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Abstract. A common task in inverse problems and imaging is finding a so-

lution that is sparse, in the sense that most of its components vanish. In
the framework of compressed sensing, general results guaranteeing exact re-

covery have been proven. In practice, sparse solutions are often computed
combining `1-penalized least squares optimization with an appropriate numer-

ical scheme to accomplish the task. A computationally efficient alternative for

finding sparse solutions to linear inverse problems is provided by Bayesian hi-
erarchical models, in which the sparsity is encoded by defining a conditionally

Gaussian prior model with the prior parameter obeying a generalized gamma

distribution. An iterative alternating sequential (IAS) algorithm has been
demonstrated to lead to a computationally efficient scheme, and combined with

Krylov subspace iterations with an early termination condition, the approach

is particularly well suited for large scale problems. Here the Bayesian approach
to sparsity is extended to problems whose solution allows a sparse coding in

an overcomplete system such as composite frames. It is shown that among

the multiple possible representations of the unknown, the IAS algorithm, and
in particular, a hybrid version of it, is effectively identifying the most sparse

solution. Computed examples show that the method is particularly well suited
not only for traditional imaging applications but also for dictionary learning

problems in the framework of machine learning.

1. Introduction. Sparsity promoting methods and algorithms for inverse prob-
lems and imaging applications have been extensively studied in the past decades,
and they continue to be a very active field of research. The interest in compressed
sensing has motivated a significant part of the works on the topic. The starting
point of many sparse reconstruction problems is a dictionary, intended as a collec-
tion of elements in the ambient space referred to as atoms [17], used to represent
the unknown quantity of interest. The dictionary may be selected according to
some a priori information available on the problem of interest or, alternatively, its
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formation can be data-driven - see, e.g., [18, 3, 14]. Recently, approaches aimed at
learning the dictionary while jointly recovering the signal have also been developed
[13]. Typically, the cardinality of the dictionary is significantly larger than the di-
mension of the ambient space. When the atoms in the dictionary do not form a
basis for the ambient space, the dictionary is called redundant or overcomplete. The
use of redundant dictionaries has proved to be a useful strategy in terms of artifact
reduction, especially in the framework of signal denoising problems [20, 19].

Let x ∈ Rn be an unknown signal, and let W = {wi}Ni=1 be a dictionary with
atoms wi ∈ Rn. We arrange the atoms as columns of the dictionary matrix, W ∈
Rn×N , with n � N , and refer to this matrix as the dictionary. In a synthesis
perspective, a sparse reconstruction problem is the task of recovering a sparse vector
α ∈ RN , with most of its components vanishing, that represents the original signal
in terms of W, x = Wα, starting from a corrupted and possibly poorly sampled
indirect observation b ∈ Rm of x, with m ≤ n. Assuming that the observation is
linear in x and the noise is additive, the sparse dictionary representation can be
formulated as an optimization problem of the form

(1) minimize ‖α‖0 such that b = Ax+ ε, with x = Wα,

where ‖α‖0 = card(supp(α)), A ∈ Rm×n is the forward model operator, and ε ∈ Rm
is an additive noise vector. Addressing the minimization problem (1) directly is
a challenge due to its NP-hardness, thus explaining the need for alternative ap-
proaches. A strategy which has been widely explored and goes under the name of
basis pursuit replaces the `0-(semi)norm with its `1 convex relaxation [15].

When the signal itself is known to be compressible, i.e., card ({xi | |xi| < ε})� n
with ε > 0 arbitrarily small, and the forward model operator A satisfies the restricted
isometry property (RIP) condition, an optimal bound for the error ‖x− x̂‖2, with x̂
denoting the recovered signal, has been derived. Moreover, if x is sufficiently sparse,
the signal can be recovered exactly [11]. When the signal itself is not sparse, but
it allows a sparse or compressible representation in a given dictionary, the exact
recovery results still hold, provided that A satisfies a restricted isometry property
adapted to a dictionary (D-RIP) condition [12]. Given the theoretical motivation, a
significant amount of research is devoted to identifying classes of operators to which
these results could be applied.

Besides the convex approaches, `p-norms with p < 1 have also been considered in
place of the `0-(semi)norm in problem (1), as they are known to promote sparsity
more strongly than the case p = 1. Nonetheless, the presence of local minima is a
clear limitation to the reliability of non-convex strategies.

