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Abstract
We introduce the notion of Löwner (ellipsoid) function for a log-concave function and
show that it is an extension of the Löwner ellipsoid for convex bodies. We investigate
its duality relation to the recently defined John (ellipsoid) function (Alonso-Gutiérrez
et al. in J Geom Anal 28:1182–1201, 2018). For convex bodies, John and Löwner
ellipsoids are dual to each other. Interestingly, this need not be the case for the John
function and the Löwner function.
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1 Introduction

Asymptotic convex geometry studies the properties of convex bodieswith emphasis on
the dependence of geometric and analytic invariants on the dimension. The convexity
assumption enforces concentration of volume in a canonical way and it is a main
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question if under natural normalizations the answers to fundamental questions are
independent of the dimension.

The most classical normalizations of convex bodies arise as solutions of extremal
problems. These normalizations include the isotropic position, which arose from clas-
sical mechanics of the 19th century and which is related to a famous open problem
in convex geometry, the hyperplane conjecture (see, e.g., the survey [29]). The best
results currently available there are due Bourgain [11] and Klartag [28].

Other positions are the John position, also calledmaximal volume ellipsoid position
and the Löwner position, also called minimal volume ellipsoid position. The right
choice of a position is important for the study of affinely invariant quantities and
their related isoperimetric inequalities. For instance, John and Löwner position are
related to the Brascamp–Lieb inequality and its reverse [8,10], to Ball’s sharp reverse
isoperimetric inequality [9], to the notion of volume ratio [45,47], which is defined
as the n-th root of the volume of a convex body divided by the volume of its John
ellipsoid and which finds applications in functional analysis and Banach space theory
[12,21,42,47]. John and Löwner position are even relevant in quantum information
theory [5,6,46]. Since a position may be seen as a choice of a special ellipsoid, and
since an ellipsoid entails a Euclidean structure of the underlying space, John and
Löwner ellipsoids provide a way tomeasure how far a normed space is from Euclidean
space [22,26]. For a detailed discussion of the John and the Löwner ellipsoid and its
connections to functional analysis we refer the reader to [2,13,41] and the survey [25].

John proved in [26] that among all ellipsoids contained in a convex body K ∈ R
n ,

there is a unique ellipsoid of maximal volume, now called the John ellipsoid of K .
The Löwner ellipsoid of K is the unique ellipsoid of minimal volume containing K .
These two notions are closely related by polarity (see, e.g., [13,33]): A 0-symmetric
ellipsoid E is the ellipsoid of maximal volume inside K if and only if E◦ is the ellipsoid
of minimal volume outside K ◦, where K ◦ = {y ∈ R

n : 〈y, x〉 ≤ 1 for all x ∈ K } is
the polar of K .

Probabilisitic methods have become extremely useful in convex geometry. In
this context, log-concave functions arise naturally from the uniform measure on
convex bodies. A function f (x) is said to be log-concave, if it is of the form
f (x) = exp(−ψ(x)) where ψ : R

n → R ∪ {∞} is convex. Extensive research
has been devoted within the last ten years to extend the concepts and inequalities
from convex bodies to the setting of functions. In fact, it was observed early that the
Prékopa–Leindler inequality (see, e.g., [20,37]) is the functional analog of the Brunn–
Minkowski inequality (see, e.g., [19]) for convex bodies. Much progress has been
made since and functional analogs of many other geometric inequalities were estab-
lished. Among them are the functional Blaschke-Santaló inequality [3,7,17,32] and
its reverse [18], a functional affine isoperimetric inequality for log-concave functions
which can be viewed as an inverse log-Sobolev inequality for entropy [4,14] and a
theory of valuations, an important concept for convex bodies (e.g., [24,30,31,43,44]),
is currently being developed in the functional setting, e.g., [15,16,36].

It was only recently that the notion of a John (ellipsoid) function of a log-concave
function was established by Alonso-Gutiérrez et al. [1]. However, the notion of a
Löwner ellipsoid function for log-concave functions has been missing till now. In this
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paper we put forward such a notion and we investigate, among other things, its relation
to the John ellipsoid function of [1].

Our main result reads as follows. We denote by A the set of all invertible affine
transformations and by ‖ ·‖2 denote the Euclidean norm on R

n . We say that a function
is nondegenerate if int(supp f ) �= ∅.
Theorem Let f : R

n → R be a nondegenerate integrable log-concave function. There
exists a unique pair (A0, t0) ∈ A × R such that

∫
Rn

e−‖A0x‖2+t0dx = min

{∫
Rn

e−‖Ax‖2+tdx : t ∈ R, A ∈ A, e−‖Ax‖2+t ≥ f (x)

}
.

The uniqueness of A0 is up to left orthogonal transformations.

We then call e−‖A0x‖2+t0 the Löwner function of f and denote it by

L( f )(x) = e−‖A0x‖2+t0 .

The function L( f ) is a functional analog of the Löwner ellipsoid for log-concave
functions. Indeed, we show that if 1K (x) is the characteristic function of a convex
body K ∈ R

n , then the super-level set {L(1K ) ≥ 1} is exactly the Löwner ellipsoid
of K . If, in addition, 0 is the center of the Löwner ellipsoid of K , then it holds by
polarity via the Legendre transform that the polar of the Löwner function is the John
function of (1K )◦. This is the exact analog of the above quoted polarity relation of
John and Löwner ellipsoids for a convex body and its polar.While in the case of convex
bodies the two notions of John and Löwner ellipsoid are always dual to each other,
interestingly, in the functional setting this need no longer be the case. It holds when
the functions are even or characteristic functions of convex bodies.

The paper is structured as follows. In Sect. 2 we introduce the basic facts and
preliminaries. In Sect. 3.1 we define the notion of Löwner function L( f ) for a log-
concave function f and we prove its existence and uniqueness. In Sect. 4, we recover
the John function of [1] and discuss the duality between these two notions.

2 Notation and Preliminaries

Throughout the paper we will use the following notations. The set of all non-singular
affine transformations on R

n is written as A,

A = {A = T + a : T ∈ GL(n), a ∈ R
n}.

Let S+ be the set of symmetric positive definite matrices. Then

SA = {A = T + a : T ∈ S+, a ∈ R
n}.

For b ∈ R
n fixed, put

A(b) = {A = T + a : T ∈ GL(n), a ∈ R
n, T−1a = b}.
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Let SA(b) = A(b) ∩ SA. Clearly, A = ∪b∈RnA(b) and SA = ∪b∈RnSA(b).
The action of an affine transformation A : R

n → R
n on a function f : R

n → R is
defined as A f (x) = f (Ax).

For z ∈ R
n , let Sz be a translation of a function by z, that is, for a function f ,

(Sz f )(x) = f (x + z) (1)

For s ∈ R and a function f : R
n → R, we denote by

G f (s) = {x ∈ R
n : f (x) ≥ s}

the super-level sets of f .

