However, the absence of impedance matching reduces the40

power available at the coil, while the absence of voltage gain from a tuned circuit degrades receiver41

noise figure (NF) and signal-to-noise ratio (SNR). In addition, the lack of tuning and matching does not42

completely eliminate probe dynamics effects.43
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Figure 1: Block diagram of a typical NMR hardware platform. Separate transmit and receive probes are shown for clarity,
but are often combined in practice. Here ~E denotes the electric field induced within the sample, which generates eddy
currents. ADC = analog-to-digital converter; DAC = digital-to-analog converter.

The fundamental issue is that the transmitter does not directly control the B1 field seen by the spins,44

but rather the voltage fed into the probe circuit (whether matched, tuned, or untuned). Similarly, the45

receiver does not directly sense the precessing magnetization ~M , but rather the voltage it induces in the46

receive coil after it is filtered by the probe. Thus, the probe modifies both the transmit pulses (which47

alters the spin dynamics) and also the received NMR signals, as shown in Fig. 1. The corresponding48

transfer functions (TFs) are also sample-dependent due to the bidirectional coupling between the probe49

and sample, which generates eddy currents (due to electrical conductivity of the sample) [10] and50

radiation damping effects [11]. The situation is analogous to that for gradient coils in imaging: the51

gradient amplifier controls either the voltage or current of the gradient coil, not the gradient vector ~G.52

While a large body of work has focused on modeling the effects of the gradient TF and then removing53

them using pre-emphasis (i.e., TF inversion) [12, 13], much less work has been carried out on analogous54

methods for the RF transfer function [14, 15]. The qualitative effects of finite probe bandwidth on55

RF pulses (known as phase transients or glitches) have long been recognized, particularly in solid-state56

NMR [16], and pulse sequences that compensate and/or benefit from such “RF imperfections” have also57

been developed [17]. However, earlier work on quantitatively modeling the effects of tuned and resonant58

circuits on RF pulses [18, 19] has not directly connected such models to the spin dynamics. In fact,59

while most NMR hardware on the market utilizes resonant probe circuits, spin dynamics simulators60

generally do not take the probe dynamics into consideration [20]. This is unfortunate, since NMR spin61
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dynamics simulations play a crucial role in our understanding of NMR physics and help the development62

of novel NMR/MRI technologies [20–22]. For example, such simulations have furthered our knowledge63

of NMR in grossly inhomogeneous B0 fields [23, 24], aided the development of broadband composite64

NMR pulses [25–29], enabled modeling of solid-state NMR spectra [30, 31], facilitated studies of large65

molecules [32], and formed the basis of new MRI techniques [33, 34]. This paper aims to fill the gap66

between circuit models and spin dynamics by providing a comprehensive summary of probe dynamics and67

their effects on NMR experiments. Our results are likely to be of particular interest for low-field NMR68

(where probe dynamics effects are often significant), but they may also be useful for other applications.69

Since non-resonant, tuned, and matched probes are all used for NMR measurements, the paper70

provides a detailed analysis of each circuit. The results are used to study the effects of probe dynamics71

on pulse transmission and signal reception in various scenarios, including i) single pulses, ii) multi-72

pulse Carr-Purcell-Meiboom-Gill (CPMG) sequences in grossly-inhomogeneous fields, iii) broadband73

refocusing pulses for CPMG sequences, and iv) axis-matched excitation and refocusing pulses designed74

using optimal control theory (OCT). For simplicity, we do not include radiation damping effects, but75

these can be included in the circuit models by adding a secondary resonator (modeling the spin system)76

that is inductively-coupled to the RF coil [11, 35]. Also, while our results can be extended to more77

complicated probe designs by interfacing spin dynamics code to a circuit simulation program such as78

SPICE [36], we believe that our analytical treatment of several common designs provides useful insights1.79

The paper is organized as follows. Sections 2, 3, and 4 analyze untuned, tuned, and matched probes,80

respectively. Section 5 discusses the noise analysis and signal detection procedure for all three probe81

circuits. Various simulation results are described in Section 6, while experimental results are presented82

in Section 7. Finally, Section 8 concludes the paper.83

1All the simulation code used in the paper is available from the following public repository: https://github.com/

supertjhok/MATLABSpinDynamics.git.
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2. Untuned Probes84

We start by analyzing the transmitter and receiver dynamics for an untuned probe. In its simplest85

form, an untuned NMR probe simply consists of a coil, which can be modeled as an inductor L in86

series with a resistor Rc. Some parasitic capacitance Cpar is always present in parallel with the coil,87

but we assume the resultant self-resonant frequency ωSRF = 1/
√
LCpar is much larger than the Larmor88

frequency ω0. In this case, Cpar has negligible effects on the transmitter and receiver dynamics.89

2.1. Transmitter Dynamics90

The transmitted B1 drives nonlinear spin dynamics, so the probe dynamics during transmission must91

be modeled in the time domain. The main goal is to find the coil current Ic (which is proportional to92

B1) in terms of the open-circuit transmitter voltage Vs. We use “switched linear” models, which are93

common in power electronics, to study untuned probes during transmission. The probe is modeled using94

N linear networks. At certain instants, a controller switches the system from one network to another.95

The switching action is assumed to i) be much faster than the circuit dynamics, and ii) conserve energy.96

Thus, it does not affect any state variables (capacitor voltages or inductor currents) in the circuit.97

We only need two networks to create a first-order model of an untuned transmitter, as shown in98

Fig. 2. The first network (Fig. 2(a)) models the transmitter “on” state using a sinusoidal voltage source99

Vs in series with a resistor Rs,on. Note that low-frequency NMR transmitters often use a square wave100

input source. However, only the fundamental component affects the spin dynamics. Thus, a Fourier101

expansion can be used to replace the square wave by a sinusoid with 4/π = 1.27... times the amplitude.102

The second network uses a resistor Rs,off to ground to model the transmitter “off” state (Fig. 2(b)).103

The value of Rs,off can be set to a low value just after an RF pulse to model a “Q-switch”.104

The relevant circuit equations are identical for both networks if we use the appropriate value of Rs105

and recognize that Vs = 0 when the transmitter is off. Defining Vc as the voltage across the coil and106

using Kirchoff’s current law, we have:107

Vc = L
dIc
dt

+RcIc and Ic =
Vs(t)− Vc

Rs

. (1)
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Figure 2: A first-order, two-state model of an untuned NMR probe and transmitter with the transmitter (a) “on”, and
(b) “off”. Here Cpar is the parallel self-capacitance of the coil.

These equations can be combined into a first-order ordinary differential equation (ODE) given by108

dy

dt
+
y

τp
= f(t), (2)

where y ≡ Ic, the probe time constant τp ≡ L/ (Rc +Rs), and the input function f(t) ≡ Vs(t)/L. While109

the first-order dynamics modeled by eqn. (2) can be eliminated by replacing Vs with a RF current source,110

in practice such wideband current sources are difficult to realize.111

We first find a general solution of the associated homogeneous equation by setting f(t)→ 0. Phys-112

ically, this models the natural (not driven) dynamics of the system. The homogeneous equation has113

the general solution yh(t) = y(0)e−t/τp . Here the time constant τp is a measure of how rapidly initial114

conditions within the coil decay with time.115

Next, we find a particular solution of the inhomogeneous (driven) ODE for a complex exponential116

RF input f(t) = u(t)ei(ωt+φ), where ω is the RF frequency and u(t) is the unit step function. The latter117

models the fact that the input turns on at t = 0. A particular analytical solution to this problem is118

yd(t) = u(t)Aei(φ+θ)
[
eiωt − e−t/τp

]
. (3)

Here the steady-state TF is A (ω) eiθ(ω) ≡ τp/ (1 + iωτp) and has the form of a first-order low-pass filter.119

Also ωτp = ωL/ (Rc +Rs), which is the effective quality factor of the probe during transmission, is120

usually � 1 at the Larmor frequency. Thus, the steady-state phase-shift is θ(ω) ≈ −π/2.121
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The general solution to the driven ODE is the sum of the homogeneous and particular solutions:122

y(t) = yh(t) + yd(t) = u(t)Aei(ωt+φ+θ)︸ ︷︷ ︸
Steady state

+
(
y(0)− u(t)Aei(φ+θ)

)
e−t/τp︸ ︷︷ ︸

Transient

, (4)

where we have decomposed the solution into its asymptotic (steady-state) and transient components.123

2.2. Receiver Dynamics124

Assume that the probe and receiver have recovered from the effects of an RF pulse. The probe then125

acts as a linear time-invariant (LTI) filter with a TF GR (ω) ≡ Srx (ω) /Sc (ω). Here Sc (ω) and Srx (ω)126

are the signal spectra induced on the coil and across the receiver input terminals, respectively.127

Since the NMR signal is detected using Faraday induction, the detected voltage is Vc(t) = dϕ/dt128

where ϕ is the magnetic flux generated by precessing spins within the receive coil. In the frequency129

domain, this relationship becomes Sc(ω) = iω(B1/I)M(ω) where B1/I is the coil sensitivity function130

in receive mode [37] and M(ω) is the magnetization of the sample (as predicted by spin dynamics131

simulations). Thus, the modified receiver TF becomes132

Srx(ω)

M(ω)
= iω

(
B1

I

)
GR(ω). (5)

Eqn. (5) is valid for all probe designs. In the case of an untuned probe, GR(ω) ≈ 1, i.e., is constant133

over the bandwidth of interest. Thus the received signal is identical to that induced on the RF coil.134

2.3. Generation of OCT Pulses135

2.3.1. Eliminating switching transients136

A variety of phase-modulated RF pulses can be designed using OCT to fulfill user-defined perfor-137

mance goals, such as maximizing the fidelity of a state-to-state transfer or increasing SNR for a given138

peak RF power level [25, 26]. For this purpose, the pulse is discretized into a set of segments, each139

with uniform phase φn. We would like to remove the transient components produced by the untuned140

probe during the resultant phase jumps φn → φn+1. Let us assume that the output has reached its141

steady-state value before the input phase changes from φ to φ′ at time t = T . We can simply change142
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the effective RF phase to φeff = ωT + φ to use the solution derived earlier (for a step at t = 0) in this143

situation (for a step at t = T ). The initial amplitude of the transient component is then given by144

(
y(T )− Aei(ωT+φ′+θ)

)
= A

(
ei(ωT+φ+θ) − ei(ωT+φ′+θ)

)
= Aei(ωT+θ)

(
eiφ − eiφ′

)
.

Unfortunately, this quantity is non-zero except for the trivial case of no phase change (φ = φ′). Therefore145

the transient component cannot be removed.146

However, the situation changes if the input voltage is a sinusoid, as when a single transmit coil is147

used. In this case f(t) = u(t) cos (ωt + φ), i.e., the real part of the complex exponential RF input. Since148

the system is linear, the resulting particular solution yd(t) is simply the real part of the complex solution149

in eqn. (3). The general solution is thus given by150

y(t) = u(t)A cos (ωt+ φ+ θ)︸ ︷︷ ︸
Steady state

+ [y(0)− u(t)A cos (φ+ θ)] e−t/τp︸ ︷︷ ︸
Transient

. (6)

The initial amplitude of the transient component for a phase change at time t = T is given by151

[y(T )− A cos (ωT + φ′ + θ)] = A [cos (ωT + φ+ θ)− cos (ωT + φ′ + θ)] .

The condition for cancelling the transient is then given by cos (ωT + φ+ θ) = cos (ωT + φ′ + θ). This152

equation is satisfied when the steady-state RF waveforms of the previous and current pulse segments153

intersect. In addition to the trivial solution of no phase change (φ = φ′), the symmetry of the cosine154

function about 0 (i.e., cos(x) = cos(−x)) provides another solution:155

(ωT + φ+ θ) = − (ωT + φ′ + θ) ⇒ ωT = −(φ+ φ′)

2
− θ. (7)

The intersection points occur twice per RF cycle and are separated by half a cycle, i.e., by a time156

∆T such that ω(∆T ) = ±π. Since cos(x± π) = − cos(x), the values of coil current at these points are157

also inverses of each other. Thus, the transient components can be canceled by keeping track of the158
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Figure 3: Graphical explanation of the transient elimination principle. The RF waveform corresponding to the initial
phase (assumed to be φ = 0) is shown as the solid line, while waveforms corresponding to various phase offsets are shown
as dashed lines. It is possible to switch to one of these phases without generating a transient at the times indicated by
circles, i.e., when the initial and final waveforms intersect.

absolute RF phase ωT when the phase is switched, as indicated in Fig. 3.159

Since intersection points are separated by half an RF cycle, the maximum timing adjustment ∆Tadj160

required for phase-switching to occur at these points is one quarter of a cycle. Thus, ω |∆Tadj| ≤ π/2161

suffices to avoid transients. The values of ∆Tadj can be found by rewriting the intersection condition as162

mod (ωT, π) = mod

[
−(φ+ φ′)

2
− θ, π

]
≡ α. (8)

Writing the absolute RF phase as ωT = πM + ω (∆Tadj) where M is an integer, we find that163

ω (∆Tadj) =


α, α ≤ π/2,

− (π − α) , α > π/2.