The sparse reconstruction problem for linear inverse problems allows a natural
formulation in the Bayesian computational framework, with the notion of sparsity
promoting priors. In a number of previous works [10, 9, 8], the recovery of a sparse
signal x - or of a signal admitting a sparse representation in a given basis - has
been addressed by modeling its entries in a hierarchical Bayesian framework as con-
ditionally Gaussian random variables with unknown variances, with a generalized
gamma hyperprior distribution. The sparsity promotion and the convexity prop-
erties of the corresponding class of hypermodels have been studied in [10, 9]. The
derived results, and in particular the considerations on the convexity properties of
the resulting maximum a posteriori estimation problems, motivated the introduc-
tion of a hybrid hypermodel combining the strong sparsity promotion that typically
characterizes non-convex settings with the convexity guarantees [8].
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In this article, the hierarchical Bayesian framework outlined in the previous
works, and in particular the use of the hybrid algorithm of [8], is extended to
address sparse recovery problems in presence of redundant dictionaries. We con-
sider a version of the iterated alternating sequential (IAS) algorithm that combines
ideas from the Bayesian inference and iterative Krylov subspace methods, suitable
for large scale problems, and is therefore particularly attractive for problems with
large dictionaries. Numerical examples demonstrate the computational efficiency of
the approach, and most importantly, show that for composite frame dictionaries,
where each subdictionary would provide a sufficient representation of the signal, the
method is capable of identifying an optimally sparse representation.

2. Hierarchical Bayesian formulation. Consider the linear inverse problem

b = Ax+ ε , ε ∼ N (0,Σ) such that x = Wα ,

where A ∈ Rm×n, with m ≤ n, is the known forward model operator, x ∈ Rn is the
unknown of interest and Σ ∈ Rm×m is the symmetric positive definite covariance
matrix of the additive Gaussian noise. In addition, we assume that x admits a
representation in the redundant dictionary W ∈ Rn×N , with n � N , where the
unknown vector α ∈ RN is sparse, i.e. ‖α‖0 � N , either because x can be naturally
described by few atoms in the dictionary or because x needs to be compressed.

In a number of previous contributions [10, 9, 8], the a priori sparsity belief on
the unknown has been exploited by modeling its entries as independent random
variables following a conditionally Gaussian distribution, i.e.,

αj | θj ∼ N (0, θj) , 1 ≤ j ≤ N ,

or, in an equivalent compact form,

α | θ ∼ N (0,Dθ) , Dθ = diag (θ1, . . . , θN ) ∈ RN×N .

The conditional Gaussian prior on α given the vector θ takes the form

πα|θ(α | θ)∝
1∏N

j=1

√
θj

exp

(
−1

2
‖D−1/2θ α‖2

)

= exp

(
−1

2
‖D−1/2θ α‖2 − 1

2

N∑
j=1

log θj

)
.

According to the Bayesian paradigm, the unknown vector of variances θ is also
modeled as a random variable. The a priori beliefs about θ are encoded in the
hyperprior πθ(θ), and the joint prior on the coupled vector of unknowns (α, θ)
reads

π(α,θ)(α, θ) = πα|θ(α | θ)πθ(θ) .(2)

In [9], the authors propose to model the unknown variances θj as mutually inde-
pendent random variables following a generalized gamma distribution,

(3) πθ(θ) = πθ(θ | r, β, ϑ) =
|r|n

Γ(β)n

N∏
j=1

1

ϑj

(
θj
ϑj

)rβ−1
exp

(
−
(
θj
ϑj

)r )
,

where r ∈ R \ {0}, β > 0, ϑj > 0. This choice is motivated by the observation that
generalized gamma distributions tend to favor values which are close to the expected
value while also allowing for few outliers very far from the mean. Presumably, the
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outlier variances give rise to the few non-zero values of α, or values above a tiny
threshold.

The information about the observation process is encoded in the likelihood dis-
tribution, which in view of the additive Gaussian noise model, takes the form

πb|α(b | α) ∝ exp

(
−1

2
‖S(AWα− b)‖22

)
,

where S is the Cholesky factor of the precision matrix Σ−1, i.e. Σ−1 = STS. If the
matrix Σ and thereby S, are known, without loss of generality we can assume the
noise to be white, i.e. Σ = I, because it can be whitened by a linear transform on
A and b, namely

A −→ SA , b −→ Sb .

Under the white normal noise assumption, the likelihood distribution is of the form

πb|α(b | α) ∝ exp

(
−1

2
‖AWα− b‖22

)
.

The conditional prior and the hyperprior are coupled to the posterior distribution
via Bayes’ formula, yielding the following expression for the posterior distribution

π(α,θ)|b(α, θ | b) ∝ πb|α(b | α)π(α,θ)(α | θ)πθ(θ).

In the Bayesian framework, the posterior distribution is the complete solution to
the inverse problem, that can be used to produce representative estimates of the
unknown of interest, and quantify the uncertainty. Here, we chose to summarize
the posterior with the Maximum A Posteriori (MAP) estimate,

(α∗, θ∗) ∈ arg max
α,θ

{
π(α,θ)|b(α, θ | b)

}
or equivalently, by taking the negative logarithm of the density and ignoring the
additive constants,

(4) (α∗, θ∗) ∈ arg min
α,θ
{F(α, θ)} ,

where

F(α, θ) = F(α, θ | r, ϑ, β)

=
1

2
‖b− AWα‖2 +

1

2

N∑
j=1

α2
j

θj
− η

N∑
j=1

log
θj
ϑj

+
N∑
j=1

(
θj
ϑj

)r
︸ ︷︷ ︸

P(α,θ|r,β,ϑ)

, η =

(
rβ − 3

2

)
.(5)

Echoing the terminology of classical regularization schemes, we refer to P(α, θ |
r, β, ϑ) as the penalty term.