2.1 Log-Concave Functions

A function f : R
n → R is said to be log-concave if it is of the form f (x) = e−ψ(x)

where ψ : R
n → R ∪ {∞} is a convex function. We always consider in this paper

log-concave functions f that are integrable and such that f is nondegenerate, i.e.,
the interior of the support of f is non-empty, int(supp f ) �= ∅. This then implies that
0 <

∫
Rn f dx < ∞.

We will also need the Legendre transform which we recall now. Let z ∈ R
n and let

ψ : R
n → R ∪ {∞} be a convex function. Then

Lzψ(y) = sup
x∈Rn

[〈x − z, y − z〉 − ψ(x)]

is the Legendre transform of ψ with respect to z [3,18] . If f (x) = e−ψ(x) is log-
concave, then

f z(y) = inf
x∈supp( f )

e−〈x−z,y−z〉

f (x)
= e−Lzψ(y) (2)

is called the dual or polar function of f with respect to z. In particular, when z = 0,

f ◦(y) = inf
x∈supp( f )

e−〈x,y〉

f (x)
= e−L0ψ(y),

where L0, also denoted by L for simplicity, is the standard Legendre transform.
In the next proposition we collect several well known, easy to verify, properties of the
generalized Legendre transform that we will use throughout the paper. They can be
found in e.g., [3,17].

Proposition 1 Let ψ be a convex function. Let Sz be as in (1). Then

(i) L and Lz are involutions, that is, L(Lψ) = ψ and Lz(Lzψ) = ψ .
(ii) Lz = S−z ◦ L ◦ Sz.
(iii) L(Szψ)(y) = Lψ − 〈z, y〉.
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(iv) Legendre transform reverses the oder relation, i.e., ifψ1 ≤ ψ2, thenLψ1 ≥ Lψ2.

We now list some basic well-known facts on log-concave functions. A log-concave
function is continuous on the interior of its support, e.g., [39].

We include aproof of thefirst fact for the reader’s convenience.More on log-concave
functions can be found in e.g., [39].

Fact 1 If f is a nondegenerate integrable log-concave function, then G f (t) is convex
and compact for 0 < t ≤ ‖ f ‖∞.

Proof Let f = e−ψ . As ψ is convex and as f is nondegenerate, the super-level set

G f (t) = {x : f (x) ≥ t} = {x : −ψ ≥ log t} = G−ψ(log t)

is convex and closed for all 0 < t ≤ ‖ f ‖∞. As G f (‖ f ‖∞) ⊆ G f (t),∀ 0 < t ≤
‖ f ‖∞, it remains to show that G f (t) is bounded for 0 < t < ‖ f ‖∞. It follows
from Theorem 7.6 of [39] that every super-level set G f (t), 0 < t < ‖ f ‖∞, has the
same affine dimension as the support of f , which has affine dimension n. Chebyshev
inequality then yields

voln(G f (t)) = voln
({
x ∈ R

n : f (x) ≥ t
}) ≤ ‖ f ‖1

t
< ∞.

Since G f (t) is a full dimensional convex set with finite volume, it is bounded. There-
fore, G f (t) is compact for 0 < t ≤ ‖ f ‖∞. ��

The following fact is a direct corollary of the functional Blaschke-Santaló inequality
[3,7] and the functional reverse Santaló inequality [17,27].

Fact 2 Let f = e−ψ be a nondegenerate, integrable, log-concave function such that
0 is in the interior of the support of f . Then f ◦ is again a nondegenerate, integrable
log-concave function and thus 0 <

∫
Rn f ◦(x)dx < ∞. Furthermore, f z is again a

nondegenerate, integrable log-concave function, i.e., 0 <
∫
Rn f z(x)dx < ∞, pro-

vided that z is in the interior of supp( f ).

3 The Löwner Function of a Log-Concave Function

We now define the Löwner function for an integrable, nondegenerate, log-concave
function f = e−ψ .

3.1 AMinimization Problem. Definition of the Löwner Function

We consider the following minimization problem

min
(A,t)

∫
Rn

e−‖Ax‖2+tdx (3)
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subject to

‖Ax‖2 − t ≤ ψ(x), for all x ∈ R
n, (4)

where the minimum is taken over all nonsingular affine maps A ∈ A and all t ∈ R. A
change of variables leads to

min
(A,t)

∫
Rn

e−‖Ax‖2+tdx = min
(A,t)

et
∫
Rn

e−‖Ax‖2dx = min
(A,t)

et

| det A|
∫
Rn

e−‖y‖2dy

= n! vol(Bn
2 ) min

(A,t)

et

| det A| .

Geometrically this means that we minimize the integral of an ellipsoidal function
e−‖Ax‖2+t “outside” f which is exactly what is done when one considers the Löwner
ellipsoid of a convex body K : it minimizes the volume of the ellipsoids containing K .
The next theorem is the main result of this section.

Theorem 1 Let f : R
n → R

+, f (x) = e−ψ(x) be a nondegenerate, integrable log-
concave function. Then there exists a unique solutionmodulo O(n) to theminimization
problem (3) and (4). That is, there exists a pair (A0, t0) satisfying (4) such that

min
(A,t)

∫
Rn

e−‖Ax‖2+tdx = n! vol(Bn
2 )

et0

| det A0| .

The number t0 is unique and the affine map A0 is unique up to left orthogonal trans-
formations.
We then call e−‖A0x‖2+t0 the Löwner function of f and denote it by

L( f )(x) = e−‖A0x‖2+t0 .

Examples
1. The Löwner function is an extension of the concept of Löwner ellipsoid for convex
bodies. Indeed, let

f (x) = 1K (x) = e−IK (x), where IK (x) =
{

∞, x /∈ K ,

0, x ∈ K ,

be the characteristic function of a convex set K ⊂ R
n . Without loss of generality we

may assume that 0 is the center of the Löwner ellipsoid L(K ) of K . Then

L(1K )(x) = e
−n

(
‖T−1

L(K )
x‖2−1

)
, (5)

where TL(K ) is the linear map such that TL(K )Bn
2 = L(K ). To see this, observe that

for A ∈ A, t ∈ R, the level sets of the map ϕ(x) = ‖Ax‖2 − t are ellipsoids. As 0 is
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the center of the Löwner ellipsoid of K , A = T + a is such that a = 0. Thus we get
in particular, that the level set

{x : ϕ(x) = 0} = {x : ‖T x‖2 = t} = t T−1Bn
2 .

As we require that ‖Ax‖2 − t ≤ 0, for all x ∈ K , the smallest ellipsoid that satisfies
this is the Löwner ellipsoid L(K ) of K , i.e., t T−1Bn

2 = L(K ). Thus

| det T | = tn
voln(Bn

2 )

voln(L(K ))

and min(T ,t)
et

| det T | is achieved for t0 = n. This means that T0 = nT−1
L(K ) and hence

L(1K )(x) = e
−n

(
‖T−1

L(K )
x‖2−1

)
.

