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Abstract

We introduce the notion of Léwner (ellipsoid) function for a log-concave function and
show that it is an extension of the Lowner ellipsoid for convex bodies. We investigate
its duality relation to the recently defined John (ellipsoid) function (Alonso-Gutiérrez
et al. in J Geom Anal 28:1182—-1201, 2018). For convex bodies, John and Loéwner
ellipsoids are dual to each other. Interestingly, this need not be the case for the John
function and the Lowner function.
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1 Introduction

Asymptotic convex geometry studies the properties of convex bodies with emphasis on
the dependence of geometric and analytic invariants on the dimension. The convexity
assumption enforces concentration of volume in a canonical way and it is a main
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question if under natural normalizations the answers to fundamental questions are
independent of the dimension.

The most classical normalizations of convex bodies arise as solutions of extremal
problems. These normalizations include the isotropic position, which arose from clas-
sical mechanics of the 19th century and which is related to a famous open problem
in convex geometry, the hyperplane conjecture (see, e.g., the survey [29]). The best
results currently available there are due Bourgain [11] and Klartag [28].

Other positions are the John position, also called maximal volume ellipsoid position
and the Lowner position, also called minimal volume ellipsoid position. The right
choice of a position is important for the study of affinely invariant quantities and
their related isoperimetric inequalities. For instance, John and L&wner position are
related to the Brascamp—-Lieb inequality and its reverse [8,10], to Ball’s sharp reverse
isoperimetric inequality [9], to the notion of volume ratio [45,47], which is defined
as the n-th root of the volume of a convex body divided by the volume of its John
ellipsoid and which finds applications in functional analysis and Banach space theory
[12,21,42,47]. John and Lowner position are even relevant in quantum information
theory [5,6,46]. Since a position may be seen as a choice of a special ellipsoid, and
since an ellipsoid entails a Euclidean structure of the underlying space, John and
Lowner ellipsoids provide a way to measure how far a normed space is from Euclidean
space [22,26]. For a detailed discussion of the John and the Lowner ellipsoid and its
connections to functional analysis we refer the reader to [2,13,41] and the survey [25].

John proved in [26] that among all ellipsoids contained in a convex body K € R",
there is a unique ellipsoid of maximal volume, now called the John ellipsoid of K.
The Lowner ellipsoid of K is the unique ellipsoid of minimal volume containing K.
These two notions are closely related by polarity (see, e.g., [13,33]): A O-symmetric
ellipsoid £ is the ellipsoid of maximal volume inside K if and only if £° is the ellipsoid
of minimal volume outside K°, where K° = {y e R" : (y,x) <1 forall x € K}is
the polar of K.

Probabilisitic methods have become extremely useful in convex geometry. In
this context, log-concave functions arise naturally from the uniform measure on
convex bodies. A function f(x) is said to be log-concave, if it is of the form
f(x) = exp(—¥(x)) where ¥ : R" — R U {00} is convex. Extensive research
has been devoted within the last ten years to extend the concepts and inequalities
from convex bodies to the setting of functions. In fact, it was observed early that the
Prékopa-Leindler inequality (see, e.g., [20,37]) is the functional analog of the Brunn—
Minkowski inequality (see, e.g., [19]) for convex bodies. Much progress has been
made since and functional analogs of many other geometric inequalities were estab-
lished. Among them are the functional Blaschke-Santal6 inequality [3,7,17,32] and
its reverse [18], a functional affine isoperimetric inequality for log-concave functions
which can be viewed as an inverse log-Sobolev inequality for entropy [4,14] and a
theory of valuations, an important concept for convex bodies (e.g., [24,30,31,43,44]),
is currently being developed in the functional setting, e.g., [15,16,36].

It was only recently that the notion of a John (ellipsoid) function of a log-concave
function was established by Alonso-Gutiérrez et al. [1]. However, the notion of a
Lowner ellipsoid function for log-concave functions has been missing till now. In this
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paper we put forward such a notion and we investigate, among other things, its relation
to the John ellipsoid function of [1].

Our main result reads as follows. We denote by A the set of all invertible affine
transformations and by || - || denote the Euclidean norm on R”. We say that a function
is nondegenerate if int(supp f) # 0.

Theorem Let f : R" — R be anondegenerate integrable log-concave function. There
exists a unique pair (Ag, ty) € A x R such that

/ e—llAoxla+o gy — min {/ e IAxlatigy e ROA € A, e IAxI2H > f(x)}.

The uniqueness of Ao is up to left orthogonal transformations.

We then call e~ 140¥l12+%0 the Lgwner function of f and denote it by
L(f)(x) = e llAoxl2+0

The function L(f) is a functional analog of the Lowner ellipsoid for log-concave
functions. Indeed, we show that if 1 g (x) is the characteristic function of a convex
body K € R”", then the super-level set {L(1 g) > 1} is exactly the Lowner ellipsoid
of K. If, in addition, O is the center of the Lowner ellipsoid of K, then it holds by
polarity via the Legendre transform that the polar of the Lowner function is the John
function of (1 g)°. This is the exact analog of the above quoted polarity relation of
John and Lowner ellipsoids for a convex body and its polar. While in the case of convex
bodies the two notions of John and Lowner ellipsoid are always dual to each other,
interestingly, in the functional setting this need no longer be the case. It holds when
the functions are even or characteristic functions of convex bodies.

The paper is structured as follows. In Sect. 2 we introduce the basic facts and
preliminaries. In Sect. 3.1 we define the notion of Lowner function L(f) for a log-
concave function f and we prove its existence and uniqueness. In Sect. 4, we recover
the John function of [1] and discuss the duality between these two notions.

2 Notation and Preliminaries

Throughout the paper we will use the following notations. The set of all non-singular
affine transformations on R” is written as A,

A={A=T+a:T € GL(n),a € R"}.
Let S be the set of symmetric positive definite matrices. Then
SA={A=T+a:T € S;,aecR"}.
For b € R" fixed, put

Ab)={A=T+a:T € GL(n),a € R", T 'a =b).
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Let SA(b) = A(b) N SA. Clearly, A = Upern A(b) and SA = Upcrn S A(D).

The action of an affine transformation A : R” — R” on a function f : R* — R is
defined as Af (x) = f(Ax).

For z € R", let S; be a translation of a function by z, that is, for a function f,

(S )x) = fx+2) (D
For s € R and a function f : R” — R, we denote by
Gr(s) ={x eR": f(x) = s}

the super-level sets of f.

2.1 Log-Concave Functions

A function f : R” — R is said to be log-concave if it is of the form f(x) = e V™)
where ¥ : R" — R U {oo} is a convex function. We always consider in this paper
log-concave functions f that are integrable and such that f is nondegenerate, i.e.,
the interior of the support of f is non-empty, int(supp f) # @. This then implies that
0 < [gn fdx < o0.

We will also need the Legendre transform which we recall now. Let z € R" and let
Y R" — R U {oo} be a convex function. Then

Lp(y) = sup[(x —z,y —2) = ¥(x)]

xeR”

is the Legendre transform of y with respect to z [3,18] . If f(x) = e Y™ is log-
concave, then

e—(x—z,y—z)

inf ———— = 5VO) )
xesupp(f)  f(x)

ffy) =

is called the dual or polar function of f with respect to z. In particular, when z = 0,

—(x.y) ’
inf — e olﬁ(y)’
xesupp(f) f(x)

e =

where Lo, also denoted by £ for simplicity, is the standard Legendre transform.

In the next proposition we collect several well known, easy to verify, properties of the
generalized Legendre transform that we will use throughout the paper. They can be
found in e.g., [3,17].

Proposition 1 Let  be a convex function. Let S, be as in (1). Then

(i) L and L, are involutions, that is, L(LY) = ¥ and L,(L;¢) = .
(i) L, =S_;0Lo0S..
(i) L(S:¥)(y) =LY — (2, y).
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(iv) Legendre transform reverses the oder relation, i.e., if Y1 < Y, then Ly > L.

We now list some basic well-known facts on log-concave functions. A log-concave
function is continuous on the interior of its support, e.g., [39].

We include a proof of the first fact for the reader’s convenience. More on log-concave
functions can be found in e.g., [39].