3. The IAS algorithm. The search for the minimizer of the MAP objective func-
tion in (5) is carried out with the global hybrid scheme introduced in [8], based on
the iterative alternating sequential (IAS) algorithm described below. Details of the
hybrid scheme that ensues are reviewed in Section 5.

Given a suitable initialization of the variances θ0, at each iteration step the
IAS algorithm updates the iterates αt, θt by solving the minimization problem in
alternating directions, that is

αt+1 ∈ arg min
α

{
F(α, θt)

}
, θt+1 ∈ arg min

θ

{
F(αt+1, θ)

}
.
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Because of the particular form of the objective function, both variables can be
updated efficiently as follows.
Update of α. The α-update reduces to solving a quadratic minimization problem,
i.e.,

αt+1 ∈ arg min
α

{
‖b− AWα‖22 + ‖D−1/2θ α‖2

}
, θ = θt,

or, equivalently, finding the solution in the least squares sense of the linear system

(6)

[
AW

D
−1/2
θ

]
α =

[
b
0

]
.

After performing the change of variable

D
−1/2
θ α = γ ,

we can write (6) as [
AWD

1/2
θ

I

]
γ =

[
b
0

]
,

where I is an n × n unit matrix. The solution of this least squares problem is also
Tikhonov regularized solution of

AWD
1/2
θ γ = b, α = D

1/2
θ γ ,

with regularization parameter equal to one. An alternative to Tikhonov regular-
ization yielding a similar solution is to solve the underlying linear system with an
iterative solver equipped with an early stopping criterion. The stopping condition is
usually based on a variant of Morozov discrepancy principle, whereas the iterations
terminate as soon as the discrepancy is of the order of the observation noise. In the
statistical framework, under the Gaussian noise assumption, the noise level can be
expressed in terms of the standard deviation of the noise. In our case, where we
assume m-dimensional white noise, this quantity is equal to

√
m. Following [7, 9],

we solve the linear system using the Conjugate Gradient for Least Squares (CGLS)
algorithm with the early stopping at noise level

√
m; see [7] for more details.

Update of θ. Due to the mutual independence of the entries of θ, each variance θj
can be updated separately by imposing the component-wise first order optimality
condition on (5). More specifically, θt+1

j is the solution of the non-linear equation

(7)
∂F
∂θj

= −1

2

α2
j

θ2j
−
(
rβ − 3

2

)
1

θj
+ r

θr−1j

ϑrj
= 0 , α = αt+1 .

For some values of r, e.g., r = ±1, (7) admits an analytic solution. However, in
general we need to solve it numerically. It was shown in [9] that after the changes
of variables θj = ϑjξj , αj =

√
ϑjzj , we may write ξj = ϕ(|zj |), and via implicit

differentiation, the function ϕ satisfies the initial value problem

(8) ϕ′(z) =
2zϕ(z)

2r2ϕ(z)r+1 + z2
, ϕ(0) =

(η
r

)1/r
.

Therefore the updated value of θj can be computed by a numerical time integrator.
Since the same type of differential equation is satisfied by all components, an efficient
way to update θ is to sort the current values zj in an ascending order, and integrate
sequentially over the gaps between the values by a suitable time integrator.

We point out that unlike in the formally similar alternating direction method for
multipliers (ADMM) algorithm [2], that is often used to solve regularized inverse
problems with sparsity promoting priors, the IAS algorithm does not require the
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introduction of an artificial decoupling term of the fidelity and penalty terms, as
the partial decoupling in IAS is automatic and exact.

From the point of view of statistical analysis, the proposed algorithm is not
aiming at exploring the posterior density, and the MAP estimate might not be
the best single point estimate to characterize the posterior. Other strategies of
interest include the marginalization of the posterior density with respect to the
hyperparameter θ, or estimating an optimal θ by first marginalizing α. These
alternative strategies have been discussed in literature, see, e.g., [21] for a recent
and comprehensive contribution.

4. Parameter selection strategies. Before presenting the details of the hybrid
scheme used in the numerical tests, we briefly review some of the main results
related to the selection of the hyperparameters (r, β, ϑ) appearing in the expression
of the hyperprior in (3).

We start recalling a theorem, whose proof can be found in [9], summarizing how
r and β affect the convexity properties of the functional F .

Theorem 4.1. Let β > 0 and r 6= 0, and let F(α, θ) be the objective function for
the minimization problem in (4).

(a) If r ≥ 1 and η = rβ − 3/2 > 0, the function F(α, θ) is globally convex.
(b) If 0 < r < 1 and η = rβ − 3/2 > 0, or, if r < 0 and β > 0, the function
F(α, θ) is convex provided that

(9) θj < θ = ϑj

(
η

r|r − 1|

)1/r

.