2. It is easy to see that the Löwner function of the Gaussian g(x) = e−‖x‖22/2 is given
by

L(g)(x) = e−√
n‖x‖2+ n

2 .

3. More generally, let f (x) = e−ψ(x) be a log-concave function where the convex
function ψ depends only on the Euclidean norm of x , ψ(x) = ϕ(‖x‖). Then by
symmetry A ∈ A is of the form A0 = a Id.We compute that a and t0 are determined by

a = ϕ′ (n
a

)
, t0 = n − ϕ

(n
a

)

and thus

L( f )(x) = e−a‖x‖2+n−ϕ( n
a ).

We will prove Theorem 1 in several steps. The first one is to give an equivalent sim-
plified version of the minimization problem via a reduction argument.

3.2 A Reduction Argument

Let f = e−ψ be a log-concave function. Let A = T + a ∈ A. By the polar decom-
position theorem, T ∈ GL(n) can be written as T = O R, where R is a symmetric
positive definite matrix and O ∈ O(n), the set of orthogonal matrices. Then

min‖Ax‖2≤ψ(x)+t
et

| det A| = min‖T x+a‖2≤ψ(x)+t
et

| det T |
= min‖ORx+a‖2≤ψ(x)+t

et

det R

= min ‖Rx + Ota‖2 ≤ ψ(x) + t
et

det R

= min‖Ax‖2≤ψ(x)+t
et

det A
,
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where A ∈ SA. Thus we may assume that A = T + a, where T is symmetric and
positive definite, i.e., T ∈ S+. We put b = T−1a and re-write the last expression
further.

min‖Ax‖2≤ψ(x)+t

et

det A
=

(
max‖Ax‖2≤ψ(x)+t

e−t det A

)−1

=
(
max
t

max‖Ax‖2≤ψ(x)+t
e−t det A

)−1

=
(
max
t

max‖T x+a‖2≤ψ(x)+t
e−t det T

)−1

=
(
max
t

max‖T (x+b)‖2≤ψ(x)+t
e−t det T

)−1

=
(
max
t∈R max

b∈Rn
max‖T x‖2≤ψ(x−b)+t

e−t det T

)−1

=
(
max
b∈Rn

max
t∈R max‖T x‖2≤ψ(x−b)+t

e−t det T

)−1

= min
b∈Rn

(
max
t∈R max‖T x‖2≤ψ(x−b)+t

e−t det T

)−1

, (6)

where T ∈ S+.
This leads us to first consider an optimization problem for fixed b ∈ R

n .

Proposition 2 Fix b ∈ R
n. Let f = e−ψ be a nondegenerate, integrable log-concave

function on R
n. There exists a unique solution, up to left orthogonal transformations,

to the maximization problem

max
T∈S+,t∈Rn

e−t det T subject to ‖T x‖2 − t ≤ ψ(x − b) ∀x ∈ R
n . (7)

Before we prove Proposition 2, we re-write the constraint condition of (7).
For any function h : R

n → R we define its diametral with respect to the point w as

hdia,w(−x + 2w) = h(x).

For a convex function ψ : R
n → R we define its symmetral ψsym,w with respect to

the point w as the greatest, convex function that is smaller than max{ψ,ψdia,w}. In
the same way we define the symmetral fsym,w = e−ψsym,w of a log-concave function
f = e−ψ .
Since for all x ∈ R

n

‖T (x + b)‖2 − t = ‖T ((−x − 2b) + b)‖2 − t

the condition

∀x ∈ R
n : ‖T (x + b)‖2 − t ≤ ψ(x)
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is equivalent to the condition

∀x ∈ R
n : ‖T (x + b)‖2 − t ≤ ψsym,−b(x).

Therefore, we can assume that the convex function ψ is symmetric with respect to
−b. By Proposition 1 and Fact 2, taking the Legendre transform on both sides yields
the equivalent condition

L(‖T x‖2 − t)(y) ≥ L (ψ(x − b)) (y) = L ◦ S−bψ(y). (8)

Observe that

L(‖T x‖2 − t)(y) = sup
x

〈x, y〉 − ‖T x‖2 + t = t + sup
x

〈x, y〉 − ‖T x‖2
= t + sup

z
〈T−1z, y〉 − ‖z‖2 = t + sup

z
〈z, (T−1)t y〉 − ‖z‖2

= t +
{

∞ ‖(T−1)t y‖2 > 1,

0 ‖(T−1)t y‖2 ≤ 1,

= t +
{

∞ y /∈ T Bn
2

0 y ∈ T Bn
2 ,

where from the second to the third equality we have put z = T x . It follows that

e−L(‖T x‖2−t)(y) = e−t1T Bn
2
.

If we set fb = S−b f , then (8) is equivalent to

e−t1T t Bn
2

≤ ( fb)
◦.

Note that by Fact 2, ( fb)◦ is an integrable log-concave function, provided b ∈
int (supp f ). When b /∈ int (supp f ), we replace f by fsym,-b and by the above consid-
erations the minimization problem remains the same.

Moreover, shifting by a vector b does not affect the existence and uniqueness of the
solution to the optimization problem in Proposition 2 and hence proving Proposition
2 is equivalent to proving the case b = 0 ∈ int (supp f ), possibly replacing f by fsym,
i.e., we need to show that there is a unique solution modulo O(n) to the maximization
problem

max
T∈S+,t∈R e

−t det T subject to e−t1T Bn
2

≤ f ◦. (9)

By Proposition 1 and the Fact 2, to prove (9), and hence Proposition 2, it is enough to
prove the following proposition.
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Proposition 3 Let f = e−ψ be a nondegenerate, integrable log-concave function.
Then there exists a unique solution (t0, T0) ∈ R × S+, up to right orthogonal trans-
formations, to the maximization problem

max
T∈S+,t∈R e

−t det T subject to e−t1T Bn
2

≤ f . (10)

3.3 Proof of Proposition 3

To prove Proposition 3, we introduce, for 0 < s ≤ ‖ f ‖∞,

ξ f (s) := s max
{T∈S+:T Bn

2⊂G f (s)}
det T .

Then we can re-write (10) in terms of ξ f , namely,

max{e−t det T : T ∈ S+, t ∈ R, e−t1T Bn
2

≤ f } = max
0<s≤‖ f ‖∞

ξ f (s). (11)

Indeed, putting s = e−t ,

max{e−t det T : T ∈ S+, t ∈ R, e−t1T Bn
2

≤ f }
= max{s det T : T ∈ S+, s > 0, s1T Bn

2
≤ f }.

Note that s1T Bn
2

≤ f ⇐⇒ T Bn
2 ⊂ G f (s). Thus we may restrict our attention to the

set

∪s>0{T ∈ S+ : T Bn
2 ⊂ G f (s)}.

When s > ‖ f ‖∞, {T : T Bn
2 ⊂ G f (s)} = ∅. Thus we consider

⋃
0<s

{T ∈ S+ : T Bn
2 ⊂ G f (s)} =

⋃
0<s≤‖ f ‖∞

{T ∈ S+ : T Bn
2 ⊂ G f (s)}.

