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A B S T R A C T

This manuscript presents a novel modeling framework to predict mechanical performance in ma-
terial with spatially varying microstructure. The framework combines an efficient process model
for AM, a database of experimental 3D images of defects in AM metal, and a microstructure-
based multiscale modeling method that leverages recent advances in reduced order modeling.
Thus the examples presented will explore heterogeneous and processing dependent dispersion of
voids in additively manufactured (AM) metals. The method presented here allows for parametric
studies with repeated instantiations of different possible configurations of microstructures
(images of defects) throughout the simulated part. Two demonstrations of the method are
provided using a database of synchrotron x-ray computed tomography images of porosity
collected at the Advanced Photon Source for Inconel 718 built with Laser Engineered Net
Shaping®: one case is high cycle fatigue crack incubation and the other is fracture initiation. In
both, we show that the model can capture the effects on performance of variability within and
between builds. Although not all variability is captured or quantified, the method shows promise
for application in AM metals because of its unique ability to mechanistically connect part-
scale performance with individual microstructures and the distribution of these microstructures
throughout the part.

1. Introduction and motivation

Currently, one major challenge and potential opportunity with additively manufactured (AM) metals is that there exists a large
amount of mechanical performance variability within and between builds, for example, in fatigue life and fracture strength (Shamsaei
et al., 2015). This results, at least in part, from the highly localized processing strategy. Reports have detailed differences in
defect structures, crystalline structures, and composition as a function of location, scan strategy, feed material (e.g. powder size,
atomization method), and processing parameters (Mukherjee and DebRoy, 2018; Sanaei et al., 2019; Seifi et al., 2017b; Antonysamy
et al., 2013; Lass et al., 2017; Yuan et al., 2018; Zhao et al., 2008; Hohnbaum, 2019). Presently, both truly random and poorly
understood yet systematic expression of variability within AM materials is a major cause for concern and lack of confidence with
final products (Gorelik, 2017; Seifi et al., 2017a). Conversely, if this variability could be controlled and exploited, new engineered
systems could be achieved for example through microscale-aware topology optimization, as surmised in Li et al. (2019a). Previous

∗ Corresponding author.
E-mail address: w-liu@northwestern.edu (W.K. Liu).

1 Current address: Applied Chemicals and Materials Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Boulder,
CO, USA 80305.

https://doi.org/10.1016/j.jmps.2021.104350
Received 29 July 2020; Received in revised form 20 December 2020; Accepted 31 January 2021

http://www.elsevier.com/locate/jmps
http://www.elsevier.com/locate/jmps
mailto:w-liu@northwestern.edu
https://doi.org/10.1016/j.jmps.2021.104350
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2021.104350&domain=pdf
https://doi.org/10.1016/j.jmps.2021.104350


Journal of the Mechanics and Physics of Solids 150 (2021) 104350

2

O.L. Kafka et al.

works have accounted for microstructures and/or defects that may vary in space (Horstemeyer, 2010; Li et al., 2019b), or those that
arise from additive manufacturing (Yan et al., 2018a; Herroitt et al., 2019). Direct image-based modeling has also been conducted on
AM materials, for instance on electron backscatter diffraction maps of electron beam melting metal (Kumara et al., 2018). Gordon
et al. (2019) might be thought of as similar, although it only considers monotonic tensile properties for relatively simple build
geometries. Prithivirajan and Sangid take another route, and intentionally constructed microstructures with defects similar to those
in select laser melting to systematically study the impacts on various performance indicators (Prithivirajan and Sangid, 2018). Other
authors have approached the problem of spread in performance using empirical or analytical damage-type modeling, for instance
with pre-seeded damage fields or porosity, either synthetically created or from images (Johnson et al., 2019; Pei et al., 2020;
Poulin et al., 2020). Note that the majority of these studies have used powder-bed fusion (PBF) or selective laser melting (SLM).
Those methods have much higher cooling rates and may impart different performance than powder-fed techniques (Carroll et al.,
2015), such as directed energy deposition (DED), which is used in our numerical demonstrations. However, none of these have used
modeling to elucidate the effects of process-based variability in microstructure and/or defects in a AM-built part and the potential
for both random and systematic variations within a single build or part. There have been recent calls to do just this (Shamsaei et al.,
2015; Li et al., 2019c).

In the model proposed here, the fast reduced order modeling approach that accounts for crystallography is combined with a
database of X-ray computed tomography images of possible instances of porosity/voids in AM material. This is embedded in a
multiscale, multiphysics modeling framework with a finite element representation of the macroscopic (part) scale, and the reduced
order model as the microscale (Yu et al., 2019). Variability is captured by assigning different microstructure throughout the
macroscopic representation. This assignment can be conducted either to achieve spatially-uniform randomness (bulk homogeneous
response) or spatially-varying randomness (bulk heterogeneous response). To model additive manufacturing, microstructures are
selected based on the outputs of a model of the AM process, which estimates the void volume fraction at each point in the part. In
this way, the process informs the final mechanical predictions, and thus might be used in design or used to construct and virtually
measure the impact of specific desirable (or undesirable) configurations of microstructures on the macroscale part performance.

This work relies upon our recent developments in reduced order and multiscale modeling, in concert with 3D imaging
experiments for additively manufactured metals. These combine a data-driven micromechanics method called self-consistent
clustering analysis (SCA) with computational crystal plasticity (CP), termed crystal plasticity self-consistent clustering analysis
(CPSCA). This method as applied to crystal plasticity was first introduced by Liu et al. (2018). Shakoor et al. (2018) and Yu et al.
(2019) extended this to a finite strain formulation to be fully compatible with deformation-gradient-based CP, and demonstrated
a concurrent multiscale model. A microstructurally relevant Fatemi–Socie fatigue indicating parameter (FIP) (Shenoy et al., 2007)
was computed with this approach by Kafka et al. (2018).

The primary goal of this paper is to describe a new method that integrates the above-noted features. The resulting framework
has several unique features:

• A physical basis for the microstructure geometry and high fidelity than synthetic, imagined, or idealized microstructures,
using a database of 3D experimental images as the microstructural representation of the microscale directly in a concurrent
multiscale model

• Location- and process/history-dependent properties and performance prediction, demonstrated here using CPSCA
• Scalability to incorporate microstructure in components or systems (based on the macroscale representation)
• Ability to estimate variability, in addition to mean/min/max, in mechanical performance throughout the domain without

recourse to statistically generated microstructure or inference. In this work fatigue life or fracture initiation point are the two
example measures of mechanical performance.

Other recent modeling efforts have been developed to predict the impact of microstructures and defects on part performance. Fast
Fourier Transform (FFT)-based methods have proven popular due to computational efficiency; for example, Liu et al. (2019) show a
framework that connects a phase-field based method for grain prediction with a FFT-based crystal plasticity method for performance
prediction, while Eghtesad et al. (2018) present what they term a spectral database constitutive model for computational crystal
plasticity based around the FFT method. Pei et al. (2020) propose a homogenized damage-based method that accounts for progressive
damage to the materials using accumulated plastic strain in combination with a weighed parameter thought to represent damage
from voids and inclusions. Whelan and McDowell (2019) and Tallman et al. (2020) both discuss the importance of uncertainty
quantification when modeling fatigue in polycrystalline materials. The latter also discusses variability at different length scales, and
information propagation between scales, but it does not consider a full component-level simulation (Tallman et al., 2020). However,
none of these directly capture the location-based and process-based variability as done by the method proposed herein.

The paper will propose the method (Section 2), and give two computational demonstrations (Section 3). The method description
first starts with an overview (Section 2.1), and second describes how the preliminary database of microstructures is generated
(Section 2.2). Third, the thermal model of the AM process is described (Section 2.3), followed fourth by a description of the
macroscale stress analysis (Section 2.4), and followed fifth by a description of the microstructure selection and reduced order
modeling technique used at the microscale (Section 2.5). This is followed by the two examples: first a prediction of the strain-life
fatigue behavior of a sample of virtual fatigue specimens built of Inconel 718 (IN718) with several different process parameters
(Section 3.1), and second an estimate of the fracture initiation behavior of a compact tension specimen (Section 3.2).
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2. Methodology

The overall goal of this methodology is to provide a mechanistic multiphysics multiscale framework with which components
consisting of spatially-varying microstructures can be (a) constructed and (b) analyzed for mechanical response or performance
(e.g., fatigue or fracture). The primary motivation for such a mechanistic framework is additively manufactured metals with spatially
heterogeneous microstructures, both in terms of defects, such as voids, and crystallography. In order to construct a computational
methodology, several different simulations and numerical techniques are interconnected to construct a broadly applicable workflow
that combines process modeling and stress analysis to estimate mechanical performance on the component scale, as defined by
microstructural response to mechanical loading on the component scale. A conceptual schematic of this overall idea and the role of
each component is given in Fig. 1.