Fact1 If f is a nondegenerate integrable log-concave function, then G ¢(t) is convex
and compact for 0 <t < | flco-

Proof Let f =e~ V. As 1 is convex and as f is nondegenerate, the super-level set
Grt)={x:f(x)>t}={x: -y >logt} = G_y(log?)

is convex and closed for all 0 < ¢ < || flloo- AS G ([ flloc) € Gf(?),YVO0 <t <
| flloo, it remains to show that G ¢(¢) is bounded for 0 < t < || fllco. It follows
from Theorem 7.6 of [39] that every super-level set G ¢(t), 0 < t < || fllco, has the
same affine dimension as the support of f, which has affine dimension n. Chebyshev
inequality then yields

vol, (G ¢ (1)) = vol, ({x eR": f(x) > t}) < ||];||1 o

Since G 7(¢) is a full dimensional convex set with finite volume, it is bounded. There-
fore, G 7 (¢) is compact for 0 < ¢ < || flco- m|

The following fact is a direct corollary of the functional Blaschke-Santal6 inequality
[3,7] and the functional reverse Santal$ inequality [17,27].

Fact2 Let f = e~V be a nondegenerate, integrable, log-concave function such that
0 is in the interior of the support of f. Then f° is again a nondegenerate, integrable
log-concave function and thus 0 < fRn f°(x)dx < oo. Furthermore, f* is again a
nondegenerate, integrable log-concave function, i.e., 0 < fR” fA(x)dx < oo, pro-
vided that z is in the interior of supp(f).

3 The Lowner Function of a Log-Concave Function

We now define the Lowner function for an integrable, nondegenerate, log-concave
function f =e~ V.

3.1 A Minimization Problem. Definition of the Lowner Function

We consider the following minimization problem

min/ e IAxl2H7 g 3)
(A1) Jpn
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subject to
|Ax|lo —t < ¥(x), forallx € R", 4)

where the minimum is taken over all nonsingular affine maps A € Aandallt € R. A
change of variables leads to

t

e Ilagy
| det A| R~

min e I1AxI2H 4y — min e’ e 1Axl2qy — min
(A) Jgn (A1) 0 (A1)
t

e
= n! vol(B}) min ———.
(B2) (A,) | det Al

Geometrically this means that we minimize the integral of an ellipsoidal function
e~ IAxl247 “outside” £ which is exactly what is done when one considers the Léwner
ellipsoid of a convex body K : it minimizes the volume of the ellipsoids containing K.
The next theorem is the main result of this section.

Theorem 1 Let f : R" — RY, f(x) = e V) be a nondegenerate, integrable log-
concave function. Then there exists a unique solution modulo O (n) to the minimization
problem (3) and (4). That is, there exists a pair (Ao, to) satisfying (4) such that

o

min/ e 1A%+ 4y = n! vol(BY) ———.
\ [det Ag]

(A JRr

The number ty is unique and the affine map Ag is unique up to left orthogonal trans-
formations.
We then call e~ 140X12%0 the Lowner function of f and denote it by

L(f)(x)= C_HAO}CHZ"FI()‘

Examples
1. The Lowner function is an extension of the concept of Lowner ellipsoid for convex
bodies. Indeed, let

oo, x ¢ K,

f(x) =1g(x) =e K& where Ig(x) =
0, xeKk,

be the characteristic function of a convex set K C R". Without loss of generality we
may assume that O is the center of the Lowner ellipsoid L(K) of K. Then

Lg)(x) = e_"(HTE(IK)xIlz—l) .

El

where T (k) is the linear map such that Ty (x)BY = L(K). To see this, observe that
for A € A, t € R, the level sets of the map ¢(x) = ||Ax||, — ¢ are ellipsoids. As 0 is
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the center of the Lowner ellipsoid of K, A = T + a is such that @ = 0. Thus we get
in particular, that the level set

{x:19(x)=0}={x:|Txl=1}=1T""Bj.

As we require that || Ax|j — ¢ < 0, for all x € K, the smallest ellipsoid that satisfies
this is the Lowner ellipsoid L(K) of K, i.e., ¢ T_lBg = L(K). Thus

vol, (B})

|detT| =" — 27
vol,, (L(K))

and min(r ﬁ is achieved for 19 = n. This means that Ty = nTL_(}() and hence

L(1g)(x) = e_”<”T[<1K)XHz—1).
2. It is easy to see that the Lowner function of the Gaussian g(x) = e—IIx13/2 ig given
by

L(g)(x) = e—Valxlats

3. More generally, let f(x) = e V™ be a log-concave function where the convex
function ¥ depends only on the Euclidean norm of x, ¥ (x) = ¢(||x]|). Then by
symmetry A € Aisofthe form Ag = a Id. We compute that a and ¢ are determined by

, (N n
= (5) n=n=e(3)

and thus

L(f)(x) = e_“”XHz-‘rn—(p(;l)'

We will prove Theorem 1 in several steps. The first one is to give an equivalent sim-
plified version of the minimization problem via a reduction argument.

3.2 A Reduction Argument

Let f = e~V be a log-concave function. Let A = T + a € A. By the polar decom-
position theorem, T € G L(n) can be written as T = O R, where R is a symmetric
positive definite matrix and O € O (n), the set of orthogonal matrices. Then

13 13

) e . €
MM Al <Y @+ T qoa] = MM xkalesy (4 o
. et
= MIN| O Rx+al2<y(x)+t _det R
. et
=min||Rx + O'all < ¥ (x) + 'R
. et
= M Ax |y <y (0)+ g
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where A € SA. Thus we may assume that A = T + a, where T is symmetric and
positive definite, i.e., T € Sy. We put b = T~ 'a and re-write the last expression
further.

' —1
min S max e’ det A>
Ax[2<y (x)+t det A A |l2 <9 (x)+t

~1
max max ' det A)
||AXH2<T//(X)+I

—1
max “tdetT
IITX+a||2<11/(X)+t
<m ax
-1
(maX max max e det T)
teR beR" | Tx|2<yr(x—b)+t

~1
e det T)
|T(x+b)||2<1//(x)+t

—1
= [ max max max e " detT
beRN teR || Tx|2<y (x—b)+t

-1
= min (max max e ! det T) , (6)
beR" \ teR ||[Tx|2<¢(x—b)+t

where T € S;.
This leads us to first consider an optimization problem for fixed b € R".

Proposition 2 Fix b € R". Let f = e~V be a nondegenerate, integrable log-concave
function on R". There exists a unique solution, up to left orthogonal transformations,
to the maximization problem

max e ' detT subjectto ||Tx|p—t<v¥(x —b)Vx € R". @)
TeS4,teR?

Before we prove Proposition 2, we re-write the constraint condition of (7).
For any function 4 : R” — R we define its diametral with respect to the point w as

hdia,w(—x + 2w) = h(x).

For a convex function ¥ : R” — R we define its symmetral {sym, , With respect to
the point w as the greatest, convex function that is smaller than max{y, ¥gia w}. In
the same way we define the symmetral foym w = e Vsmw of a log-concave function

f=e V.
Since for all x € R"
IT(x+b)lla—t=|T((=x —2b)+b)ll2 -t

the condition

Vx eR": ||T(x+b)2—1t <vy(x)
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The Léwner Function of a Log-Concave Function 431

is equivalent to the condition
Vx eR": |IT(x +b)ll2 — 1 < Ysym,—p(x).

Therefore, we can assume that the convex function ¥ is symmetric with respect to
—b. By Proposition 1 and Fact 2, taking the Legendre transform on both sides yields
the equivalent condition

LATxl2 =) (y) = LW (x = b)) (y) = Lo S_p ¥ (y). ®)

Observe that

LAUTxll2 —0)(y) = sup(x, y) = [Txll2 4+t =1+ sup(x, y) — [ITx]l2
X X

=t +sup(T 'z, y) = llzlla = 1 +sup(z, (T~ y) — llzll2
Z Z

_ ] 1Tyl > 1
0 T Hyla<1,

n
iy oo y ¢ ThB)j
0 yeTBY,

where from the second to the third equality we have put z = T x. It follows that

e LUTH2=00) = ¢~y

If we set fp, = S_p f, then (8) is equivalent to
e "Iy < (fp)°

Note that by Fact 2, (f5)° is an integrable log-concave function, provided b €
int (supp f). When b ¢ int (supp f'), we replace f by fsym, b and by the above consid-
erations the minimization problem remains the same.

