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Abstract

Challenge 4 of the Air Force Research Laboratory additive manufacturing modeling challenge series asks the participants to
predict the grain-average elastic strain tensors of a few specific challenge grains during tensile loading, based on experimental
data and extensive characterization of an IN625 test specimen. In this article, we present our strategy and computational
methods for tackling this problem. During the competition stage, a characterized microstructural image from the experiment
was directly used to predict the mechanical responses of certain challenge grains with a genetic algorithm-based material
model identification method. Later, in the post-competition stage, a proper generalized decomposition (PGD)-based reduced
order method is introduced for improved material model calibration. This data-driven reduced order method is efficient and
can be used to identify complex material model parameters in the broad field of mechanics and materials science. The results
in terms of absolute error have been reported for the original prediction and re-calibrated material model. The predictions
show that the overall method is capable of handling large-scale computational problems for local response identification.
The re-calibrated results and speed-up show promise for using PGD for material model calibration.

Keywords Additive manufacturing - IN625 - Elastic strain - Data-driven method - Proper generalized decomposition

Introduction additive manufacturing are microstructural heterogeneity

and residual strain resulting from the high spatial thermal

Metal additive manufacturing (AM) has been the focus of
researchers and engineers as a promising manufacturing
method for large-scale, customized, and complex metallic
parts [1-3]. However, major concerns in the field of metal

< YeLu
ye.lu@northwestern.edu

P4 Wing Kam Liu
w-liu@northwestern.edu

Sourav Saha
SouravSaha2023 @u.northwestern.edu

Theoretical and Applied Mechanics, Northwestern
University, Evanston, IL, USA

Materials Measurement Laboratory, Applied Chemicals
and Materials Division, National Institute of Standards
and Technology (NIST), Boulder, CO, USA

Department of Mechanical Engineering, Northwestern
University, Evanston, IL, USA

gradients, localized heating and cooling, and fast cooling
rates present in AM builds [4, 5]. The resulting microstruc-
ture of the build controls the mechanical properties [6—8].
Therefore, accurate computational models that can predict
the microstructure-level evolution of strain during service
conditions are crucial to enable confident engineering with
these materials without an extensive retesting procedure
after any part of the manufacturing process is altered [9].
Challenge 4 of the Air Force Research Laboratory (AFRL)
additive manufacturing (AM) modeling challenge series
centers on developing and validating reliable computational
models that can track the evolution of grain-average elastic
strain of certain grains under uniaxial loading conditions. In
this paper, a fast Fourier transformation (FFT)-based method
has been used to model the evolution of strain, both elastic
and plastic, with a crystal plasticity material model. Opti-
mization of the material model is performed by a proper
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generalized decomposition (PGD) method [10, 11] and the
performance is compared with the genetic algorithm [12].

Validating the prediction of mechanical response of mate-
rial at the micro-level was the goal of the challenge and was
achieved using high-energy diffraction microscopy tech-
niques [13-15], where multiple levels of detail can be cap-
tured by combining near- and far-field imaging. The details
of the high-energy diffraction methodology followed to char-
acterize the challenge material, the nickel-based superalloy
IN625, are discussed in on the Challenge Website [16], and
in an article under the same Topical Collection as this paper.
Necessary information on the experiments to understand the
work presented here are discussed in the "Problem State-
ment" section.

For microscale continuum modeling of metal polycrys-
tals, computational crystal plasticity is a common method
[17-19]. While the mathematical algorithm used to solve
the problem remains similar, depending on the physics to be
modelled, different variations of the crystal plasticity mate-
rial model have been proposed. The material models are
used within, e.g., the finite element method (FEM) or the fast
Fourier transformation (FFT) method [20-22] for computing
the materials response. One major drawback of using crystal
plasticity is the computation becomes more expensive than
when more simple material models are used. Using FFT
instead of FEM can improve computational efficiency, but
FFT requires a periodic simulation domain, which is not
always possible, or necessitates modeling compromises.
Recently, data-driven mechanistic approaches have been pro-
posed such as self-consistent clustering analysis (SCA) [23,
24] where material points are grouped together to predict
the overall response of the material domain. Considering
the nature of the domain given and the nature of the chal-
lenge, the group opted to use the crystal plasticity-FFT as
the solution method.