Therefore,

max{s det T : T ∈ S+, s > 0, s1T Bn
2

≤ f } = max
0<s≤‖ f ‖∞

s max
{T∈S+: T Bn

2⊂G f (s)}
det T

= max
0<s≤‖ f ‖∞

ξ f (s) (12)

We shall show in the next lemma that lims→0 ξ f (s) = 0 and in Corollary 1 below
that the map s → ξ f (s) is continuous. We then can conclude that the maximizer in
Proposition 3 exists.
The next lemma and its proof is similar to Lemma 2.1 in [1]. We include a proof for
completeness.
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Lemma 1 Let f = e−ψ be an integrable, nondegenerate, log-concave function onR
n.

For any s1, s2 ∈ (0, ‖ f ‖∞] and 0 ≤ λ ≤ 1,

ξ f
(
s1−λ
1 sλ

2

) ≥ ξ f (s1)
1−λξ f (s2)

λ. (13)

Moreover, lims→0 ξ f (s) = 0.

Proof As the set {T ∈ S+ : T Bn
2 ⊂ G f (s)} is compact (e.g., in the operator topology),

and as the determinant is continuous, there are T0, T1 and T2 such that ξ f (s
1−λ
1 sλ

2 ) =
s1−λ
1 sλ

2 ·det T0, ξ f (s1) = s1 ·det T1 and ξ f (s2) = s2 ·det T2. Then, as f is log-concave,

G f
(
s1−λ
1 sλ

2

) = {
x : f (x) ≥ s1−λ

1 sλ
2

} ⊃ (1 − λ){x : f (x) ≥ s1} + λ{x : f (x) ≥ s2}
= (1 − λ)G f (s1) + λG f (s2) ⊃ (1 − λ)T1B

n
2 + λT2B

n
2

⊃ ((1 − λ)T1 + λT2)B
n
2 .

Hence det T0 ≥ det[(1 − λ)T1 + λT2)]. Moreover, we have det T0 ≥ (det T1)1−λ

(det T2)λ. Indeed, byMinkowski’s determinant inequality for positive definitematrices
(see, e.g., [38]),

det T0 ≥ det[(1 − λ)T1 + λT2)]
≥ (

(1 − λ)(det T1)
1/n + λ(det T2)

1/n)n (14)

≥ (det T1)
1−λ(det T2)

λ. (15)

The last inequality follows from the arithmetic-geometric mean inequality. Therefore,

s1−λ
1 sλ

2 det T0 ≥ (s1 det T1)
1−λ (s2 det T2))

λ .

In [1], the authors introduce, for t > 0, a function φ f (t),

φ f (t) = max
{A∈A: ABn

2⊂G f (t)}
t · | det A|.

They showed that limt→0 φ f (t) = 0. It is clear that ξ f (s) ≤ φ f (s) for all s. Hence
lims→0 ξ f (s) = 0. ��
Next we state a John-type result which is well known. We include a proof for com-
pleteness. We recall the Hausdorff metric, which for two convex bodies K and L is
defined as

dH (K , L) = min{λ ≥ 0 : K ⊆ L + λBn
2 ; L ⊆ K + λBn

2 }.

Lemma 2 Let Kn be the set of convex bodies in R
n, equipped with the Hausdorff

metric. The map

K → max
{T∈S+: T Bn

2⊂K }
det T
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is continuous in K . Moreover, let TK be a maximizer, i.e.,

det TK = max
{T∈S+: T Bn

2⊂K }
det T .

Then T is unique up to an orthogonal transformation.

Proof First note that if 0 /∈ int(K ), then {T ∈ S+ : T Bn
2 ⊂ K } = ∅. For K

with 0 ∈ int(K ), let TK be such that det TK = max{T∈S+:T Bn
2⊂K } det T and let

K̂ = K ∩ (−K ). Then

TK Bn
2 ⊂ K̂ = K ∩ (−K ) ⊂ K .

As K ∩ (−K ) is centrally symmetric, the center of the ellipsoid of maximal volume
contained in K ∩ (−K ) is also centered at 0. Therefore the ellipsoid TK Bn

2 is the
ellipsoid of largest volume or John ellipsoid J (K̂ ) contained in K̂ = K ∩ (−K ). It
follows that TK is unique, modulo O(n), as J (K̂ ) is unique, e.g., [20].
Now notice that if K and L are such that dH (K , L) < δ, then dH (K̂ , L̂) < 2δ. In
fact, on the one hand,

L̂ ⊂ L ⊂ K + δBn
2

L̂ ⊂ −L ⊂ −K + δBn
2 ,

hence

L̂ ⊂ K ∩ (−K ) + 2δBn
2 = K̂ + 2δBn

2 .

The other direction follows similarly. Let K ∈ Kn . The map K̂ → J (K̂ ) is con-
tinuous, see e.g., [23]. Hence, for all ε > 0 there exists δ such that for all L ∈ Kn

with dH (K̂ , L̂) < δ we have dH (J (K̂ ), J (L̂)) < ε. It follows that for all L with
dH (K , L) < δ/2, we get

dH
(
TK Bn

2 , TL B
n
2

)
< ε.

��
Corollary 1 The map s → ξ f (s) is continuous in s.

Proof Note that the map

s → max
{T∈S+:T Bn

2⊂G f (s)}
det T

is continuous in s as it is the composition of the continuous maps s → G f (s) and
K → max{T∈S+:T Bn

2⊂K } det T . Hence,

s → s · max
{T∈S+:T Bn

2⊂G f (s)}
det T = ξ f (s)
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is continuous in s. ��
Now we are ready for the proof of Proposition 3 .

Proof As lims→0 ξ f (s) = 0 by Lemma 1, and as ξ f (s) is continuous on (0, ‖ f ‖∞],
ξ f (s) attains its maximum for some s0 ∈ (0, ‖ f ‖∞] and T0 ∈ S+. In other words,
t0 = − log s0 and T0 solve the maximization problem in Proposition 3. To see the
uniqueness modulo O(n), it suffices to show uniqueness in s. Uniqueness in T modulo
O(n) then follows from Lemma 2.
Suppose there are s1, s2 such that s1 > s2 and ξ f (s1) = ξ f (s2). Then it follows from
(13) and the definition of ξ f that for 0 ≤ λ ≤ 1,

ξ f
(
s1−λ
1 sλ

2

) = ξ f (s1)
1−λξ f (s2)

λ.

As in the proof of Lemma 1, let T0, T1 and T2 be such that

ξ f
(
s1−λ
1 sλ

2

) = s1−λ
1 sλ

2 · det T0, ξ f (s1) = s1 · det T1, ξ f (s2) = s2 · det T2.

Then

det T0 = (det T1)
1−λ(det T2)

λ.