Moreover, shifting by a vector b does not affect the existence and uniqueness of the
solution to the optimization problem in Proposition 2 and hence proving Proposition
2 is equivalent to proving the case b = 0 € int (supp f'), possibly replacing f by fsym,
i.e., we need to show that there is a unique solution modulo O (n) to the maximization
problem

—1 H —t [}
max e 'det7 subjectto e 'lpgn < f°. 9
ranax ] ey = f 9

By Proposition 1 and the Fact 2, to prove (9), and hence Proposition 2, it is enough to
prove the following proposition.
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Proposition3 Let f = e~V be a nondegenerate, integrable log-concave function.
Then there exists a unique solution (ty, To) € R x S, up to right orthogonal trans-
formations, to the maximization problem

—t . —t
max e 'detT subjectto e 'lpgn < f. 10
TeSy,teR J TB; = f (10)

3.3 Proof of Proposition 3
To prove Proposition 3, we introduce, for 0 < s < || flco,

Er(s) =5 max detT.
(TeS1:TByCGr(s)}

Then we can re-write (10) in terms of & 7, namely,

max{e” det7: T €S, t€R, e "lypn < f}= max &f(s). (11)
2 0<s<[lflloo

Indeed, putting s = e/,

f}
I}

maxfe™ detT: T €Sy, t €R, e 'lrpy

IATA

=max{s detT : T € S4, s > 0, slrpy

Note that s1 7 Bl < f <= TBj C Gy(s). Thus we may restrict our attention to the
set

Uso{T € Sy : TBY C G r(s)}.

When s > || flloo, {T : TBy C Gy(s)} = ¢. Thus we consider

Jtres - TB cGrs)y= |J (T eSy: TByCcGrs)
0<s 0<s=|flloo
Therefore,
max{sdetT : T € S4,s > 0,slypr < f} = max s max detT
2 0<s<|flloo {T€S+: TBICG f(5)}
= max &r(s) (12)

0<s=<|l flloo

We shall show in the next lemma that lim;—.0&7(s) = 0 and in Corollary 1 below
that the map s — &7(s) is continuous. We then can conclude that the maximizer in
Proposition 3 exists.

The next lemma and its proof is similar to Lemma 2.1 in [1]. We include a proof for
completeness.
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Lemma 1 Let f = e~V be an integrable, nondegenerate, log-concave function on R".
For any si, 52 € (0, | flloo] and 0 < 1 <1,

&f (Sll_ksé) = gf(sl)l_)hgf(.?z))”. (13)
Moreover, lim;_0 & (s) = 0.

Proof Astheset{T € Sy : TB} C G y(s)}is compact (e.g., in the operator topology),

and as the determinant is continuous, there are Ty, 71 and T3 such that & (sllf)‘s%) =

sll_As%-det To, &7 (s1) = s1-det Ty and & ¢ (s2) = s7-det 5. Then, as f is log-concave,

Gr(sisd) ={x: f) = s *sh} D (M= M{x: fO) = s1) +Afx : f(x) > 52}
=1 -=MGs(s1)+rGs(s2) D (1 —MT1By + AT> By
D (1 =A)T1 +AT2)Bj.
Hence det Ty > det[(1 — A)T} + AT»)]. Moreover, we have det Ty > (det 77)'~*
(det T»)*. Indeed, by Minkowski’s determinant inequality for positive definite matrices

(see, e.g., [38]),

det Ty > det[(1 — M) T} + AT»)]
> (1= 2)(det T)'/" + A(det To) /)" (14)
> (det Ty)' ™ (det T»)*. (15)

The last inequality follows from the arithmetic-geometric mean inequality. Therefore,
si M sh det Ty > (s det 7)™ (s det T2))* .
In [1], the authors introduce, for # > 0, a function ¢ #(¢),

1) = max t-|detAl.
¢f( ) {AcA: ABYCGy (1)) I !

They showed that lim; o ¢ () = 0. It is clear that & s (s) < ¢¢(s) for all s. Hence
limg_0&7(s) =0. O

Next we state a John-type result which is well known. We include a proof for com-
pleteness. We recall the Hausdorff metric, which for two convex bodies K and L is
defined as

dy(K,L)=min{A >0: K C L+ ABY; L C K +ABj}.

Lemma2 Let K" be the set of convex bodies in R", equipped with the Hausdorff
metric. The map

K — max detT
(TeSy: TBICK)
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434 B.Lietal.

is continuous in K. Moreover, let Tx be a maximizer, i.e.,

det Tx = max detT.
{TeSy: TBYCK}

Then T is unique up to an orthogonal transformation.

Proof First note that if 0 ¢ int(K), then {T € Sy : TB)} C K} = §. For K
with 0 € int(K), let Tx be such that det Ty = Max(res, 7B CK} det T and let

K = K N (=K). Then
TxkBY c K = KN (—K) C K.

As K N (—K) is centrally symmetric, the center of the ellipsoid of maximal volume
contained in K N (—K) is also centered at 0. Therefore the ellipsoid Tk B} is the

ellipsoid of largest volume or John ellipsoid J (K) contained in K = K N (—=K). It
follows that Tk is unique, modulo O(n), as J (I% ) is unique, e.g., [20].

Now notice that if K and L are such that dy (K, L) < 8, then dyy (K, L) < 25.In
fact, on the one hand,

LCcLCK+38B;

Lc—Lc—K+3B},
hence

L CKN(—K)+28B =K +25Bj.

The other direction follows similarly. Let K € K". The map K — J(K) is con-
tinuous, see e.g., [23]. Hence, for all £ > 0 there exists & such that for all L € K"
with dH(K L) < & we have dH(J(K) J(L)) < ¢&. It follows that for all L with
dy(K,L) <§/2, we get

dy(Txk BY, TLBY) < ¢

Corollary 1 The map s — &y(s) is continuous in s.

Proof Note that the map

s — max det T
{TeS4:TBYCG f(5)}

is continuous in s as it is the composition of the continuous maps s — G (s) and
K — maxres,.7p1ck) det T'. Hence,

s — s - max detT =& (s)
{TeS1:TBYCG ()}
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The Léwner Function of a Log-Concave Function 435

is continuous in s. O

Now we are ready for the proof of Proposition 3 .

Proof As limg_,0&¢(s) = 0 by Lemma 1, and as £¢(s) is continuous on (0, || f|oc],
& (s) attains its maximum for some so € (0, || fllo] and Ty € S;. In other words,
to = —logso and T solve the maximization problem in Proposition 3. To see the
uniqueness modulo O (n), it suffices to show uniqueness in s. Uniqueness in 7’ modulo
O (n) then follows from Lemma 2.

Suppose there are 51, s such that 57 > s2 and £7(s1) = &7(s2). Then it follows from
(13) and the definition of & ¢ that for 0 < A < 1,

Er(s]hsh) = &pG0) e p ()
As in the proof of Lemma 1, let Ty, 77 and 7> be such that
Er(sis3) = s/ "5} - det Ty, &p(s1)) =s1-detTy, &f(s2) = s -detTh.
Then
det T = (det Ty)' ™ (det T»)*.

In other words, we have equality in the Minkowski determinant inequality and in
the arithmetic-geometric mean inequality, (14) and (15), which implies that det 7] =
det 7». Thus

Er(s1) =s1detTy = sy detTr > sodet o = Ep(s2),

which is contradiction. |

3.4 Proof of Theorem 1

We need several more lemmas. Some of them are well known. We include a proof for
the reader’s convenience.

Lemma3 Let { f;,}, f be nondegenerate integrable log-concave functions such that
fm — f pointwise. Then the super-level sets converge in Hausdorff metric, that is,

Gy, (k) — G (k) in Hausdorff, for 0 < k < || flcc-

Proof Since f,, f are non-degenerate, integrable log-concave functions, they are con-
tinuous on their support and by Fact 1, G ¢ (k) is a convex body for 0 < k < || flloo
and G, (k) is a convex body for 0 < k < || fiulloc and all m > 1.

We fix k. By e.g., Theorem 1.8.8 of [41], convergence of G, (k) — G y(k) in the
Hausdorff metric is equivalent to the following two properties to hold:
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(i) the limit of any convergent subsequence (xy;) jen With x,,; € G iy (k) for all j,
belongs to G f(k);

(ii) each point in G y(k) is the limit of a sequence (x,)en With x,, € Gy, (k) for all
m € N.