Irrespective of the scenario, crystal plasticity material
models involve a number of parameters to be calibrated
against the experimental data before they can be used. This
involves an optimization process in which material model
parameters are varied and the resulting predictions compared
against experimental, or otherwise ground truth, data. This
optimization method requires solving for the mechanical
response using crystal plasticity multiple times. As a result,
the calibration can be computationally expensive, and an
alternate way to calibrate the material model is desirable.
One typical method for calibration is the multi-objective
genetic algorithm [21, 25]. The material model used when
reporting challenge results was calibrated using such a
method. The results from the competition indicated that
material model calibration was a key area for advancement.
Thus, an advanced PGD-based optimization was applied to
the material model calibration, and in this manuscript we
demonstrate its high efficiency for this problem. PGD is a

@ Springer

projection-based model reduction method and has gained
popularity in recent years. This kind of approach is used
for accelerated numerical simulations [26-29] or efficient
parametric studies [30-33]. PGD approaches can be imple-
mented in either intrusive or non-intrusive ways. The non-
intrusive kind can be mainly based on data and therefore
applicable for a wide range of problems. The method we
present in this work is non-intrusive and data-driven and
can be adopted for many other problems, such as for differ-
ent linear and nonlinear processes or materials optimization.
The article is organized as follows: In the "Problem State-
ment" section describes the problem statement for the chal-
lenge and in the "Material Modeling Methods" section illus-
trates the solution methodology we followed. In the "Genetic
Algorithm" section describes the initial genetic algorithm
(GA)-based material calibration, while in the "Proper Gen-
eralized Decomposition-Based Material Parameter Identifi-
cation" section discusses the fundamentals and results of a
more advanced PGD-based material parameter identification
method. The results reported to the challenge (with the GA
calibration) and updated analysis with PGD-based calibra-
tion are presented in the "Discussion of Results". Finally, the
analysis is concluded in the "Conclusions" section.

Problem Statement

The AFRL challenge statement provided certain build, mate-
rial, and loading information and asked for prediction of
"grain-averaged elastic strain tensors for specified grains at
specified macroscopic loading points under uniaxial ten-
sion." The goal of the challenge thus being to assess the
ability of grain-scale modeling to accurately reproduce
measured elastic strains within a real, relatively complex,
polycrystalline setting. The following sections will provide
a brief summary of the information provided and requested,
along with some discussion.

Measurements of the initial and calibration data, as
well as the requested prediction data at each load level,
were taken using in situ testing with the Air Force/Pul-
seRay RAMS3 load frame at the Advanced Photon Source,
Argonne National Laboratory [34]. The measurements
include x-ray integrated micro-computed tomography (¢
CT) using direct beam projections, near-field HEDM/3D
x-ray diffraction (3DXRD) to quantify 3D grain structure
and sub-grain orientation, and far-field HEDM/3DXRD to
measure grain-resolved elastic strain tensors. A box-shaped
beam was used with vertical resolution of 28.5ym to meas-
ure 19 slices at the center of the test specimen, from which
the data for the challenge grains was extracted. After the test,
the specimen was destructively serial sectioned using the
LEROY system at the AFRL [35] to collect electron back-
scatter diffraction (EBSD), backscatter electron (BSE), and
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Cleaned Structure

Supplied Structure

Fig.1 Comparative diagram showing the supplied input structure
after imaging and final structure used for prediction

optical microscopy (OM) images. Serial sectioning was col-
lected with approximately 1 pm slice thickness, and similar
resolution for the in-plane step size. Gold fiducial markers
and uCT data were used to aid in data registration between
EBSD and HEDM. Further details of all aspects of the chal-
lenge experiments, including schematics and images of the
test setups, are provided on the challenge website [16] and
in the manuscript by the AFRL about these experiments in
this Topical Collection.

Data Provided

The AFRL provides a thorough description of the data avail-
able and methods used to collect said data on the challenge
website, [16], and the article in this Topical Collection cov-
ering the experiments by the AFRL. The following items
summarize the key elements needed for our models.

Material

The material is stress relieved (SR), hot isostatically pressed
(HIP’ed), and heat treated (HT) AM IN625 manufactured
using a commercial EOS M280' Laser Powder Bed Fusion
(LPBF) system from gas atomized powder. Details of these
post processing steps were withheld from participants. The
test artifact was built with the tensile direction along the
build direction and post-machined with wire electrical dis-
charge machining, with no further finishing steps.

! Certain commercial software, equipment, instruments, or materi-
als are identified in this paper to adequately specify the experimental
procedure. Such identification is not intended to imply recommenda-
tion or endorsement by the National Institute of Standards and Tech-
nology, nor is it intended to imply that the equipment or materials
identified are necessarily the best available for the purpose.