(9)

Special conditions are required for the first and last pulse segments, as described below:164

• First segment: Here the initial condition is y(0) = 0, so the design goal is cos (ωT + φ′ + θ) = 0165
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where φ′ is the phase of the segment and T is its start time. This condition may be written as166

mod (ωT + φ′ + θ, π) =
π

2
or mod (ωT + φ′ + θ, π) =

3π

2
.

In the common case when ωT = πM and θ ≈ −π/2, these conditions reduce to φ′ = {0, π}. The167

input voltage Vs then reaches its maximum (or minimum) value at t = T . Since θ ≈ −π/2, the168

steady-state coil current is in quadrature with Vs, and thus is zero at t = T . Since the total coil169

current must be zero at this point to remain continuous, its transient component is also zero.170

• Last segment: We require this segment to end with zero coil current, such that no transient171

response is excited afterwards. Thus, we need y(T ′) = 0, where T ′ is the time at which the last172

segment ends. Assuming the current has reached steady-state by this point, this condition may173

be written as cos (ωT ′ + φ′ + θ) = 0, or alternatively174

mod (ωT ′ + φ′ + θ, π) =
π

2
or mod (ωT ′ + φ′ + θ, π) =

3π

2
.

Spectrometers designed for low-field measurements often constrain the system clock frequency fclk175

to be a multiple of the RF frequency, since this provides control over the absolute phase of each RF176

pulse2. Such control is important for obtaining accurate relaxation measurements using CPMG-like177

multi-pulse sequences when the pulse lengths become comparable to the RF period [38]. In this case,178

the value of fclk constrains the available phase angles and segment lengths to discrete sets of values.179

Phases are quantized to the set k (2π/Np) where Np is an integer, while pulse segment lengths and delays180

are quantized to k (2π/ (ωNt)) where Nt is the number of steps per RF cycle. Thus, (φ + φ′)/2 will be181

quantized to 2Np uniformly-spaced values. If the steady-state phase shift θ is quantized to this set, the182

adjustment angle α for transient cancellation becomes quantized to 2Np values. As a result, 2Np time183

steps per RF cycle are needed for transient cancellation (i.e., Nt = 2Np). For example, we need 32 steps184

per cycle (fclk = 32× fRF ) to cancel the transients produced by switching between a set of 16 phases.185

2General-purpose spectrometers typically do not impose this constraint, instead operating at a fixed value of fclk.
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The transient cancellation condition simplifies considerably when phase changes between adjacent186

pulse segments are constrained to be ±π. Examples include symmetric phase-alternating (SPA) refocus-187

ing pulses and binary-phase (BPP) excitation pulses [27, 29]. In this case φ′ = φ±π, so the cancellation188

condition becomes (ωT + φ+ θ) = ±π
2

and thus cos(ωT + φ + θ) = 0. Thus, transients are cancelled189

simply by switching phases at zero-crossings of the coil current. The pulse must also begin and end at190

zero-crossings to prevent initial and final transients, respectively. Thus, all pulse segment lengths and191

inter-pulse delays should be integer multiples of half the RF period.192

The coil current in the rotating frame is Icr(t) = Ic(t)e
−iω0t. For sinusoidal inputs at a frequency ω ≈193

ω0, Icr(t) has three main components: i) Centered around DC: a co-rotating steady-state component of194

amplitude Iss/2 that drives the spin dynamics; ii) Centered around 2ω0: a counter-rotating steady-state195

component of amplitude Iss/2 that causes second-order effects such as the Bloch-Siegert shift [39]; and196

iii) Centered around ω0: probe transients of amplitude Itran. The second and third terms have negligible197

effects on the spin dynamics if ω0 � ω1 and the coil only generates fields perpendicular to the static field.198

However, the DC component of the transients (i.e., the third term) will effectively shift the resonance199

frequency ω0 when the coil current generates a component along the static field, thus inducing a phase200

shift in the transverse magnetization. In either case, eliminating the transients reduces transmitter201

power consumption. The average power dissipated in the coil and transmitter over a duration T is202

Pdiss =
(Rc +Rs)

T

∫ T

0

Ic
2(t)dt =

(Rc +Rs)

T

∫ T

0

[
Iss cos (ωt+ θ + φ′) + Itrane

−t/τp
]2
dt, (10)

where Iss = A (Vs/L) = Vs/
(
R
√
ω2τ 2p + 1

)
is the steady-state amplitude of the coil current, while203

Itran = Ic(0) − Iss cos(θ + φ′) is the initial amplitude of the transient component. We assume that the204

integration is performed over many RF cycles, such that ωT � 1. The average power dissipation is then205

Pdiss ≈ (Rc +Rs)

[
I2ss
2

+ I2tran

(
1− e−2T/τp

2T/τp

)]
. (11)

For a phase-modulated pulse, T may be identified as the length of each constant-phase segment, i.e., the206

inverse of the OCT control bandwidth. If each of these segments is long enough to reach steady-state,207
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Itran ≈ Iss [cos(θ + φ)− cos(θ + φ′)]. If in addition the phases (φ and φ′) are uniformly distributed208

and uncorrelated random variables, the variance of Itran becomes I2tran = I2ss. The fractional increase209

in power dissipation due to the modulation is then simply 1 + 2 (1 − e−x) /x, where x ≡ 2T/τp. For210

example, Pdiss increases by 86.5% when T = τp (i.e., x = 2). However, this result should be viewed as211

a worst-case estimate, since in practice the phases of adjacent segments (i.e., φ and φ′) are likely to be212

correlated, which will reduce the value of I2tran.213

2.3.2. OCT pulse generation example214

Consider an untuned probe with L = 10 µH, Rc = 0.63 Ω, and a source resistance of Rs = [2, 20] Ω215

in the transmitter “on” and “off” states, respectively. The transmitter time constant during the pulse216

is τp = L/(Rc +Rs,on) = 3.8 µs. The Larmor frequency is assumed to be 0.5 MHz, resulting in a coil Q217

of 50. Our goal is to generate a phase-modulated, constant-amplitude OCT excitation pulse with 104218

segments, each of length T = 4 µs (i.e., 2 RF cycles). Since x = 2T/τp ≈ 2.10, we expect the average219

transmitter power dissipation to increase by up to 83.5% if transients are not eliminated.220

The pulse phases are quantized to one of Np = 32 uniformly-spaced values, corresponding to a221

clock frequency of fclk = 32 MHz. Fig. 4(a) shows the segment lengths required to eliminate the probe222

transients. These are no longer constant, but vary slightly (by less than half an RF cycle, as expected)223

depending on the sequence of phases. Figs. 4(b)-(c) show the simulated coil current in the rotating frame224

before and after transient cancellation, respectively. The former has 47.9% higher power consumption225

and ∼2.2× higher peak current, in agreement with the analysis. Thus, transient cancellation is beneficial226

from a power and safety point of view while also eliminating potential effects of the probe transients on227

the spin dynamics (e.g., time-varying shifts in ω0).228

2.4. Non-Sinusoidal Coil Currents229

The solution in eqn. (4) assumes a perfect sine wave across the coil. However, broadband NMR230

amplifiers often generate distorted waveforms, such as square waves. An analysis of transient cancellation231

in such situations is included in Appendix A. The analysis shows that the conditions are unaltered232

when the coil current is symmetric (i.e., contains only odd harmonics), as is often the case in practice.233
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Figure 4: (a) Segment lengths of a phase-modulated, constant-amplitude OCT pulse after the switching instants have been
adjusted to eliminate probe settling transients. The original length of each segment was 2 RF cycles. (b)-(c) Simulated
coil current in the laboratory frame during the pulse: (b) before, and (c) after transient cancellation. The results have
been normalized to a steady-state current magnitude of unity in the rotating frame.

3. Tuned Probes234

A tuned NMR probe adds a tuning capacitor Cp in parallel with the coil to form a LC “tank” circuit.235

The tank circuit acts a narrow-band impedance transformer. It provides voltage gain to the induced236

NMR signal near its resonant frequency, which lowers the noise figure (NF) of the receiver and thus237

improves the SNR. The goal of this section is to solve for the current in a RF coil given an input voltage238

during transmission as well as to derive how a tuned reception affects the received signal.239

3.1. Transmitter Dynamics240

The dynamics of a tuned probe during transmission can be studied analytically by assuming the241

same type of two-state “switched linear” model, as shown in Fig. 5. For convenience, we define i) a242

dimensionless time variable τ ≡ ωrt where ωr = 1/
√
LC is the probe resonance frequency, and ii) the243

characteristic impedance Z0 ≡
√
L/C. Solving for the coil current Ic using circuit analysis (described244

in Appendix B.1) then results in the second-order ODE245

d2y

dτ 2
+ 2γ

dy

dτ
+ ω2

ny = f(τ), (12)

which is identical to that of a driven, damped harmonic oscillator. Table 1 summarizes the variables used246

to define eqn. (12). Physically, ωn is the natural oscillation frequency of the circuit, γ is the damping247

coefficient, and f(τ) is the input (driving function). Note that the damping coefficient increases as248
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Rs decreases. Many low-frequency NMR transmitters are based on MOSFETs operated as switches.249

These circuits have an equivalent source resistance Rs, where Rs is approximately equal to the switch250

on-resistance. Usually Rs is very low (less than a few Ohms), resulting in a large value of γ. In this case251

the probe is “over-coupled” to the source, which suppresses its internal dynamics. The result is rapid252

pulse rise and fall times at the expense of lower steady-state current, as shown later.253

+

(a)

+

(b)

Figure 5: A first-order, two-state model of a tuned NMR probe and transmitter with the transmitter (a) “on”, and (b)
“off”. Here C is the sum of the tuning capacitor and the parallel self-capacitance of the coil.

Eqn. (12) can be analytically solved by decomposing it into homogeneous and particular components.254

The homogeneous solution is the sum of two exponentials and is given by255

yh(τ) = c1e
λ1τ + c2e

λ2τ , (13)

where the variables are defined in Table 1. The values of λ are found by plugging the solution back into256

the homogeneous ODE and the coefficients c1 and c2 are found by using initial conditions, as described257

in further detail in Appendix B.2.258

As described in more detail in Appendix B.3, a particular solution of the inhomogeneous ODE in259

eqn. (12) was found for a complex exponential input f(τ) = u(τ)ei(ωτ+φ), where ω is the normalized (i.e.,260

dimensionless) RF frequency. The result is the sum of asymptotic (steady-state) and transient terms:261

yd(τ) =
u(τ)eiφ

[(ωn2 − ω2) + 2iγω]

 eiωτ︸︷︷︸
Steady state

+
(λ2 − iω)

2α
eλ1τ − (λ1 − iω)

2α
eλ2τ︸ ︷︷ ︸

Transient

 , (14)

where the variables are described in Table 1. As in Section 2, the particular solution for a sinusoidal262
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Table 1: Variable definitions for eqn. (12)

Variable Definition

τ t/
√
LC

y Ic

ωn

√
1 + Rc

Rs

γ 1
2

(
Rc

Z0
+ Z0

Rs

)
f(τ) Vs(τ)

Rs

α
√
γ2 − ω2

n

λ1,2 −γ ± α

input f(τ) = u(τ) cos (ωτ + φ) is simply the real part of the solution yd(τ) obtained for the corresponding263

complex exponential input, i.e., eqn. (14) in this case. Finally, the general solution is the sum of the264

homogeneous and particular solutions, which is given by y(τ) = yh(τ) + yd(τ) in the laboratory frame265

and y(τ)e−i(ω0τ) in the rotating frame. The resulting expressions are summarized in Appendix B.4.266

The fact that the internal dynamics of a tuned probe are suppressed in the over-coupled case suggests267

that it should be possible to suppress its transients, as for untuned probes. The analysis in Appendix268

B.5 confirms that this is indeed the case for tuned probes that are strongly over-coupled. In fact, the269

transient cancellation condition is identical to that derived in Section 2.270

3.2. Receiver Dynamics271

The effects of a tuned probe on the induced NMR signal, vnmr, are again expressed through an272

LTI filter GR (ω) ≡ Srx (ω) /Sc (ω), where Sc (ω) is the spectrum of the NMR signal and Srx (ω) is the273

spectrum seen by the receiver. We model the receiver admittance as a parallel RC circuit, as is common274

at typical NMR frequencies. A schematic of the system is shown in Fig. 6(a).275

For a simple tuned probe, circuit analysis shows that GR (ω) = [1 + (iωL+Rc) (iωC +Gd + Yin)]−1,276

where Gd = 1/Rd denotes the conductance of any damping resistor across the probe and Yin = 1/Zin277

is the input admittance of the receiver. Because the receiver is modeled by a parallel RC circuit,278
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C

Vnmr

Rd

Zin

Cin Rin

(a)

L

Rc

C

vnc2

Rd

Zin

Cin
Rin

inl2

vnl2

(b)

Figure 6: Model of a tuned NMR probe during receive mode for calculating signal (a) and noise (b) transfer functions.