We show (i). Let (xy;) jen be a sequence with x,,; € G iy (k) for all j and let x =
lim; o0 X - Let D = E[{xm_,. : j € N}] be the closed convex hull of {xmj :j € NL
Then D is compactand convex and as f,; — f pointwise onR", f,,,, — f uniformly
on D, by e.g., Theorem 10.8 of [39]. Therefore, for j large enough,

| fony Gom ) = FCOL < oy G ) = £ G )+ 1f ) = fOO] <26 (16)

The first estimate holds by the uniform convergence and the second by continuity of
S Inequality (16) says exactly that fy,; (xm;) — f(x). AS fi; (xm;) = k, we thus get
that f'(x) > k and hence x € G (k).

Now we show (ii). By definition, for 0 < k < || f |l 00,

Gy ={x: f(x) =k} ={x:¥(x) < —logk} = Ey (),

where we have put/ = — log k. Similarly, we rewrite G r,, (k) = Ey,, (/) and then need
to show that every x € Ey (l) is the limit of a sequence (x;,)en With x,,, € Ey,, (k)
for all m. We can assume that ¢/ (x) = [. As f is integrable, there is xo in R” such
that ¥ (xg) = min,cre ¥ (x). We assume without loss of generality that xo = 0 and
consider the 2-dimensional plane spanned by x and e, 1 = (0, ..., 1). Ask < || flco»

[l > Y¥(xg) = ¥(0). Let 0 < 28% < ¥ (x) —¥(0). As f,, — f pointwise, V¥, — ¥
pointwise and therefore we have for all m > my that

Y (x) = ¥m(x)| <& and [ (0) — ¢¥n(0)| <e.
Let L be the line determined by (0, ¥(0) + ¢) and (x, ¥, (x)) and let

_ GOt
Un () = (W(0) +e)

Xm

3

that is x,,, is such that the value of L at x,, is [. Then

0=

=Yl _ ‘ _ e
V@) = GO+l ~ W@ = GO+l ~ 21— )

lxm —xll2 = llx]l2

The last inequality holds as |, (x) — (¥ (0) +¢)| = [ (x) — ¥ (0) — ] > 28% —2e.
By convexity of 1, we have for all y in the line segment [0, x] that ¥, (y) < L(y).
If ¥, (x) > Y (x) for all m > my, then x,,, € [0, x] and thus

Y (Xm) < L(xp) <1,
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which means that x,, € Ey,, (I) and we are done. If there exists m; > mg such that
Y, (x) < Y(x) =1, thenx € Ewml (/) and we take x,,, = x. Thus, for all m > m,
either v, (x) > ¥ (x) and then we put x,, as above or ¥, (x) < ¥ (x) and then we put
Xy = X. O

Lemma4 Let { fin}, f be nondegenerate integrable log-concave functions such that
Jm = f pointwise. Then || fmlloo = |l flloo-

Proof As f is integrable and log-concave, there is xo € R” such that f(xg) = || f|lco-
Thus for an arbitrary ¢ > 0, there exists m such that

Jm(x0) = f(xo0) — ¢,
whenever m > m1. So || finlloo = fin(x0) = f(x0) — & whenever m > m. Thus

liminf [ finlloo = Il flloo- a7

On the other hand, fix an arbitrary 0 < ¢ < %H flloo- By log-concavity of f, there
exists § > 0 such that

1 1
Gr <§||f||oo - 8) CGy <§||f||oo> +8By.

By Lemma 3, there exists my such that

1 1
61, (3171 ) € 67 (3171 ) + 082 18)

whenever m > my. It follows that f;,,(x) < %||f||C>o forallx ¢ Gy (%Ilflloo) + 4687
and whenever m > my>. In other words,

1
sup S @) = S1f lloo (19)
x¢G 7 (11 /lloc)+8B2

whenever m > mj. Moreover, since f;,(x) — f(x) pointwise on G s (%Ilf lloo) +
8BY and G (%||f||oo) + 8Bj is a compact set, we have f;, — f uniformly on

Gy (311 flloc) + 8BS, by e.g., Theorem 10.8 of [39]. That is, for the same e, there
exists m3 such that

Smx) < f(x) +¢

whenever m > m3 and forall x € G ¢ (%Ilflloo) + 6B7. Thus,

sup Jm (@) = [ flloo + &, (20)
%Gy ($1flls0)+5B3

@ Springer



438 B.Lietal.

whenever m > m3. Taking m > max{m,, m3} and combining (19) and (20), one has

sup fn (X) = | fmlloo = 1 flloo + €.

xeR?

Hence

limsup || finlloo = I1f llco- 2D

Finally, combining (17) and (21), one concludes that lim || f;;;lcc = || f |lco- O

Lemma5 Let{f,,}, f be a nondegenerate integrable log-concave functions and sup-
pose that f,, — f pointwise. Then

Er,(8) >  max  &£r(s).

max
O<s=<|fmlleo 0<s=[lflloo

Proof For m > 0, and with the convention that fo = f, let T},  be such that

detT, s = max detT.
{TeS1: TBICGy,, (5))

By (11) and Proposition 3, there exists a unique so = e~ and a unique, modulo O (n),
Ty € S+ such that

max s max detT
0<s=<lflloo {T€Si:TByCGs(s)}

Er(s0) = §r(s) = sodetTp =

max
O0<s=|l flloo
= max sdetTpg,.
0<s=|lflleo
The third identity holds by definition of & s and the last identity holds by definition of

To,s- Thus maxg<s<| | § det Tp s = so det Tp = so det T s,. Similarly, forallm € N,
there exist unique s,, and a unique, modulo O (n), T, 5, € S+ such that

&r,(sm) = 0 max &y (s) =spdet Ty, .

<s=[fmllo

Since f is integrable and as int(supp(f)) # @,
I flloo
0< fx)dx = / vol, (G f(s))ds < oo.
R7 0
Therefore, for all ¢ > 0, there exists §, > 0 such that for all 0 < § < &,

B
0< / vol, (G (s))ds < e.
0
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5o det Tp g, Vol (B})

10 Jgn /(5)ds °
24+ f oo+ LR OO

In particular, for &g < min { L7 2”"" } there is 85, such that for all

0 < 6 < min{so, 8¢, I fll2}.

$
0< / vol, (G 7 (s))ds < &p.
0

By Lemma 2, the map

Gr(s) — max detT = detTp s
: {TeSy: TBICG f(s))

is continuous and the map
Gr(s) — vol,(Gr(s))

is also continuous. Thus, for 0 < &; < min {80, %} given, there exists n; =

n(e1, s) such that for all n < 5,
|det TO,S _det Tm’s| < &1, (22)
and
[vol, (G 7, (5)) — vol, (G £ ()| < e1, (23)

whenever dy (G ¢ (s), G, (s)) <.
We fix 0 < 6 < min{sg, 8¢, | flloo — €1}. As f, — f pointwise, we get, similarly
to the proof of Lemma 3, that for all 0 < o with § < || f|lco — @,

G, ()= Gr(s)

in Hausdorff distance, uniformly for all s with § < s < || f|lcc — . Thus, in particular
forall s with§ < s < || flloo — €1, for 0 < n < ny, there is m such that for all
m = mj,

dy (Gfm (s), Gf(s)) <. (24)

By (22) and (23) we therefore get that uniformly for all s with § < s < || f|lcc — €1
and for all m > m,
|det To.s — det Tm,x| < e, (25)

and
[vol,, (G 1, (5)) — vol, (G £(s))| < e1. (26)

By Lemmad4, f,,, — f pointwise implies that || f;;|lcc = || f |lcos 1-€., there is my such
that

[ flloo = &1 < [ fmlloo < [1fllc + €1 27)

@ Springer



440 B.Lietal.

for all m > my. In addition, by Lemma 3.2 of [3], fRn fm dx — fRn f dx, i.e. there
is m3 such that for all m > m3,

‘/ fm<x)dx—/ £ dx
Rn R”

Let mg = max{m, my, m3}. Then, on the one hand, it follows with (25) that for all
m > my, all § < min{so, 8¢y, || f112}, all 5, such that § < s, < || flloo — €1,

< é€1. (28)

Ef (s0) = so det TO,so > s, det TO,sm > sy (det Tm,xm —&1)
> sy, det Tm,sm —&1(I flloo — )
> Ef, (m) — €11l f lloo- (29)

Furthermore, for m > mg and s, < 8,

10 Jgn f(s)d
) e ; o (2411 /lloe + 25
imsup &y, (s,) = limsup s, detTy, , < :
M—> 00,8, <8 S M—> 00,8y, <& " e VOln(Bg)

< sodet Ty 5, = &7 (s0). (30)

The last inequality holds by assumption on 9. We now verify the second last inequality.
We have for all s < s,, that G ¢, (s,,) € G, (s) and therefore by definition of 7, ,,,

vol, (G f,,(s)) = vol, (G f, (sy)) = det Ty 5, vol, (BY).