Characterization

Three main interconnected data streams were provided to
the challenge participants. First, mechanical test information
in the form of quasi-static (strain rate 10 s™!) stress—strain
plots both for the challenge artifact itself and for calibration
was provided. The in situ challenge artifact had a unique
geometric design to enable the measurements, where the
calibration specimen had a more standard geometry, fol-
lowing the ASTM ES8 standard. HEDM data (importantly,
residual elastic strain) were provided at the initial state
(before loading) for the challenge grains. Finally, serial sec-
tioning electron backscatter diffraction data, collected after
the specimen, were mechanically tested to collect HEDM
data under various loading conditions, were registered to
the HEDM dataset to define the geometry and orientation
of each grain within the test specimen. Finally, a three-
dimensional voxelized image of the microstructure was
provided to the participants, summarizing the combined
HEDM and EBSD data. The supplied input structure had
different phases including IN625, pores inside the material,
gold, platinum, and outer borders. A sample of the input
microstructure image is shown in Fig. 1. The image was
305 voxels X 351 voxels X 312 voxels voxels, where each
voxel had an edge length of 2 pm. There were 29662 features
in total, including each grain, the precipitates, pore, gold,
platinum, etc. Before analysis, the image was simplified to
only include the IN625 grains and porosity. The porosity
was modeled to be linear elastic material with extremely
low stiffness. After this processing, the remaining empty
air space (blue boundary region in Fig. 1a) was removed.
There were in total 28 challenge grains specified inside the
domain. These grains had a known, fixed value of initial
elastic strain state at state SO (see Fig. 2). However, there
was no strain specified for any of the other grains or phases
at SO.

Requested Predictions

Challenge participants were informed that HEDM meas-
urements of grain-averaged elastic strain tensors were
taken at seven different load states identified in the
stress—strain curve in Fig. 2:

1. Initial, unloaded, state,

2. 100 MPa,

3. 200 MPa,

4. loaded to 300 MPa followed by a 50 MPa unload (to
reduce the likelihood of creep during measurements)
before measurement,

5. deformed until 0.35% strain (which was roughly
360 MPa) followed by 50 MPa unloading before
measurement,
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Fig.2 Schematic diagram
showing the challenge problem.
The uniaxial tensile test experi-
ment is performed, and a small
section is observed under high-
energy X-ray diffraction. 28
challenge grains are specified in
a dataset cross-registered with
electron backscatter diffraction.
The initial strain of these grains
is provided. The elastic strain
tensors are to be predicted for
these grains at specified points
on the stress—strain curve (S1,
S2, S3, S4, S5, S6) during the
uniaxial tensile test

Loading
direction

Macroscopic\vlloading

6. deformed until 0.5% strain (roughly 385 MPa) and
unload by 50 MPa before measurement,

7. deformed until 1.0% strain (roughly 410 MPa) and
unload by 50 MPa before measurement.

Participants were asked to report the grain-averaged elastic
strain tensors for each of the challenge grains at each of
these load states. Note that the quantity used to specific the
state at which measurements and predictions were com-
pared switches from load to strain at point four. Load con-
trol was used during the two to three hours during which
measurements were taken at each load/strain level.

Some interpretation and judicious assumptions based
on the data provided were required:

e The hold periods during mechanical testing of the chal-
lenge artifact were not quantified—challenge participants
were told only that these periods lasted between 2 h and
3 h, and were held in load control, after a 50 MPa load
reduction for holds at 300 MPa and higher. Thus, a “best
guess” of the time—displacement curve to be applied as
boundary values was required.

e Only the initial strain in the challenge grains, not all
grains, was provided. Thus, we assumed that all other
grains had zero initial strain; other approximation are
possible. This approximation is the simplest possible;
given the lack of data, we opted to avoid other unsub-
stantiated assumptions. However, the method followed
in the article is general and any value of initial strain can
be applied to get the solution.

e The grain structure provided was for the final state, and
the assumption was that the geometry and crystallog-
raphy of the initial grain structure was the same. This
is an approximation, because some plastic strain (about

@ Springer
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7.8% overall engineering strain was not recovered upon
unloading) was induced.

e The single-crystal properties provided were from the
literature and did not necessarily match precisely the
material conditions of the test artifact. While calibra-
tion data was provided, it was on macroscale properties,
rather than individual grain properties. Thus, grain-scale
methods require material calibration for both physical
and empirical model parameters, as we will discuss fur-
ther in the following sections.

e The properties of some phases (e.g., gold and platinum
fiducial markers, precipitates) were not given, although
the materials appear on/in the specimen. We assumed
these phases had no impact upon the mechanical response
and omitted them from our analysis. However, porosity
was considered in our analysis.

e Using grain-averaged properties, such as orientation
and measured strains, introduces some uncertainties, as
there are likely variances within the grain. However, we
assumed these variations are small, thus were possible to
neglect.

These challenges are mostly related to unavoidable measure-
ment realities or are otherwise insolvable. However, identi-
fying inherited assumptions and sources of uncertainty will
help us construct a model robust to such uncertainties, and
may provide insight into the differences between model and
experimental results.