2.1. Model setup and overview

Conceptually, this multi-physics, multiscale method is implemented as a series of coupled analyses, some of which are themselves
concurrent or hierarchical models. It is multi-physics because it connects a model of the AM process that outputs thermal history by
solving the heat equation, to a model that predicts mechanical response by solving the equilibrium equations. It is multiscale because
to solve for the mechanical response, the problem is described in terms of two different representations: the macro- or part-scale,
and the microscale that represents individual microstructures. The modeling process leading from thermal analysis to mechanical
performance (e.g., fatigue or fracture) is outlined step-by-step in Box I. Functionally, the thermal analysis takes as input processing
conditions and part geometry, and outputs local thermal conditions (e.g., thermal gradient (G), its velocity (R), or the solidification
cooling rate (SCR)) represented by a list of x, y, z coordinates and their corresponding thermal variables. A correlation function
takes in local thermal information and outputs an array of possible microstructures for each material point in the mechanical mesh
of the component; if necessary, thermal results are averaged to the coarser mechanical mesh before the selection is made. On that
basis, an instantiation that selects one specific microscale for each macroscale material point is generated. This instantiation is used
to conduct a stress analysis with either one-way or two-way coupling to predict local (microscale) and component (macroscale)
material response.

In order to accomplish this, before the analysis is conducted, a database is constructed that contains a broad selection of possible
microstructures. For example, if the critical, performance limiting microstructure is porosity (as later demonstrated), this could be
embodied by images of different pores that might occur in AM material. In the demonstration cases given below, solidification
cooling rate is related to void volume fraction, following the relationship proposed in Wolff et al. (2017), because our experimental
data consists of images of voids rather than the example for grains given above.

Box I Overall modeling process with this framework

The process for a particular component of interest is as follows:

1. Macroscale thermal model of the build process, which provides a local, microstructurally relevant measure that captures the influence
of processing parameters (scan speed and laser power are shown as examples).

2. Generation of a possible instance of the overall specimen by picking subset images (microstructures) for every point in the component
that match the relationship between processing history and microstructural descriptors developed in the preliminary step.

3. Stress analysis to compute the deformation history of the component and its microstructures

(a) For one-way coupling: compute macroscale deformation history, then for every microstructure associated to a point in the
component, apply the deformation computed in the macroscale stress analysis of the component for that point.

(b) For two-way coupling: run the concurrent model with the predefined microstructures presenting their respective material
points.

4. Computation of the performance of the component based on a performance metric applied to each microstructure. For example, the
minimum fatigue life within a microstructure will give the failure location and cycles-to-failure.

5. Repeat steps 3-5 until a reasonable confidence of the results, based on possible microstructural configurations, is obtained.
6. Repeat steps 1-6 and/or 2-6 for different processing conditions and/or loading conditions as needed.

This overall scheme is shown graphically in Fig. 2 with a generic example component, where pores are the critical microstructure
and a database has been built from XCT images of pores in AM. The different steps of this method make use of different solution
methods, conducted in several different software packages (both internal codes and commercial software). However, the data
exchange between each step requires little user input and could be set up to operate automatically if required for parametric studies.
The different tools used through this framework have been validated independently, and citations to the articles in which more
thorough validation has been carried out for each of these components are provided.
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Fig. 1. A conceptual representation of the significant complexities involved in additive manufacturing, from part design to final performance. The right column
contextualizes this with the aspects addressed by, and the relationship with, the elements of the current mechanistic multiphysics computational framework.

Fig. 2. Overall diagram of the computational scheme. Geometry, build process parameters, material, and loading conditions must be specified. These inputs are
used to conduct a thermal analysis and a macroscale stress analysis. For each material point 𝑋, the thermal data is used to select an element-wise microstructural
sub-model, and the stress–strain solver is used to provide local boundary conditions, representing a possible state at that point. Each microstructure is used to
predict the local, microscale evolution of state variables such as plasticity and damage, which are homogenized (e.g. by taking the 𝑙∞ norm of the domain) and
used as element-wise estimators of part-level susceptibility to failure.

2.2. Experimental image database generation

In general, the database used in this framework should contain some relevant microstructure, and a record of some prop-
erty of that microstructure that can be related to a local measurement that depends on processing history, for instance grain
sizes/shapes/orientations, porosity sizes/shapes/orientations, inclusion content, and/or dislocation densities. One critical require-
ment of the current implementation is that both measures must be local, i.e., e.g., smaller than a single molten pool. This requirement
comes from the assumption of scale separation built into the multiscale method used for performance analysis — the microstructural
representation of each material point needs to be much smaller than the size of the finite element in which that material point resides.
The selection of measurements of (local) processing history and microstructure properties requires a link between the two.
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Fig. 3. XCT image processing steps (a) Slice from reconstruction (b) after filtering and thresholding (c) the 3D region (150 slices) around the slice in (a) and
(b), with that slice highlighted, after all processing steps.

A relationship between the predicted thermal history and microstructure descriptors is used to identify possible defects at each
location in the build. In principle, a number of different relationships could be used based on scientific knowledge of the system.
The most basic, and probably incorrect, would be a uniformly random distribution of microstructure throughout the part. However,
results from literature and our prior experience, e.g. Wolff et al. (2017) and/or Parimi et al. (2014) indicate that there are trends
in microstructure that depend on thermal history and conditions that can be exploited. In this paper, we focus on porosity as this
is likely the critical microstructure for fatigue and fracture, and use void volume fraction 𝑉𝑓 as its measure. The overall 𝑉𝑓 is
computed from the simple sum of the pore sizes throughout the image for each location, similar to Wolff et al. (2017) but using
3D measurements with XCT. Because many images might have the same or similar 𝑉𝑓 based on this measure, the database contains
many repeated possibly microstructures for each 𝑉𝑓 . Selecting one possible microstructure for each point in the build thus gives one
‘‘instance’’ of that component.

To collect images with varying void volume fraction X-ray tomography imaging experiments from Advanced Photon Source (APS)
Beamline 2-BM, Argonne National Laboratory were used. Two as-built (with a solutionizing stress relief heat treatment) ‘‘thin wall’’
geometries one track wide were built with Laser Engineered Net Shaping® (LENS, a trade name which will be used interchangeably
here with DED). From these thin walls, specimens were extracted and scanned from 22 locations on each wall (total 44 specimens).
Each image contained between 1mm3 and 2mm3 of material, with a voxel edge length 0.65 μm. Three-dimensional images were
reconstructed using a customized version of Tomopy, based on version 1.0.1 (Gürsoy et al., 2014). In the 3D images, contrast from
X-ray absorptivity was used to distinguish between pores and material. After reconstruction, a stack of 8-bit grayscale tiff images
were loaded into a Matlab parallel image processing script. This script applied a series of localcontrast, median, and Gaussian filters
before invoking the graythresh and imbinarize utilities to convert the grayscale images to binary images. The final binary images
still contained occasional scanning artifacts, mostly rings. These were identified by another script before being manually verified
as artifacts and removed from the binary images. Fig. 3 shows (a) an example grayscale image from reconstruction, (b) a binary
version of that slice, (c) a 3D rendering of the final volume with voids in black and the slice shown in (a) and (b) highlighted. For
more details regarding the imaging experiments, see Kafka (2019).

The image database is comprised of many small images, each of size 97.5 μm by 97.5 μm by 97.5 μm (150 voxels in each dimension),
extracted from the 44 full-size tomography images. These were referred to as ‘‘sub-images’’ because they define a bounding box
around subregions of the full-size image. These sub-images were chosen at strategic locations such that the pore volume fractions
within the bounding box, 𝑉𝑓 , lie within the range of 𝑉𝑓 determined in Appendix B. To build the database, a search process through
the larger images was conducted for the appropriate sub-image locations. First, candidate bounding box locations were uniformly
generated within the full-size image. After checking that the bounding box did not overlap with bounding boxes already in the
database and ‘‘filling in’’ pores that intersect with the bounding box boundary. These boundary pores were removed to enable the
use of periodic boundary conditions in simulations. Then, if the bounding box was calculated to contain an appropriate pore volume
fraction 𝑉𝑓 , the data within the bounding box is entered into the sub-image database.

The final database contains sub-images with 𝑉𝑓 ≈ 0.0001 to 𝑉𝑓 ≈ 0.03, include the geometry, clustering, and interaction tensor for
each as shown in the diagram in Fig. 4. A total of 388 different example sub-images of pores were extracted. The database indexes
the sub-images by their 𝑉𝑓 so that the appropriate sub-image can be retrieved from the database given a desired 𝑉𝑓 . Of these, 320
were used in the computational demonstrations shown in Section 3. A subset of the total number of extracted sub-images were
used in order to more closely match the histogram of expected 𝑉𝑓 and the histogram of 𝑉𝑓 in the available images. This involved
removing, at random, most of the very high and very low 𝑉𝑓 sub-images.

Once the microstructure database entries were collected and curated, the three training steps outlined in Section 2.5.2 were
conducted on each entry. Thus, the final database used for the multiscale mechanical response prediction contains proto-data used
to generate response predictions for arbitrary loading, which depends upon microstructural information. Thus, all the mechanical
response predictions shown in the following sections and in the numerical demonstrations are computed directly with 3D XCT
sub-images of pores in IN718 build with LENS. For our purposes of demonstrating this framework, this is sufficient. However,
one could imagine populating the same kind of database more completely with not only pores but also different crystallographic
structures, different phases, etc. For example, microstructures synthetically built with DREAM3D based on statistics of defects or
microstrcutures measured experimentally, or directly generated from process simulations as in Yan et al. (2018a) might also be
used. For simplicity and demonstrative purposes the examples shown here will only consider pores — the most critical defect for
surface finished material.
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Fig. 4. Microstructure database setup: in this example, a set of XCT image subsets are extracted such that the volume fraction (𝑉𝑓 ) of the extracted sub-images
span the range of expected 𝑉𝑓 within the part to be modeled. The ‘‘offline’’ part of the reduced order model at the microscale (explained in more detail later)
is computed for each of these subset images, and the resulting collection of subimages constitutes a database from which microstructure images are selected.