Table 2: Variable definitions for eqn. (15)

Variable Definition

A0
1

1+Rc(Gd+Gin)

τr
√
A0L (C + Cin)

Qr
τr

L(Gd+Gin)+Rc(C+Cin)

Yin = iωCin +Gin and the receiver TF can be written as279

GR (ω) ≡ A0

(iω)2τ 2r + iω (τr/Qr) + 1
=

A0

(1− ω2τ 2r ) + i (ωτr/Qr)
, (15)

where the variables are defined in Table 2. The TF is that of a second-order resonant low-pass filter280

where A0 is the DC gain, τr is the natural time constant, and Qr is the probe quality factor in receive281

mode. The resonant frequency and 3 dB bandwidth of the filter are 1/τr and 1/(Qrτr), respectively. If282

Qr � 1, this frequency also results in the largest signal gain, given by |GR (ω)|max = A0Qr.283

For many low-frequency NMR systems, the input impedance of the receiver is much larger than284

that of the probe, i.e., Cin � C and GinRc � 1. The constants in the receiver TF then simplify to285

A0 ≈ 1
1+RcGd

≈ 1, τr ≈
√
LC = 1/ωr (such that the probe resonant frequencies are identical in transmit286

and receive mode) and Qr ≈ Q
1+Q(Z0/Rd)

where Q = Z0/Rc is the quality factor of the coil at ωr. Thus,287
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the −3 dB bandwidth of the receive-mode TF becomes BW ≈ ωr/Q, which is much smaller than the288

transmit-mode bandwidth. This is because the input and source impedances are different; typically289

|Zin| � Rs, such that the probe is under-coupled in receive mode but over-coupled in transmit mode.290

The phase of the receiver TF is θr = −tan−1 [(ωτr/Qr) / (1− ω2τ 2r )], which starts from 0 at DC,291

reaches −π/2 at resonance (ωτr = 1), and ends at −π at high frequencies. The resulting group delay is292

τg =
dθr
dω

=

(
τr
Qr

)
1 + ω2τ 2r

(1− ω2τ 2r )2 + (ωτr/Qr)
2 =

(
τr

QrA0
2

)
|GR(ω)|2

(
1 + ω2τ 2r

)
. (16)

The group delay is maximized at resonance, where it is equal to τg0 = 2Qrτr, and decreases to τg0/2293

when the signal gain decreases by 3 dB; the average delay over the 3 dB receiver bandwidth is ≈ 0.75τg0.294

Maximum voltage gain for on-resonance NMR signals occurs when the probe is tuned, i.e., when295

ω0τr = 1 where ω0 is the nominal Larmor frequency. In this case the received echoes are time-delayed296

by τg = βτg0, where 0 < β < 1 depends on their bandwidth relative to the probe; β increases as297

echo bandwidth decreases, and approaches 1 when the echoes become much more narrowband than298

the probe. The resulting time delay can be significant for high-Q probes at low Larmor frequencies.299

Additionally, the frequency-dependent delay introduces an imaginary component to the echo spectrum300

that is anti-symmetric about ω0, and therefore not removable by simple phase rotation. Instead, a301

frequency-dependent phase correction, exp (i∆ω0τg(ω)), must be applied, where τg(ω) is the signal delay302

and ∆ω0 ≡ ω − ω0 is the NMR offset frequency. To first order, one can replace τg(ω) with its average303

value over the signal bandwidth, which is also equivalent to time-shifting the signal acquisition window.304

4. Matched Probes305

An impedance-matched NMR probe requires both a parallel tuning capacitor and a series matching306

capacitor, as depicted in Fig. 7 where C1 and C2 are the tuning and matching capacitors respectively.307

The capacitors C1 and C2 ensure impedance matching (and thus maximum power transfer) at the Larmor308

frequency ω0. Impedance matching implies that Zin(ω0) = Rs, where Zin is the input impedance “looking309

into” the probe. Note that while other capacitive matching circuits are possible, we consider this “shunt310

tuned, series matched” design since it works well for a wide range of coils. However, neither very small311
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low-Q coils, nor very large high-Q coils can be impedance-matched using this circuit. In the latter case,312

a “series-tuned, shunt matched” circuit (i.e., an input-output reversed version) is often used instead.313

Rs

Vs

IcC2

C1

Rc

L

Is Vc

Zin,p

Figure 7: Circuit model of a matched NMR probe during transmission.

4.1. Transmitter Dynamics314

A matched transmitter can be modeled as a voltage source Vs in series with a fixed resistance315

Rs (typically 50 Ω), so a two-state model is not required. The relationship between the open-circuit316

transmitter voltage Vs and the coil current Ic can thus be derived using the circuit shown in Fig. 7. Here317

Zin,p is the input impedance of the probe; for a perfectly matched probe, Zin,p = Rs.318

4.1.1. Solving for the coil current319

Given the capacitor values, the coil current can be found in a similar manner as for untuned and320

tuned probes. In the Laplace domain, the relevant circuit equations are Vc = (sL+Rc)Ic, Is = sC1Vc+Ic,321

and Vc = Vs − IsRs − Is
sC2

, where Vc is the coil voltage and Is is the current supplied by the source. As322

described in detail in Appendix C.1, we define a dimensionless time variable τ = t/
√
LC1 ≡ ωpt and323

then use an inverse Laplace transform to obtain the third-order ODE324

d3Ic
dτ 3

+ c3
d2Ic
dτ 2

+ c2
dIc
dτ

+ c1Ic =
1

Rs

dVs
dτ

, (17)

where c1, c2, and c3 are constants defined in Table 3. Note that ωp is not equal to the impedance-matched325

(i.e., resonant) frequency of the probe, which is again denoted by ωr; typically ωp > ωr.326
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Table 3: Variable definitions for eqn. (17)

Variable Definition

ωp
√
LC1

τ ωpt

Z0

√
L/C1

m C1

C2

c1
mZ0

Rs

c2 c2 =
(

(m+ 1)Rc

Rs
+ 1
)

c3 c3 =
(

(m+ 1)Z0

Rs
+ Rc

Z0

)
Eqn. (17) can be further simplified by normalizing the coil current Ic to its steady-state value for a327

perfectly-matched probe (denoted by Ic0). In Appendix C.1, we use an energy conservation argument328

to find that Ic0 = Vs0/
(
2
√
RcRs

)
, where Vs0 is the amplitude of Vs. Thus, the normalized ODE becomes329

d3Icn
dτ 3

+ c3
d2Icn
dτ 2

+ c2
dIcn
dτ

+ c1Icn =
2

Vs0

√
Rc

Rs

dVs
dτ

. (18)

In general, we are interested in complex exponential inputs Vs(τ) = Vs0e
i(ωτ+φ) where ω is the330

normalized RF frequency (i.e., scaled by 1/ωp) and φ is the phase of the pulse in the rotating frame.331

The resulting complex coil current is denoted by Icn(τ). In some cases (e.g., for very short RF pulses) the332

absolute phase, ψ, of the input waveform should also be considered [38], such that Vs(τ) = Vs0e
i(ωτ+φ+ψ).333

Finally, the current in the rotating frame can be estimated as Icr(τ) = Icn(τ)e−i(ω0τ+ψ).334

4.1.2. Effects of discontinuities335

In practice the input voltage waveform Vs(τ) has discontinuities, e.g., at the start and end of336

each RF pulse. Additional discontinuities can also occur within composite RF pulses due to am-337

plitude and phase modulation. The derivative dVs/dτ for the real part of the input waveform at338

such discontinuities has an additional term proportional to the size of the jump that is given by339

δ(τ − τi) [Ai sin(ωτ + φi + ψ)− Ai+1 sin(ωτ + φi+1 + ψ)], where τi is the instant at which the discon-340

tinuity occurs, (Ai, φi) and (Ai+1, φi+1) are the pulse amplitudes and phases before and after the341
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discontinuity, respectively, and δ(τ) is the Dirac delta function. A similar term occurs for the imaginary342

part of the input waveform, but with sin(·) replaced by cos(·). The response of the coil current to each343

perturbation is a scaled version of the impulse response h(τ) of a linear system with TF given by344

TF (σ) =
Icn(σ)

σVs(σ)
= 2

√
Rc

Rs

(
1

σ3 + c3σ2 + c2σ + c1

)
, (19)

where σ = s/ωp is a normalized (i.e., dimensionless) Laplace-domain variable. These impulse responses345

(which are sinusoidal oscillations with decaying exponential envelopes) should be added to the solution346

of the ODE before it is converted to the rotating frame. Finally, note that the transients arise from a347

third-order system and thus depend on the initial values of Ic and its first two derivatives. Since is not348

possible to ensure that all these quantities remain continuous by simply adjusting the switching instants,349

in general these transients cannot be removed (unlike for untuned and over-coupled tuned probes).350

4.2. Receiver Dynamics351

The relationship between the coil voltage Vin induced by the precessing nuclear spins and the voltage352

Vout seen by the receiver can be modeled using the circuit shown in Fig. 8(a). We have assumed that353

the receiver input impedance Zin is equal to the transmitter output impedance Rs, as is often the case.354

Rs

Vin

Ic
C2

C1

Rc

L

Vc

Zin

Vout

Vin

Rc
C2

C1

L

Rs

 Impedance transformer
(a) (b)

Rc

Vout

Rs

Figure 8: Circuit model of a matched NMR probe during reception: (a) typical view, (b) redrawn to emphasize its function
as an impedance transformer.

Circuit analysis (described in detail in Appendix C.2) shows that the resulting TF is355

GR(σ) =
Vout
Vin

=
σ

σ3 + c3σ2 + c2σ + c1
, (20)
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where ci (i = {1, 2, 3}) has the same definitions as in the transmitter model.356

The frequency-domain receiver TF, GR(ω), is found by substituting σ = iω/ωp in eqn. (20). The357

maximum steady-state voltage gain of the probe (i.e., the peak magnitude of GR(ω)) can be estimated358

via an energy conservation argument. For this purpose, consider the redrawn version of the probe359

circuit shown in Fig. 8(b). Under impedance-matched conditions, the impedance seen looking into360

the LC network (i.e., the impedance transformer) from its input and output ports must be equal361

to Rc and Rs, respectively. Thus, a voltage of Vin/2 appears across the input port, such that the362

power supplied to the LC network is Pin = (Vin/2)2/(2Rc) = V 2
in/(8Rc). Assuming the network is363

lossless, all the power is delivered to the output port, such that Pout = V 2
out/(2Rs) = Pin. As a result,364

|GR(ω)|max = (Vout/Vin) = (1/2)
√
Rs/Rc. Finally, it can be shown that the −3 dB bandwidth of the365

receive-mode TF is BW ≈ 2ωr/Q, which is 2× larger than for a tuned probe at the same frequency3.366

It is also interesting to compare the expression for the receiver TF with that in transmit mode.367

Using our earlier results, we find that368

Ic
Vs/Rs

=
σ

σ3 + c3σ2 + c2σ + c1
. (21)

Thus, the voltage-mode TF GR(σ) = Vout/Vin in receive mode is identical to the current-mode TF369

Ic/ (Vs/Rs) in transmit mode. This is because the LC network (excluding the terminal resistances Rc370

and Rs) is passive and lossless and thus conserves energy. As a result, VinIin = VoutIout and Vout/Vin =371

Iin/Iout, i.e., the circuit behaves as an ideal transformer. This explains why we get the same TF when372

we reverse the input and output ports and replace voltage with current.373

5. Noise and Signal Detection374

By itself, the linear filtering provided by GR(ω) does not preclude accurate measurements since it can375

be estimated and removed via inverse filtering (i.e., deconvolution). In particular, the received signal,376

which is denoted by Srx(ω) = Sc(ω)GR(ω), can be passed through an inverse filter G−1R (ω) to recover377

3The factor of 2 arises from the fact that Rc and Rs dissipate equal amounts of power when the probe is impedance-
matched.
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Sc(ω), the induced NMR signal on the coil. In general G−1R (ω) will not be causal, but this is acceptable378

for pre-recorded data. In practice, however, the inversion process is numerically ill-conditioned for noisy379

inputs. Thus, it is important to analyze how measurement noise is affected by the probe.380

5.1. Noise Model381

Both the winding resistance Rw of the coil and losses within the sample contribute additive noise to382

the NMR signal. Both the skin and proximity effects cause winding resistance to increase with frequency383

approximately as Rw(ω) ∝ ω1/2, although analytical expressions are generally not available [40]. In384

addition, dielectric and conductive losses within the sample result in effective series resistances that385

increase with frequency as Re(ω) ∝ ω3 and Rm(ω) ∝ ω2, respectively [10, 37]. However, the bandwidth of386

interest for NMR is usually no larger than ±5ω1 around the Larmor frequency. Thus, these fundamental387

noise sources can be assumed to be nearly frequency-independent (i.e., white) over the measurement388

bandwidth as long as ω0 � ω1. Their combined effects are therefore modeled by Rc(ω0) = Rw(ω0) +389

Re(ω0)+Rm(ω0), the total Larmor frequency-dependent series resistance of the coil. The power spectral390

density (PSD) of the noise voltage v2nc generated by Rc is given by N0 = 4kTRc.391

The noise generated by Rc (known as “probe noise”) has the same TF GR (ω) to the receiver input392

as the NMR signal. Thus, GR (ω) is given by 1, Eqn. (15), and Eqn. (C.10) for untuned, tuned, and393

matched probes, respectively. In general |GR (ω)| varies with frequency, so the receiver sees colored394

probe noise with a frequency-dependent PSD N0|GR (ω)|2.395

The total noise at the receiver is the sum of probe noise and the receiver’s own input-referred noise.396

The latter is usually modeled by two noise sources: a series voltage source vni (“receiver voltage noise”)397

and a shunt current source ini (“receiver current noise”), as shown in Fig. 6(b) for a tuned probe.398