Sm

Thus, as s, < § and also using (27),

1 Sm 1 )
Sm det Tm,sm < W / VOIVL(Gfm (S)) ds < W / VOl,, (Gfm (S)) ds
n{Dy 0 n\{Dy 0

1 [flloo—e1 I lloo—e1
= —— (/ vol, (G ¢, (s))ds — / vol, (G, (s))ds)
0 )

vol, (B})

1 Il fmlloo Il flloc—€1

< W (/0 vol, (G, (s)) ds — /5 vol, (G, (5)) ds)
1 1£lloo—e1

= Vol (B1) (/ fm dx /5 vol, (G, (s)) ds)
1 1£lloo—e1

< vol, (B1) (/ fdx + ¢ _/5 vol, (G, (5)) ds)

(/
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The last inequality follows by (28). Now we use (26) and get that

1

det T, , < ——
S G T = o1, (BY)

£l I flloo—e1
</ vol, (G #(s)) ds + &1 — / vol, (G £ (s)) ds
0 B
+e1(lflloo — €1 — 8))

1 5 11l
)(/ Vol (G £ (s)) ds+/ Vol (G £ (s)) ds
0 |

= =
vol, (B; | £lloo—¢1

Fe1(I+ [ fllo =8 — 81))

1

= voln(Bg’)<80+8l(l + 1 flloo —8 —€1) + €1 Vol (G (Il flloo —81))>

10 f]R" f(s)ds>
1 00 _
<80+81( + 11 flleo) + €1 917l

10 f(s)ds))

1
SR - 1
vol, (B)) (‘9”51( ATy

10 [, f(s)ds)
911 flleo '

< -
= vol, (B})

£0
< —— (2
= Yol (BD) ( + 1 flloo +

The last inequality follows by choice of €. The second last inequality above follows as
forall || flloc —€1 =5 < || f lloc, we have that vol, (G 7 (s)) = vol,(G f ([l flloc — 1))
and as

fR" f(s)ds _ 10 fR” f(s)ds
Iflloo—€1 = 9l flle

Vol (G ¢ (Il flloo — €1) =

by choice of £;. Now we use how &y was chosen and get that for all s, < §,
Smdet Ty, 5, < sodetTp s = éf (s0)-

It remains to check when || flloo — &1 < sm < | flloo + &1.
Efn(m) = sdet Ty, 5,
< (If lloo + e)(det T | £l oo—e1 )
= (I flloo +e)(det To, | £ o—er + €1)
= (I flloo — &1 + 2e1)(det To | fo—ey + €1)
= (I flloo — &1) det To, | fjl—e; + 261 det To | fla—ey + &1(I flloo — 1) + 267
< &7(s0) +2e1det To | fla—ey + 11 flloo + &7

3
= &r(s0) +2¢0 (det Ty 1gee + 4||f||oo) :
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In the firstinequality, s,;, < || flloo+€1 by assumption, and det 7}y, 5, < det Ty, || £ 00—e;
since G, (sm) C Gy, (I flloo — €1). In the second inequality, we apply (25). In the
last inequality, we use €1 < &g as assumed, and we also use the assumption on &.
Therefore, we have for all m > mg and || fllooc — €1 < Sm < | flloo + €1,

3
§7(s0) = &, (sm) — 2e0 <det Z”f”oo) €1y

It now follows from (29), (30) and (31) that

§r(so) = limsup &, (sm). (32)

On the other hand, as § < s, for €1 given, it follows from (25) that for all m > my,
det Ty 5, < det Tp, 5, + 1.
Therefore, for all m > my,
so det T 5, < sodet Ty, 50 + S0&1 < Sy det Ty, 5, + So€1.

The last inequality holds as s, det T, 5, = MaxX(res, :TBICG , (5)) S det T'. Conse-
quently, for all m > my,

&r(s0) = sodet To 5y < sy det Ty 5, + s061 = &, (5) + S0€1,

and hence
Er(s0) < liH;ninf &£ (Sm)- (33)

Altogether, by (32) and (33),

limsup&y, (sm) < &7 (s0) < liminf &, (sm),
m

and thus
im&g, (sm) = &7 (s0)- (34)
By (12), this is equivalent to
lim  max - (s) = max (s).
m 0<s<| fmlloo & 0<s=l flleo 5
O

Infact, (34) together with (11) says thatif { f,,}, f areintegrable, log-concave functions
and if f,, — f pointwise, then

max{e”" detT: T € Sy, t € R, efl]lrgg < fm}—>

max{e™ detT: T €Sy, 1 €R, e "Nypy < f).

Thus we immediately get the following corollary.
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Corollary 2 Let {b,,}, b in R" be such that b,, — b. Then

max{e " detT : T e Sy, teR, |Tx|a—t < ¢¥(x —by)} —
max{e " detT : T e Sy, teR, |[Tx|a —t < ¥(x —b)}.

Proof We have that
VxeR": |ITxla—1 =¥ (x —bn)
is equivalent to

Vy eR": (IT(y+bwll—1 =¥ ().

We put

By ={(T.0): IT(y+bw)l2—1t=¥()VyeR"}
and

B={T,t): |ITG+bl—t=y()VyeR"}.
Then

max{e " detT : (T, 1) € By} = elT Gtz max (e —IT =2 Get(T) : (T, 1) € By}
Since
17 +bp)ll2 = IT(y +D)ll2 = IT® — D)2
we get
max{e " detT : (T,t) € By} < ellT G=bm)ll2 max{e * det(T) : (T, s) € B}.
It follows that

lim supmax{e~"detT : (T,t) € By} < max{e *det(T) : (T, s) € B}.

m— 00

Now we interchange the roles of b and b,, and get

max{e *detT : (T, s) € B} <liminf max{e " det(T) : (T, t) € Bu}.
m— o0

The proof of Theorem 1 is next.
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Proof Let f = e~V be an integrable log-concave function with positive integral. We
put

I :=min {/ e IAxletqy : A e At e R, |Ax|r — 1 < w(x)}
and
I7(b) := min {/ e IA¥IHqy - A e Ab), 1 € R, ||Ax|r —1 < 1//(x)} )
R}‘I

It follows from (6) that 1y = minyegrn 17 (b).
By the reduction arguments in Sect. 3.2,

I¢(b) = min {f e IA¥IH gy - A e Ab), 1 € R, ||Ax|r —1 < w(x)}

t
e
= n!vol,(B}) mi
n!vol, ( z)mm{detT

T eSSy, teR [Txla—t < ¢Y(x —b)}
= nlvol,(B}) {max{e " detT : T € Sy, 1 € R, |Txlh—t < ¢ (x —b)}} .

Corollary 2 implies that /¢ (b) is continuous in b. To see that the minimum /7 exists,
it suffices to show that the minimum is achieved on a compact set.
Let 0 < dop < || flloo be such that G 7 (dp) has positive volume. Let by € G (dp).

Clearly, I; < I7(bo). Letr = L2 —vol, (G ;(dp)). Then r > 0 since

dovol, (G (do)) < /R" Jf)dx < I5(bo).
The last inequality holds as
I¢(bp) = min {/ e 1A¥I2Hqy - A € A(bg),t € R, |Ax|lr — 1 < Iﬁ(x)}
— min {/ e 1A%t gy - A € A(bg),t € R, e A2+ > f(x)} .

To finish the existence argument, we need the notion of illumination body of a convex
body K. This notion was introduced in [48] as follows. Let § > 0 be given. The
illumination body K* of K is

K% = {x € R" : vol,(conv[K, x]) <8 + vol,(K)}.
The illumination body is always convex, [48]. See, e.g., [34,35] for recent develop-
ments.

Letnow G" = [G r(dp)]" be the illumination body of G 7 (dp). We will show that for
b ¢ G", 1r(b) > It(bo). Suppose b ¢ G and let Ay € A(D), tp € R achieve I¢(b).
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Let h(x) = e Moxl2+0 _Since G ¢(dy) € G (do) there exists z € bd(G") N Gy (do)

such that
conv(z, G s(do)] S Gp(do).

It follows that

I7(b) = / h(x)dx > do - vol,(Gp(dp)) > do vol,(conv[z, G r(dop)])
Rn

=do - (r +vol, (G r(dp))) = I7(bo).