The convexity of the MAP objective function, guaranteed for r ≥ 1, is very con-
venient, however some of the configurations attained for r < 1 can be very attractive
in terms of sparsity promotion and rate of convergence. To better understand the
connection between the parameter of the hyperprior and sparsity, consider the up-
dating formula (8), expressing θj as a function of αj as

θj = gj(αj) = ϑjϕ

(
|αj |√
ϑj

)
.

We review some recent results [4, 10, 9] about the connections that can be drawn be-
tween the generalized gamma hyperpriors and classical sparsity promoting penalty
terms, assuming that (θj , αj) satisfies the above identity.

(i) For the gamma hypermodel, i.e. r = 1, as η = rβ − 3
2 → 0+ the penalty term

approaches a weighted `1-penalty term [4, 10],

lim
η→0+

P
(
α, g(α) | 1, 3

2
+ η, ϑ

)
=
√

2
n∑
j=1

|αj |√
ϑj
.

(ii) If rβ = 3
2 , the penalty term coincides with the weighted `p-norm, with p =

2r/(r + 1) [9],

P
(
α, g(α) | r, 3

2r
, ϑ

)
= Cr

n∑
j=1

|αj |p√
ϑj
p , Cr =

r + 1

(2r)r/(r+1)
.



Overcomplete representation in a hierarchical Bayesian framework 7

(iii) For the inverse gamma hypermodel, corresponding to r = −1, the penalty
term approaches the Student distribution, a prominently fat tailed distribu-
tion favoring large outliers, and leading to a greedy algorithm that strongly
promotes sparsity [9].

To summarize, the above results indicate that the hyperpriors for which the
global convexity of the corresponding hypermodel is not guaranteed (r < 1) are
expected to promote sparsity more effectively than the limit case r = 1 that can be
seen as a counterpart of the `1-penalized case.

While the hyperparameters r and β determine the strength of the sparsity pro-
motion and the convexity properties of the MAP objective function, the vector of
the scale parameters ϑ can be set automatically once the operator AW is given.
More specifically, for each j, ϑj can be related to the sensitivity of the data to xj ,
given by the quantity ‖AWej‖2, where ej ∈ RN denotes the canonical j-th Carte-
sian unit vector. It was proven, for r = 1 in [7, 10] and in more general settings in
[9], that under the assumption that the signal-to-noise ratio is given, and that the
prior satisfies an exchangeability condition guaranteeing that no particular sparse
combinations of components of x are favored over others, the entries of ϑ must be
chosen as

(10) ϑj =
C

‖AWej‖2
,

where C > 0 is a constant encoding the expected sparsity on the solution and an
estimate of the signal-to-noise-ratio. For details, we refer to the cited articles. We
remark that, in general, sensitivity weights are introduced to compensate for the
possible non-uniform design of the forward model operator A. Sensitivity weights
play an important role in, e.g., inverse source problems, in which sources near the
observation points may be favored over far away sources unless the exchangeability
condition is imposed. In the current setting, when the dictionary consists of sub-
frames with possibly different column norms, we expect the different weights ϑj to
prevent the representation of the signal the frames with larger column norms to
dominate.

5. Local and global hybrid IAS. In the following discussion, we write the
penalty function P(x, θ | r, β, ϑ) in terms of components,

P(α, θ | r, β, ϑ) =
N∑
j=1

(
1

2

α2
j

θj
− η log

θj
ϑj

+

(
θj
ϑj

)r)

=
N∑
j=1

Pj(αj , θj | r, β, ϑj).

In [8], two different hybrid strategies to speed up and enhance sparsity promo-
tion in the IAS algorithm were proposed. In both versions, the IAS iterations are
initiated by selecting a conservative set of hyperparameters for which the objective
function is convex, thus guaranteeing global convergence to a unique minimizer.
We denote this set of parameters by (r(1), β(1), ϑ(1)). For the second phase of the
hybrid algorithm, we select another set of parameters, (r(2), β(2), ϑ(2)), for which
the global convexity of the objective function is not valid. To match the models so
that they express coherent prior beliefs, we adjust the scale parameters ϑ(j) so as



8 Monica Pragliola, Daniela Calvetti and Erkki Somersalo

to satisfy the compatibility condition

(11)

(
η(1)

r(1)

)1/r(1)

ϑ
(1)
j =

(
η(2)

r(2)

)1/r(2)

ϑ
(2)
j ,

that guarantees that the parameter θj computed at αj = 0 returns the same value
regardless of the model. For further discussion, we refer to [8].