Assuming that the two sources are uncorrelated for simplicity, the total voltage noise PSD is given by399

N(ω) = N0|GR(ω)|2︸ ︷︷ ︸
Colored probe noise

+ v2ni(ω)︸ ︷︷ ︸
Receiver voltage noise

+ i2ni(ω)|Zs(ω)|2︸ ︷︷ ︸
Receiver current noise

. (22)

Here v2ni(ω) and i2ni(ω) are the PSDs of the receiver voltage and current noise sources, respectively, and400

Zs (ω) is the effective impedance across the receiver terminals. The latter is defined as Zs = Zp||Zin,401
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where Zp is the impedance seen by looking into the probe and Zin is the input impedance of the receiver.402

The noise figure (NF) of the receiver is defined as the ratio of input and output SNR, and should be403

as close to 1 (0 dB) as possible. In our case it is given by404

NF (ω) =
(Sc (ω) /N0)(

Sc (ω) |GR(ω)|2/N (ω)
) =

N (ω)

N0|GR(ω)|2
, (23)

where Sc (ω) is the spectrum of the NMR signal on the coil.405

5.2. Signal Detection Model406

In reality, signal acquisition only occurs over a finite acquisition time Tacq. This fact can be modeled407

by windowing the time-domain signal s(t), resulting in the acquired signal sa(t) ≡ s(t)w(t) where w(t) is408

a rectangular (i.e., boxcar) window function of length Tacq. Alternatively, one can convolve the frequency-409

domain signal with the spectrum of w(t), resulting in the acquired spectrum Sa(ω) = S(ω) ∗ W (ω)410

where ‘∗’ denotes convolution and W (ω) = F{w(t)} is a sinc function (with F{·} denoting the Fourier411

transform). The main effect of such windowing is to “smooth out” Sa(ω) by removing fine spectral412

details (i.e., features on frequency scales smaller than 1/Tacq, the bandwidth of W (ω)).413

In practice, the acquired data has finite SNR, as described in the previous section. When the noise414

is additive, white, and Gaussian, it is well-known from the signal processing literature that the SNR can415

be maximized by applying a matched filter [41]. Let us denote the acquired data as ra(t) = sa(t)+na(t),416

where sa(t) and na(t) are the windowed signal and noise components, respectively. The impulse response417

of the matched filter is a time-reversed version of the noise-free data, i.e., is given by hM(t) = s∗a(−t),418

while its frequency response is HM(ω) = S∗a(ω). Thus, the signal component after filtering is given by419

yM(t) = sa(t) ∗ hM(t) =

∫ ∞
−∞

sa(τ)s∗a(τ − t)dτ (24)

in the time-domain and YM(ω) = Sa(ω)HM(ω) = |Sa(ω)|2 in the frequency-domain, respectively. Note420

that in practice the range of integration in eqn. (24) is limited to [−Tacq/2, Tacq/2], which does not421

change the result since sa(t) = 0 outside this range. It is easy to show that the SNR of the filtered422
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time-domain output is maximal at t = 0, where the signal component is given by423

sM ≡ yM(0) =

∫ ∞
∞

sa(τ)s∗a(τ)dτ =

∫ ∞
∞
|sa(τ)|2 dτ =

∞∫
−∞

|Sa(ω)|2dω, (25)

and the final equality follows from Parseval’s theorem. Eqn. (25) shows that sM , the peak output of the424

matched filter, is a measure of total signal energy in both the time and frequency domains4.425

The matched filter described above is sub-optimal when the receiver noise PSD N(ω) predicted by426

eqn. (22) is noticeably frequency-dependent (i.e., not white). The effects of such “colored” noise become427

significant when the probe has less bandwidth than the signal, in which case N(ω) varies significantly428

across the signal bandwidth. The optimum solution is to add a “whitening” filter HW (ω) ∝ 1/
√
N(ω)429

before the matched filter HM(ω). The whitening filter converts N(ω) into white noise, after which the430

signal can be filtered in the usual way by a modified matched filter HM
′(ω) = S∗a(ω) |HW (ω)|2.431

6. Simulation Results432

In this section, we use the analytical solutions derived in the earlier sections to compare the perfor-433

mance of untuned, tuned, and matched probes in various scenarios. In general, we expect the importance434

of probe dynamics to increase with normalized B1 field strength ω1n = ω1/ (ωr/Q), where the numerator435

and denominator are proportional to the NMR and probe bandwidths, respectively. However, scaling436

with ω1n is only approximate, since the probe dynamics also depend on other circuit parameters (source437

resistance, receiver input impedance, etc.). Thus, to facilitate a fair comparison, we assume (unless438

specified otherwise) that both ω1n and the sample coil properties are identical for all three probe types.439

4It is worth noting that the term “matched filter” carries a slightly different meaning in NMR spectroscopy. In this
context, matched filtering (also known as apodization) refers to time-domain multiplication of a free-induction decay (FID)
ra(t) by the expected FID shape sa(t) (generally, a decaying exponential) to maximize SNR in the frequency domain.
However, the peak output of a conventional matched filter is obtained by summing the same time-domain product ra(t)sa(t)
(see eqn. (25)), so the two concepts are clearly related. In fact, it can be formally shown that apodization is a special case
of conventional matched filtering and yields the same maximum SNR [42].
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6.1. Rectangular Pulses440

To simulate the actual waveform of an RF pulse with a nominal amplitude profile k[n], we vary the441

input RF amplitude Vs[n] = Vs0a[n] in the sequence a[n] = [0, k[n], 0]. For example, a[n] = [0, k, 0] for a442

nominally-rectangular pulse. The coil current is then computed assuming zero initial conditions for the443

first non-zero segment in a[n] - either using the analytical solution (for untuned and tuned probes), or by444

numerically solving the ODE (for matched probes). Using zero initial conditions amounts to assuming445

that the coil current has completely decayed following the previous RF pulse, which is usually a good446

assumption. The same solution procedure is applied to later segments a[n], but with appropriate initial447

conditions. The final zero-amplitude segment allows the pulse ring-down to be included.448

Consider an example in which a coil with L = 10 µH and Q = 50 is driven by a rectangular449

input pulse at ω0 = 2π × 0.5 MHz. Typical values were chosen for the source resistance, namely450

[Rs,on, Rs,off ] = [2, 20] Ω (untuned and tuned probes) and Rs = 50 Ω (matched probe). The value of451

Rs,off was chosen to minimize the pulse ring-down time. The relationship C = 1/ (ω2
rL) was used to452

choose a tuning capacitor C = 10.1 nF for the tuned probe, with ωr = ω0. Finally, least-squares function453

minimization was used to estimate capacitor values of C1 = 9.0 nF and C2 = 2.5 nF for the matched454

probe, again with ωr = ω0.455

Fig. 9 shows the simulated coil current in the laboratory frame (top row) and rotating frame (bottom456

row) for all three probes. The input was a nominally-rectangular pulse with normalized amplitude k = 1457

and duration tP = 25 µs, corresponding to ω1 = 2π × 10 kHz and ω1n = 1 for a π/2 pulse. Both the458

untuned and tuned probes have minimal effect on the pulse profile in the rotating frame. This is because459

the untuned probe has little dynamics around ω0, while those of the tuned probe are strongly suppressed460

by the low source resistance. However, the limited bandwidth of the matched probe results in relatively461

long rise and fall times for the pulse. Also, in each case, any discontinuities in dVs(τ)/dτ that are present462

at the beginning and end of the pulse have little effect on the coil current in the rotating frame.463

6.2. Receiver Transfer Functions464

Next, we consider the receive-mode TFs GR(ω) = Srx/Sc for untuned, tuned, and matched probes465

using the same coil parameters assumed in the earlier section. The untuned and tuned probes use a466
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Figure 9: Simulated coil currents generated by (a)-(b) untuned, (c)-(d) tuned, and (e)-(f) matched probes for a nominally-
rectangular pulse of length tP = 25 µs at ωr = ω0 = 2π × 500 kHz. (Top row): RF waveforms, (bottom row): rotating
frame waveforms. Coil parameters: L = 10 µH and Q = 50 at ωr, resulting in ω1n = 1 for a π/2 pulse. Both untuned and
tuned transmitters have a source impedance of [Rs,on, Rs,off ] = [2, 20] Ω, while the matched transmitter has Rs = 50 Ω.
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high-input-impedance receiver (such that Qr ≈ Q, the quality factor of the coil), while the matched467

probe uses an impedance-matched receiver (Zin = 50 Ω). The results are shown in Fig. 10 as a function468

of the frequency offset ∆ωr = (ω − ωr) for ωr = 2π×500 kHz. The untuned probe has a nearly constant469

signal gain of |GR(ω)| ≈ 4; this is set by the turns ratio of a step-up transformer added before the470

receiver [8]. The tuned probe has a peak gain of |GR(ω)|max ≈ Q and −3 dB and −10 dB bandwidths471

of approximately ωr/Q and 3ωr/Q, respectively when the coil Q � 1. Finally, the matched probe has472

a peak gain of |GR(ω)|max = (1/2)
√
Rs/Rc ≈ 4.5 and a −3 dB bandwidth of ≈ 2ωr/Q.473

For moderate- and high-Q coils, the voltage gain of the tuned probe exceeds the peak gain of the474

matched probe over a broad frequency range (approximately ±5ω1 in this case, where ω1 = 2π×10 kHz).475

Fundamentally, this is due to the relatively low value of characteristic impedance (Z0 = 50 Ω) used by476

standard RF cables and test equipment. Thus, if we assume similar receiver noise parameters, the NF477

of the tuned probe will always be better than that of the matched probe, as shown in Fig. 10(b). As a478

result, receive-mode impedance matching is only beneficial if the distance between probe and receiver,479

d is large enough for transmission line effects to be significant (roughly, when d > λ/20, where λ is the480

electromagnetic wavelength in the cable).481
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Figure 10: (a) Receive-mode TF, and (b) noise figure (NF) for untuned, tuned, and matched probes at ωr = 2π×500 kHz,
assuming ω1,max = 2π × 10 kHz (corresponding to T90 = 25 µs) and the same coil parameters as in the earlier section
(resulting in ω1n = 1). The untuned probe uses a 1 : 4 step-up transformer to obtain broadband voltage gain before the

receiver, as in [8]. Both tuned and untuned probes use a high-input-impedance receiver with

√
v2ni = 0.5 nV/Hz1/2 and√

i2ni = 2 fA/Hz1/2. The matched probe uses an impedance-matched receiver with NF (0) = 1 dB.
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Refocusing cycle

Figure 11: Schematic of CPMG-like pulse sequences, which consist of an initial excitation sequence (denoted by the
rotation Rexc) and several refocusing cycles of duration tE (denoted by rotations R). Echoes form at the end of refocusing
cycles. Each cycle consists of an RF pulse (duration tP ) and two free precession periods (duration tFP = (tE − tP )/2).

6.3. CPMG-Like Pulse Sequences482

In this section, we discuss the effects of probe dynamics on the CPMG pulse sequence in inhomoge-483

neous B0 and B1 fields. For simplicity, we assume that the system is well-modeled by a set of uncoupled484

spin-1/2 nuclei. We also assume that the echo spacing, tE, is much shorter than the transverse relax-485

ation time, T2, and also short enough to make diffusion effects negligible. The propagator from echo to486

echo for any single member of the ensemble is then accurately approximated by an effective rotation,487

R(n̂, θ), where n̂ is the rotation axis, θ is the nutation angle, and both depend on ∆ω0 (the local offset488

of the Larmor frequency from the RF frequency ω), ω1 (the local strength of the RF field), and tE [23].489

Physically, R(n̂, θ) is the overall rotation (in the rotating frame) for a single refocusing cycle, as shown490

in Fig. 11. Each cycle consists of two periods of free precession and a refocusing pulse; denoting the491

corresponding rotations by R0 and R1, respectively, the overall rotation is R = R0R1R0.492

The NMR signal produced by the pulse sequence is modeled using the independent evolution of a493

large number of isochromats that are distributed over the (∆ω0, ω1) plane. Denoting the underlying494

distribution as f(∆ω0, ω1) and the initial magnetization due to the excitation pulse as ~Mexc(∆ω0, ω1),495

the magnetization at the nominal center of the k-th echo is then given by496

Sk(∆ω0, ω1) = f(∆ω0, ω1)R(n̂, kθ){ ~Mexc}e−ktE/T2,eff , (26)

where R(n̂, kθ){ ~Mexc} is the magnetization after k rotations, and T2,eff is the effective time constant497
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for transverse relaxation.498

In a grossly inhomogeneous field, θ varies significantly over ∆ω0 and ω1, and these variations accu-499

mulate with echo number k. Thus, after the first few echoes, the detected magnetization is dominated500

by the component of ~Mexc that was aligned with the refocusing axis n̂; this is known as the asymptotic501

magnetization. Mathematically, R(n̂, kθ){ ~Mexc} ≈
(
n̂ · ~Mexc

)
n̂⊥ where n̂⊥ = nx+ iny is the component502

of n̂ that is transverse to B0 [23, 28, 29]. Thus, the normalized (i.e., dimensionless) spectrum of the503

asymptotic echoes detected by the receiver coil is given by504

Sasy(∆ω0) = (ω0 + ∆ω0)