2.3. Thermal modeling for the AM build process

A thermal analysis is used to model building the component of interest using the directed energy deposition (DED) method. This
analysis is done using a transient thermal finite element solver called GAMMA (Smith et al., 2016). The specific equations solved
by the code are provided in Appendix A.

The physical build parameters, including laser speed and power and the scan strategy, must be selected. The material must also
be specified, along with other modeling parameters such as the mesh and boundary conditions. With this information given, the
model can predict the time–temperature-history of each point within the part. This is achieved by specifying elements in the mesh to
activate or de-activate based on the time-history of the scan strategy: elements that the tool has traversed are considered activated,
and are included as fully dense material, while elements that the tool has yet to traverse are not included in the thermal solution.
Moving boundary conditions are employed that account for active and inactive elements, appropriately applying the heat transfer
conditions as required throughout the domain.

The solidification cooling rate (SCR) is calculated based upon the temperature history of the thermal model at each node. This is
approximated according to Eq. (1) at each material point, represented by subscript 𝑖, as the ratio of the difference between solidus
temperature and liquidus temperature to the difference between the time at which the liquidus and the solidus temperature is
reached; i.e. the average rate of temperature change in the solidification region.

𝑆𝐶𝑅
(

𝐗𝑀)

≈
𝑇 𝑙𝑖𝑞𝑢𝑖𝑑 (𝐗𝑀)

− 𝑇 𝑠𝑜𝑙𝑖𝑑 (𝐗𝑀)

𝑡𝑙𝑖𝑞𝑢𝑖𝑑
(

𝐗𝑀
)

− 𝑡𝑠𝑜𝑙𝑖𝑑
(

𝐗𝑀
) ∀𝐗𝑀 ∈ 𝛺𝑀 (1)

where 𝑆𝐶𝑅(𝐗𝑀 ) is the solidification cooling rate as a function of the macroscale spatial coordinates 𝐗𝑀 within the macroscale
domain 𝛺𝑀 , 𝑇 𝑠𝑜𝑙𝑖𝑑 (𝐗𝑀)

is the solidus temperature, 𝑇 𝑙𝑖𝑞𝑢𝑖𝑑 (𝐗𝑀)

is the liquidus temperature, 𝑡𝑙𝑖𝑞𝑢𝑖𝑑
(

𝐗𝑀)

is the time at which the
liquidus temperature is reached, and 𝑡𝑠𝑜𝑙𝑖𝑑

(

𝐗𝑀)

is the time at which the solidus temperature is reached. In order to capture this
solidification behavior, Eq. (A.1) is solved explicitly with an approximate time step of 9.0×10−4 s. If too large of a timestep is chosen,
one may skip over the solidification behavior at some material points. Additionally, in the case of re-melting, only the final cooling
stage is considered. The SCR during final solidification (if melting and re-solidification occurs) is saved as an output parameter.

The thin wall geometries from which specimens were extracted for XCT were also used to validate the thermal model. To
accomplish this, a simulation mimicking the experiments outlined by Bennett et al. (2018) was conducted. Bennett et al. (2018)
report the solidification time for a few points in the build, which can be converted into SCR values using Eq. (1). However, due
to the limited amount of experimental data provided, only the range of SCR values between the reported points with the largest
and smallest solidification times were compared. As seen in Fig. 5, the experiment and the simulation are on the same order of
magnitude but the simulation gives an under-prediction. This is not surprising, since the we are using a conduction-based thermal
model. If, for instance, cooling affects within the melt pool were considered, the SCR values would increase (i.e. the solidification
time would decrease). Considering this expected behavior and the potential uncertainties in the measurements (as noted in Bennett
et al., 2018, these measurements are mostly useful for relative comparisons due to large possible experimental error from various
factors), this level of agreement is acceptable to us.

2.4. Macroscale stress analysis

At the macroscale, a stress analysis representing expected service-life conditions of the component or specimen is conducted.
This is conducted using the finite element method, solving the equilibrium equation with boundary conditions appropriate for the
expected service life. For loading conditions where a small strain approximation is valid (e.g. below the elastic limit of the material
for IN718), an elastic model or well-known elasto-plastic model, such as Johnson–Cook, with one-way hierarchical coupling is
sufficient with either implicit or explicit time stepping at the macroscale. The time history of the deformation gradient at each
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Fig. 5. Comparison of predicted SCR values from the thermal model against an experiment (Bennett et al., 2018). Here the range from the experiments is
defined by the smallest and largest reported solidification times.

material point in the FE solution is extracted, to be passed to the microscale model. In cases where significant plastic strain or finite
deformations are to be considered, a concurrent coupling is used instead, with implicit timestepping for the finite element solution.
In the concurrent scheme, the effective response of the microscale is directly used to compute the stress–strain response for the
macroscale material model, replacing the constitutive model. A concurrent implementation for materials that are well-described by
single RVE has been demonstrated by Yu et al. (2019), and is adapted for use here. These two operating modes are exemplified in
the numerical examples for fatigue and fracture, respectively.

2.5. Microscale performance prediction

Two steps are used to make microstructure-based predictions. First, a microscale is selected for each material point in the
macroscale based on predetermined criteria (Section 2.5.1). Second, the mechanical response of that microstructure is analyzed
given the macroscale deformations at that point (Section 2.5.2). A schematic of these processes is shown in Fig. 6, where the local
temperature history and strain history are taken as inputs to a micromechanics model, which then computes local and homogenized
stress/strain responses. In this case several computational homogenizations of the microscale have been conducted. The two most
important are the 𝑙∞ norm of the FIP and the volume average of the stress, with the former being used for fatigue potency prediction
and the later being used to inform the stress response for the concurrent multiscale, as described in detail in Yu et al. (2019). The
performance measurement depends on the property of interest, with two demonstrations given: one for fatigue and one for fracture.
The figure illustrates a fatigue example.

2.5.1. Microstructure selection
To select the microstructure that represents each macroscale material point the relationship described in Appendix B is used to

link solidification cooling rate from thermal model and void volume fraction, following the findings of Wolff et al. (2017). With this
approximation of 𝑉𝑓 , we then assume that any microstructure in the database within 20% of the predicted 𝑉𝑓 has equal probability
of occurring. In this way, the part is described by essentially a Monte Carlo process, where the bounds of the random variable (in
this case the exact configuration of pores bounded by 𝑉𝑓 ) are controlled by the process model. This is shown schematically in the
top right of Fig. 6. in Appendix C gives the detailed algorithm for selecting, for each material point, the entry in the database to
use following the explanation above. Note that because number of images in the current database is smaller than the number of
macroscale material points for the examples shown in Section 3, each image might be selected multiple times in each specimen and
the same database is used for all specimens. In practice, in the demonstrations shown having between about 5 and 10 microstructures
to pick from at random in each point is common, and each microstructure in the database might be selected between zero and
perhaps several hundred times. While a larger database would enable less repetition, and thus allow greater variability and higher
fidelity, this is sufficient to demonstrate our method and generally pore distributions on the microscale might have similar features
(e.g. a linear group of pores caused by insufficient melting, or a large pore caused by melt pool fluctuations).

2.5.2. Microscale mechanical response: reduced order model with crystal plasticity
Once a microstructure is chosen, the reduced order mechanical modeling approach at the microscale is applied. In essence, the

microscale fatigue prediction model used here is the same crystal plasticity material representation as in Kafka et al. (2018), but
calibrated to IN718. The fracture prediction model is more closely tied to the multiscale concurrent system shown in Yu et al. (2019),
which shares the reduced order modeling technology derived from Liu et al. (2016).

Briefly, the method, CPSCA, solves the mechanical equilibrium equations by breaking the problem into two stages. The first
‘‘training’’ stage consists of three steps: data collection (identifying the microstructure), data compression (or clustering), and
computation of the interaction tensor. The resulting interaction tensor is stored for future use. The second ‘‘prediction’’ stage makes
use of the interaction tensor and solves the discretized form of integral equation given in Appendix D subject to an applied strain
state and material law. The overall process is shown for an example entry in the database in Fig. 7.
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Fig. 6. Overview of the solution process for each macroscale material point (in this case, within the dogbone specimen used in the numerical example in
Section 3), the thermal history and strain history are passed to a microscale solver; a microstructure is selected using the relationship described in Appendix B
based on the thermal history, and deformation boundary conditions are applied according to the deformation history. A crystal-plasticity-based microscale solution
is computed, and a homogenized response (e.g. the 𝑙∞-norm of the fatigue indicating parameter for fatigue, or the number of failed clusters for fracture) is
returned to the macroscale.

Fig. 7. The CPSCA process: offline setup and online computations for an example microstructure within the database. The offline steps are run once and the
resulting cluster distribution and interaction tensor are included in database. The online computations are used throughout the simulations to predict stress,
plastic strain, etc.