Calibration Data
In order to calibrate the material model, the AFRL provided

us with experimental microstructure characterization and
mechanical testing data [16]. For calibration, the AFRL
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experiments used a tensile bar prepared using ASTM ES as
guidance [36]. Three post-processing steps were applied:
stress relief, hot isostatic pressing, and heat treatment
(SR+HIP+HT); details were not provided, and although not
explicitly stated since both calibration and test specimens were
described as SR+HIP+HT, we assume the post-processing for
both was identical. The build direction was aligned with the
tensile direction, and testing was conducted in a room tem-
perature (75° F (23.9° C)) and laboratory air environment. The
microstructure characterization information provided for the
calibration specimen includes EBSD scans and back-scattered
electron images from the side and top faces, and chemical anal-
ysis of powder. For this work, we only used the mechanical
testing and EBSD characterization data.

Material Modeling Methods

The material model used in this work is specified in detail in
[19]. For this problem, we have an initial grain average elas-
tic strain specified. The following description is thus defined
in terms of the initial deformation gradient present in the
simulation.

The work uses a general elasto-viscoplastic material model.
If the local deformation gradient is F, it can be multiplicatively
decomposed into individual contributions,

F — Fe . Fin . Finit (1)

Here, F¢ is elastic part of the deformation gradient, F™" is
the inelastic part of the deformation gradient, and FI" is
the initial part of the deformation gradient, i.e., residual
deformations derived from measured elastic strains in the
challenge grains.

Before applying the material model, we need to find the
deformation gradient responsible for mechanical deformation
Fmech by,

FmCCh — Fe . Fin =F. Finit_l (2)
The deformation gradient can be related to the elastic mate-
rial model using

e e l e e
§°=CF B = SO [(F Y. F —12], 3)

where E€ is the elastic Green—Lagrange strain, S¢ is the sec-
ond Piola—Kirchhoff stress, CSE is the fourth-order elastic
stiffness tensor, and I, is the second-order identity tensor. In
this work, the entire inelastic part is assumed to come from
plastic deformation, i.e., Fin = FP. The inelastic deforma-
tion gradient can be calculated from the plastic part of the
material model to relate the plastic velocity gradient, L/ =
F? - (F*)~! to plastic shear rate 7* in slip system « by,

Ngip

LY =3y (sf;” ® né”). “)
a=1

Here, sg’) and ng’) are the unit vectors which define the slip

direction and slip plane normal for slip system a in the
undeformed configuration, N, is the number of active slip
systems (active slip systems for FCC system are shown in
Table 3), and ® is the dyadic product. The resolved shear
stress, 7(¥ on the slip plane, is related to plastic shear rate

7@, The resolved shear stress is given by,
W =¢

F (s @n®) )

where the o is the Cauchy stress, s is the slip direction, and
n is the slip normal, defined by:

1
o= [Fe -8 (F)| 6)
s@ =F° - s\ )
n@ =n§ . (F)! ®)

In these equations, J, is the determinant of F ¢. In this work,
the hardening term 7(® evolves based on a power law, given
by

@ _ g@)

(@) ()
%9 %0

; €))

where 7, is a reference shear rate and m is the exponent
related to material strain rate sensitivity. The deformation
resistance shear stress 7, and back stress a'® are expressed as

Naip Naip

- (@) - (B) (@) - (B)

w0 =HY [P -re” Y i, (10)
p=1 p=1

a = hyy” = rali?), (an

where f is a slip system, H and h are direct hardening coef-
ficients, R and r are the dynamic recovery constants; latent
and cross-hardening contributions were assumed to be iden-
tical. The FFT algorithm followed in this work is based on
[37] and [38]. The implementation is fully parallel using the
FFTW library [39] and can handle a simulation domain as
large as provided in the challenge.
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Fig.3 Schematic diagram
showing the steps of the calibra-
tion method. CPFFT means
crystal plasticity fast Fourier

transformation
Twins X-Y Grain | X-YAspect | X-ZGrain | X-ZAspect
Merged | Size [ym] | Ratio[um] | Size fum] | Ratio [um]
M, o W, 0 u, 0 "o
No 171,159 0.49,0.20 15.6,14.1 0.49,0.19
Yes 225,291 0.58,0.18 184,172 0.50,0.19
Microstructure statistics 7
% =
-~ S ;E
Y X -
Calibration experimental data
Calibration Method
Genetic Algorithm