In other words, we have equality in the Minkowski determinant inequality and in
the arithmetic-geometric mean inequality, (14) and (15), which implies that det T1 =
det T2. Thus

ξ f (s1) = s1 det T1 = s1 det T2 > s2 det T2 = ξ f (s2),

which is contradiction. ��

3.4 Proof of Theorem 1

We need several more lemmas. Some of them are well known. We include a proof for
the reader’s convenience.

Lemma 3 Let { fm}, f be nondegenerate integrable log-concave functions such that
fm → f pointwise. Then the super-level sets converge in Hausdorff metric, that is,

G fm (k) → G f (k) in Hausdorff, for 0 < k < ‖ f ‖∞.

Proof Since fm, f are non-degenerate, integrable log-concave functions, they are con-
tinuous on their support and by Fact 1, G f (k) is a convex body for 0 < k < ‖ f ‖∞
and G fm (k) is a convex body for 0 < k < ‖ fm‖∞ and all m ≥ 1.
We fix k. By e.g., Theorem 1.8.8 of [41], convergence of G fm (k) → G f (k) in the
Hausdorff metric is equivalent to the following two properties to hold:
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(i) the limit of any convergent subsequence (xm j ) j∈N with xm j ∈ G fm j
(k) for all j ,

belongs to G f (k);
(ii) each point in G f (k) is the limit of a sequence (xm)∈N with xm ∈ G fm (k) for all

m ∈ N.

We show (i). Let (xm j ) j∈N be a sequence with xm j ∈ G fm j
(k) for all j and let x =

lim j→∞ xm j . Let D = co[{xm j : j ∈ N}] be the closed convex hull of {xm j : j ∈ N}.
Then D is compact and convex and as fm j → f pointwise onR

n , fm j → f uniformly
on D, by e.g., Theorem 10.8 of [39]. Therefore, for j large enough,

| fm j (xm j ) − f (x)| ≤ | fm j (xm j ) − f (xm j )| + | f (xm j ) − f (x)| < 2ε. (16)

The first estimate holds by the uniform convergence and the second by continuity of
f . Inequality (16) says exactly that fm j (xm j ) → f (x). As fm j (xm j ) ≥ k, we thus get
that f (x) ≥ k and hence x ∈ G f (k).

Now we show (ii). By definition, for 0 < k < ‖ f ‖∞,

G f (k) = {x : f (x) ≥ k} = {x : ψ(x) ≤ − log k} = Eψ(l),

where we have put l = − log k. Similarly, we rewriteG fm (k) = Eψm (l) and then need
to show that every x ∈ Eψ(l) is the limit of a sequence (xm)∈N with xm ∈ E fm (k)
for all m. We can assume that ψ(x) = l. As f is integrable, there is x0 in R

n such
that ψ(x0) = minx∈Rn ψ(x). We assume without loss of generality that x0 = 0 and
consider the 2-dimensional plane spanned by x and en+1 = (0, . . . , 1). As k < ‖ f ‖∞,

l > ψ(x0) = ψ(0). Let 0 < 2ε
1
2 < ψ(x) − ψ(0). As fm → f pointwise, ψm → ψ

pointwise and therefore we have for all m ≥ m0 that

|ψ(x) − ψm(x)| < ε and |ψ(0) − ψm(0)| < ε.

Let L be the line determined by (0, ψ(0) + ε) and (x, ψm(x)) and let

xm = l − (ψ(0) + ε)

ψm(x) − (ψ(0) + ε)
x,

that is xm is such that the value of L at xm is l. Then

‖xm − x‖2 = ‖x‖2 |l − ψm(x)|
|ψm(x) − (ψ(0) + ε)| ≤ ε

|ψm(x) − (ψ(0) + ε)| ≤ ε
1
2

2(1 − ε
1
2 )

.

The last inequality holds as |ψm(x)− (ψ(0)+ε)| = |ψm(x)−ψ(0)−ε| > 2ε
1
2 −2ε.

By convexity of ψm we have for all y in the line segment [0, x] that ψm(y) ≤ L(y).
If ψm(x) ≥ ψ(x) for all m ≥ m0, then xm ∈ [0, x] and thus

ψm(xm) ≤ L(xm) ≤ l,
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which means that xm ∈ Eψm (l) and we are done. If there exists m1 ≥ m0 such that
ψm1(x) < ψ(x) = l, then x ∈ Eψm1

(l) and we take xm1 = x . Thus, for all m > m1,
either ψm(x) ≥ ψ(x) and then we put xm as above or ψm(x) < ψ(x) and then we put
xm = x . ��
Lemma 4 Let { fm}, f be nondegenerate integrable log-concave functions such that
fm → f pointwise. Then ‖ fm‖∞ → ‖ f ‖∞.

Proof As f is integrable and log-concave, there is x0 ∈ R
n such that f (x0) = ‖ f ‖∞.

Thus for an arbitrary ε > 0, there exists m1 such that

fm(x0) ≥ f (x0) − ε,

whenever m > m1. So ‖ fm‖∞ ≥ fm(x0) ≥ f (x0) − ε whenever m > m1. Thus

lim inf ‖ fm‖∞ ≥ ‖ f ‖∞. (17)

On the other hand, fix an arbitrary 0 < ε < 1
4‖ f ‖∞. By log-concavity of f , there

exists δ > 0 such that

G f

(
1

2
‖ f ‖∞ − ε

)
⊂ G f

(
1

2
‖ f ‖∞

)
+ δBn

2 .

By Lemma 3, there exists m2 such that

G fm

(
1

2
‖ f ‖∞

)
⊂ G f

(
1

2
‖ f ‖∞

)
+ δBn

2 , (18)

whenever m > m2. It follows that fm(x) < 1
2‖ f ‖∞ for all x /∈ G f

( 1
2‖ f ‖∞

) + δBn
2

and whenever m > m2. In other words,

sup
x /∈G f

(
1
2 ‖ f ‖∞

)
+δBn

2

fm(x) ≤ 1

2
‖ f ‖∞, (19)

whenever m > m2. Moreover, since fm(x) → f (x) pointwise on G f
( 1
2‖ f ‖∞

) +
δBn

2 and G f
( 1
2‖ f ‖∞

) + δBn
2 is a compact set, we have fm → f uniformly on

G f
( 1
2‖ f ‖∞

) + δBn
2 , by e.g., Theorem 10.8 of [39]. That is, for the same ε, there

exists m3 such that

fm(x) ≤ f (x) + ε

whenever m > m3 and for all x ∈ G f
( 1
2‖ f ‖∞

) + δBn
2 . Thus,

sup
x∈G f

(
1
2 ‖ f ‖∞

)
+δBn

2

fm(x) ≤ ‖ f ‖∞ + ε, (20)
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whenever m > m3. Taking m > max{m2,m3} and combining (19) and (20), one has

sup
x∈Rn

fm(x) = ‖ fm‖∞ ≤ ‖ f ‖∞ + ε.