In the local hybrid version, the IAS algorithm is initially run with hyperpa-
rameters (r(1), β(1), ϑ(1)), and after each iteration step, we check which θj , if any,

satisfies the condition (9), where θ is computed using the hyperparameter set
(r(2), β(2), ϑ(2)). In correspondence of those which do, we modify the local objective
function so that

Pj(αj , θj | r(1), β(1), ϑ
(1)
j )→ Pj(αj , θj | r(2), β(2), ϑ

(2)
j ).

The global hybrid scheme is based on the idea that after a number of IAS itera-
tion rounds, the iterate of the globally convex objective function with hyperparam-
eters (r(1), β(1), ϑ(1)) is near the unique global minimum of that objective function.
Restarting the IAS from the current point with the parameters (r(2), β(2), ϑ(2)) may
quickly find a local minimizer near the global minimizer of the original objective
function. While the two minimizers are likely not far apart, the local minimizer is
typically sparser, and the convergence to it is faster.

6. Computed examples. In this section, we demonstrate the viability of the hy-
brid IAS algorithm in the context of overcomplete representations. More specifically,
we restrict ourselves to the global hybrid strategy, switching from the first to the
second hyperprior after 10 iterations, if not differently specified. The main goal
of the following examples is to demonstrate that the global hybrid IAS is capa-
ble of selecting from a dictionary of sub-frames, where several representations are
admissible, a set of atoms that make the representation as sparse as possible.

Signal restoration from convolution data. The first test case is a one- dimen-
sional deconvolution problem. The generative model is a piecewise constant signal
f : [0, 1]→ R, f(0) = 0, and the data consist of a few discrete observations,

bj =

∫ 1

0

A(sj − t)f(t)dt+ εj , 1 ≤ j ≤ m, A(sj , t) =
1√

2πw2
e−

(sj−t)2

2w2 ,

corrupted by Gaussian blur with w = 0.02 and additive scaled white Gaussian noise,
with standard deviation σ set to 2% of the maximum of the noiseless signal. The
data has been generated using a discretization of the unit interval with n = ndense =
1253 nodes, while in the forward model used for solving the inverse problem, we
set n = 500. The number of equidistant observation points in the signal domain is
m = 46. The generative signal and the data are shown in Figure 1.

The generative signal admits a natural sparse representation in terms of its in-
crements zj = zj − zj−1 over the interval of definition. Assuming x0 = 0, then

(12) z = Bx , B =


1 0 . . . 0
−1 1 . . . 0

. . .

0 . . . −1 1

 ∈ Rn×n,
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Figure 1. The generative model (left) and the blurred and noisy
data vector b ∈ R46 (right).

hence

x = Lz with L = B−1 =


1 0 . . . 0
1 1 . . . 0
...

. . .

1 . . . 1 1

 ∈ Rn×n.

Our goal is to test the effectiveness of the outlined framework in recovering the
most natural sparse representation of the given signal. Let C denote the discrete
cosine transform matrix, providing an alternative and accurate way of representing
the signal,

x = CTy, y = Cx,

which is, however, not sparse. To test whether the algorithm is able to identify the
frame that allows a sparse representation, we consider the overcomplete dictionary,

W = [W1 , W2] ∈ Rn×2n with W1 = L ∈ Rn×n and W2 = CT ∈ Rn×n ,

and formulate the underlying linear inverse problem as

b = AWα+ ε = A[W1 , W2]

[
α1

α2

]
+ ε, ε ∼ N (0, σ2Im) ,

where A is the discrete blur operator.
In this example, the global hybrid IAS is run with parameters (r(1), η(1)) =

(1, 10−4), (r(2), η(2)) = (1/2, 10−3); we recall that the sensitivity weights ϑ(1) are
set automatically according to (10), while the vector ϑ(2) is fixed so that condition
(11) is satisfied.

The signal reconstructed by the global hybrid IAS scheme is shown in Figure 2.
The restored α1 and α2 and their contribution in the estimated signal are shown in
Figure 3, together with the scaled variances corresponding to α1 and α2, i.e.

θj

ϑ
(2)
j

, 1 ≤ j ≤ n and
θj

ϑ
(2)
j

, n+ 1 ≤ j ≤ 2n .

Notice that the output variances are scaled by the sensitivities corresponding to the
second hyperprior used to design the hybrid scheme.

Despite the relatively high level of degradation (blur and noise) and down-
sampling in the observed data b, the algorithm has no problem detecting the basis
that provides a more natural and sparse representation for the original signal. In
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Figure 2. Reconstruction of the signal x (left) and the count of
CGLS steps per outer iteration of the global hybrid IAS (right).

Figure 3. Vector αi (left panels), corresponding scaled variances
(middle panels) and contribution of the signal Wiαi (right panels)
for i = 1, i.e. representation in terms of increments, (top row) and
i = 2, i.e. representation in terms of cosine transform, (bottom
row).

fact, the coefficients α2 are five to six orders of magnitude smaller than the non-
vanishing components of α1. The degree of sparsity in the final representation is
also reflected in the number of CGLS steps per outer iteration of the global hybrid
IAS - see Figure 2 - which quickly settles around the cardinality of the support of
α.