In order to calibrate the crystal plasticity material model, dur-
ing the challenge the flow-diagram shown in Fig. 3 was fol-
lowed. The EBSD statistics supplied by the AFRL were used
in the open source software package DREAM.3D [40] to
create a synthetic representative volume element (RVE). The
RVE had dimensions of 10 voxels X 10 voxels X 10 voxels,
and each voxel represented 1 grain. Five parameters from
the crystal plasticity crystal plasticity formulation given
in " Material Modeling Methods" section were calibrated
using the genetic algorithm: the deformation resistance
shear stress 7, (controlling the yield point), direct harden-
ing coefficients (H, &), and dynamic recovery constants (R
and r) (controlling the plastic response). By varying these
parameters, mechanical response of the RVE was computed
and compared with the experimental data provided by the
AFRL. The optimization of the parameters was done by the
genetic algorithm in MATLAB [12]. When a satisfactory
resemblance is achieved, the parameters are considered to
be final. Since the genetic algorithm needs a large number of
iterations, the five parameters were calibrated sequentially.
First 7,, H, and R were calibrated. In the second stage, # and
r were calibrated. The result of the calibration is shown in
Fig. 4. For the competition stage, the calibrated parameters
from the genetic algorithm were used. Later, in the post-
competition stage, a PGD-based calibration method was
adopted, which will be explained in the next section "Proper
Generalized Decomposition-Based Material Parameter Iden-
tification". In both cases, elastic parameters are taken from
the supplementary information provided with the AFRL
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> DREAM3D

Synthetic RVE

. CPFFT
Modify
parameters l

: - Mechanical
‘ Response

Experiment

challenge 4 statement, collected from [41]. Final calibra-
tion values for each method are given in Table 1.

Proper Generalized Decomposition-Based Material
Parameter Identification

We propose using a PGD-based surrogate modeling
approach [10, 11] for calibration or material model param-
eter identification as an enhancement over the previously
described genetic algorithm.

600 T T T T
Experiment
Computation
500 1
400 1
<
=¥
2 300 1
2}
172)
g
“ 200 1
100 1
0 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05

Strain

Fig.4 Calibration outcome for optimization using a genetic algorithm

The PGD method used in our work is the higher-order
PGD (HOPGD), which is designed for non-intrusive data
learning and constructing reduced order surrogate models.
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Table 1 Summary of calibrated parameters from calibration cases.
All the parameters are specified for convenience of the reproduction
of the readers. Only 7, H, h, R, and r are calibrated. Other param-
eters were selected from literature

Material property Genetic algorithm values PGD values
Cli1r* 245587 MPa 245587 MPa
C1122* 158173 MPa 158173 MPa
C2323* 118901 MPa 118901 MPa
70 0.00242 0.00242

m 58.8 58.8

7 131.5 MPa 143.9 MPa

a 1.4 1.4

H 0.0 0.0

h 0.0 0.43

R 2892.93 2500

r 13.02 30

* From [41]

The basic idea behind PGD approaches is separation of vari-
ables. For a d-dimensional function f(y, 5, ..., 4,), which
contains the quantity of interest as a function of parameters
Uil;=14 € D;, the separation of variables results in the fol-
lowing form

fuys tos s ) = [ (1, oy eens Hy)

n

= ) FTu)Fy (i) -+ Fly ()

m=1

12)

where f" is an approximation of f, n is the rank of approxi-
mation, m denotes the m™ mode. Note that the superscripts
n, m are counting indices, not exponentiation. The n-rank
approximation f” is given by the finite sum of products of
the separated functions: F'"|,_, 4, which are a priori unknown
and should be obtained either with a pre-computed database
[10, 11, 32, 42] or by directly resorting to physical models
[29-31, 43]. Furthermore, each function F’ l’" that represents a
variation of the original function fin the parameter direction
u; is also called a mode function.

The HOPGD relies on the database and falls into the
family of data-driven approaches. The database can be
either from simulations or experiments. Once the data-
base is obtained, the HOPGD can learn with data to com-
pute the mode functions F"|._, ;,, which can reproduce
(or extrapolate) the full parametric function f. Therefore,
HOPGD can be used to construct a surrogate model that
relates the input parameters and output quantity of inter-
est. The detailed implementation of the method is pre-
sented in [10] and summarized in Appendix A. Examples
of codes can be found on the GitHub project (https://yelu-
git.github.io/hopgd/).

In this work, the parametric stress—strain curve is
required for materials identification. More specifically,
we want a surrogate model relating the parameters and
the stress—strain curve. The PGD surrogate model can be
written as

6P = 66, pys e py) = Z Fl(eF(p) - Fl(py) (13)
m=1

where p; are the parameters we want to identify for the crys-
tal plasticity model. Once this surrogate model is obtained,
we can easily vary the values of those p; and find the best
set for a given experimental measure, instead of repetitively
running the expensive FFT simulation.

Now, assuming the parameters p = [p,, ..., p,| belong to
a predefined domain D = D, X --- X D,;, we want to identify
the best p* such that

p* = arg min J
peD

(O_PGD’ o.p)

(14
where J denotes the objective function which measures the
distance between the model output 6P and the experimen-
tal measurement ¢°. Now, we can repetitively perform the
following steps to find the best parameters:

1. Sample the parameter space D with the adaptive strat-
egy, as described in Appendix B.

2. Compute the stress—strain curve data with the crystal
plasticity model for the selected data points.

3. Use HOPGD and data samples to compute the mode
functions in Eq. (13) and obtain the surrogate model
&PGD.

4. Use the surrogate model to optimize the parameters to

match the experimental data. Solve Eq. (14).