Hence

lim sup ‖ fm‖∞ ≤ ‖ f ‖∞. (21)

Finally, combining (17) and (21), one concludes that lim ‖ fm‖∞ = ‖ f ‖∞. ��

Lemma 5 Let { fm}, f be a nondegenerate integrable log-concave functions and sup-
pose that fm → f pointwise. Then

max
0<s≤‖ fm‖∞

ξ fm (s) → max
0<s≤‖ f ‖∞

ξ f (s).

Proof For m ≥ 0, and with the convention that f0 = f , let Tm,s be such that

det Tm,s = max
{T∈S+: T Bn

2⊂G fm (s)}
det T .

By (11) and Proposition 3, there exists a unique s0 = e−t0 and a unique, modulo O(n),
T0 ∈ S+ such that

ξ f (s0) = max
0<s≤‖ f ‖∞

ξ f (s) = s0 det T0 = max
0<s≤‖ f ‖∞

s max
{T∈S+: T Bn

2⊂G f (s)}
det T

= max
0<s≤‖ f ‖∞

s det T0,s .

The third identity holds by definition of ξ f and the last identity holds by definition of
T0,s . Thusmax0<s≤‖ f ‖∞ s det T0,s = s0 det T0 = s0 det T0,s0 . Similarly, for allm ∈ N,
there exist unique sm and a unique, modulo O(n), Tm,sm ∈ S+ such that

ξ fm (sm) = max
0<s≤‖ fm‖∞

ξ fm (s) = sm det Tm,sm .

Since f is integrable and as int(supp( f )) �= ∅,

0 <

∫
Rn

f (x)dx =
∫ ‖ f ‖∞

0
voln(G f (s))ds < ∞.

Therefore, for all ε > 0, there exists δε > 0 such that for all 0 < δ < δε,

0 <

∫ δ

0
voln(G f (s))ds < ε.
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In particular, for ε0 ≤ min
{

s0 det T0,s0 voln(B
n
2 )

2+‖ f ‖∞+ 10
∫
Rn f (s)ds
9‖ f ‖∞

,
‖ f ‖∞

2

}
there is δε0 such that for all

0 < δ < min{s0, δε0 , ‖ f ‖2},

0 <

∫ δ

0
voln(G f (s))ds < ε0.

By Lemma 2, the map

G f (s) → max
{T∈S+: T Bn

2⊂G f (s)}
det T = det T0,s

is continuous and the map

G f (s) → voln(G f (s))

is also continuous. Thus, for 0 < ε1 ≤ min
{
ε0,

‖ f ‖∞
10

}
given, there exists η1 =

η(ε1, s) such that for all η ≤ η1,

∣∣det T0,s − det Tm,s
∣∣ < ε1, (22)

and ∣∣voln(G fm (s)) − voln(G f (s))
∣∣ < ε1, (23)

whenever dH (G f (s),G fm (s)) < η.
We fix 0 < δ < min{s0, δε0 , ‖ f ‖∞ − ε1}. As fm → f pointwise, we get, similarly

to the proof of Lemma 3, that for all 0 < α with δ < ‖ f ‖∞ − α,

G fm (s) → G f (s)

in Hausdorff distance, uniformly for all s with δ ≤ s ≤ ‖ f ‖∞ −α. Thus, in particular
for all s with δ ≤ s ≤ ‖ f ‖∞ − ε1, for 0 < η < η1, there is m1 such that for all
m ≥ m1,

dH
(
G fm (s),G f (s)

)
< η. (24)

By (22) and (23) we therefore get that uniformly for all s with δ ≤ s ≤ ‖ f ‖∞ − ε1
and for all m ≥ m1, ∣∣det T0,s − det Tm,s

∣∣ < ε1, (25)

and ∣∣voln(G fm (s)) − voln(G f (s))
∣∣ < ε1. (26)

By Lemma 4, fm → f pointwise implies that ‖ fm‖∞ → ‖ f ‖∞, i.e., there ism2 such
that

‖ f ‖∞ − ε1 < ‖ fm‖∞ < ‖ f ‖∞ + ε1 (27)
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for all m ≥ m2. In addition, by Lemma 3.2 of [3],
∫
Rn fm dx → ∫

Rn f dx , i.e. there
is m3 such that for all m ≥ m3,

∣∣∣∣
∫
Rn

fm(x) dx −
∫
Rn

f (x) dx

∣∣∣∣ < ε1. (28)

Let m0 = max{m1,m2,m3}. Then, on the one hand, it follows with (25) that for all
m ≥ m0, all δ < min{s0, δε0 , ‖ f ‖2}, all sm such that δ ≤ sm ≤ ‖ f ‖∞ − ε1,

ξ f (s0) = s0 det T0,s0 ≥ sm det T0,sm ≥ sm(det Tm,sm − ε1)

≥ sm det Tm,sm − ε1(‖ f ‖∞ − α)

≥ ξ fm (sm) − ε1‖ f ‖∞. (29)

Furthermore, for m ≥ m0 and sm < δ,

lim sup
m→∞,sm<δ

ξ fm (sm) = lim sup
m→∞,sm<δ

sm det Tm,sm ≤
ε0

(
2 + ‖ f ‖∞ + 10

∫
Rn f (s)ds
9‖ f ‖∞

)

voln(Bn
2 )

≤ s0 det T0,s0 = ξ f (s0). (30)

The last inequality holds by assumption on ε0.Wenowverify the second last inequality.
We have for all s ≤ sm that G fm (sm) ⊆ G fm (s) and therefore by definition of Tm,sm ,

voln(G fm (s)) ≥ voln(G fm (sm)) ≥ det Tm,smvoln(B
n
2 ).

Thus, as sm < δ and also using (27),

sm det Tm,sm ≤ 1

voln(Bn
2 )

∫ sm

0
voln(G fm (s)) ds ≤ 1

voln(Bn
2 )

∫ δ

0
voln(G fm (s)) ds

= 1

voln(Bn
2 )

(∫ ‖ f ‖∞−ε1

0
voln(G fm (s))ds −

∫ ‖ f ‖∞−ε1

δ

voln(G fm (s))ds

)

≤ 1

voln(Bn
2 )

(∫ ‖ fm‖∞

0
voln(G fm (s)) ds −

∫ ‖ f ‖∞−ε1

δ

voln(G fm (s)) ds

)

= 1

voln(Bn
2 )

(∫
fm dx −

∫ ‖ f ‖∞−ε1

δ

voln(G fm (s)) ds

)

≤ 1

voln(Bn
2 )

(∫
f dx + ε1 −

∫ ‖ f ‖∞−ε1

δ

voln(G fm (s)) ds

)

= 1

voln(Bn
2 )

(∫ ‖ f ‖∞

0
voln(G f (s)) ds + ε1 −

∫ ‖ f ‖∞−ε1

δ

voln(G fm (s)) ds

)
.
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The last inequality follows by (28). Now we use (26) and get that

sm det Tm,sm ≤ 1

voln(Bn
2 )