Image denoising on a synthetic image. In the second example, we consider the
problem of denoising a blocky gray scale test image x ∈ Rn×n, n = 200. The pixel
values, which are between 0 and 1, are corrupted by scaled white Gaussian noise
with standard deviation σ set to 10% of the maximum of the noiseless image, i.e.
σ = 0.1 - see Figure 4.

The test image presents sharp edges lying along the horizontal and vertical axes.
Therefore, x admits a sparse representation both in the vertical and horizontal
increment bases, the latter being slightly less sparse than the former. After repre-

senting the image in vector form x ∈ Rn2

by stacking the pixel values columnwise,



Overcomplete representation in a hierarchical Bayesian framework 11

Iteration  31

0.2

0.4

0.6

0.8

Figure 4. Original image (left), observed data (middle) and re-
constructed image (right).

5

we introduce the redundant dictionary W = [W1 , W2] ∈ Rn2×2n2

with

(13) W1 = (In ⊗ B)
−1 ∈ Rn

2×n2

and W2 = (B⊗ In)
−1 ∈ Rn

2×n2

,

where B is defined as in (12), and ⊗ stands for the Kronecker product. Homogeneous
Dirichlet boundary conditions are assumed on the left and top edges of the image.

We want to estimate the sparse vector α = [α1 , α2]T, with αi ∈ Rn2

, i = 1, 2, from

the data vector b ∈ Rn2

, given the forward model

b = Wα+ ε = [W1 , W2]

[
α1

α2

]
+ ε, ε ∼ N (0, σ2In2) .

It is worth remarking here that we require α to be not only sparse, but as sparse as
possible.

The hyperparameters of the global hybrid IAS are set as (r(1), η(1)) = (1, 10−3)
and (r(1), η(1)) = (1/2, 10−2), while, as before, ϑ(1), ϑ(2) are automatically fixed
according to (10) and (11), respectively.

The restored image is shown in Figure 4, while the contribution of the vertical and
horizontal increment bases together with the output scaled variances corresponding
to vectors α1 and α2 are shown in Figure 5. We observe that the image is almost
completely restored in terms of the basis vectors corresponding to increments in the
vertical direction (α1), whereas the entries of α2, corresponding to increments in
the horizontal direction is negligible. The representation in terms of W1 is indeed
sparser than that in terms of W2, due to the shorter horizontal boundary of the
white inclusion compared to the vertical boundary.

Image denoising on a natural image. We demonstrate the scalability of our
approach with large-scale denoising problem. Consider the 512 × 512 gray-scale
natural image with pixel values between 0 and 1 shown in the top left panel of
Figure 6. The observed data b is a version corrupted by added white Gaussian
noise with standard deviation σ set to 5% of the maximum of the noiseless image,
i.e. σ = 0.05, shown in the top middle panel of Figure 6.

We consider an overcomplete basis W = [W1, W2] ∈ Rn2×2n2

, with W1,W2 ∈
Rn2×n2

, n = 512, defined in (13); the vector describing the 2D signal in the selected

dictionary can thus be written as α = [α1, α2]T, with α1, α2 ∈ Rn2

representing the
vertical and horizontal increments, respectively. Note that since this test image is
not piecewise constant, but rather a mixture of jumps, smooth, and textured parts,
we do not expect the vertical and horizontal increments to be naturally sparse. In
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Figure 5. Vector αi (left panels), base-10 logarithmic plot of the
corresponding scaled variances (middle panels) and vector Wiαi
contributing to the final restoration (right panels) for i = 1, i.e.
vertical increments representation, (top row), i = 2, i.e. horizontal
increments representation, (bottom row).

fact, when representing the original image in the chosen dictionary, about 47% of
the coefficients α1, α2 in both horizontal and vertical directions are non-zero.

We run the global hybrid IAS with (r(1), η(1)) = (1, 10−4), (r(2), η(2)) =
(1/2, 10−3), and letting ϑ(1), ϑ(2) be set automatically.

The restored image is shown in the top right panel of Figure 6, together with a
close-up to facilitate the visual comparison. In Figure 7, we also show the output
representation vectors α1, α2, with the corresponding scaled output variances and
their contribution in the final restoration.