∫
Sk(∆ω0, ω1)ω1dω1 = (ω0 + ∆ω0)

∫
f(∆ω0, ω1)

(
n̂ · ~Mexc

)
n̂⊥ω1dω1, (27)

where the factor of (ω0 + ∆ω0) = ω arises from Faraday detection5, the factor of ω1 is proportional to505

the coil sensitivity function B1/I [37], and we have omitted decay due to relaxation for convenience.506

After filtering by the receive-mode TF GR(ω), the signal spectrum at the receiver is Srx(ω) =507

GR(ω)Sasy(ω). Finally, the SNR (in rms units) for asymptotic echoes after matched filtering becomes508

SNR =

∫∞
−∞ Sa(ω)H ′M(ω)dω√∫∞
−∞N(ω) |H ′M(ω)|2 dω

=

√∫ ∞
−∞

|Sa(ω)|2

N(ω)
dω, (28)

where Sa(ω) = Srx(ω) ∗W (ω) is the received signal after convolution with the acquisition window, and509

HM
′(ω) = S∗a(ω) |HW (ω)|2 is the modified matched filter discussed in Section 5.510

6.3.1. Effects of Probe Type511

We first simulate the asymptotic magnetization and spin echoes generated by an “ideal” CPMG512

sequence using rectangular pulses for a linear B0 gradient field and uniform B1 amplitude; in this513

case f(∆ω0, ω1) reduces to a constant. This type of field distribution is a good approximation to that514

generated by many single-sided magnets, including well-logging tools [2] and low-field imagers [43]. In515

5The (ω0 + ∆ω0) term is nearly constant unless the offset frequency range of interest (approximately ±5ω1) is a
significant fraction of the nominal Larmor frequency ω0. At such low frequencies (and/or high RF power levels), the fact
that the initial magnetization (at thermal equilibrium) is proportional to ω should also be included.
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this context, “ideal” implies that probe dynamics effects are ignored. These results are then compared516

to simulations that do include our probe models.517

Fig. 12 summarizes the asymptotic CPMG magnetization spectra and time-domain echoes (which518

are Fourier transform pairs) for a normalized RF bandwidth of ω1n = 1. Here (a) and (b) refer to the519

ideal system with no probe effects, (c) and (d) refer to an untuned probe, (e) and (f) refer to a tuned520

probe, and (g) and (h) refer to a matched probe, respectively. Note that the x-axis in Figs. 12(a), (c),521

(e), and (g) is in units of the normalized offset frequency, i.e., ∆ω0 = (ω − γ |B0|) /ω1,max where ω is522

the excitation frequency (assumed to be equal to both the average Larmor frequency ω0 and the probe523

tuning frequency ωr) and ω1,max is the nominal nutation frequency (assumed to be uniform across the524

sample). The latter is defined as ω1,max = γB1c,max, where B1c,max is the steady-state magnitude of the525

circularly polarized component of the RF magnetic field that is orthogonal to B0.526

The simulated spectra (left-hand column of Fig. 12) highlight the main effects of probe circuits on527

NMR measurements. Firstly, we notice that both the asymptotic magnetization spectrum (Sasy) and the528

received spectrum (Srx) of the untuned probe are very similar to that of the ideal system (Fig. 12(a)),529

with the exception of a ≈ π/2 phase rotation. This is because the untuned probe is broadband during530

both transmission and reception, as shown in Figs. 9 and 10, respectively. Secondly, for the tuned probe531

Sasy remains similar to that of the ideal system, while Srx is a band-pass filtered version of it. This532

is because the tuned probe is broadband during transmission (since the low-impedance transmitter is533

over-coupled to the probe and suppresses its dynamics) but narrowband during reception. Finally, for534

the matched probe both Srx and Sasy are band-pass filtered because the circuit is narrowband during535

both transmision and reception. The time-domain echoes (right-hand column of Fig. 12) provide some536

additional information. Notably, both tuned and matched probes generate asymmetric echo shapes537

(with fast rise times and slow fall times) due to their causal and band-limited receive-mode TFs GR(ω),538

which result in positive group delay (as analyzed for tuned probes in Section 3). However, the effect is539

smaller for matched probes due to their larger bandwidth.540
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Figure 12: Simulated asymptotic magnetization spectrum (Sasy), received spectrum (Srx), and echo shapes for CPMG
sequences for a linear B0 field gradient and uniform B1, assuming (a)-(b) no probe dynamics, (c)-(d) an untuned probe, (e)-
(f) a tuned probe, and (g)-(h) a matched probe. Spectra and echoes are shown in the left and right columns, respectively;
Srx has been divided by the peak receive-mode gain for clarity. Other parameters: ω0 = 2π×500 kHz, ω1,max = 2π×10 kHz
(such that T90 = 25 µs), and the same coil (L = 10 µH, Q = 50), thus resulting in ω1n = 1 for all the probe designs.
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6.3.2. Effects of Probe Bandwidth and Tuning Errors541

In this section, we simulate asymptotic echo shapes and SNR of CPMG sequences using nominally-542

rectangular pulses as a function of coil Q. Other probe and pulse sequence parameters were kept identical543

to those in the previous section. The results are shown in Figs. 13(a) and (b) for tuned and matched544

probes, respectively, while Figs. 13(c) summarizes the SNR obtained in both cases. The figure shows545

that the asymptotic echo shapes become broader in the time-domain as coil Q increases; this is due to546

reduced probe bandwidth (i.e., increased ω1n). The tuned probe also exhibits increasing group delay547

∝ Q, as expected. However, since the thermal noise PSD generated by the coil decreases ∝ 1/Q, the548

SNR (in rms units) continues to increase as
√
Q. It is also worth noting that the tuned probe provides549

significantly more SNR (≈ 50% in rms units) over the entire range of Q. This is because of its lower NF550

over the entire measurement bandwidth, as shown in Fig. 10(b).551
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Figure 13: Simulated asymptotic echo shapes for CPMG sequences in a linear B0 field gradient and uniform B1 as a function
of coil Q for: (a) a tuned probe, and (b) a matched probe. (c) Signal-to-noise ratio (SNR) in voltage units for the two
cases. The following probe and pulse sequence parameters were used: L = 10 µH, Q = [10−100], [Rs,on, Rs,off ] = [2, 20] Ω
(tuned probe) or Rs = 50 Ω (matched probe), ω0 = 2π × 1 MHz, ω1,max = 2π × 10 kHz (such that T90 = 25 µs and
ω1n = [0.1− 1]), T180 = 2× T90, and Tacq = 3× T180.

In the earlier simulations, we assumed that the probe tuning (or impedance-matching) frequency ωr552

was equal to both the nominal RF frequency, ω, and the average Larmor frequency of the sample, ω0.553

Here we study the effects of probe tuning error, i.e., non-zero offset ∆ωr = (ω − ωr). In particular, we554

assume that ∆ωr (normalized to the nominal probe bandwidth of ωr/Q) varies over the [−5, 5] range.555

The resulting asymptotic magnetization spectra Srx(ω) are shown in Figs. 14(a)-(b) for tuned and556

matched probes, respectively, while Fig. 14(c) summarizes the SNR obtained from the two designs. The557
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figure shows that in both cases the received signal amplitude decreases as ∆ωr increases, as expected.558

The signal gain of the matched probe is more robust to mis-tuning since it has about 2× more −3 dB559

bandwidth. However, the SNR of the matched probe degrades much more quickly with mis-tuning; this560

is because its NF is a much stronger function of ∆ωr, as shown in Fig. 10(b). Thus, the high signal gain561

of the tuned probe, which minimizes its NF, also makes its SNR more robust to mis-tuning.562
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Figure 14: Simulated asymptotic received spectrum Srx for CPMG sequences in a linear B0 field gradient and uniform B1

as a function of probe tuning error ∆ωr for: (a) a tuned probe, and (b) a matched probe. (c) Signal-to-noise ratio (SNR)
in voltage units for the two cases. Probe and pulse sequence parameters are identical to those in Fig. 13, apart from fixed
coil Q = 50 (such that ω1n = 0.5).

6.4. CPMG-Like Sequences using SPA Refocusing Pulses563

This section analyzes the effects of probe dynamics on CPMG-like sequences that use broadband SPA564

refocusing pulses to improve SNR. In particular, we consider the SPA pulses of various lengths described565

in [29], which were numerically optimized without including any probe-related effects. For convenience,566

we denote these pulses as SPAx where x is the normalized pulse length (in units of T180 = π/ω1). It is567

also known that phase or amplitude modulation is not beneficial for short refocusing pulses with x < 1,568

so we use nominally-rectangular pulses (denoted by Rectx) in this case.569

Fig. 15 summarizes the asymptotic SNR provided by CPMG-like pulse sequences as a function of570

refocusing pulse length (tref ) for untuned, tuned, and matched probes when ω1n � 1 and probe dy-571

namics effects are expected to be negligible. A short nominally-rectangular excitation pulse (normalized572

amplitude k = 6, length texc = T90/6) was used to generate broadband initial magnetization ~Mexc. The573

figure shows that longer SPA pulses (tP > T180) provide up to 2× higher SNR (in rms units) than the574
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Figure 15: Asymptotic SNR of CPMG-like pulse sequences for untuned, tuned, and matched probes as a function of
refocusing pulse length tref when ω1n � 1, such that probe dynamics effects are small. Filled and open symbols correspond
to rectangular and SPA refocusing pulses, respectively; a short nominally-rectangular excitation pulse (texc = T90/6)
was used in both cases. The following probe and pulse sequence parameters were assumed: L = 1.25 µH, Q = 50,
[Rs,on, Rs,off ] = [2, 20] Ω (tuned probe) or Rs = 50 Ω (matched probe), a uniform B0 gradient around ω0 = 2π × 8 MHz,
ω1,max = 2π × 10 kHz (such that T90 = 25 µs and ω1n = 0.0625), tE = tref + 6× T180, and Tacq = 4× T180.

default refocusing pulses (nominally-rectangular with tref = 1 × T180). Also, the relative amount of575

SNR improvement is similar for all three probes, as expected in the absence of probe dynamics effects.576

However, the tuned probe provides the highest absolute SNR due to its lower NF in receive-mode, as577

described in the previous section.578

Next, we simulate the same CPMG-like sequences for different values of normalized RF bandwidth579

ω1n. In addition to SNR, we define and plot two additional performance metrics that are relevant for580

low-field experiments in inhomogeneous fields, such as single-sided imaging [44]. The first, the time581

figure of merit (FOMt), is inversely proportional to the total time required to obtain a certain “target”582

SNR. Since SNR ∝
√
Nav where Nav is the number of scans being averaged, FOMt ∝ (SNR)2. In583

addition, the SNR per scan for amplitude and T2 measurements is ∝ 1/tE where tE is the echo period,584

since smaller values of tE allow more echoes to be generated per scan. Including this term, we get585

FOMt ≡ (SNR)2/tE, where larger values are better. The second metric, the energy figure of merit586

(FOMe), is inversely proportional to the total RF energy required to obtain a certain SNR. Since all587

SPA and rectangular pulses have the same nominal RF amplitude, the energy per pulse is ∝ tref , the588

pulse length. Thus, we get FOMe ≡ (SNR)2/(tEtref ), where larger values are again better.589

The simulation results are summarized in Fig. 16 for ω1n values ranging from 0.0625 to 2. Each plot590
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Figure 16: Summary of probe dynamics effects on CPMG-like pulse sequences generated by untuned, tuned, and matched
probes as a function of normalized field strength ω1n (obtained by varying ωr while keeping ω1 and coil Q fixed). The plots
show the refocusing pulses that optimize the following metrics: (a) asymptotic SNR, (b) inverse of total measurement time
FOMt, and (c) inverse of total measurement energy FOMe. All metrics have been normalized to values for nominally-
rectangular refocusing pulses (tref = 1×T180) at the same value of ω1n. Probe and pulse sequence parameters are identical
to those in Fig. 15, except the following: ωr = ω0 = 2π × [0.25− 8] MHz and coil inductance L = 10× (2π × 106/ω0) µH.

shows the best available value of a given performance metric (SNR, FOMt, and FOMe for Figs. 16(a)-(c),591

respectively) as a function of ω1n, and also the corresponding refocusing pulse (either SPA or nominally-592

rectangular). All values have been normalized to those from the default Rect1.0 pulse. These plots593

highlight some interesting trends. The SNR plot (Fig. 16(a)) shows that the normalized SNR (i.e., the594

improvement relative to the Rect1.0 pulse) decreases with ω1n for all three probe designs. However, the595

effect is weak for the untuned probe (since it is broadband in both transmit and receive), intermediate596

for the tuned probe (since it is broadband in transmit, narrowband in receive), and strongest for the597

matched probe (since it is narrowband in both transmit and receive). Also, relatively long SPA pulses598

(tref ≥ 3.1× T180) provide the best SNR in all cases, as expected from Fig. 15.599

The FOMt plot (Fig. 16(b)) shows that measurement time increases with ω1n for all three probes, i.e.,600

as probe dynamics effects become more significant. Again, the effect is weakest for untuned probes and601

strongest for matched ones. The SPA3.1 pulse always maximizes FOMt for untuned and tuned probes,602

but the nominally-rectangular Rect1.0 pulse is optimal for matched probes at high values of ω1n. This603

is because of the relatively slow RF rise and fall times in matched probes, which prevents modulated604

pulses (such as SPA) from being accurately generated as ω1n increases.605

Finally, the FOMe plot (Fig. 16(c)) shows that short nominally-rectangular pulses (Rect0.6) generally606

minimize the total energy consumption. The only exception is matched probes at low values of ω1n,607