This first stage is conducted for each of the subset volumes created, adding the clustering and interaction tensor data to the

database of image subsets. This defines the completed ‘‘microstructure database’’. After a part is instantiated (microstructures
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selected from the database for each macroscale point), only the second stage has to be used to compute the mechanical response.
The second stage is very fast to run without the first stage, and can be run any number of times with new, independent stress–strain
histories and boundary conditions without re-running the first state. Thus, different behavior at different points in the macroscale
can be predicted rapidly using the pre-built database of the first stage data. The CP model used here for the second stage takes
as input increments of applied deformation gradient, as defined by the macroscale as boundary conditions at the microscale, and
supplies local stresses and deformation variables (such as the plastic part of the deformation). This is effectively the same paradigm
as is shown in Kafka et al. (2018) and Liu et al. (2018), applied here as at the microscale of a multiscale modeling framework.
The applied deformation gradient, 𝑭 , is multiplicatively decomposed into an elastic and a plastic part, 𝐅 = 𝐅𝑒𝐅𝑝; the plastic part
of the deformation gradient, 𝑭 𝑝, is computed from the plastic velocity gradient (represented as an intermediate configuration, as
described in, e.g., Belytschko et al., 2013) 𝐋̃𝑝, which itself is determined by summing the plastic shear velocity across slip systems
in an intermediate configuration. This plastic shear velocity (in the intermediate configuration) is defined by crystallographic and
materials factors, as:

𝐋̃𝑝 =
𝑁𝑠𝑙𝑖𝑝
∑

𝛼=1
𝛾̇ (𝛼)

(

𝐬̃(𝛼) ⊗ 𝐧̃(𝛼)
)

(2)

where 𝑁slip is the number of slip systems, 𝛾̇ (𝛼) is the shear rate of slip system 𝛼, 𝐬(𝛼) is the slip direction of slip system 𝛼, and 𝐧(𝛼)
is the slip plane normal of slip system 𝛼. The symbol ⊗ describes the dyadic product. A phenomenological power law is used to
define the shear rate for each slip system:

𝛾̇ (𝛼) = 𝛾̇0
|

|

|

|

|

|

𝜏(𝛼) − 𝑎(𝛼)

𝜏(𝛼)0

|

|

|

|

|

|

(𝑏−1)
(

𝜏(𝛼) − 𝑎(𝛼)

𝜏(𝛼)0

)

, (3)

where 𝜏(𝛼) is the resolved shear stress defined by 𝜏(𝛼) = 𝝈 ∶ (𝐬(𝛼)⊗𝐧(𝛼)) where 𝝈 is the Cauchy stress, 𝑎(𝛼) is a backstress that describes
kinematic hardening, 𝛾̇0 is a reference shear rate, 𝜏(𝛼)0 is a reference shear stress that accounts for isotropic hardening, and 𝑏 is the
material strain rate sensitivity. The reference shear stress 𝜏(𝛼)0 evolves based on direct hardening and dynamic recovery terms. The
reduced order model predictions for void deformation in IN718 have been experimentally validated against in-situ XCT tensile test
observations shown in Yu (2019) and Kafka (2019).

In the case of one-way coupling, the full deformation gradient history from the macroscale analysis is passed to the microscale.
Failure is assessed at the microscale, and a single statistic, e.g. minimum number of cycles to failure for fatigue, is used to assess the
variation across the macroscale. The two-way concurrent multiscale coupling is required for convergence of the CP method in the
fracture example, to account for the larger strains. In this case, the entire online portion of the CPSCA is implemented as a custom
user material subroutine that passes the homogenized microscale stress back to the macroscale for each increment of the analysis,
using a modification of the implementation reported in Yu et al. (2019).

2.5.3. Example performance measure: fatigue life
Fatigue life is measured using Shenoy and McDowell’s modification to the Fatemi–Socie fatigue indicating parameter (FIP) (Shenoy

et al., 2007). The formulation is the same, implemented within CPSCA using the same routines as described in Kafka et al. (2018).
In this work the FIP equation is

𝐹𝐼𝑃 =
𝛥𝛾𝑝𝑚𝑎𝑥
2

(

1 + 𝜅
𝜎𝑚𝑎𝑥𝑛
𝜎𝑦

)

, (4)

where 𝐹𝐼𝑃 is the fatigue indicator parameter computed from the maximum of the cycle-to-cycle change of the plastic shear strain,
𝛥𝛾𝑝𝑚𝑎𝑥, the stress normal to 𝛥𝛾𝑝𝑚𝑎𝑥, 𝜎𝑚𝑎𝑥𝑛 , the normal stress factor 𝜅 (assumed to be 0.55 here), and the material parameter yield stress,
𝜎𝑦. A volume averaging region to account for non-locality and set a length scale is set with edge length 𝑙𝑎𝑣𝑔 equal to 10% of the
edge length of the equivalent cube edge length of the total void volume (i.e. 𝑙𝑎𝑣𝑔 = 0.1

∑

(voidVolume)1∕3). The volume averaged
FIP value saturates after a few cycles of loading. For a reference defect-free condition the relationship between maximum FIP and
fatigue is calibrated to literature data for fatigue of IN718 with

𝑁𝐹𝐼𝑃𝑚𝑎𝑥 = 𝛾̄𝑓
(

2𝑁𝑖𝑛𝑐
)𝑐 (5)

where 𝑁𝐹𝐼𝑃𝑚𝑎𝑥 is the maximum non-local FIP, 𝑁𝑖𝑛𝑐 is the number of fatigue incubation cycles, and 𝛾̄𝑓 and 𝑐 are the fitting
parameters. After the law is fit in a separate set of simulations, the fitting constants are used in the concurrent simulations. The FIP,
and subsequent 𝑁𝑖𝑛𝑐 , are computed from the stress and plastic shear strain computed by the crystal plasticity law defined above.

2.5.4. Example performance measure: fracture potency
The fracture potency is estimated by computing the local microscale Lode parameter and stress triaxiaility and comparing that to

a failure criterion applicable to microscale deformations. These measures account for, e.g., pore–pore interaction causing local stress
enhancement. The initiation of fracture during loading is predicted in this way using the multiscale model. Note that this enforces
fracture initiation to occur within one or more microscales, and due to the scale-separation assumption there is no potential for
direct interaction between microscales.
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Table 1
Thermo-physical properties of IN718 (Mills, 2002).

Property Notation (Units) Value

Density 𝜌
(

kg
m3

)

8100
Solidus temperature 𝑇𝑠 (K) 1533
Liquidus temperature 𝑇𝑙 (K) 1609
Specific heat capacity 𝑐𝑝

(

J
kgK

)

360.24 + 0.026𝑇 − 4 × 10−6𝑇 2

Thermal conductivity 𝑘
(

W
mK

)

0.56 + 2.9 × 10−2𝑇 − 7 × 10−6𝑇 2

Latent heat of fusion 𝐿
(

kJ
kgK

)

272

Table 2
Sets of process parameters for thermal analysis of IN718, similar to the experimental values
reported in Bennett et al. (2018).

Parameter set 1 2 3

Laser power, P (W) 1800 1800 1800
Scan speed (mm∕s) 15 10 15
Beam radius, 𝑅𝑏 (mm) 1.5 1.5 1.5
Layer thickness (mm) 0.75 0.75 0.75
Scan strategy zig-zag zig-zag unidirectional

3. Model prediction results: two computational demonstrations

Two example cases, one for fatigue and one for fracture, are given below. Each follow the relevant ASTM standard geometry,
and in both cases a mesh refinement study was conducted to ensure converged results at the macro-scale, where convergence was
estimated both visually in terms of overall stress contours and by measuring the difference in maximum stress and ensuring this
was sufficiently small between the mesh selected and the finest mesh, taken as the reference solution, when using a simple material
model (i.e. Johnson–Cook) at the macroscale. Because of computational expense, a similar mesh refinement was not conducted
using the concurrent multiscale; we assume that a converged mesh using the simple material model will be sufficient also for the
concurrent material model. The maximum image resolution is used at the microscale, and convergence of the reduced order model
has been shown in previous work (Yu et al., 2019).

3.1. Fatigue life prediction

A fatigue specimen conforming to the ASTM E466 standard geometry (ASTM, 2015) is numerically built and tested. The specimen
geometry was meshed with two different hexahedral meshes, for one thermal analysis (the ‘‘thermal mesh’’) and one stress analysis
(the ‘‘stress mesh’’), as shown in Fig. 8. The two meshes are largely the same, except the mesh used for stress analysis is coarsened in
the thickness (𝑧-) direction. This is the build direction, and thus requires at least one element per build layer in the thermal model,
but during the stress analysis the stress and strain are nominally constant through this direction. This may, however, smooth out
some of the variability between process parameters, as SCR was averaged during mesh coarsening. Following the schematic shown
in Fig. 2, this mesh was loaded into both the thermal solver and, slightly modified, in the stress solver.