So for the minimization problem, we need only consider b € G" where G" =
[G(dp)]" is a compact set of R". The continuity of /(b) gives the existence of a

minimizer.

Next we address the uniqueness. Recall that Iy = miny Iy(b) and Proposition 2
guarantees that for each b € R” there is a unique, modulo O (n), minimizer. Hence it
suffices to show that there is a unique bg such that Iy = miny I 7(b) = 17(bo).

We prove by way of contradiction. Suppose that there are by, by such that Iy =
Iy(b1) = I7(b2) and by # b;. Let the two minimizers corresponding to by and b, be
(T1,11) € S+ x Rand (T, 1) € Sy x R, respectively. T7 and 75 are unique up to an

orthogonal transformation. Then for all x € R”

ITi(x +bDll2 =11 =¥ (x),  [T2(x +b2)ll2 =12 = ¥ (x)

and

ell el
det T T det T’

or, equivalently, taking logarithm on both sides,

t1 —logdet T = 1, — logdet 7.

We distinguish two cases.
Case 1 T| # T,. Then we consider the function

_ T1+1y T1b1+Trby 1 +ip
R R
Observe that
i+ 1, T1b1 + Tob, h+n
X+ -
2 2 , 2
1 1 H+n

= =T\ +b)+ =T +b)| —

H2 1(x + 1)+22(x+ 2)2 >

1 1
=3 T (x +b)ll2 — 1) + 3 T2 (x +b2)ll2 — 12) < ¥ (x).

(35)
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But

1+t

L e LU o132
€ 2 2 2 2 dx = n'voln(Bg)T
! det (752)

And by the Minkowski determinant inequality,

1
T+ \\» 1 1 1
(det ( 5 )) > 3 (det(Tl)n + det(Tz)"> ,

from which it follows by concavity of the logarithm that

T+ T 1
logdet< 1—; 2) > E(logdetTl—Hogdeth).

The inequality is strict because the function 7 — —logdet T is strictly convex on the
set of positive definite matrices. Hence

1 +ip

1 e 2 4+ loe det T+ 1
08 Tty —logdet| ——
det(%) 2 2
0L ogder + 2 — Liogder T
<_—_ —_—— —
2 20g € 1 2 20g () 2

=1t — logdet T} = t, — logdet T5.

It follows that

t+10p
e 2 €

det () ™ det 1’

1

which contradicts the fact that the latter is the minimum.
Case 2 T} = T»>, modulo O (n). It follows from (35) that t; = t,. We show b| = b;.
We put

filx) = e IT1e4bD)ll2+1

and

Hx) = e~ IT2Ge+b)lla+12 _ o=IT1(+b2)ll2+11

We consider super-level sets. For 0 < s < el
Gy (s) = —by + (1 — logs)T, ' BY
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and
G, (s) = —by + (t1 —logs)T, ' BY.
For 0 < s < || f|lco, One has by definition of f; and f5 that
Gr(s) CGp(s)NGp(s).

Now we claim that

b1+ b

Gfl(s)ﬁsz(S)C— >

+ (11 — logs)T; ' By.

If G 7, (s) NG p,(s) = ¥, this inclusion is trivially true. If not, let x € G 7, (s) NG p, (s).
Then there exist u, v € Bg such that

x = —by + (t1 —logs)T; 'u = —by + (t] — log )T 'v. (36)
Thus
bi+b
x:x;xz_ 142“ 2+(t1—10gs)T1_1(u-;v>. (37)

Since [|(u +v)/2|| < lull/2+ llv]l/2 < 1,

X = —

by +b
! —; 2 +(f — logs)Tleé’.

b1+ b
+ (1 —logs)Tf1 (u—;—v) € — 142_ 2

In the following we show that there is ﬁ with det(fl) > det(T1) satisfying

b1+ by

Gp()NGp(s) C — + (1 —logs)Ty ' BY

by +b
1; 2+ (1 —logs)T, ' BY.

Both, G, (s)NG 4, (s) and — # + (t; —log s)Tl_lB”, are closed sets and centrally
symmetric with respect to the same center — @.

Nextwe observe that G £, (s)NG y, (s) does not intersect the boundary of the ellipsoid
—# + (f; — log s)Tl_lBé’. Indeed, if x € G 7, (s) N G, (s) as represented in (37)
is on the boundary of —# + (1 — log s)Tl_lBé', it follows that u = v € §"1,
Hence by (36), b1 = b, a contradiction.

Therefore G 7, (s) N G f,(s) is a convex body such that

by +b N
(GH)NGp())N (—% + (t1 — log $)T; 133) =0,
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and thus

b+ by

c
dist (Gf1 ) NG p(s), (— + (1 — logs)Tl_lBg> ) > 0,

where dist(A, B) = inf{||x — y|[2, x € A, y € B}. Hence we may shrink the ellipsoid
— @ + (t; — log s)Tf] Bj with respect to the center —(by + b2) /2 homothetically

to get a new ellipsoid — b‘gbz + (t; — log s)fl_l B such that still

bi+b -
G (s)NGp(s) C —% + (1 —logs)T, ' BY

and such that — @ + (11 —logs) ﬁ ! BY intersects the boundary of G £, (s)NG f, (s).

. ~-T1 .
Givensucha 77 , it follows from

by +b -
Gr(s) CGp(s)NGpls) C —172 + (1 —logs)T, ' BY

~ b1 + by
1<x+—12 )

that

-1 = Y(x).
2

However

|7 bitby ell ell
/ e ” '(XJF 2 )Hz—mdx = nlvol(By) —= < n!vol(B}) ———,
n det T det T}

which is a contradiction.

Consequently, we have proved that by = b. O
4 John Function and Duality
4.1 The John Function of Alonso-Gutiérrez, Merino, Jiménez, and Villa

A notion of a John ellipsoid function has already been introduced in [1, Theorem 1.1].
We first recall the definition from this work.

Theorem2 [1] Let f : R" — R be an integrable log-concave function. There exists
a unique solution (sg, Ag) € R x A to the maximization problem

max{s|detA| :s < || flloo, A € A} subjectto s ﬂABg < f. (38)

Ao is unique up to right orthogonal transformations. Then so 1 4, By iS called the John
ellipsoid of f, J(f) = so 1AOB§~
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Note that, as for the Lowner function, J(f) = so 14, By Up to an orthogonal transfor-
mation.

We show that Theorem 2 can be obtained from Proposition 3 and Lemma 5. How-
ever, it seems that Theorem 1 cannot be obtained immediately from Theorem 2 as
the optimization in (38) is over all affine maps, i.e., translation is allowed under the
constraint that s1 4 B! = f. To see how Theorem 2 follows from Proposition 3 and
Lemma 5, we first rewrite (38) in Theorem 2. Let A =T — b,

sodet Ag = max{sdetA :s < | flleo, A € A,s]lABg < f}
=max{sdetT :s < || flloo, T € Sy,b € Rn,SI[TBS_b(X) < f(x)Vx e R"}
=max{sdetT : s < || flloo, T € S4+,b € ]R",SI[TBS(x—i-b) < f(x) Vx e R"}
=max{sdetT : s < || flloo, T € S4,b € Rn,S]ITBg(X) < f(x —b) Vx € R"}
=max max{sdet7 :5 < || flloo, T € S+,s]lTB£r(x) < f(x —b)Vx e R"}

beR"

If we put J = sodet Ag and
Jr(b) =max{sdetT :5s < | flloo, T € S+,s]1TBéz(x) < f(x —b) Vx € R"},

then J = maxpegrn J 7 (b). Note also that J¢(b) is continuous in b by Lemma 5.
We show now that the existence of the John function follows from Proposition 3
and Lemma 5.

Existence of the John function in Theorem 2 Recall that existence and uniqueness
of J7(b) are proved in Proposition 3 . Choose b" € R” such that J¢(b") > 0. Now let
e=Jy (b'). Since f is integrable, there exists § (&) such that

8(e)
/ vol, (G f(s))ds < e.
0

Then for b ¢ G f(8(¢)), Jr(b) < €. In fact,

8(e)
Jr(b) < / vol, (G 7 (s))ds < &.
0
Hence

max Jr(b) = max Jr(b).
beR” ) beG (8(e)) r®

Since G 7 (8(¢)) is compact and J ¢ (b) is continuous in b by Lemma 5, maxpern J ¢ (D)
= MaXpeG f(3(s)) J 1 (b) exists.
We include the uniqueness argument for the reader’s convenience.