(∫ ‖ f ‖∞

0
voln(G f (s)) ds + ε1 −

∫ ‖ f ‖∞−ε1

δ

voln(G f (s)) ds

+ε1(‖ f ‖∞ − ε1 − δ)

)

≤ 1

voln(Bn
2 )

(∫ δ

0
voln(G f (s)) ds +

∫ ‖ f ‖∞

‖ f ‖∞−ε1

voln(G f (s)) ds

+ε1(1 + ‖ f ‖∞ − δ − ε1)

)

≤ 1

voln(Bn
2 )

(
ε0 + ε1(1 + ‖ f ‖∞ − δ − ε1) + ε1 voln(G f (‖ f ‖∞ − ε1))

)

≤ 1

voln(Bn
2 )

(
ε0 + ε1 (1 + ‖ f ‖∞) + ε1

10
∫
Rn f (s)ds

9 ‖ f ‖∞

)

= 1

voln(Bn
2 )

(
ε0 + ε1

(
1 + ‖ f ‖∞ + 10

∫
Rn f (s)ds

9 ‖ f ‖∞

))

≤ ε0

voln(Bn
2 )

(
2 + ‖ f ‖∞ + 10

∫
Rn f (s)ds

9 ‖ f ‖∞

)
.

The last inequality follows by choice of ε1. The second last inequality above follows as
for all ‖ f ‖∞ − ε1 ≤ s ≤ ‖ f ‖∞, we have that voln(G f (s)) ≤ voln(G f (‖ f ‖∞ − ε1))

and as

voln(G f (‖ f ‖∞ − ε1) ≤
∫
Rn f (s)ds

‖ f ‖∞ − ε1
≤ 10

∫
Rn f (s)ds

9 ‖ f ‖∞
,

by choice of ε1. Now we use how ε0 was chosen and get that for all sm < δ,

sm det Tm,sm ≤ s0 det T0,s0 = ξ f (s0).

It remains to check when ‖ f ‖∞ − ε1 ≤ sm ≤ ‖ f ‖∞ + ε1.

ξ fm (sm) = sm det Tm,sm

≤ (‖ f ‖∞ + ε1)(det Tm,‖ f ‖∞−ε1)

≤ (‖ f ‖∞ + ε1)(det T0,‖ f ‖∞−ε1 + ε1)

= (‖ f ‖∞ − ε1 + 2ε1)(det T0,‖ f ‖∞−ε1 + ε1)

= (‖ f ‖∞ − ε1) det T0,‖ f ‖∞−ε1 + 2ε1 det T0,‖ f ‖∞−ε1 + ε1(‖ f ‖∞ − ε1) + 2ε21
≤ ξ f (s0) + 2ε1 det T0,‖ f ‖∞−ε1 + ε1‖ f ‖∞ + ε21

≤ ξ f (s0) + 2ε0

(
det T0, ‖ f ‖∞

2
+ 3

4
‖ f ‖∞

)
.
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In thefirst inequality, sm < ‖ f ‖∞+ε1 by assumption, anddet Tm,sm ≤ det Tm,‖ f ‖∞−ε1

since G fm (sm) ⊂ G fm (‖ f ‖∞ − ε1). In the second inequality, we apply (25). In the
last inequality, we use ε1 < ε0 as assumed, and we also use the assumption on ε0.
Therefore, we have for all m ≥ m0 and ‖ f ‖∞ − ε1 < sm < ‖ f ‖∞ + ε1,

ξ f (s0) ≥ ξ fm (sm) − 2ε0

(
det T0, ‖ f ‖∞

2
+ 3

4
‖ f ‖∞

)
(31)

It now follows from (29), (30) and (31) that

ξ f (s0) ≥ lim sup
m

ξ fm (sm). (32)

On the other hand, as δ ≤ s0, for ε1 given, it follows from (25) that for all m ≥ m0,

det T0,s0 ≤ det Tm,s0 + ε1.

Therefore, for all m ≥ m0,

s0 det T0,s0 ≤ s0 det Tm,s0 + s0ε1 ≤ sm det Tm,sm + s0ε1.

The last inequality holds as sm det Tm,sm = max{T∈S+:T Bn
2⊂G fm (s)} s det T . Conse-

quently, for all m ≥ m0,

ξ f (s0) = s0 det T0,s0 ≤ sm det Tm,sm + s0ε1 = ξ fm (sm) + s0ε1,

and hence
ξ f (s0) ≤ lim inf

m
ξ fm (sm). (33)

Altogether, by (32) and (33),

lim sup
m

ξ fm (sm) ≤ ξ f (s0) ≤ lim inf
m

ξ fm (sm),

and thus
lim
m

ξ fm (sm) = ξ f (s0). (34)

By (12), this is equivalent to

lim
m

max
0<s≤‖ fm‖∞

ξ fm (s) = max
0<s≤‖ f ‖∞

ξ f (s).

��
In fact, (34) togetherwith (11) says that if { fm}, f are integrable, log-concave functions
and if fm → f pointwise, then

max{e−t det T : T ∈ S+, t ∈ R, e−t1T Bn
2

≤ fm} →
max{e−t det T : T ∈ S+, t ∈ R, e−t1T Bn

2
≤ f }.

Thus we immediately get the following corollary.
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Corollary 2 Let {bm}, b in R
n be such that bm → b. Then

max{e−t det T : T ∈ S+, t ∈ R, ‖T x‖2 − t ≤ ψ(x − bm)} →
max{e−t det T : T ∈ S+, t ∈ R, ‖T x‖2 − t ≤ ψ(x − b)}.

Proof We have that

∀x ∈ R
n : ‖T x‖2 − t ≤ ψ(x − bm)

is equivalent to

∀y ∈ R
n : ‖T (y + bm)‖2 − t ≤ ψ(y).

We put

Bm = {(T , t) : ‖T (y + bm)‖2 − t ≤ ψ(y)∀y ∈ R
n}

and

B = {(T , t) : ‖T (y + b)‖2 − t ≤ ψ(y)∀y ∈ R
n}.

Then

max{e−t det T : (T , t) ∈ Bm} = e‖T (b−bm )‖2 max{e−t−‖T (b−bm )‖2 det(T ) : (T , t) ∈ Bm}.

Since

‖T (y + bm)‖2 ≥ ‖T (y + b)‖2 − ‖T (b − bm)‖2

we get

max{e−t det T : (T , t) ∈ Bm} ≤ e‖T (b−bm )‖2 max{e−s det(T ) : (T , s) ∈ B}.

It follows that

lim sup
m→∞

max{e−t det T : (T , t) ∈ Bm} ≤ max{e−s det(T ) : (T , s) ∈ B}.

Now we interchange the roles of b and bm and get

max{e−s det T : (T , s) ∈ B} ≤ lim inf
m→∞ max{e−t det(T ) : (T , t) ∈ Bm}.