We remark here that the surrogate model used in the above
procedure is extremely cheap to evaluate, since the mode
functions F"(p;) are known with data and we only need to
perform a 1D interpolation to get the output o for a given
point p. The same procedure has been applied to a weld-
ing problem and shown to have very good performance in
terms of efficiency [11]. In what follows, PGD refers to
HOPGD unless otherwise stated.

In the post-competition stage, we explored several
ideas to improve our predictions. In one case, we took
the calibration data provided by the AFRL and used PGD
to calibrate the material model. The results are shown in
Fig. 5. The model and experiment appear to agree well.
However, based on discussion at the AFRL Workshop fol-
low the competition, we also tried calibrating the material
model directly to the experimental data used to assess the
competitors and provided as an overall stress—strain curve
by AFRL. It seemed more logical as the challenge asked
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Fig.5 Calibration outcome for optimization using the PGD method
with calibration data from AFRL

to predict the local values based on this exact experiment.
The result of this second calibration is shown in Fig. 6.
The load drops required for in situ data collection in the
challenge specimen were manually removed to enable the

calibration. Here again, we see very good comparison
between the experiment and simulation. The most signifi-
cant improvement, thus, is the computational time. For
both the genetic algorithm and PGD-based calibration,
36 2.3 GHz Xeon Gold 6140 processors were used with
192 GB of memory. For the genetic algorithm, the cali-
bration took 3.6 h. Compared to that, the first calibration
(with calibration data) with PGD took 0.7 h. Final calibra-
tion with the PGD algorithm with the final experimental
results took around 0.8 h, representing a speed up factor
of almost 4.2.

Discussion of Results

Comparison of Absolute Errors Between Elastic
and Total Strain

The crystal plasticity method computes total strain (elastic
plus plastic), from which elastic strains can be extracted.
Here, we will report both elastic and total strain predic-
tions; total strains are different from both the elastic pre-
dictions and elastic measurements, indicating the likeli-
hood that plastic components of strain are substantial.
Importantly, we must be cognizant of the differences
when performing model validation. A comparison of the
results between the PGD-calibration method and genetic

Fig.6 Calibration outcome for 500 . . . .
optimization using PGD with
exact experimental data from Experiment
the AFRL challenge specimen, C :
omputation
with load drops induced by data P
collection manually removed for 400

calibration

< 300
oW
=
A
N
£ 200
N

100

O L L L L
0 0.002 0.004 0.006 0.008 0.01
Strain
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Fig.7 Average absolute error measured as the absolute error between
predicted and measured strain averaged across the 28 challenge
grains, in E,, for PGD, elastic, and total strain reported
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Fig.8 Comparison of absolute error in Eyy for PGD, elastic, and total
strain reported

algorithm-based method is presented for elastic strain pre-
dictions. Some key takeaways highlighting the capability
of the solution method are also mentioned.

A comparison of average absolute error in experimen-
tally measured elastic strains along the normal directions
(X, Y, and Z axes) E,,, Eyy, E., for total and elastic strain
predictions is shown in Figs. 7, 8 and 9. The absolute
error is defined as the absolute value of the difference
between the experimental data provided by AFRL and our
predicted strain. There were in total 28 challenge grains, so
for each prediction point, the average absolute error shown

4 x10°
351 I PGD BN
: I Eastic strain
[ ITotal strain
S 3
L
25+
=}
ke
8 2
<
S
8 151
o
>
< 17
05 H 1
L mmm mmm mmm mmll EEC W
S1 S2 S3 S4 S5 S6

Prediction points: S1-3 (elastic), S4-6 (plastic)

Fig.9 Comparison of absolute error in E_, for PGD, elastic, and total
strain reported
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: _
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I
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<
051
0 Ll
S1 S2 S3 S4 S5 S6

Prediction points: S1-3 (elastic), S4-6 (plastic)

Fig. 10 Comparison of absolute error in E,, for PGD, elastic, and
total strain reported

is the absolute error averaged over the 28 grains. When
the total strain is reported, the results are far off from the
experimental data, especially in the plastic regime of the
stress—strain curve. This is expected, because the experi-
mental results only measure the elastic component of the
strain in both the elastic and plastic zones. For the elastic
zone, both predictions give a more or less similar result.
This is expected as the prediction of grain average elastic
strain depends on the elastic constant used in the computa-
tion. In both total and elastic strain predictions, the elastic
constants are the same. Another important observation is
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Fig. 11 Comparison of absolute error in EyZ for PGD, elastic, and
total strain reported
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Fig. 12 Comparison of absolute error in E,, for PGD, elastic, and
total strain reported

that the prediction performance is better for the E,, com-
ponent compared to the other two normal directions. This
is the loading direction, and strains in this direction are
much larger in magnitude than for the other directions. The

shear strain predictions are presented in Figs. 10, 11 and
12. Interestingly, the difference of absolute errors between
the elastic strain and total strain cases for shear compo-
nents is much less compared to their normal counterparts.
It appears that the shear strain components are closer to
experimental value when the total strain was reported.
The reasoning would be for shear components of strain,
the amount of plastic strain is negligible according to our
calculation.