An in-house thermal FEA solver was used for the thermal model. The thermal properties for IN718 are summarized in Table 1.
For the thermal analysis, two scan strategies were simulated, one with a zig-zag pattern and 90-degree layer-by-layer offset
(Fig. 9(a)) and another with a unidirectional pattern (Fig. 9(b)). Similar scan strategies have been reported in the literature, and our
understanding is such patterns are commonly used in experimental settings (Tabernero et al., 2011; Liu et al., 2011). Two different
sets of process parameters, similar to those used by our experimental collaborators (Bennett et al., 2018) and elsewhere in the
literature Jinoop et al. (2019), are specified in Table 2. The part was meshed and simulated with the gage section aligned normal
to the build direction. A relatively fine mesh with 539216 hexahedral elements (Fig. 8(a), substrate not shown) was used; Fig. 8(b)
shows a detail of the mesh in the narrowest part of the gage section. Simulation times for the thermal analysis were 393.6CPUhours
for parameter set 1, 638.4CPUhours for parameter set 2 (with slower scan speed), and 408.0CPUhours for parameter set 3, running
on 24 Intel Xeon Haswell E5-2670v3 CPUs at 2.3GHz clock speed.

For the macroscale stress analysis of the fatigue coupon, reduced integration hexahedral elements with hourglass control were
used to compute stress and deformation using implicit timestepping. The lower grip was fixed and the upper grip was displaced at
constant displacement rate over four fully reversed load cycles. Several different strain amplitudes with repeated instantiations
at each strain amplitude were run at constant ambient temperature. For the macroscale analysis, the Johnson–Cook plasticity
parameters identified by Farahani et al. (2017) were used as shown in Table 3, although under the fatigue loading specified the
macroscale response was entirely elastic, so the Johnson–Cook plasticity routines were never invoked.

The CPSCA method outlined in Section 2.5.2 was used at the microscale. The parameters for crystal plasticity were calibrated
by minimizing the difference between many runs of a cubic domain consisting of 64 cubic grains and a set of baseline tensile and
cyclic loading data for AM IN718, with starting conditions taken from Cruzado et al. (2017) (for 𝑚 and 𝛾̇0) and Ghorbanpour et al.
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Table 3
Macroscale material properties used for one-way multiscale modeling (fatigue), from Farahani et al. (2017), for the commonly-used Johnson–Cook
material law. The response is fully elastic so these are only included for completeness, and were never used in the computation of this example.

Parameter E (GPa) 𝜈 A (MPa) B (MPa) n m C
Value 177.0 0.273 1108 699.0 0.5189 1.2861 0.0085

Fig. 8. ASTM E466 fatigue specimen with (a) dimension specifications (b) the two meshes and (c) details of the specimen meshes, including the difference
between stress (left) and thermal (right) meshes.

Table 4
Primary crystal plasticity model parameters.

Parameter Value

𝐶11 (MPa) 257,000
𝐶12 (MPa) 127,000
𝐶23 (MPa) 94,000
𝛾̇0 (s-1) 0.0024
𝑚 60
𝜏0 (MPa) 360

Table 5
Fatigue indicator parameter values.

Parameter Value

𝜎𝑦 (MPa) 750.0
𝜅 0.55
𝛾𝑓 0.0059
𝑐 −0.1317

(2017) (for elastic moduli). The resulting model parameters are given in Table 4. The parameters that relate FIP to fatigue life were
fitted to experimental high cycle fatigue data of IN718 collected from literature Kirka et al. (2017), Yan et al. (2003), Texier et al.
(2016), Zhang et al. (2013), Amanov et al. (2015), Chen et al. (2005), Belan (2015), Ma et al. (2010); the final fit parameters are
given in Table 5.

The imaged pores were assumed to be embedded within a single crystal oriented so that the fastest growth direction ([111] for
the fcc matrix) was aligned with the build direction (the Z-direction in the figures). This is consistent with experimental experience
which suggests that grains in IN718 are much larger than the pores and preferentially orientated (Parimi et al., 2014; Moussaoui
et al., 2018). However, this assumption could easily be refined in future work, e.g. to include grains in the microscale representation,
if more information for local grain orientation is forthcoming.

A snapshot of the thermal response for the part being built under one of the scan strategies and processing parameter sets is
shown as contours of temperature in Fig. 10, as an example of the thermal prediction. This thermal prediction progresses through
the full building process for this specimen.

Forty different virtual test specimens, each a different instantiation, were simulated. Each had a slightly different spatial
configuration of defects because of the randomness introduced in the microstructure selection phase. Thus, the estimated fatigue
life varied between specimens.
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Fig. 9. Schematics of the (a) zig-zag and (b) unidirectional scan strategies.

Fig. 10. The continuous radius fatigue test specimen, showing the thermal processing prediction partway through the build. The peak temperature and
temperatures gradients seem physically reasonable, appearing similar to those shown in Bennett et al. (2017).

Each element in the macroscale specimen is represented by an image of a void, represented by a voxel mesh from the database
of microstructures. Thus, each specimen has about 65 billion voxels across all the microstructures. Direct simulation of a system this
large is intractably computationally expensive except, perhaps, on some of the very largest computers, not practical for designers or
practitioners (see for example Rodgers et al., 2018). Using CPSCA at the microscale with 16 clusters in the matrix phase and four in
the pore phase reduces the computational expense, making it possible to run the simulation using a modern workstation computer
(or one node of a cluster computer, in this case). The microscale simulation with CPSCA for each simulation takes about nine hours
using 36 cores in parallel on Intel Xeon Skylake 6140 CPUs at 2.9GHz clock speed (or 324CPUhours). The macroscale solution only
takes a few minutes on 72 of the same CPUs. This run time puts design iteration within the realm of possibility for individuals or
small companies.

The resulting microstructure-based fatigue life predictions are shown in Fig. 11. The plotted points fall on a strain-life curve
showing the overall minimum estimated life for five instantiations of specimens for each of three different load amplitudes for
two different processing conditions. Changing processing conditions changes the solidification cooling rate at each point, and thus
changes the possible microstructures available to represent that point, which in the end changes predicted failure site and number
of cycles to failure.

The results in Fig. 11 demonstrate the key features of this method. The contour plots of the gage sections report an estimated
number of cycles required to cause fatigue crack initiation at each macroscale point in the fatigue specimen; at any given macroscale
point, the microstructure is different between different instantiations (Specimen A versus Specimen B at the top of Fig. 11), which
results in different contours plots. Comparing the microstructures between Specimen A and Specimen B provides the reason behind
this difference: features with higher fatigue potency might, by random chance, occur at the point of highest strain concentration
in one instantiation but not another. This is similar to behavior seen in physical testing (Gong et al., 2015; Johnson et al., 2017;
Gribbin et al., 2016; Sheridan et al., 2018). Note that because of the relatively limited number of microstructures in the database
use for this demonstration, one particular microstructure tends to result in failure throughout the specimens (see Fig. 11).
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Fig. 11. Estimated fatigue crack incubation life for multiple instantiations, with three different applied strain amplitudes. Note that spread in the x-axes represents
run-to-run variability resulting from different microstructures selected for different runs. Also notice that at the two lower strain amplitudes, the zig-zag scan
strategy, which has overall higher void volume fraction due to an overall lower (closer to zero) solidification cooling rate, has slightly lower fatigue life.

A comparison of these results to similar tests conducted by Johnson et al. (2017) for DED IN718 shows similar trends for fatigue
life, although the applied strain levels are quite different. However, the specimen geometries are different: Johnson et al. uses
a constant cross-section geometry, whereas our specimens have a dogbone geometry. The dogbone geometry results in a strain
concentration factor of about ten (see Fig. 6), which when used to compute an effective strain for comparison with Johnson et al.
provides relatively similar results, as shown in Fig. 12. Even when using this effective strain, slope of the two strain-life plots remain
slightly different. This difference can likely be explained by considering that the FIP equation used in these predictions is based on
wrought material data at relatively high cycle regime, which has a relatively low slope. There are factors that may decrease the
high cycle fatigue life for AM IN718 which are not accounted for: Johnson et al. suggests that hard particles (e.g. 𝛿-phase) could
be a driving factor in the high cycle behavior (Johnson et al., 2017); such hard particles were not included in the present model.
Promisingly, the range of the fatigue data is similar between the model and experiment. We expect that more accurate predictions
can be made given better fitting data, if such data were made available to us. To test this hypothesis, we set the two FIP fitting
parameters to 𝛾𝑓 = 3.7 and 𝑐 = −0.85, and observe that the experimental results are reproduced nearly exactly.

3.2. Fracture initiation prediction

A compact tension specimen conforming to the ASTM E399 standard test geometry was simulated using this framework. The
goals of this model are twofold: (1) to show that the fracture initiation point is captured, and (2) to demonstrate that by using
variable microstructures, predicted onset of fracture will vary and thus we can hope to predict and perhaps control fracture onset
in AM builds.