Uniqueness of the John function in Theorem 2 Suppose that max,egr J 7 (b) =
Jr(b1) = Jy(by) for some by # by. If by = by, then the solution is unique modulo
O(n), by Proposition 3 . Suppose that 1, t2, T1, T» are maximizers satisfying
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Jr(by) =t1detTy and Jy(by) = trdetT>.
f(Tiv+by) >t and f(Thrv+by) >1t, Vv e Bg.

Thus we have

logt; 4+ logdet Ty = logt, + logdet 5.
We may furthermore assume that #; # t>. Indeed, observe that T} Bg + by is the John
ellipsoid of G f(t1) and T> By + by is the John ellipsoid of G y(%2). If t; = 12, then
G r(t1) = G s(t2) and by the uniqueness of John ellipsoid of a convex body [20,26,41],

T1 = T>. Hence without loss of generality, we assume #; < f;.
Now we consider the function

Vol +r by4by -
l2 ZBS l2 2
We first show that
\/f]fZ]l? +T- bi+by < J.
l2 ZBS l2 2 f

In fact, by the concavity of log f, we have for any u € Bj,

T +T by +b 1 1
1ogf( St 2)ZElogf(T1u+b1)+Elogf(Tqurbz)

v

1 1
Elogtl + Elogtz = log v/t 1.

However, /t11> det(#) > Jr(b1). Indeed, using again the strict concavity of the
function 7 — logdet 7' on positive definite operators we have

T, + T
log («/tltzdet< 1—; 2))

—11 t—|——11 t» + log det ! 2
0 0 ogde
) g1 ) g1 g )

\

1 1 1 1
> logt + 3 logt, + 7 logdet T} + 3 logdet T>

1 1
3 (logt; + logdet T7) + 3 (log tp + logdet T>)
= logt + logdet Ty = log(J¢(b1)),

which is a contradiction to the assumption that max,egr Jr(b) = J(b1). Conse-
quently, b1 = by.

4.2 Duality

Let K be a convex body in R” such that O is the center of the Lowner ellipsoid L (K).
Then it holds that (L(K))° = J(K°), where J (K °) is the John ellipsoid of K°. This
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duality relation carries over when we consider the convex bodies in the functional
setting.

Proposition 4 Let K be a convex body in R". Assume, without loss of generality, that
0 is the center of the Lowner ellipsoid L(K) of K. Then

(L(1g))° = J((1g)°).
-1
Proof It was shown in (5), that L (1 g)(x) = e_n(”TL(“x”z_l). Then

£ (n (1T kyxl = 1)) 0) = n+ sup (x, 3) = nll Tk xla
(K) (K)

xeR?

=n -+ sup (z, T[{(]{))’) —nlzll2
zeR"

=+ sup l1zll (17, v1l2 = )
zeR"

Ll & n(T] )" B
0 yen(Tf ) B

Hence,
(L(g))° = e_n]l”(Tli(K>)7lB§ = e_"]l”j(Ko).

The last identity holds as L(K) = TrgxBj, and thus J(K°) = (L(K))° =
(TLk BY)® = (TL’(K))’]BS. Now we compute (1 x)° = (e~'¥)°, where

0 xek,

Ix() = {oo x ¢ K.

The Legendre transform of Ik is

LUg)(y) = sup (x,y) — Ix(x) = sup(x, y) = hg(y),

xeRn? xek
where hg is the support function of K. K° is a convex body since 0 is contained in
the interior of K. Thus, (1g)°(y) = e k() Next we compute the John function
J((1g)°)of (1g)°. ForO <s <1,
e KW > g o hx(y) < —logs < y € (—logs)K°.
So the super-level set of (1 )° at s is G(1,)o(s) = (—logs)K°. Moreover,
J(—logs K°) = —logs J(K°) = —logs(L(K))°

and max; s(—logs)" is reached at s = e™". Thus J((1x)°) = e "1, 7(kv). O
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In a functional context, we view as ellipsoidal functions or, ellipsoids in short,
functions of the form

tlg and exp(—||Tx + a2 + 1),

where £ is an ellipsoidin R” and r e R,a e R", T € S;.

We want to establish a duality relation between the ellipsoidal functions, similar
to the one that holds for convex bodies. As in the case of convex bodies, we can only
expect such a duality relation if we take polarity with respect to the proper point.
Indeed, let f = e~V be a log-concave function. Let L(f)(x) = e~ ITox+a@l+0 pe the
Lowner function of f. Let b € R". Then

Ly (ITox + apll2 + t0) (y) = to + sup (x — b, y — b) — ||Tox + apll2

xeR"

=to+ sup (T ' (z — ap) — b,y —b) — |zl

zeR?
=19 — (b, y — b) — (Ty "(ao), y — b)
+ sup (z, Ty ' (y — b)) — llzll

zeR"
=10 = (b.y = b) = (Tg ' (a0). y — b)
+ sup 2l (1757 = B)ll2 — 1)

z€R?
_ oo y¢&TyBY+b
=to—(b,y —b) — (T Yag),y — b) + 2
0o—(b,y —b) — (T (ap),y — b) [0 Ve ToBl +b

and (L(f))? = e £oUToxtaolatt) js again an ellipsoidal function if and only if
b=by= —To_lao. In this case

(L(f))_bo — e L-nyUITox+aoll2+10) _ o0 ﬂToBg’be'

For log-concave functions f = e~V that are even, i.e., ¥ (x) = ¥ (—x), the point
bo = 0 and such a duality relation holds.

Proposition 5 If f = e~V is an even log-concave function, then (L(f))° = J(f°).

Proof Let L(f) = e IToG+bo)l2+% be the Lowner function of f. By Theorem 1,
(Ty, b, to) are the unique solution, modulo O (n), to the optimization problem

t
e
n!vol,,(BY) min min
«(B2) min {detT

T €Sy, teR e lrpn(y) < (fb)o(y)} )

where fp(x) = S_p f. As f is even, bg = 0. Hence the above minimum is obtained
when b = 0, that is,
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el
in mi (T eSpteRe I (y) < (fp)°
min mm{detT €St eR e lrpr(y) = (fo) (y)}

t

=min{ :TeS+,t€R,et]lTB§(y)Sfo}

detT
= (max {e_t det7:T €Sy, t €R, e Nrp(y) < f°}>71 .
In other words, (Tp, 7o) also solves
max {e*’ detT:T €St eRie Iypy(y) < f°} . (39)
Now observe that f° is an even function. In fact, since ¥ (x) = ¥ (—x),
L) (—y) = sup (x, —y) — ¥ (x) = sup (—x, —y) — ¥ (=x) = sup (x, y) — ¥ (x)

xeR" xeR” xeR”

LA))-

Thus, f°(—y) = e LY = =L = f°(y). By the eveness of f°, the
maximum

max max [e_t detT:T € Sy, t € R e Nrppip(y) < fO} (40)
e n

is achieved at the same solution to (39). But the solution to (40) gives the John ellipsoid
function of f°. Therefore, J(f°) = e "1, Bl It follows from a routine computation
that

(L7 = (e 0H0)° 2 ety gy = (),

m}

However, it is not true in general that L(f)bo = J(fbo) or L(fbo) = J(f)bo. We
give a 1-dimensional counter example. The higher dimensional counter example is
constructed accordingly.

A counter example Let f(x) = e~ V™ be the log-concave function such that

4x2 x <0

Yo = !xz

x > 0.
We compute that the Lowner function of f is

A o3 |4l

L(f)=e Jelisl+d

and that the polar of L( f) with respect to 23 is

85

(L)W = e—%n[f
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The polar of f with respect to 3 s

8V5
(i = s () (i) g : ]H;ﬂ(x—xag)—z(x—gm :
. ‘

3

3 3
To find the John ellipsoid J <( ) Sﬁ) of (f)8v5 we determine the super-level sets of

(f)3v3,

3
(s) =3x:(f)svs zs}
1 1
3 3—(9—80logs)2 3 3+(9—3201logs) 2
[sfs+ NG VA 45 } s=1

1 |
3 3—(9-320logs)2 3 34+(9—3201ogs)2
[8f5+ 45 VA 45 } s=21

and then maximize the function

s (4(9 —80logs)? + (9 — 320logs)? —9), s<1

h(s) = 1 45 |
2\5—6(9—32010gs)7, s > 1.