The challenge requested only grain-averaged strain val-
ues. However, in this prediction framework, we also pre-
dict the local strain distribution inside each grain. Table 2
shows the prediction of grain average strain component
of E_, for challenge grain 12602. A demonstration of the
local deformation field is presented in Figs. 13 and 14. The
method uses the voxel-wise discretization of the domain and
treats each voxel as a material point. The solution is given
at each such material point. In order to sufficiently resolve
the material, many material points within each grain are
required. Thus, the method inherently captures both stress
and strain locally within each grain. Specifically, for each
applied displacement step, boundary conditions in terms
of macroscopic deformation gradients are applied homoge-
neously throughout the domain and an iterative scheme is
used to ensure compatibility within the domain, using the
two-stage decomposition of plastic deformation common
to many crystal plasticity routines. Further details of the
method can be found in [37, 44]. In Fig. 13, the distribution
of deformation gradient along the Y-axis is shown in the
reference configuration at (a) S1 and (b) S6. Thus, with this
method it is possible to identify sub-grain level deforma-
tion due to the applied loading conditions. Such capability
is likely important for modeling damage because localized
deformation drives damage evolution, such as for fatigue
failure. Figure 14 shows the local changes in deformation
gradient within challenge grain 12602.

Comparison of PGD-Based Method and Genetic
Algorithm

The PGD-based calibration method is applied to calibrate
the five parameters simultaneously. The final values of
these parameters are compared with the genetic algorithm,
as shown in Table 2. In our work, we observed similar final
solutions between PGD and genetic algorithm. This is
confirmed by Figs. 14 and 5. However, in a general sense,

Table2 Summary of reported

. Prediction state S1 S2 S3 S4 S5 S6
values for strain component E,,
in challenge grain 12602 at the Total strain 0.000192  0.000225  0.000269  0.000791  0.001662  0.004119
SIX reporting points Elastic strain 0.000192  0.000225  0.000281  0.000411  0.000274  0.000262
PGD calibration 0.000192 0.000225 0.000281 0.000421 0.000314 0.000313
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Fig. 13 Representation of the
predicted local Y'Y-component
of deformation gradient (in
the loading direction) for the
challenge grains at a S1, and
b S6. Note that the color scale
bars are different, because the
deformation gradients are sub-
stantially larger in S6

Fig. 14 Distribution of the YY
component of the deformation
gradient in challenge grain
12602 at a strain point 1, and
b strain point 6. The deformed
configuration is shown with

a factor of ten increase in the
deformation field. Note that the
color scales on (a) and (b) are
different, so that the deforma-
tions can be seen within the
grains more clearly

since the genetic algorithm usually converges to some local
minimums, the final solution could be less optimal for the
genetic algorithm than the PGD method, i.e., confidence in
obtaining a best-case optimization is lower for the genetic
algorithm. The genetic algorithm may also be sensitive to
the initial settings, e.g., initial guesses, initially prescribed
parameter space.

In the post-competition stage, the results were repro-
duced using new calibration values. The absolute average
error compared to the experimental data is shown in Figs. 6,
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1.00978
1.00976
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(b)

7, 8,9, 10, and 11. Just like in the previous section, the
presentation of results is divided into elastic and plastic
zones for all the grains identified at different experimental
points. In all the figures, one can observe that the differ-
ence of error between the PGD-calibrated prediction and
genetic algorithm is small. Hence, it is confirmed that the
PGD-calibrated material model can achieve the same level
of accuracy as the genetic algorithm calibrated model, at
least in this case. This has significant implications for the
computational aspects of calibration for large-scale problems
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Fig. 15 Adaptive sampling L
strategy for data generation.
Black: sampling pints (data),
Red: current optimum

L 4
(a) Grid at level 1

using crystal plasticity. Using this fast and advanced mate-
rial identification technique, calibration can be more detailed
and more demanding material models with broader param-
eter sets can also be used to solve practical problems.

Conclusions

The PGD-based method of calibration is a promising alterna-
tive to the more conventional genetic optimization-based meth-
ods for calibration of complex material models. The article
shows the evidence of the efficacy of the method by showing
the prediction for both genetic optimization method and PGD-
based method. The FFT-based method used in this article is
a viable alternative to using finite element-based methods, in
this case. In addition, although the challenge asked for predic-
tion of local grain-average elastic strain tensor, the method can
also predict local strain or stress fields. In future, a combined
data-driven material parameter identification method with
mechanistic data-driven reduced order methods may be devel-
oped, so that both prediction and calibration become faster and
thus more useful for design of materials.