A thermal simulation of the build was conducted with the Z-direction along the build axis with a very fine mesh; the thermal
analysis took 107.0CPUhours on 24 of the 2.3GHz CPUs. A converged mesh, with respect to macroscale stress profiles, for the
mechanical simulation was used for the stress analysis, as shown in Fig. 13(a). There are two elements per build layer, reduced
from five in the thermal mesh. A symmetry boundary condition was applied to the +Z face, and free boundary conditions were
applied on all other surfaces. Two rigid cylinders were used as pins with predefined displacement in the Y-direction and simple
contact to achieve bulk-scale Mode-I-type deformation, roughly modeling common quasistatic experimental conditions (the pins are
not shown in the figures). An initially-blunted crack with root radius 0.254mm was considered, which is more easily processed in
the thermal simulation than a geometry with a sharp crack tip root. A sharp-tip initial configuration is unnecessary, as things like
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Fig. 12. A comparison between predictions (green circles) for parameter set 1 with a ‘‘correction factor’’ to account for strain concentration from the dogbone
geometry and entirely independent fatigue measurements of Johnson et al. (2017). The differences are likely because the FIP for the fatigue data was fit to
wrought material fatigue life and further factors that could be important in the high cycle regime were not included in the present model. By changing only the
fit parameters for FIP, the experimental results can be reproduced, indicating they may be the driving difference. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Compact tension geometry example: (a) mesh, pin loading from rigid pins excluded from this visualization (b) solidification cooling rate prediction.

fracture toughness or propagation are not being measured. The point of the model is rather to highlight the variable nature of the
fracture initiation process given the underlying microscale variability. The same database of microscale voxel meshes of imaged
porosity were used as in the fatigue example.

Because of the larger deformations involved here compared to those in the fatigue problem, the two-way concurrent coupling
method was used for the mechanical solver. A rigorous derivation and details regarding the implementation of the concurrent scheme
for two-scale coupling (used here) and the generalization to many-scale coupling is provided in Yu (2019) and Yu et al. (2019).
Fracture initiation was predicted using the experimentally-determined failure surface described in Appendix E.

Descriptive statistics regarding the initial microstructural configuration are shown in contour plots at the macroscale and
collected in histograms in Fig. 14. Some example statistics that describe the microstructures within a given instance are shown in
Fig. 14. Nearest neighbor distance may be of interest in future, because void spacing may be related to fracture behavior, although
this was not used in the current model as a selection criterion. From a design perspective, a parametric study of the impact of any of
the factors (e.g. using prescribed microstructural geometry) would be possible in the current framework as well. Using FE-CPSCA,
this takes about 23 h on 108 of the 2.9GHz CPUs (or 2484CPUhours); notice that because the two-way coupling is required this is
more expensive than the fatigue example. This is predominately because the time steps have to be much smaller than for the fatigue
example to ensure convergence, but also because the second stage of the SCA prediction may be called multiple times during each
timestep to for the macroscale time stepping scheme to converge, whereas this is not necessary in the one-way coupling used for
the fatigue example.
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Fig. 14. One instantiation of the fracture model. Contour plots of (a) number of pores in the microscale for each element, (b) average pore size for within the
microscale, (c) minimum nearest neighbor distance, (d) average nearest neighbor distance (a value of zero in (c) and (d) indicates only one pore is present); (e)
histogram of minimum nearest neighbor distance, (f) histogram of average nearest neighbor distance.

Fig. 15 shows the results from this fracture initiation simulation. Subset (F) shows the deformed configuration of the compact
tension specimen with YY direction stress contours after 2.896mm of total displacement of the pins in the Y-direction. Note that
some elements at the crack tip have failed, and as a result no longer hold stress (near the center of the blunted crack region). The
contour plot in Fig. 15(G) shows the number of failed cluster in each sub-scale mesh, tracking the progress of damage; several
specific elements are numbered in Fig. 15(C), and the corresponding microstructures are shown in Fig. 15(A–E), colored by the YY
component of the PK1 stress. The microstructures in Fig. 15(A), (B), (D), and (E) have failed regions and thus hold lower load than



Journal of the Mechanics and Physics of Solids 150 (2021) 104350

16

O.L. Kafka et al.

Fig. 15. Concurrent multiscale model for fracture initiation with varying microstructures. (A–E) PK1 YY (or 1 in Voigt notation) stress contours of the microscales
at the elements highlighted in (G); note that some pores interact and cause larger failed zones or increase stresses; (F) contours of stress in the YY direction
after fracture has begun, note ‘‘failed’’ elements with decreased stresses at crack tip; (G) map showing the prevalence of failure, the color shows the number of
clusters failed at the microscale, 0 = no failures, 20 = completely failed. The variation of fracture potency depends on local deformation and the microstructure
expressed at that material point.

(C), which has not had any clusters in the microstructure fail. As with the fatigue example, different instances of the model result
in different fracture locations.

4. Discussion and findings

The novel contributions of this work is the use of data-driven multiscale modeling to capture the effect on mechanical
performance of random, as well as potentially systematic, and processing-history based changes in microstructure. Although
currently not designed to represent one particular AM system, the model includes a mix of deterministic and random factors, such
that the results vary between different runs with the same build conditions and between build conditions. In some respects, this
might be classified as a digital twin, while a focus on other aspects of the model might align in more closely with an uncertainty
estimation, or quantification of uncertainty. In either case, the contribution is a mechanistic method that directly computes the effect
of a heterogeneous distribution of different defects on mechanical performance metrics of interest such as fatigue life and fracture
initiation potency. This is particularly relevant to additively manufactured materials, because such defects are inhomogeneously
distributed, confounding typical representative volume or other homogenization type methods, and in some cases limit the strength
of the material, e.g. are responsible for reduced fatigue lives. Thus, we have demonstrated the method using images of voids from
AM metal and simulated processing conditions.

More conventional, and simpler, methods such as the critical or rogue flaw approaches most often assume that a single most
dangerous defect or flaw exists and will cause failure. On this basis, expected life can be defined in terms of the highest stress
location in combination with the largest, or worst, defect. This usually provides a suitably conservative estimate for highly safety
critical applications. However, for AM, selecting what the worst defect is may not necessarily be obvious. Moreover, enforcing a
conservative estimate without being able to adjust the method to represent varying levels of confidence may not be desirable for
AM applications were weight and efficiency matter.

In a practical design for fatigue setting, the proposed model would provide a probabilistic paradigm, while also being sensitive
to critical defects. Although unlikely to replace safe life design using the critical defect method for highly safety critical components
due to its added complexity, the current method represents a mechanistic approach to incorporate statistical variability and directly
represent different possible defects any of which may be the critical one depending on the specific stress states and geometries
involved. The method might be thought of as a generalization of the critical defect methodology. Consider a limiting case that a
single defect is included in the model, i.e., the database has a single entry that is selected a priori. The predicted fatigue life would
be the same as a ‘‘critical defect in the critical location’’ analysis using the same FIP framework, assuming the selected defect is the
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Table 6
Selection of key parameters describing the contents of the offline database and
the computational savings of the reduced order model.

No. of sub-images 320
Void volume fraction range 0.01% to 4.5%
Pore sizes About 2 μm3 to 4.2 × 104 μm3

Grid size (voxel mesh) 150 × 150 × 150
No. of voxels per image 3375000
Voxel edge length 0.65 μm
Volume of each image 9.27 × 105 μm3

No. of clusters per image 20
Clusters based on K-means on elastic strain

Table 7
Table describing the most relevant numerical details of the fatigue problem.

Macroscale solver Implicit FE
Maximum timestep 0.1 s
No. of macroscale elements 19020
No. of macroscale nodes 25010
Macroscale element type Reduced integration hex
Hourglass control type ‘‘Enhanced’’
Total strain rate 1 × 10−4 s−1

Deformation profile Cyclic triangle waveform
Macroscale material model Johnson–Cook (macroscale is elastic)
Microscale solver CPSCA (deformation BCs)
Total no. of voxels (micro) 19020 × 1503 = 64.2 × 109

Total no. of clusters (micro) 380400
Concurrent coupling technique One-way
Compute time (36 CPUs) About 360CPUhours

Table 8
Computational details of the fracture initiation problem.

Macroscale solver Implicit FE
Static stabilization parameter 0.0002
Maximum timestep 0.001 s
No. of macroscale elements 6220
No. of macroscale nodes 7245
Macroscale element type Reduced integration hex
Hourglass control type ‘‘Enhanced’’
Contact (for pin loading) Hard pressure overclosure
Total displacement rate 0.4mm∕s
Displacement profile Monotonic opening
Macroscale material model Concurrent multiscale
Concurrent coupling technique Two-way
Number of macroscale state variables 1543
Microscale solver CPSCA (as user material at microscale)
Total no. of voxels (micro) 6220 × 1503 = 64.2 × 109

Total no. of clusters (micro) 124400
Total no. of pores (micro) 54655 for the realization shown
Compute time (on 108 CPUs) 2484CPUhours

critical defect, and the critical location is correctly determined for the critical defect analysis. This could benefit settings in which
design for mean performance is more appropriate, or in topologically optimized geometries with highly variable stress states and
geometry.

There are a number of facets that warrant further discussion and continuing refinement. One important aspect of the model is the
efficiency of the reduced order model, and the enabling effect this has upon the simulation process. An overview of the complexity of
the different models constructed here: the scale of the problem and dimension reduction achieved, is shown in Table 6 for database
generation step, Table 7 for the fatigue problem and Table 8 for the fracture problem. The scale of the problem at the part scale
makes what we have achieved – direct, mechanistic representation of microstructures – unique given the limited computational
effort expended.