35



Optimization
algorithm

Transmitter
model

Spin
dynamics

model
Receiver

model

Cost
function

calculation

Pulse
parametersCost

Initial pulse
parametersConstraints

Figure 17: Block diagram of the proposed hardware-aware RF pulse optimization procedure.

for which a relatively short SPA pulse (SPA1.0, which is similar to the RP2 pulse described in [27])608

is optimal. Also, the normalized value of FOMe is nearly independent of ω1n for untuned and tuned609

probes, but decreases with ω1n for matched probes (which shows that the Rect1.0 pulse becomes closer610

to optimal).611

Returning to Fig. 16(a), note that while the highest value of normalized SNR is always obtained for612

small values of ω1n (i.e., when ω1 is much smaller than the probe bandwidth), this does not imply that613

ω1 should be reduced to improve the measurement SNR. On the contrary, matched filtering ensures that614

the effective sample volume (and thus SNR) in inhomogeneous fields is maximized by using the largest615

available ω1. Fig. 16(a) simply shows that the relative improvement in SNR that is possible by using616

SPA pulses tends to increase as ω1n decreases, i.e., as probe dynamics effects become less significant. In617

other words, the optimal choice of pulse for a given value of ω1 depends on the nominal probe bandwidth618

ωr/Q. Similar remarks apply for the other metrics (FOMt, and FOMe).619

6.5. Design of OCT Pulses for CPMG-Like Pulse Sequences620

In this section we describe the design of excitation and refocusing pulses for CPMG-type sequences621

that are optimized for different probe designs. For this purpose, we integrated our models for the622

transmitter, spin dynamics, and receiver within an OCT framework as shown in Fig. 17.623

Eqn. (27) shows that the asymptotic magnetization spectrum Sasy(∆ω0) for a given field distribution624

f(∆ω0, ω1) is proportional to the inner product (n̂ · ~Mexc), where ~Mexc and n̂ are solely determined by625

the excitation pulse and refocusing cycle, respectively. Thus, we optimize the excitation and refocusing626
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pulses separately, as in our earlier work [27–29]. Our goal is to maximize measurement SNR for a given627

peak RF power level (i.e., value of ω1,max). The specific optimization steps are described next.628

6.5.1. Refocusing pulses629

The received signal spectrum can be found by including the receiver TF in eqn. (27), resulting in630

Srx(∆ω0) = GR(∆ω0)Sasy(∆ω0). The magnitude of Sasy(∆ω0) is maximized for ideal axis-matching631

excitation (AMEX) pulses that transfer ẑ → n̂, thus generating ~Mexc = n̂ at all offset frequencies [28].632

In this case, the expression for the received spectrum reduces to633

S(AMEX)
rx (∆ω0) = GR(∆ω0) (ω0 + ∆ω0)

∫
f(∆ω0, ω1)n̂⊥ω1dω1. (29)

We denote the resulting SNR for asymptotic echoes by SNR(AMEX). By contrast, traditional broadband634

excitation pulses (such as the short nominally-rectangular pulses used in the previous section), ideally635

transfer ẑ → nx within the refocusing bandwidth; this results in lower SNR.636

Refocusing pulses were discretized into M fixed-length segments (each of length ∆T = 2π/ω, i.e.,637

one RF cycle) for optimization purposes. The transmitter voltage waveform for the m-th segment was638

assumed to have an arbitrary phase φin(m), while the transmitter voltage amplitude Vs was kept constant639

during the pulse to i) simplify the optimization problem, and ii) allow the optimized pulses to be easily640

generated by power-efficient switching power amplifiers. Thus, the optimization variables consist of641

the M -element list of input phases, which in turn determine n̂⊥ in eqn. (29). The field distribution642

f(∆ω0, ω1) was assumed to be constant, and −SNR(AMEX) was chosen as the cost function.643

Optimized pulse shapes with a nominal length of tref = 1.5×T90 are shown in Figs. 18(a), (c), and (e)644

for untuned probes (ω1n = 1), tuned probes (ω1n = 1), and matched probes (ω1n = 0.5), respectively6,645

while the corresponding asymptotic magnetization spectra (Sasy and Srx) are shown in Figs. 18(d), (e),646

and (f). The rate of phase modulation within the pulse is highest for the untuned probe and lowest647

for the matched probe, as expected. The pulse optimized for tuned probes (Fig. 18(c)) is similar to a648

phase-alternating approximation to a swept-frequency pulse, while that for matched probes (Fig. 18(c))649

6A smaller value of ω1n was used for matched probes due to their significantly slower pulse rise and fall times.
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Figure 18: Optimized refocusing pulses in a linear B0 field gradient and uniform B1 for (a)-(b) an untuned probe, (c)-(d)
a tuned probe, and (e)-(f) a matched probe. In each case, the top plot shows coil current in the rotating frame, while
the bottom plot shows asymptotic magnetization spectra at the coil (Sasy(ω), dashed lines) and the receiver (Srx(ω),
solid lines). For clarity, Srx(ω) was divided by the peak receiver gain |GR(ω)|max. Probe and pulse sequence parameters
were as follows: L = 10 µH, Q = 50, [Rs,on, Rs,off ] = [2, 20] Ω (tuned probe) or Rs = 50 Ω (matched probe), ωr =
ω0 = 2π × 0.5 MHz, ω1,max = 2π × 10 kHz (such that T90 = 25 µs and ω1n = 1), pulse length tP = 1.5 × T180, and
Tacq = 3× T180.
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Figure 19: Refocusing pulse optimization results for untuned, tuned, and matched probes in a uniform B0 gradient at
ωr = ω0 = 2π × 500 kHz: (a) normalized SNR for asymptotic echoes, and (b) relative SNR compared to rectangular
input pulses of length 1.6 × T90. Coil parameters are identical to those in earlier sections, while ω1,max = 2π × 10 kHz
(T90 = 25 µs, ω1n = 1) for tuned and untuned probes and 2π × 5 kHz (T90 = 50 µs, ω1n = 0.5) for the matched probe.

is similar to a three-segment SPA or RP2 pulse. Both untuned and tuned probes generate significant650

amounts of off-resonance magnetization (Sasy), but Srx for the latter is significantly more narrowband651

due to the resonant receive-mode TF. Finally, both Sasy and Srx are narrowband for the matched probe.652

The optimization procedure was repeated for tref varying between T180 and 2× T180. The resulting653

SNR values are summarized in Fig. 19(a) for untuned, tuned, and matched probes with the same values654

of ω1n as before (1, 1, and 0.5, respectively). The results show that SNR increases with tref , as expected,655

and is highest for tuned probes due to their low receive-mode NF. Fig. 19(b) shows the same data, but656

normalized to the SNR provided by the default nominally-rectangular pulse (Rect1.0). These results657

show that the relative amount of SNR improvement is lowest for matched probes, intermediate for658

tuned probes, and highest for untuned probes, as expected based on their dynamics. For example,659

optimized pulses with tref = 2× T180 can provide approximately 40%, 60%, and 80% higher SNR than660

the default pulse, respectively, resulting in FOMt improvements of approximately 1.6×, 2.5×, and 3.2×.661

6.5.2. Excitation pulses662

A similar procedure was used for optimizing AMEX excitation pulses. The main difference is that663

the asymptotic signal spectrum is given by eqn. (27), with ~Mexc varying during the optimization while n̂664

and n̂⊥ remain fixed at values corresponding to one of the optimized refocusing pulses described in the665
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Figure 20: Optimized AMEX pulse sequence in a uniform B0 gradient for a tuned probe at ωr = ω0 = 2π × 500 kHz: (a)
coil current for the excitation pulse in the rotating frame (length texc = 8 × T180), (b) received magnetization spectrum
Srx(ω), and (c) asymptotic time-domain echo. The AMEX excitation pulse was matched to the broadband refocusing
pulse of length tP = 1.5× T180 shown in Fig. 18(c), with tE = 7× T180. Coil parameters are identical to those in earlier
sections. The value of ω1,max = 2π × 10 kHz (such that T90 = 25 µs and ω1n = 1).

previous section. The pulse was again discretized into fixed-length segments (each of length ∆T = 4π/ω,666

i.e., two RF cycles), and −SNR was chosen as the optimization cost function. The pulse length was667

chosen to be slightly larger than the echo period tE, namely texc = 8× T180 when tE = 7× T180. This is668

because AMEX pulses need to be comparable or longer than tE to generate a ~Mexc vector that matches669

n̂ (which is approximately periodic with a period 1/tE), Finally, during this step we only considered670

tuned probes (with ω1n = 1) for conciseness.671

Fig. 20(a) shows an optimized AMEX pulse that is matched to the previously-optimized refocusing672

pulse (tref = 1.5 × T180) for an echo period tE = 7 × T180. We denote the resulting CPMG-like pulse673

sequence as AMEX1.5. Figs. 20(b) and (c) show the corresponding asymptotic magnetization spectrum674

(Srx) and time-domain echo, respectively.675

The optimization procedure was repeated for refocusing pulses of lengths between T180 and 2× T180.676

The optimized SNR values were normalized to those from the default CPMG sequence, which uses677

nominally-rectangular excitation and refocusing pulses (texc = T90, tref = 1.6 × T90)
7. The normal-678

ized SNR is up to 65% higher than the default sequence (resulting in 2.7× lower FOMt), as shown in679

Fig. 21(a). These results show that OCT-based pulse optimization can significantly improve measure-680

7A value of tref = 1.6×T90 was chosen since it provides slightly higher SNR in a grossly inhomogeneous field than the
more common tref = 2× T90 (see Fig. 15).
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Figure 21: (a) Summary of CPMG optimization results for a tuned probe in a uniform gradient at ωr = ω0 = 2π×500 kHz.
The figure shows relative improvement in asymptotic SNR for AMEX pulse sequences (echo period tE = 7×T180) compared
to a CPMG sequence that uses rectangular input pulses (texc = T90, tref = 1.6×T90). (b) The corresponding PSD, N(ω),
of total input-referred noise at the receiver. Coil parameters are identical to those in earlier sections. The value of
ω1,max = 2π × 10 kHz (such that T90 = 25 µs and ω1n = 1).

ment metrics (such as SNR and FOMt) even when probe dynamics effects are significant (ω1n = 1),681

Interestingly, much of the improvement is due to using H ′M(ω), the optimal matched filter for colored682

(i.e., frequency-dependent) noise. The noise power spectrum N(ω) of high-Q tuned probes is strongly683

frequency-dependent, as shown in Fig. 21(b); the peak near the tuning frequency is due to resonant684

amplification of noise from the coil. As a result, H ′M(ω) provides higher SNR than HM(ω), the matched685

filter for white noise. This effect is much stronger for the AMEX sequence since it generates much more686

off-resonance magnetization. For example, using the correct filter increases the SNR of the AMEX1.5687

sequence by 81%, compared to only 14% for the default sequence.688

6.5.3. Phase cycling689

An important practical concern with pulse sequences based on OCT pulses is their support of phase690

cycling, which is very useful for i) selecting the desired coherence pathways, and ii) removing unwanted691

signals due to steady-state magnetization, probe ring-down, and detector offset. Standard phase cycles692

use a π phase shift of the excitation pulse to invert ~Mexc, but in fact this inverts only the transverse693

component of the vector. As a result, only this component contributes to the signal after the phase cycle.694

Since AMEX pulses deliberately create both transverse and longitudinal magnetization, generalized695

phase cycling of AMEX pulses requires a method to invert both components of ~Mexc. In general,696
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this requires two matched AMEX excitation pulses that transform ẑ magnetization onto n̂ and −n̂,697

respectively. In the special case of SPA refocusing pulses, a modified form of phase cycling, known698

as phase inversion, can be applied to the corresponding AMEX pulses; this is because the asymptotic699

magnetization is symmetric about ∆ω0 = 0 [29]. However, the proposed hardware-optimized refocusing700

pulses are not of the SPA type, so phase inversion does not apply.701

Thus, here we use our optimization framework to design inverse excitation pulses. Such pulses702

generate initial magnetization vectors ~Mexc and asymptotic magnetization spectra Srx(∆ω0) that are,703

ideally, additive inverses of those produced by a previously-optimized AMEX pulse. Basic phase cycling704

can then be performed by subtracting the signals generated by pairs of scans that use the same refocusing705

cycle but the original and inverse AMEX pulses, respectively; this is similar to the phase-alternating706

pair (PAP) cycle. Given an AMEX pulse, its inverse was found by minimizing the cost function707

C =

∫
d (∆ω0) |Srx (∆ω0) + Srx,orig (∆ω0)|+ α |SNR− SNRorig| , (30)

where ‘orig’ subscripts refer to the original pulse and α is a constant. The first term ensures that the708

magnetization spectra are inverses of each other, while the second term prevents the optimizer from709

getting stuck in local optima that have poor asymptotic SNR.710

For this step, we used the same probe model as that in the previous sub-section (tuned, ω1n = 1).711

Optimization results for an AMEX1.0 sequence are shown in Fig. 22. Both the asymptotic magnetization712

spectrum and time-domain echo are nearly perfect inverses of the original (correlation coefficient ρ =713

−0.998), as desired. Interestingly, the fact that the spin dynamics are nonlinear ensures that the714

waveforms of the original and inverse excitation pulses have no simple relationship to each other: the715

actual coil currents are almost completely uncorrelated (ρ = 0.04 + 0.03i). The inverted pulses do tend716

to have slightly lower SNR than the original pulses (9.7% in this case), resulting in a small drop in SNR717

after phase cycling. The value of α in the cost function (eqn. 30) can be increased to reduce this drop.718
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Figure 22: Performance of an optimized inverse AMEX pulse sequence compared with the original: (a) received mag-
netization spectra Srx(ω) (dashed: original sequence, solid: inverse sequence), and (b) asymptotic time-domain echoes
(dashed: original sequence, solid: negative of the inverse sequence). The AMEX excitation pulses were matched to a
broadband refocusing pulse of length tP = 1× T180, with tE = 7× T180. Coil parameters are identical to those in earlier
sections. The values of ωr = ω0 = 2π × 500 kHz and ω1,max = 2π × 10 kHz (such that T90 = 25 µs and ω1n = 1).