If it were so that

3 3
(LN = e—%ﬂ[_i e =7 ((f)sﬁ),
55 8v/5

. . . 1 ..
then the function 4 would have its maximum at s = e~ 2 and thus the derivative of &

ats = ¢~ should be 0. But A’ (e’%) ~ —0.3538 < 0.

Acknowledgements This material is based upon work supported by the National Science Foundation
under Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research
Institute in Berkeley, California, during the Fall 2017 semester. The authors want to thank F. Mussnig and
the referee for the careful reading of the manuscript, the suggested improvements and corrections.

References

1. Alonso-Gutiérrez, D., Merino, B.G., Jiménez, C.H., Villa, R.: John’s ellipsoid and the integral ratio of
alog-concave function. J. Geom. Anal. 28, 1182-1201 (2018)

2. Artstein-Avidan, S., Giannopoulos, A., Milman, V.: Asymptotic Geometric Analysis. Part I. Mathe-
matical Surveys and Monographs, vol. 202. American Mathematical Society, Providence, RI (2015)

3. Artstein-Avidan, S., Klartag, B., Milman, V.: The Santal6 point of a function, and a functional form of
the Santal6 inequality. Mathematika 51, 33—48 (2004)

4. Artstein-Avidan, S., Klartag, B., Schiitt, C., Werner, E.M.: Functional affine-isoperimetry and an inverse
logarithmic Sobolev inequality. J. Funct. Anal. 262, 4181-4204 (2012)

@ Springer



The Lowner Function of a Log-Concave Function 455

12.

13.

14.

15.

16.

19.
20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

. Aubrun, G., Szarek, S.J., Werner, E.M.: Nonadditivity of Rényi entropy and Dvoretzky’s theorem. J.

Math. Phys. 51, 022102-022107 (2010)

Aubrun, G., Szarek, S.J., Werner, E.M.: Hastings’s additivity counterexample via Dvoretzky’s theorem.
Commun. Math. Phys. 305, 85-97 (2011)

Ball, K.: Logarithmically concave functions and sections of convex sets in R". Stud. Math. 88(1),
69-84 (1988)

Ball, K.: Volumes of sections of cubes and related problems. In: Geometric Aspects of Functional
Analysis (1987-88). Lecture Notes in Math., vol. 1376, pp. 251-260. Springer, Berlin (1989)

Ball, K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. (2) 44(2), 351-359
(1991)

Barthe, F.: On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134(2), 335-361 (1998)

. Bourgain, J.: On the distribution of polynomials on high-dimensional convex sets. In: Lindenstrauss,

J., Milman, V.D. (eds.) Israel Seminar on GAFA. Springer Lecture Notes, vol. 1469, pp. 127-137.
Springer, Berlin (1991)

Bourgain, J., Milman, V.D.: New volume ratio properties for convex symmetric bodies in R". Invent.
Math. 88, 319-340 (1987)

Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.-H.: Geometry of Isotropic Convex Bodies.
Mathematical Surveys and Monographs, vol. 196. American Mathematical Society, Providence, RI
(2014)

Caglar, U., Fradelizi, M., Guédon, O., Lehec, J., Schiitt, C., Werner, E.M.: Functional versions of
Lp-affine surface area and entropy inequalities. Int. Math. Res. Not. IMRN 4, 1223-1250 (2016)
Colesanti, A., Ludwig, M., Mussnig, F.: Minkowski valuations on convex functions. Calc. Var. Part.
Differ. Equ. 56, 56-162 (2017)

Colesanti, A., Ludwig, M., Mussnig, F.: Valuations on Convex Functions. Int. Math. Res. Not. IMRN
(in press)

. Fradelizi, M., Meyer, M.: Some functional forms of Blaschke—Santal6 inequality. Math. Z. 256(2),

379-395 (2007)

. Fradelizi, M., Meyer, M.: Some functional inverse Santal6 inequalities. Adv. Math. 218(5), 1430-1452

(2008)

Gardner, R.J.: The Brunn—-Minkowski inequality. Bull. Am. Math. Soc. (N.S.) 39(3), 355-405 (2002)
Gardner, R.J.: Geometric Tomography. Number v. 13 in Encyclopedia of Mathematics. Cambridge
University Press, Cambridge (2006)

Giladi, O., Prochno, J., Schiitt, C., Tomczak-Jaegermann, N., Werner, E.M.: On the geometry of
projective tensor products. J. Funct. Anal. 273, 471-495 (2017)

Gluskin, E.D.: The diameter of the Minkowski compactum is roughly equal to n. Funktsional. Anal. i
Prilozhen. 15(1), 72-73 (1981)

Griinbaum, B.: Measures of symmetry for convex sets. Proc. Sympos. Pure Math. 7, 233-270 (1963)
Haberl, C.: Minkowski valuations intertwining the special linear group. J. Eur. Math. Soc. JEMS) 14,
565-1597 (2012)

Henk, M.: Lowner-John ellipsoids . Doc. Math. Extra vol. Optimization Stories, pp. 95-106 (2012)
John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Pre-
sented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187-204. Interscience Publishers, Inc.,
New York (1948)

Klartag, B., Milman, V.D.: Geometry of log-concave functions and measures. Geom. Dedicata. 112,
169-182 (2005)

Klartag, B.: On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. (GAFA)
16(6), 1274-1290 (2006)

Klartag, B., Werner, E.M.: Some open problems in asymptotic geometric analysis. In: June/July 2018
Notices of the AMS (2018)

Ludwig, M.: Minkowski areas and valuations. J. Differ. Geom. 86, 133-161 (2010)

Ludwig, M., Reitzner, M.: A classification of SL(n) invariant valuations. Ann. Math. 2(172), 1219—
1267 (2010)

Lehec, J.: A direct proof of the functional Santalé inequality. C. R. Math. Acad. Sci. Paris 347(1-2),
55-58 (2009)

Meyer, M., Schiitt, C., Werner, E.M.: Dual affine invariant points. Indiana Univ. Math. J. 64(3), 735-768
(2015)

@ Springer



456

B.Lietal.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Mordhorst, O., Werner, E. M.: Duality of floating and illumination bodies. Indiana Univ. Math. J. (To
appear)

Mordhorst, O., Werner, E. M.: Floating and Illumination bodies for polytopes: duality results. J. Discret.
Anal. (To appear)

Mussnig, F.: Valuations on log-concave functions. arXiv:1707.06428 (2017)

Pisier, G.: The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathe-
matics, vol. 94. Cambridge University Press, Cambridge (1989)

Roberts, A.W., Varberg, D.E.: Convex Functions. Pure and Applied Mathematics, vol. 57. Academic
Press, New York (1973)

Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University
Press, Princeton, NJ (1970)

Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaft.
Springer, New York (1997)

Schneider, R.: Convex Bodies: The Brunn—-Minkowski Theory. Encyclopedia of Mathematics and Its
Applications. Cambridge University Press, Cambridge (2014)

Schiitt, C.: On the volume of unit balls in Banach spaces. Compos. Math. 47, 393-407 (1982)
Schuster, F.: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1-30 (2010)

Schuster, F., Weberndorfer, M.: Minkowski valuations and generalized valuations. J. Eur. Math. Soc.
(in press)

Szarek, S.J.: On Kashin’s almost Euclidean orthogonal decomposition of l,ll. Bull. Acad. Polo. Sci. 26,
691-694 (1978)

Szarek, S.J., Werner, E.M., Zyczkowski, K.: How often is a random quantum state k-entangled? J.
Phys. A 40, 44 (2011)

Szarek, S.J., Tomczak-Jaegermann, N.: On nearly Euclidean decomposition for some classes of Banach
spaces. Compos. Math. 40, 367-385 (1980)

Werner, E.M.: Illumination bodies and affine surface area. Stud. Math. 110(3), 257-269 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1707.06428

	The Löwner Function of a Log-Concave Function
	Abstract
	1 Introduction
	2  Notation and Preliminaries
	2.1 Log-Concave Functions

	3 The Löwner Function of a Log-Concave Function
	3.1 A Minimization Problem. Definition of the Löwner Function
	3.2 A Reduction Argument
	3.3 Proof of Proposition 3
	3.4 Proof of Theorem 1

	4 John Function and Duality
	4.1 The John Function of Alonso–Gutiérrez, Merino, Jiménez, and Villa
	4.2 Duality

	Acknowledgements
	References