The method currently makes use of descriptors that connect processing conditions to selection of a microstructure that
represents that condition. One of the simplest possible approximations is made here, but further refinement is possible. The thermal
model and microstructure descriptors could be enhance, for example. An improved metric or relationship, perhaps requiring a
thermal/multiphase flow model with more advanced capabilities, would allow the system to more accurately capture physical
reality. For example, a measure of distribution of porosity within each microstructure (i.e. if it is one large pore or many small
ones) such as nearest neighbor distance might be used in addition to 𝑉𝑓 if such information were available from the process model;
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another option would be to include neighborhood information, e.g., with a two-point correlation function as has been done in
classical literature for elastic homogenization problems.

The microstructures used here do not explicitly capture surface effects for the microstructural fatigue behavior. For example,
a pore on the microscale near the surface of the part might have an larger impact on fatigue performance than that same pore in
the bulk material. While the macroscale effects of the boundaries are naturally included, this small scale interaction is a matter of
ongoing work. Some authors, Yadollahi and Shamsaei (2017), suggest that there is limited change in overall fatigue life, up to the
high-cycle limit (runout), for as-built versus machine-finished specimens; this may indicate the assumption made here is reasonable,
but this is controversial as other authors suggest that the lower surface roughness of machine-finished specimens increases fatigue
life (Gockel et al., 2019).

In addition, the database used here contained only 320 possible microstructures. Thus, each microstructure was repeated many
times throughout a given macroscale. This implies that the likelihood of the critical flaw (or worst-case microstructure) occurring
within the most highly stress area of the specimens is quite high. This artificially decreases the observed fluctuations in fatigue
life. Some relationship between the number of sub-scale microstructures required in the database and either the range of SCR or
the region of the critical volume for failure could be developed to support this framework. Generally, the test of an adequately-
sized database might involve comparing macroscale measures of predictiveness between standard experiments and models with an
increasing number of microstructures until the values and variability of the simulated results were within those of the experiments.
Such parameters could be probability of failure curves in fatigue or displacement at failure in fracture, for example. Ideally, a fixed
distribution of microstructures throughout the range of thermal conditions would be maintained so as to avoid adding another
biasing factor when changing the database size.

A simplifying assumption for the grain structure (single crystal at the microscale) was also used for this demonstration; however,
we could add a step that either predicts the grain structure from the thermal history, as we demonstrated in Yan et al. (2018a), or
derives a grain structure from experiments if more of that data were available. Prior modeling results, Yan et al. (2018a) and Cheng
et al. (2020), indicate that grains generated this way could substantially impact predicted plastic deformations and fatigue lives
when used in concert with image-based pore geometries.

An implicit assumption of all the images used here is that the hatch spacing and laser power were appropriate to avoid lack-of-
fusion defects between tracks. Because, as one will recall, the images used to make the database came from single-track, thin-wall
builds, where no between-track porosity would be possible. This assumption could easily be relaxed by including images of pores
from more general build conditions in the database. Furthermore, all volumes are assigned such that the build direction in the
simulation aligns with the build direction of the imaged material. Changing the orientation of the images would alter the direction
of load with respect to the voids/defect clusters, and thus potentially alter the fatigue and fracture behavior.

Although for this demonstration we assume that pores always occur and dominate the failure response, this is not a necessary
assumption of the method — given sufficient characterization data of the processed material, many classes of microstructure might
be used with this framework. For example, grain and pore combinations could easily be used (an implementation exists) to account
for the effects of grain boundaries and polycrystalline mechanics in general, as mentioned above. Another possible example would be
to include a description of the dislocation cells or overall density (possibly much more prominent in AM materials than conventional
materials Yan et al., 2018b), or other phases such as strengthening precipitates.

Development of a benchmark for fatigue and fracture prediction in AM would support these modeling efforts. Currently,
conflicting reports of the influence of AM, versus conventional processing, on the fatigue properties of metals exist. For example,
compare DED material tested by Johnson et al. (2017) and selective laser melting (SLM) material reported in Witkin et al. (2019).
This can in part be attributed to the wide range of materials, but also to a range of build processes and choices made by machine
operators. This makes it challenging to develop reliable, generalizable models. In order to calibrate the models fully, in addition to
the material properties some data regarding fatigue life is required to compute the fitting factors in the FIP. For the failure model,
a local measure of failure potency is needed — in this case, we used failure surface in terms of effective plastic strain at a given
stress triaxiality and Lode angle. Experiments that deduce this relationship are necessary. If further developments include fracture
progression in addition to initiation, some measure of separation energy or another factor related to the ductile failure may be
required as well (currently, a simple assumption for post-failure behavior is used to avoid this).

Finally, although the various tools have been validated, experimental verification of the prediction results is ongoing. As shown
for the fatigue results, access to data with which to fit the FIP predictions is critical for an accurate prediction of fatigue life. Fatigue
and fracture experiments that are directly comparable with the predictions made in these demonstrations are under development,
and we hope will improve accuracy and provide more direct comparisons. Although some experimental results in the literature
(Gong et al., 2015; Shamsaei et al., 2015, or Beretta and Romano, 2017) might give some confidence that the trends we identify
are reasonable, more specific comparisons would require specifically designed experiments.

5. Summary and conclusions

We have presented a method that exploits computationally efficient micromechanics techniques to perform Monte Carlo-style
sampling with numerical experiments, using XCT images of real AM microscale pores. The specific microscale solutions are derived
from a cluster-based solution of the Lippmann–Schwinger equation, and involve the prediction of fatigue life using crystal plasticity
and a fatigue indicating parameter. A database of possible microscale geometries is developed from 3D imaging experiments.
These geometries are related to AM processing conditions through the solidification cooling rate, and a process- and microstructure
dependent, stochastic prediction of fatigue life and fracture initiation are achieved with reasonable computational expense.
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There are two key innovations here. First, the microstructure varies spatially within a part, specifically according to a process
model. This is unusual in concurrent multiscale modeling approaches. This means that fluctuations in performance can be captured;
which may enable more realistic modeling of the variability that occurs due to localized material processing such as AM than
what might be accomplished with metamodels or other ways of capturing variability. This is a fundamental contribution to the
field, introducing an innovative mechanistic microstructural volume element-based computational framework that moves beyond
the current representative volume element paradigm. Second, experimental 3D images of the microstructures of interest are used
directly. Use an image database for concurrent multiscale modeling does not, to the best of our knowledge, appear elsewhere in the
literature. This provides the variability needed for the first innovation and involves higher fidelity material representation, because
simplified geometric representation commonly used for multiscale, reduced order, or homogenization type problems are avoided.
The method can also be used to select microstructures that result in greater fatigue life or fracture resistance, with direct, physical
representation of the underlying mechanics that control the process.

One possible future direction is simulating the effects of functionally graded or otherwise designed or planned heterogeneity
on overall or local mechanical performance. Several papers in recent years have claimed to be able to achieve some control
of microstructure by controlling heat input and scan strategy or adding other mechanisms to the build processes such as bulk
heating/cooling or vibration. For example, Dehoff et al. (2015) showed that site specific columnar versus equiaxed growth can be
achieved. While this was for a different material and process, it shows that there may be hope in controlling the local properties
through specific choices in the processing history. This control may also be possible for defects, at least in some capacity, e.g. by
avoiding scan strategies that put a higher chance of defects at a fatigue- or fracture-critical location. What we have shown in a
method capable of capturing the impact of these kinds of site-specific microstructure factors (specifically we have studied voids,
although the method is not limited to single-crystals and voids alone).

The complex method here could also be simplified or used to inform a simplified method in several ways. For example, the
database could be constructed with representative classes of defects, rather than directly from images, reducing the experimental
requirements of the method. Alternatively, learnings from this method could be used to inform and develop simplified modeling
approaches that empirically implement similar ideas in a more tractable environment, such as by using similarly varying physically-
inspired evolution equations in a continuum damage mechanics framework, rather than directly representing images of defects and
crystallographic effects.

Another possible example is by integrating our method with microstructure-aware topology optimization, such as Li et al.
(2019a). Finally, while the relationship shown here to connect the outputs of the processing model with microstructures, using
the solidification cooling rate, is tenuous and not well validated, in future we can easily replace this with a validated mechanistic
or physical relationship, should a better one become available.
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Appendix A. Thermal model equations

The governing heat transfer energy balance to be solved is:

𝜕𝜌𝑐𝑝
𝜕𝑡

= 𝜕
𝜕𝑥𝑖

(

𝑘 𝜕𝑇
𝜕𝑥𝑖

)

(A.1)

where 𝜌 is the material density, 𝑐𝑝 is the specific heat, 𝑡 is the time, 𝑥𝑖 are the spatial coordinates, 𝑘 is the conductivity of the
material, 𝑇 is the temperature. Note that this model only capture heat conduction within the material. While this is a simplification,
prior studies such as that by Heigel et al. (2015) show that conduction is the dominant mode of heat transfer in DED.