Besides the quality of the restored image, we are interested in highlighting the
compressing capability of our approach. Consider first the coefficients α = [α1, α2]T

of the original image, and choose a threshold value β > 0 to be the smallest non-zero
coefficient,

β = min{|αj | | |αj | > 0}.
After computing the restored coefficients using the sparsity promoting hybrid IAS,
setting to zero those whose absolute value is below a threshold value, we find that
only 3.92% of those for the vertical components, and 4.07% of those for the hori-
zontal components are nonvanishing. Thus, the representation of the image in this
basis was compressed by a factor more than ten from the original image without a
significant deterioration in the image quality. Figure 8 shows the value distributions
of the original and restored coefficients, plotted as histograms in logarithmic scale:
clearly the coefficient values are significantly compressed towards zero in both di-
rections. It is worth remarking here that the Bayesian target in sparsity promoting
problems has to be understood as compressibility, as the entries of α cannot vanish
by construction of the algorithm, but they can be made arbitrary small by suitable
parameter selection.
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Figure 6. Top row : original 512× 512 test image (left), observed
data (middle) and denoised image (right). Bottom row : respective
close-up(s).
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Figure 7. Vector αi (left panels), base-10 logarithmic plot of the
corresponding scaled variances (middle panels), and vector Wiαi
(right panels) for i = 1, i.e. vertical increments representation,
(top row) and i = 2, horizontal increments representation, (bottom
row).

Image restoration. In the fourth example, we consider the restoration problem
of the n × n generative image in Figure 9, with n = 100, with values in [0, 1].
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Figure 8. Value distributions of the coefficients corresponding to
vertical (left) and horizontal (right) increments in logarithmic scale.
The blue distributions correspond to the original image which does
not allow sparse representation in the basis, which is reflected in the
high percentage of non-vanishing coefficients, while the red distri-
bution is the sparse denoised reconstruction, in which the percent-
age of coefficients above the negligible threshold value is reduced
by an order of magnitude.

The image has been corrupted by Gaussian blur of width w = 0.006 and additive
scaled white Gaussian noise with standard deviation σ set to 1% of the maximum
of the noiseless signal, i.e. σ = 0.01 - see Figure 9. The test image presents
three distinctive features, namely point-wise stars, the blocky moon and the smooth
cloud. After re-arranging the original x in a vectorized form by stacking its entries
in columnwise order, we hypothesize that a suitable dictionary for the problem of

interest is W = [W1 , W2 , W3 , W4] ∈ Rn2×4n2

, with

W1=In2 , W2=(In ⊗ B)−1 ∈ Rn
2×n2

, W3=(B⊗ In)−1 ∈ Rn
2×n2

and W4=CT ,

where B is as in (12) and C is the 2D cosine transform matrix. The problem is to

estimate the sparse vector α = [α1 , α2 , α3 , α4]T, with αi ∈ Rn2

, for i = 1, 2, 3, 4,

from the data vector b ∈ Rn2

, given the forward model

b = AWα+ ε = [W1 , W2 , W3 , W4]


α1

α2

α3

α4

+ ε, ε ∼ N (0, σ2In2) ,

with A representing the discrete blur operator.
The global hybrid IAS is run with hyperparameters (r(1), η(1)) = (1, 10−4),

(r(2), η(2)) = (1/2, 10−4) and ϑ(1), ϑ(2) automatically fixed as in the previous ex-
amples.

The image restored via the global hybrid IAS algorithm is shown in Figure 9,
while Figure 10 shows the reconstructions of the representation vectors αi, the cor-
responding variances scaled by the sensitivities, and the contribution of the vectors
Wiαi in the final restoration, for i = 1, 2, 3, 4.
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Figure 9. Original image (left), observed data (middle) and re-
constructed image (right).

We point out that, as in the previous example, the representation vectors in both
the vertical and horizontal increment bases are sparse. Nonetheless, the hybrid
hypermodel selects the one with fewer non-zero entries.

Dictionary learning. The final example, coming from machine learning, is con-
cerned with the sparse identification of hand-written digits based on a dictionary
of annotated data. Consider the MNIST data set of hand-written digits 0, 1, . . . , 9

digitized as 16× 16 black-and-white images. Denoting by w(j) ∈ R(16)2 , 1 ≤ j ≤ N
the vectorized image vectors of N = 1 707 handwritten digits constituting the atoms
of the dictionary, and by cj ∈ {0, 1, . . . , 9} the corresponding annotations, we form
the dictionary matrix

W =
[
w(1) · · · w(N)

]
∈ Rn×N , n = 256, N = 1 705.

To identify an handwritten digit b drawn from an independent set of handwritten
digits, we seek to represent it in a sparse manner in terms of the given dictionary,

b = Wα+ ε,

where α ∈ RN is a sparse vector, and ε represents the discrepancy between the
data and its representation. The idea is represented schematically in Figure 11.
We point out that in the dictionary consisting of all handwritten digits, the digits
with same annotation can each be thought of representing a sub-dictionary, and
as the proposed algorithm seeks the most economic representation, it is natural
that the representation corresponds to picking the representing atoms from the
sub-dictionary with greatest affinity with the digit that represents the data.

In this example, we run the global hybrid IAS algorithm using the parame-
ters (r(1), β(1), ϑ(1)) = (1, 3/2 + 10−4, 10−5), where all components of the vec-
tor ϑ(1) are assumed equal, as sensitivity is not an issue in this example, and
(r(2), β(2)) = (−1, 1), with the value ϑ(2) determined from the compatibility condi-
tion (11). Furthermore, since the digit images are non-negative, after each update
step of the pair (α, θ), we project the image to the positive cone. A theoretical
justification of the projection step was given in [9]. We switch from the first to the
second model in the hybrid IAS scheme when either the relative change in θ with
respect to the `2-norm falls below 10−3 or 80 iterations have been completed.