Appendix A: Data-Driven PGD-Based
Surrogate Modeling

For computational purposes, the PGD approximation [10]
can also be written in the following incremental form by
considering that the f"~!is computed previously

S g s oo ) = 71+ FLu)FS () = Fli(ug) — (15)
or for notation simplification,
fn(ﬂl s Moy eees ﬂd) =fn_l +F, (ﬂl)Fz(Mz) Fd(ﬂd) (16)

Assuming a database of f'is known for some selected sam-
pling points in the parameter space D = D, X --- X D, the
HOPGD secks an L? projection of the data as follows [10]:

@ Springer

(b) Grid at level 2 (c) Grid at level 3

Find /" € V, c L*(D) s.t.

N )
£ = argmin( 3 | wf™ = wf 2 )
f”*EVn 2 (D)

a7

where w is a sampling index equal to 1 or 0, depending on
the sampling strategy in the parameter space D. This means
the approximated function f” minimizes only the error on
selected sampling points.

Considering the incremental form of f” (16), the problem
(17) can be converted to a local minimization problem as
below.

1 n—1
(Fy, . 5 I wf

L Fy) = arg min

FreLX(D)).....F5elX(D,)
(18)

d
2
+ WHFI* —wf )
i=1

which can be equivalently written in an integral form with
(Fy, ..., F;) as unknown variables to solve

d
/ w [ Fof duy ... du,
D =1

19)

- /D wf = wf"OF dpy .. dug
where the test function §f = & H?:l F,=6FF,.F;+ -+
F\F,...6F,. Thus, for a target function f and having estimated
the n — 1 rank of PGD approximation f"~!, the next step
consists of computing the new separated modes F|, F,, ..., F,
at rank n using the above equation.

An alternating fixed point algorithm can be used to solve
this problem for the mode functions. The rank n can start
from 1 and incrementally increases to a finite number which
is determined by the convergence of the approximation, i.e.,
[lwf — wf™|| < g|lwf||. More details can be found in [10].
Sparse sampling can overcome the exponentially increasing
complexity of the right-hand side integral in equation (19).
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Appendix B: Sampling Strategy
for PGD-Based Materials Identification

The sampling strategy adopted in our work was proposed by
[11]. We summarize here the main idea of the methodology.
Assuming a parameter space D (usually large enough) has
been chosen, we aim at limiting the necessary number of
data points in the parameter identification procedure. Hence,
the idea consists in incrementally enriching the database and
using the optimization results to guide the sampling. This
results in an adaptive sparse grid in D and is suitable even
for a high dimensional space. The main procedure is shown
as below and in Fig. 15.

e Start from the predefined space D, sample the central
axes of the space by adding two points at the extremi-
ties of each axis and one point at the center. In a two-
dimensional space, this axis sampling results in a sparse
grid of five points, as shown in Fig. 15a. Analogically, for
an n-dimensional space, this number of points is 2n + 1,
which scales only linearly with n. This is advantageous
for high dimensionality cases.

e With the first-level sampling, we can construct the
first PGD surrogate model and perform a first round of

e Since the quality of the PGD model is based on data (i.e.,
grid), we need to further sample the space D to check
the convergence. The idea is to go into a sub-level of the
space, where the global optimum is located, then perform
the axis sampling in that subspace, see, e.g., Fig. 15b.
The global optimum will be changed with the updated
PGD model or stay close to the previous one. Depending
on whether convergence is reached, the space can be fur-
ther sampled in the same way or considered as the final
one. In Fig. 15, convergence is clearly reached at level 3.

Remark: the optimization at each level has to be done with

initial guesses randomly chosen in the global space D, even
though the data enrichment is locally performed.

Appendix C: FCC slip systems

See Table 3.

Table 3 Miller indices of active the slip directions and planes for an
FCC crystal lattice

optimization by following the 4 steps described in the ~ Slip slip direc-  slip plane  Slip slip direc-  slip plane
"Proper Generalized Decomposition-Based Material ~ SYStem ~ tion system - tion
. . . . o number number
Parameter Identification" section. This optimization can
be done with a gradient-based algorithm (e.g., SQP) with 1 [To1] (111) 7 [101] a1
a multi-start strategy [11] for finding the global optimum. 2 [110] (111) 8 [110] 111
Here we can simply compare the final objective function 3 [011] (111) 9 [0i1 (111
J of different local minimums and chose the best one as 4 [011] ain 10 [011] (111
the global optimum. An example of this is indicated by 5 [110] 11y 11 [110] atn
ared point in Fig. 15a. 6 [101] daim 12 [101] (111)
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