A heat source 𝑄 is used to represent a moving laser. It is modeled using a moving boundary condition to apply a surface flux
described by the Gaussian distribution:

𝑄 =
2𝑃𝜂
𝜋𝑅2

𝑏

exp

(

−2
(

𝑥2 + 𝑦2 + 𝑧2
)

𝑅2
𝑏

)

(A.2)

where 𝑃 is the power of the laser, 𝜂 is an absorptivity factor to limit the amount of energy absorbed by the material from the laser
which was taken to be 30%, and 𝑅𝑏 is the radius of the laser. The variables 𝑥, 𝑦, and 𝑧 are local coordinates of the laser. Heat loss
on the dynamic free surfaces of the model is simulated though a combination of convection and radiation. Convective heat loss is
defined by

𝑞𝑐𝑜𝑛𝑣 = ℎ𝑐
(

𝑇 − 𝑇∞
)

(A.3)

where ℎ𝑐 is a convection coefficient and it was taken to be 10 𝑊
𝑚2𝐾

, 𝑇 is the surface temperatures, and 𝑇∞ is the far-field (ambient)
temperature. Radiative heat loss is defined using the Stefan–Boltzmann law, given by

𝑞𝑟𝑎𝑑 = 𝜎𝑠𝜀
(

𝑇 4 − 𝑇 4
∞
)

(A.4)

where 𝜎𝑠 is the Stefan–Boltzmann constant and 𝜖 is the surface emissivity of the material, which was taken to be 40%. Eqs. (A.1),
(A.2), (A.3), and (A.4) are implemented within a custom finite element code optimized to solve these equations efficiently.

Appendix B. Relate thermal model outputs and defects

Relating process model results to material defects is an developing field of research, and constructing such a relationship is not
the focus of this work. Thus, we simply use the exponential relationship between solidification cooling rate (SCR) and void volume
fraction (𝑉𝑓 ) identified by Wolff et al. (2017) as

𝑉𝑓𝑟𝑎𝑐 = 𝐴𝑒−(𝐵)(𝑆𝐶𝑅). (B.1)

The parameters in Eq. (B.1) are fit to thermal and porosity data from two thin wall DED builds as 𝐴 = 0.0047 and 𝐵 = −0.0011
and 95% confidence bounds of (0.00385, 0.005537) and (−0.00194, −0.0001895) respectively. For the current set of AM builds we
were unable to find a more highly correlated relationship (with a closer interval) to predict 𝑉𝑓 from thermal results, which may
indicate a limitation in general for the such an empirical correlation.

Although further research is needed to improve the correlation it suffices for the purposes of this study, which focuses upon the
structure-properties relationship enabled by image-based reduced order modeling. Similar relationships, where factors that govern
thermal history are related to porosity, are made elsewhere e.g. Kasperovich and Hausmann (2015), and could be substituted in
practice as needed or if a much more convincing relationship is identified in future work.

Appendix C. Microstructure selection algorithm

The step-by-step process for selecting each microstructure given all necessary information is as follows.

Box 1: Algorithm for microstructure selection
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1. Initial data

(a) Load SCR data (on the mesh defined for the thermal simulation)
(b) Load stress mesh (the mesh used for stress analysis at the macroscale)
(c) Load microscale database

2. For each element in stress mesh:

(a) Compute average SCR for element
(b) Compute volume fraction 𝑉𝑓 from SCR with Eq. (B.1)
(c) Find all microstructures in database within ±20% of that 𝑉𝑓

(d) Pick 1 microstructure at random from the available microstructures (those within 20%)
(e) Otherwise, if no microstructure are within ±20%:

i. if 𝑉𝑓 > maximum 𝑉𝑓 : pick 1 microstructure at random from 5 special ‘‘large 𝑉𝑓 ’’ options
ii. if 𝑉𝑓 < minimum 𝑉𝑓 : pick 1 microstructure at random from 5 special ‘‘small 𝑉𝑓 ’’ options

After each element has a microscale assigned, begin two-scale modeling:

• If one-way model: solve response of each microscale with pre-computed stress-history at each point
• If two-way model: in macroscale user material, load in all microscale data, store in an element-by-element 2D and 3D arrays and

access each elementÃćâĆňâĎćs data as needed (e.g. 𝑉𝑓 is stored with one entry per phase per element in a 2D array 𝑣𝑓 (𝑛𝑃 , 𝑛𝐸𝑙𝑒𝑚),
where 𝑛𝑃 is the number of clusters and 𝑛𝐸𝑙𝑒𝑚 is the number of elements in the stress mesh)

Appendix D. Lippmann–Schwinger equation for reduced order modeling

This method has been described in detail elsewhere; the interested reader is directed to Kafka et al. (2018), Shakoor et al. (2018)
and Yu et al. (2019) for further information. If we define the equilibrium mechanical response problem in a finite strain setting in
the undeformed configuration, as Yu et al. (2019), we arrive at:

⎧

⎪

⎨

⎪

⎩

𝜕𝐏
𝜕𝐗 = 𝟎,∀𝐗 ∈ 𝜴,
𝐅 = 𝜕𝐮

𝜕𝐗 ,∀𝐗 ∈ 𝜴,
1
|𝜴|

∫𝜴 𝐅d𝜴 = 𝐅0,
(D.1)

where 𝐏 is the first Piola–Kirchhoff stress, 𝐅 is the deformation gradient, 𝐮 is the displacement, and 𝐗 is a material point within
domain 𝜴. Similarly, this can be written in small strain, where the Cauchy stress and strain are used as fundamental variables, as
in Kafka et al. (2018). Following Yu et al. (2019), if we assume periodic boundary conditions and far-field pure deformation loading
conditions, Eq. (D.1) can be shown to be equivalent to the Lippmann–Schwinger equation given by:

𝐅(𝐗) + 𝜞 0 ∗
(

𝐏(𝐗) − 𝐂0 ∶ 𝐅(𝐗)
)

− 𝐅0 = 𝟎,∀𝐗 ∈ 𝜴 (D.2)

where the 4th order Green’s operator, 𝜞 0, is associated with an arbitrary reference stiffness tensor 𝐂0, and ∗ denotes the convolution
operation.

To achieve a reduced order approximation of the solution, we use an arbitrary set of sub-domains within the full domain, rather
than the original mesh. To define the sub-domains, or clusters, that achieve high prediction accuracy, clustering is based on a training
dataset. Here, we choose either the strain concentration tensor, 𝐀𝑚 defined by 𝜺𝑚(𝐗) = 𝐀𝑚(𝐗) ∶ 𝜺, 𝐗 ∈ 𝜴 (as in Kafka et al., 2018,
where 𝜺𝑚(𝐗) is the local strain at point 𝐗 and 𝜺 is the remote applied strain) or, if a finite deformation setting is used, the deformation
concentration tensor , as defined by 𝐀(𝐗) = 𝜕𝐅(𝐗)

𝜕𝐅0 ,∀𝐗 ∈ 𝜴 (as in Yu et al., 2019). For each phase in the material, voxels with similar
𝐀𝑚 are assigned to one of a predetermined number of clusters 𝐼 = 1… 𝑘 using 𝑘-means clustering (MacQueen et al., 1967).

Eq. (D.2) can be defined cluster-wise and applied to the cluster data, where the solution variables are assumed to be constant in
an given cluster. In the finite deformation formulation, derived in Yu et al. (2019) and given as:

𝐅𝐼 +
𝑁c
∑

𝐽=1
𝐃𝐼𝐽 ∶

[

𝐏𝐽 − 𝐂0 ∶ 𝐅𝐽 ] − 𝐅0 = 𝟎,with 𝐼 = 1,… , 𝑁c, (D.3)

where 𝐅𝐽 is the deformation throughout cluster 𝐽 , 𝐏𝐽 is the stress in that cluster, and 𝑁c is the total number of clusters. The so-called
interaction tensor, 𝐃𝐼𝐽 , is defined in Eq. (9) of Yu et al. (2019). The cluster-wise Lippmann–Schwinger equation given in Eq. (D.3)
is solved using the techniques described in Yu et al. (2019).

Appendix E. Failure surface for fracture initiation
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To estimate fracture initiation locally within each cluster at the microscale, we choose to measure the local plastic strain, and
compare that value to a ‘‘critical failure strain’’ reported from measurements of fracture surfaces of wrought IN718 in a thesis
by Ressa (2015) in terms of the Lode angle parameter and stress triaxiality at failure (𝑇𝐹 ). The critical failure strain was fit with a
polynomial surface to experimental data points, as given by

𝜖𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.6975 − 0.02614(𝜃̄) − 0.8662(𝑇𝐹 )

− 0.03889(𝜃̄)2 − 0.1643(𝜃̄)(𝑇𝐹 ) + 0.4206(𝑇𝐹 )2

+0.4206(𝑇𝐹 )3 − 0.1934(𝜃̄)2(𝑇𝐹 ) + 0.249(𝜃̄)(𝑇𝐹 )2 (E.1)

where 𝜃̄ is the Lode angle parameter and 𝑇𝐹 is the triaxiality. The general construction for Eq. (E.1) is suggested by Ressa (2015),
although this fit to the data was conducted in the present study. A simple weakening factor was further applied; after a microscale
cluster is marked as ‘‘failed’’ according to its stress state, it remains failed and for every subsequent increment its stiffness is
homogeneously reduced by a factor 5% greater than the previous factor starting at zero and increasing until 95%, effective removing
its load-bearing capability shortly after failure. This ‘‘progressive’’ failure helps the computational stability of the microscale solver,
but eventually (once enough elements fail) on the macroscale the implicit FEA encounters convergence difficulties and is halted.
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