7. Experimental Results719

This section describes some experiments using an untuned transmitter and probe to verify our tran-720

sient cancellation results (described in Section 2). The system, which has been described elsewhere [8],721

consists of a broadband “H-bridge transmitter” that drives an untuned solenoid coil containing the722

sample. The duplexer and receiver electronics were not used during the experiments.723

Constant-amplitude RF pulses were fed into the transmitter from a Kea2 benchtop spectrometer724

(Magritek). The transmitter contains circuitry that converts these low-level pulses (< 0 dBm) into725

logic-level drive signals for the MOSFET switches in the H-bridge. The resultant coil current was726

measured with a current probe and displayed on a digital oscilloscope. Typical results obtained with727

rectangular input pulses at 250 kHz are shown in Fig. 23(a). The second pulse displays turn-on and728

turn-off transients; the former is well-fit by an exponential decay with time-constant τp = 6.0 µs, as729

shown on the figure. The untuned probe model in Section 2 predicts τp = L/(Rc +Rs,on), which agrees730

with the measurement given that L = 15 µH, Rc ≈ 0.5 Ω, and Rs,on ≈ 2.0 Ω.731

Interestingly, the turn-off transient is noticeably non-exponential - in fact, it is approximately linear.732

This is because no resistive “Q-switch” was used after the pulse turns off, unlike in our analysis (shown733

in Fig. 2(b)). Instead, the inductor current discharges through extender and MOSFET source-drain734
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Figure 23: (a) Measured coil currents produced by an untuned NMR transmitter at 250 kHz. The transmitter voltage
was set to 30 V. The input consisted of two rectangular (constant amplitude and phase) RF pulses, each 40 µs long. Pulse
locations are indicated by the “gate” pulses shown above each current waveform. (b) Simplified schematic of the untuned
NMR transmitter and probe (left), and its equivalent circuit during pulse ring-down (right). For simplicity, the differential
transmitter and probe circuit has been split into two parts down its axis of symmetry (the center of the coil), and only
one of the two half-circuits is shown. (c) Same as (a), but with the second pulse delayed by 1 µs.

reverse diodes, as shown in Fig. 23(b). This process (known as “free-wheeling”) can be modeled by735

assuming that the voltage across each diode remains constant at its “on” value. This results in a linear736

decrease in coil current, in good agreement with the measurements:737

L
dI

dt
= V ≈ −Von ⇒ I(t) = I(0)−

(
Von
L

)
t, (31)

where Von = 2 (Von,SD + Von,extender) is the total diode voltage. The factor of two appears because of738

the other half of the H-bridge circuit (not shown in Fig. 23(b)).The measured slope of the coil current739

during turn-off is 0.21 A/µs, which corresponds to Von = 3.15 V. This result is in good agreement with740

the predicted value of Von ≈ 3.4 V.741

Fig. 23(c) shows that both turn-on and turn-off transients disappear when the second pulse is delayed742

by 1 µs, i.e., one quarter of an RF cycle. In addition, the amplitude of the transient varies periodically743

as the delay is further increased. The observed period is half of an RF cycle (2 µs in this case), as744

predicted by the theoretical analysis.745

In the next set of experiments, we generated SPA pulses with three segments at a frequency at746

500 kHz. Fig. 24(a) shows that large transients are generated at the beginning and end of each pulse,747

as well as every time the phase changes within a pulse. Fig. 24(b) shows that these transients disappear748
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Figure 24: Measured coil currents produced by an untuned NMR transmitter at 500 kHz. The transmitter voltage was set
to 30 V. The input consisted of two constant-amplitude SPA pulses, each 60 µs long. Each pulse consisted of 3 segments
of length 20 µs, with phases of {0, π, 0}, respectively. Pulse locations are indicated by the “gate” pulses shown above each
current waveform. (a) Using default delay settings. (b) Same as (a), but with the initial delay increased by 0.5 µs.

when the delay before the first pulse is increased by 0.5 µs, i.e., one quarter of an RF cycle. Further749

examination of the resulting pulse waveform confirms that all phase transitions occur at zero-crossings750

of the coil current, as required by the theoretical analysis for phase jumps of ±π. In addition, the751

amplitude of the transient again repeats periodically with a period of half an RF cycle (1 µs in this752

case) as the delay is further increased.753

8. Summary and Conclusions754

This paper has analyzed the effects of limited probe bandwidth on multi-pulse measurements on755

ensembles of uncoupled spin-1/2. To simplify the analysis, we have created analytical models of three756

common probe circuits, referred to as untuned, tuned, and impedance-matched, respectively. Our757

analytical and simulation results show that the dynamics of untuned probes during transmission can be758

suppressed using careful timing of the phase transitions. Such behavior can also be approximated using759

tuned probes that are over-coupled (i.e., use low-impedance transmitters), but it cannot be obtained760

using matched probes. In receive-mode, untuned probes exhibit a broadband TF, while the others have761

resonant (narrowband) TFs. The resulting signal gain (assuming moderate- or high-Q coils) is much762

larger for tuned probes than the others, which results in the lowest NF and highest SNR as long as763

transmission-line effects between the probe and receiver can be ignored.764
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The probe models were integrated with spin dynamics simulations to study their effects on measure-765

ment metrics such as SNR. Our results show that these effects increase with normalized RF bandwidth766

ω1n, and are generally weakest for untuned probes, intermediate for tuned probes, and strongest for767

matched probes. Finally, the models were incorporated into an OCT pulse optimization framework768

and used to derive hardware-specific excitation and refocusing pulses for CPMG-like pulse sequences769

in grossly inhomogoeneous fields. The results show that the optimized pulses can significantly improve770

SNR and other metrics even when probe dynamics effects are significant.771

Future work will focus on verifying our pulse sequence optimization results on suitable probe hard-772

ware. We would also like to extend our theoretical analysis to additional probe circuits, such as balanced773

and transmission-line designs. Finally, we will also study the impact of probe dynamics on pulse designs774

for studying coupled networks of spins, such as pulses for decoupling and sub-spectral editing.775
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Appendix A. General Solution for Transient Cancellation in Untuned Probes778

The general solution for the resulting non-sinusoidal coil current can be found by replacing the779

driving function in eqn. (4) with a Fourier series780

f(t) = u(t)
∞∑
n=1

ane
in(ωt+φ), (A.1)

where the coefficients an depend on the transmitter voltage waveform. Note that we have implicitly

assumed that the average (DC) term is zero by starting the series from n = 1. Using superposition, the
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general solution for the coil current is now given by

y(t) = yh(t) + (yd1(t) + yd2(t)) /2. (A.2)

= y(0)e−t/τp + u(t)
∞∑
n=1

Anan
2

ei(nφ+θn)
[
einωt − e−t/τp

]
+ u(t)

∞∑
n=1

Anan
2

e−i(nφ+θn)
[
e−inωt − e−t/τp

]
= u(t)

∞∑
n=1

Anan cos (n (ωt+ φ) + θn)︸ ︷︷ ︸
Steady state

+

[
y(0)− u(t)

∞∑
n=1

Anan cos (nφ+ θn)

]
e−t/τp︸ ︷︷ ︸

Transient

.

Here Ane
iθn ≡ τp/ (1 + inωτp) is the TF between transmitter voltage and coil current for the n-th781

harmonic of the fundamental frequency. Assuming that the previous pulse segment has reached steady-782

state, the condition for transient cancellation at t = T is given by783

∞∑
n=1

Anan cos (n (ωT + φ) + θn) =
∞∑
n=1

Anan cos (n (ωT + φ′) + θn). (A.3)

This equation requires the two steady-state waveforms to cross each other at the switching instant784

t = T . In general it must be solved numerically. However, the situation is considerably simplified if785

θn ≈ − (π/2) ∀n and the coil current contains only odd harmonics. Both requirements are usually786

satisfied in practice. The first only requires that ωτp � 1, while the second requires the coil current787

to have half-wave symmetry. In this case the waveform is anti-symmetric about zero within every788

cycle. More precisely, it satisfies the condition y (t± T/2) = −y(t) where T = 2π/ω is the period of789

the fundamental component. For two-phase switching transmitters such as H-bridges and half-bridges,790

the half-wave symmetry condition is satisfied if identical switching waveforms are used for both phases791

within a single RF cycle. In such cases a symmetric square wave voltage waveform is applied across the792

coil, so the coil current becomes a triangle wave.793

If both requirements are satisfied, the condition for eliminating transients at t = T is given by794

∞∑
n=1

an
nω

cos
(
n (ωT + φ)− π

2

)
=
∞∑
n=1

an
nω

cos
(
n (ωT + φ′)− π

2

)
. (A.4)
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Here we have used the fact that An ≈ 1/ (nω) ∀n if ωτp � 1. We also note that795

cos (n (ωT ± π + φ)− π/2) = − cos (n (ωT + φ)− π/2)

for any odd value of n, so there are still two solutions within each RF cycle that are separated by ωT = π796

(although there may be more). In addition, we see that797

cos
(
n (ωT + φ)− π

2

)
=


cos
(
n
(
ωT + φ− π

2

))
, n = 1, 5, 9...

− cos
(
n
(
ωT + φ− π

2

))
, n = 3, 7, 11...

(A.5)

We can therefore write the condition for transient cancellation as798

∞∑
n=1

an(−1)(n−1)/2

nω
cos
(
n
(
ωT + φ− π

2

))
=
∞∑
n=1

an(−1)(n−1)/2

nω
cos
(
n
(
ωT + φ′ − π

2

))
. (A.6)

Since cos(x) is an even function, this equation will be satisfied for the n-th harmonic if the corre-799

sponding phases on both sides are inverses of each other, i.e., if (ωT + φ− π/2) = − (ωT + φ′ − π/2).800

The latter condition is independent of the value of n. It is also identical to the condition derived801

earlier for the sinusoidal case (after substituting θ = π/2). As a result, waveform intersections are802

unaffected by the presence of harmonics, and coil current transients can be cancelled by applying the803

same timing corrections as derived for the fundamental component. However, the amount of transmitter804

power saved by this procedure will depend on the shape of the input waveform.805

Appendix B. Derivation of Coil Current in Tuned Probes806

Appendix B.1. Derivation of the Differential Equation807

Using Kirchoff’s current law, the relevant circuit equations for the circuit shown in Fig. 5 are808

Vc = L
dIc
dt

+RcIc (B.1)
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and809

C
dVc
dt

+ Ic =
Vs(t)− Vc

Rs

, (B.2)

where Vc is the voltage across the coil, L is the inductance of the coil, Rc is the series resistance of the810

coil, Ic is the current through the coil, C is the sum of the capacitance of the tuning capacitor and the811

parallel parasitic capacitance of the coil, and Vs is the open-circuit voltage of the transmitter.812

These first-order ODEs can be combined into a single second-order ODE given by813

LC
d2Ic
dt2

+

(
RcC +

L

Rs

)
dIc
dt

+

(
1 +

Rc

Rs

)
Ic =

Vs(t)

Rs

. (B.3)

We define i) a dimensionless time variable τ ≡ ωrt where ωr = 1/
√
LC is the probe resonance frequency,814

and ii) the characteristic impedance Z0 ≡
√
L/C. In terms of these variables, eqn. (B.3) is written as815

d2Ic
dτ 2

+

(
Rc

Z0

+
Z0

Rs

)
dIc
dτ

+

(
1 +

Rc

Rs

)
Ic =

Vs(t)

Rs

. (B.4)

Eqn. (B.4) is mathematically identical to that of a driven, damped harmonic oscillator given by816

d2y

dτ 2
+ 2γ

dy

dτ
+ ω2

ny = f(τ), (B.5)

where the following identifications apply: y ≡ Ic, ωn ≡
√

1 + Rc

Rs
, γ ≡ 1

2

(
Rc

Z0
+ Z0

Rs

)
, and f(τ) ≡ Vs(τ)

Rs
.817

Appendix B.2. Homogeneous Solution818

The solution to eqn. (B.4) can be found by separately finding the homogeneous and inhomogeneous