Figures 12, 13 and 14 show the results with different choices of the standard
deviation of the likelihood. Observe that here, the noise term ε represents the
discrepancy between the data b and its representation in terms of the dictionary,
and can be chosen according to how much fidelity is required. Choosing σ large
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Figure 10. Representation vector αi (left panels), base-10 loga-
rithmic plot of the corresponding scaled variances (middle panels)
and vector Wiαi contributing to the final restoration (right panels)
for i = 1 (first row), i = 2 (second row), i = 3 (third row) and
i = 4 (fourth row).

allows a very sparse representation, as the required quality of the approximation is
low, however, poor approximation easily leads to a mis-labeling of the digit. On the
other hand, decreasing σ forces the approximation to be better, and more atoms
are required. The labeling can be done using the majority vote principle. In the
computed example, Figures 12 and 13, the labeling with majority vote is correct in
each case, while in Figure 14 with sparser representation, mislabelings occur.
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Figure 11. A schematic representation of the dictionary learning
example. The digit on the right is the non-annotated image b,
which is approximated in terms of the annotated atoms wi on the
right. The coefficients αi can then be used to identify the digit.

Figure 12. Dictionary learning results. The first row shows the
test images of the digits to be classified by the dictionary learning
algorithm (vector b), the true annotation indicated in the figure,
the second row the vectors θ after the IAS iteration with the first
hyperprior, and the third row after the iteration with the second hy-
perprior. The fourth row represents the synthesis Wα approximat-
ing the original digit, and finally, the fifth row gives the histogram
of the annotations of the atoms corresponding to coefficients above
a threshold τ = 0.01. The annotation is done by majority vote,
choosing the largest of the bins. In this example, the standard de-
viation of the noise representing the mismatch was σ = 0.01.

7. Conclusions and future work. The hierarchical Bayesian framework com-
bined with Krylov subspace iterative solvers for large linear systems is well suited
for the design of computationally efficient methods to solve large scale ill posed in-
verse problems with sparsity constraints. From the point of view of computational
efficiency, replacing a whitened Tikhonov-type penalty by a Krylov subspace itera-
tion equipped with early stopping is of crucial importance. The estimate found by
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Figure 13. The rows are as in Figure 12. In this example,
the standard deviation of the noise representing the mismatch was
σ = 0.05. Observe that the approximation becomes sparser.

Figure 14. The rows are as in Figure 12. In this example,
the standard deviation of the noise representing the mismatch was
σ = 0.1. The increased sparsity here is traded with an increased
number of misclassifications, such as in the first and the third
columns.
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this process is not guaranteed to coincide with the MAP estimate, and it was re-
ferred to as quasi-MAP estimate in [5]. The statistical analysis of the early stopping
regularization strategy based on Krylov subspace methods is not straightforward,
since the estimate depends non-linearly on the data, and it can be seen as an ap-
proximate Bayesian computing (ABC) strategy. For further discussion, see, e.g. [7].
Here we have shown that the framework can be naturally adapted for dealing with
overcomplete systems, consisting of, e.g., combined frames or bases. The approach
has significant potential when it may not be known a priori which frame is best
suited for representing the unknown, leaving it up to the algorithm to find the most
parsimonious representation. In order to avoid that one frame is favored over an-
other, however, it is important that the data are equally sensitive to components
in every frame. Fortunately, the sensitivity analysis developed by the authors in
[6, 10, 9], provides naturally such scaling. The proposed sensitivity weights are
rooted in the very natural Bayesian principle of exchangeability, stating that no set
of non-zero components with a given cardinality should be favored over any other.
In light of this principle, the scaling guarantees the same explanation power for ev-
ery sub-frame, so the one leading to most sparse solution is automatically selected.
This feature may turn out particularly useful in machine learning, with applica-
tions such as MRI fingerprinting (see,e.g., [16]). In [10], a connection between the
proposed IAS algorithm and the compressed sensing literature [11] was considered,
suggesting that when the forward model guarantees perfect sparse recovery, the IAS
algorithm effectively finds a good approximation of it. It is reasonable to believe
that the results can be extended to overcomplete dictionaries, for which similar
recovery results are known [12].

The methodology developed in this paper has been tested only with Gaussian
noise, leading to a quadratic fidelity term in the optimization problem. The IAS
framework has been shown to work well with other noise models, e.g., Poisson
distributed noise in connection with low dose X-ray tomography and PET, see [1].
The applicability of the approach to non Gaussian noise may be very important for
its use for dictionary learning problems where the data consist, e.g., of word counts.
The extension of the method to large scale problems, different noise models and
nonlinear forward models is the next step and will be addressed in separate future
contributions.
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