(non driven and driven respectively) solutions to the equation. We start by finding the general solution

of eqn. (B.4) for the homogeneous case, which is obtained by setting f(τ) = 0 on the right-hand

side. Physically, this corresponds to the natural (not driven) dynamics of the system. The resulting
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homogeneous ODE has a general solution of

yh(τ) = c1e
λ1τ + c2e

λ2τ and

ẏh(τ) = c1λ1e
λ1τ + c2λ2e

λ2τ , (B.6)

where the coefficients c1 and c2 depend on the initial conditions of the system.819

By substituting the solution in (B.6) back into the ODE, we find that the exponential rates λ1 and820

λ2 must satisfy the quadratic equation821

λ2 + (2γ)λ+ ω2
n = 0, (B.7)

which has the solutions822

λ1,2 = −γ ±
√
γ2 − ω2

n ≡ −γ ± α. (B.8)

Given the initial conditions (i.e., the values of y and dy/dτ at τ = 0), the coefficients c1 and c2 can be823

found by solving the following set of linear equations:824


yh(0)

ẏh(0)

 =


1 1

λ1 λ2



c1

c2



⇒


c1

c2

 =


1 1

λ1 λ2


−1 

yh(0)

ẏh(0)

 = 1
(λ2−λ1)


λ2 −1

−λ1 1



yh(0)

ẏh(0)

 = 1
2α


−λ2yh(0) + ẏh(0)

λ1yh(0)− ẏh(0)

 .
(B.9)
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Appendix B.3. Inhomogeneous (Driven) Solution825

We now find a particular solution of the inhomogeneous (driven) ODE for a complex exponential826

RF input f(τ) = u(τ)ei(ωτ+φ). The analytical solution is found to be827

yd(τ) = u(τ)
eiφ−(γ+α)τ

[
(iω + γ) (1− e2ατ ) + α

(
−1− e2ατ + 2e(iω+γ+α)τ

)]
2α [(ωn2 − ω2) + 2iγω]

, (B.10)

where α ≡
√
γ2 − ω2

n as defined earlier. From eqn. (B.10), the derivative of yd with respect to time is828

ẏd(τ) =
ieiφ−(γ+α)τ

[
(iω2

n − γω) (1− e2ατ ) + αω
(
−1− e2ατ + 2e(iω+γ+α)τ

)]
2α [(ωn2 − ω2) + 2iγω]

, τ ≥ 0. (B.11)

As an example, the real and imaginary parts of y and dy/dτ corresponding to these expressions are829

shown in Fig. B.25 for the following set of parameters: φ = 0, ωn = 1, ω = 1.1, and γ = {0.1, 0.2, ...0.9}.830

Each solution starts from zero and then builds up to a steady-state over a few cycles. This build-up831

(or settling) period is of great interest for NMR applications, since it determines the maximum rate at832

which the RF pulse can be amplitude or phase modulated.833
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Figure B.25: Simulated step response of the real coil current (a) and imaginary coil current (b) for various values of the
damping parameter γ. We assumed the following set of parameters: φ = 0, ωn = 1, ω = 1.1, and γ = 0.1, 0.5, and 0.9.
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The particular solution can be rewritten as the sum of asymptotic (steady-state) and transient terms:

yd(τ) =
u(τ)eiφ

[(ωn2 − ω2) + 2iγω]

 eiωτ︸︷︷︸
Steady state

+
(λ2 − iω)

2α
eλ1τ − (λ1 − iω)

2α
eλ2τ︸ ︷︷ ︸

Transient


ẏd(τ) =

eiφ

[(ωn2 − ω2) + 2iγω]

[
iωeiωτ +

λ1 (λ2 − iω)

2α
eλ1τ − λ2 (λ1 − iω)

2α
eλ2τ

]
, τ ≥ 0. (B.12)

For single-coil systems, the RF input is a sinusoid given by f(τ) = u(τ) cos (ωτ + φ). Since this834

is the real part of the complex exponential RF input and the governing ODE is linear, the resulting835

particular solution is simply the real part of the complex solution shown in (eqn. B.12).836

Defining the steady-state gain and phase shift as A(ω) = [(ω2
n − ω2)2 + (2γω)2]

−1/2
and θ(ω) =837

− tan−1
(

2γω
ω2
n−ω2

)
, respectively, the particular solution for sinusoidal inputs can be written as838

yd(τ) = A(ω)u(τ)

cos (ωτ + φ+ θ)︸ ︷︷ ︸
Steady state

+ a1e
λ1τ + a2e

λ2τ︸ ︷︷ ︸
Transient

 , (B.13)

where839

a1 ≡
λ2 cos (φ+ θ) + ω sin (φ+ θ)

2α
and a2 ≡ −

λ1 cos (φ+ θ) + ω sin (φ+ θ)

2α
. (B.14)

Note that θ = −π/2 when ω = ωn. Also, the time derivative of the inhomogeneous solution is840

ẏd(τ) = A(ω)
[
−ω sin (ωτ + φ+ θ) + a1λ1e

λ1τ + a2λ2e
λ2τ
]
, τ ≥ 0. (B.15)

Appendix B.4. General Solution841

The general solution to eqn. (B.5) is the sum of the homogeneous solution (eqn. (B.6)) and inhomo-842

geneous solution (eqn. (B.13)):843

y(τ) = yh(τ) + yd(τ) = A(ω)u(τ)

cos (ωτ + φ+ θ)︸ ︷︷ ︸
Steady state

+ (a1 + c1) a1e
λ1τ + (a2 + c2) e

λ2τ︸ ︷︷ ︸
Transient

 . (B.16)
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The driven solution must have yd(0) = 0 and ẏd(0) = 0, so y(0) = yh(0) and ẏ(0) = ẏh(0). Thus,844


c1

c2

 =


1 1

λ1 λ2


−1 

y(0)

ẏ(0)

 =
1

2α


−λ2y(0) + ẏ(0)

λ1y(0)− ẏ(0)

 . (B.17)

Appendix B.5. Eliminating Switching Transients845

Let us assume that the coil current has reached steady-state before the input phase changes from

φ to φ′ at time τ = T . In this case the initial amplitudes of the transient components due to the

homogeneous solution are c1 and c2. Thus,

yd(T ) = A cos (ωT + φ+ θ) and

ẏd(T ) = −Aω sin (ωT + φ+ θ) . (B.18)

Plugging eqn. (B.18) into eqn. (B.9), we get846


c1

c2

 = − A

2α


λ2 cos (ωT + φ+ θ) + ω sin (ωT + φ+ θ)

−λ1 cos (ωT + φ+ θ)− ω sin (ωT + φ+ θ)

 , (B.19)

where we have used the fact that λ1− λ2 = 2α to simplify the expression. The initial amplitudes of the847

transient components due to the particular solution are848


a1

a2

 =
A

2α


λ2 cos (ωT + φ′ + θ) + ω sin (ωT + φ′ + θ)

−λ1 cos (ωT + φ′ + θ)− ω sin (ωT + φ′ + θ)

 . (B.20)
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In order to cancel out the transients, we need to have


a1

a2

+


c1

c2

 = 0, which implies that:

λ2 cos (ωT + φ′ + θ) + ω sin (ωT + φ′ + θ) = λ2 cos (ωT + φ+ θ) + ω sin (ωT + φ+ θ) ,

λ1 cos (ωT + φ′ + θ) + ω sin (ωT + φ′ + θ) = λ1 cos (ωT + φ+ θ) + ω sin (ωT + φ+ θ) . (B.21)

These equations have no general solutions apart from the trivial case of no phase change (φ′ = φ).

Unlike in the case of the untuned coil, there is therefore no general way to cancel the transients produced

by a phase-modulated RF pulse. However, these conditions are simplified in the over-coupled case, i.e.,

when γ � 1. In this case λ1 ≈ 0 and λ2 ≈ −2γ, resulting in

−2γ cos (ωT + φ′ + θ) + ω sin (ωT + φ′ + θ) =− 2γ cos (ωT + φ+ θ) + ω sin (ωT + φ+ θ) ,

ω sin (ωT + φ′ + θ) = ω sin (ωT + φ+ θ) . (B.22)

The second condition can be ignored for operation around probe resonance (ω ≈ 1). In this case,849

γ � ω and the transient elimination condition reduces to cos (ωT + φ′ + θ) = cos (ωT + φ+ θ), which850

is identical to that of an untuned coil. This result confirms that over-coupled tuned probes and untuned851

probes have similar dynamics in transmit mode.852

Appendix C. Derivation of Coil Current in Matched Probes853

Appendix C.1. Calculation of Coil Current854

Given the circuit equations, some algebra results in a single equation that connects Vs to Ic:855

sC2Vs
Ic

= s3C1C2RsL+ s2 (L(C1 + C2) + C1C2RsRc) + s ((C1 + C2)Rc + C2Rs) + 1. (C.1)

In order to simplify eqn. (C.1), we define a normalized (dimensionless) time variable τ = ωpt, where856
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ωp =
√
LC1. The corresponding normalized Laplace transform variable is σ = s/ωp, resulting in857

σC2√
LC1

Vs
Ic

= σ3C1C2RsL

(LC1)
3/2

+ σ2 (L(C1 + C2) + C1C2RsRc)

LC1

+ σ
((C1 + C2)Rc + C2Rs)√

LC1

+ 1. (C.2)

Next, we define the dimensionless variable m = C1/C2 (generally m = 4− 10), which results in

σC1

m
√
LC1

Vs
Ic

= σ3 C1
2RsL

m(LC1)
3/2

+ σ2

(
LC1(m+ 1) + C1

2RsRc

)
mLC1

+ σ
(C1(m+ 1)Rc + C1Rs)

m
√
LC1

+ 1,

σ

m

√
C1

L

Vs
Ic

=
σ3

m

√
C1

L
Rs +

σ2

m

(
(m+ 1) +

C1

L
RsRc

)
+
σ

m

√
C1

L
((m+ 1)Rc +Rs) . (C.3)

Next, we define the characteristic impedance of the probe as Z0 =
√
L/C1; this variable has dimensions

of Ohms. Eqn. (C.3) now simplifies to

σ

mZ0

Vs
Ic

=
σ3

mZ0

Rs +
σ2

m

(
(m+ 1) +

RsRc

Z2
0

)
+

σ

mZ0

((m+ 1)Rc +Rs) ,

σ

Rs

Vs
Ic

= σ3 + σ2

(
(m+ 1)

Z0

Rs

+
Rc

Z0

)
+ σ

(
(m+ 1)

Rc

Rs

+ 1

)
+
mZ0

Rs

. (C.4)

We can now directly write the corresponding differential equation in the normalized time domain by

remembering that L (f ′(t)) = sF (s)− f(0) where L(·) denotes the Laplace transform. Thus, assuming

zero initial conditions, we can simply make the transformation σ ↔ d/dτ to get

d3Ic
dτ 3

+ c3
d2Ic
dτ 2

+ c2
dIc
dτ

+ c1Ic =
1

Rs

dVs
dt
, where

c3 =

(
(m+ 1)

Z0

Rs

+
Rc

Z0

)
, c2 =

(
(m+ 1)

Rc

Rs

+ 1

)
, and c1 =

mZ0

Rs

. (C.5)

This is a simple third-order ODE with constant coefficients that can be solved using standard ODE858

solvers. For simplicity, the coil current Ic is further normalized to its ideal value Ic0 for a perfectly-859

matched probe in steady-state. The latter can be derived by using an energy conservation argument. For860

perfect matching, the input impedance of the probe is Rs, so the source current is Is0 = Vs0/ (Rs + Zin) =861

Vs0/(2Rs) where Vs0 is the amplitude of the source voltage. Thus, the power delivered by the source is862
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Ps = I2s0Rs/2 = V 2
s0/(8Rs). The same power must be dissipated in the coil’s series resistance Rc, so863

Ps =
V 2
s0

8Rs

= Pc =
Ic0

2Rc

2
⇒ Ic0 =

Vs0
2
√
RcRs

. (C.6)

Appendix C.2. Calculation of the Receiver Transfer Function864

We solve for the receiver TF from Vin to Vout by breaking the circuit into two voltage dividers. The865

first is from Vin to Vc and the other is from Vc to Vout. The first TF is solved in the s-domain to be866

Vc
Vin

=

(
1
sC1
||
(
Rs + 1

sC1

))
sL+Rc +

(
1
sC1
||
(
Rs + 1

sC1

)) =

m+sC1Rs

(m+1)+sC1Rs

s2LC1 + sC1Rc + m+sC1Rs

(m+1)+sC1Rs

. (C.7)

We now use the results from eqn. (C.7) to solve for the TF between Vout and Vin. The resulting TF is867

Vout
Vin

=
Vc
Vin

Rs

Rs + 1
sC2

=
Vc
Vin

sC1Rs

m+ sC1Rs

. (C.8)

Plugging eqn. (C.7) into eqn. (C.8) and simplifying the expression, the resulting TF is868

Vout
Vin

=
sC1Rs

[sC1Rs + (m+ 1)] [s2LC1 + sC1Rc] + sC1Rs +m
. (C.9)

The normalized Laplace transform variable is σ = s/ωp = s
√
LC1, resulting in a normalized TF of869

GR(σ) =
Vout
Vin

=
σ

σ3 + c3σ2 + c2σ + c1
, (C.10)

where ci (i = {1, 2, 3}) has the same definitions as in the transmitter model.870
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