��
The proof of Theorem 1 is next.
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Proof Let f = e−ψ be an integrable log-concave function with positive integral. We
put

I f := min

{∫
Rn

e−‖Ax‖2+tdx : A ∈ A, t ∈ R, ‖Ax‖2 − t ≤ ψ(x)

}

and

I f (b) := min

{∫
Rn

e−‖Ax‖2+tdx : A ∈ A(b), t ∈ R, ‖Ax‖2 − t ≤ ψ(x)

}
.

It follows from (6) that I f = minb∈Rn I f (b).
By the reduction arguments in Sect. 3.2,

I f (b) = min

{∫
Rn

e−‖Ax‖2+tdx : A ∈ A(b), t ∈ R, ‖Ax‖2 − t ≤ ψ(x)

}

= n!voln(Bn
2 ) min

{
et

det T
: T ∈ S+, t ∈ R, ‖T x‖2 − t ≤ ψ(x − b)

}

= n!voln(Bn
2 )

{
max{e−t det T : T ∈ S+, t ∈ R, ‖T x‖2 − t ≤ ψ(x − b)}}−1

.

Corollary 2 implies that I f (b) is continuous in b. To see that the minimum I f exists,
it suffices to show that the minimum is achieved on a compact set.
Let 0 < d0 < ‖ f ‖∞ be such that G f (d0) has positive volume. Let b0 ∈ G f (d0).

Clearly, I f ≤ I f (b0). Let r = I f (b0)
d0

− voln(G f (d0)). Then r > 0 since

d0voln(G f (d0)) <

∫
Rn

f (x)dx ≤ I f (b0).

The last inequality holds as

I f (b0) = min

{∫
Rn

e−‖Ax‖2+tdx : A ∈ A(b0), t ∈ R, ‖Ax‖2 − t ≤ ψ(x)

}

= min

{∫
Rn

e−‖Ax‖2+tdx : A ∈ A(b0), t ∈ R, e−‖Ax‖2+t ≥ f (x)

}
.

To finish the existence argument, we need the notion of illumination body of a convex
body K . This notion was introduced in [48] as follows. Let δ > 0 be given. The
illumination body K δ of K is

K δ = {x ∈ R
n : voln(conv[K , x]) ≤ δ + voln(K )}.

The illumination body is always convex, [48]. See, e.g., [34,35] for recent develop-
ments.

Let nowGr = [G f (d0)]r be the illumination body ofG f (d0).Wewill show that for
b /∈ Gr , I f (b) > I f (b0). Suppose b /∈ Gr and let A0 ∈ A(b), t0 ∈ R achieve I f (b).
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Let h(x) = e−‖A0x‖2+t0 . Since G f (d0) ⊆ Gh(d0) there exists z ∈ bd(Gr ) ∩ Gh(d0)
such that

conv[z,G f (d0)] � Gh(d0).

It follows that

I f (b) =
∫
Rn

h(x)dx > d0 · voln(Gh(d0)) > d0 voln(conv[z,G f (d0)])
= d0 · (r + voln(G f (d0))) = I f (b0).

So for the minimization problem, we need only consider b ∈ Gr where Gr =
[G(d0)]r is a compact set of R

n . The continuity of I f (b) gives the existence of a
minimizer.

Next we address the uniqueness. Recall that I f = minb I f (b) and Proposition 2
guarantees that for each b ∈ R

n there is a unique, modulo O(n), minimizer. Hence it
suffices to show that there is a unique b0 such that I f = minb I f (b) = I f (b0).

We prove by way of contradiction. Suppose that there are b1, b2 such that I f =
I f (b1) = I f (b2) and b1 �= b2. Let the two minimizers corresponding to b1 and b2 be
(T1, t1) ∈ S+ × R and (T2, t2) ∈ S+ × R, respectively. T1 and T2 are unique up to an
orthogonal transformation. Then for all x ∈ R

n

‖T1(x + b1)‖2 − t1 ≤ ψ(x), ‖T2(x + b2)‖2 − t2 ≤ ψ(x)

and

et1

det T1
= et2

det T2
,

or, equivalently, taking logarithm on both sides,

t1 − log det T1 = t2 − log det T2. (35)

We distinguish two cases.
Case 1 T1 �= T2. Then we consider the function

e
−

∥∥∥ T1+T2
2 x+ T1b1+T2b2

2

∥∥∥
2
+ t1+t2

2 .

Observe that

∥∥∥∥T1 + T2
2

x + T1b1 + T2b2
2

∥∥∥∥
2
− t1 + t2

2

=
∥∥∥∥12T1(x + b1) + 1

2
T2(x + b2)

∥∥∥∥
2
− t1 + t2

2

≤ 1

2
(‖T1(x + b1)‖2 − t1) + 1

2
(‖T2(x + b2)‖2 − t2) ≤ ψ(x).
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But

∫
Rn

e
−

∥∥∥ T1+T2
2 x+ T1b1+T2b2

2

∥∥∥
2
+ t1+t2

2 dx = n!voln(Bn
2 )

e
t1+t2

2

det
( T1+T2

2

) .

And by the Minkowski determinant inequality,

(
det

(
T1 + T2

2

)) 1
n ≥ 1

2

(
det(T1)

1
n + det(T2)

1
n

)
,

from which it follows by concavity of the logarithm that

log det

(
T1 + T2

2

)
>

1

2
(log det T1 + log det T2) .

The inequality is strict because the function T → − log det T is strictly convex on the
set of positive definite matrices. Hence

log
e
t1+t2

2

det
( T1+T2

2

) = t1 + t2
2

− log det

(
T1 + T2

2

)

<
t1
2

− 1

2
log det T1 + t2

2
− 1

2
log det T2

= t1 − log det T1 = t2 − log det T2.

It follows that

e
t1+t2

2

det
( T1+T2

2

) <
et1

det T1
,

which contradicts the fact that the latter is the minimum.
Case 2 T1 = T2, modulo O(n). It follows from (35) that t1 = t2. We show b1 = b2.
We put

f1(x) = e−‖T1(x+b1)‖2+t1

and

f2(x) = e−‖T2(x+b2)‖2+t2 = e−‖T1(x+b2)‖2+t1 .

We consider super-level sets. For 0 < s < et1 ,

G f1(s) = −b1 + (t1 − log s)T−1
1 Bn

2
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and

G f2(s) = −b2 + (t1 − log s)T−1
1 Bn

2 .

For 0 < s < ‖ f ‖∞, one has by definition of f1 and f2 that

G f (s) ⊂ G f1(s) ∩ G f2(s).

Now we claim that

G f1(s) ∩ G f2(s) ⊂ −b1 + b2
2

+ (t1 − log s)T−1
1 Bn

2 .

If G f1(s)∩G f2(s) = ∅, this inclusion is trivially true. If not, let x ∈ G f1(s)∩G f2(s).
Then there exist u, v ∈ Bn

2 such that

x = −b1 + (t1 − log s)T−1
1 u = −b2 + (t1 − log s)T−1

1 v. (36)

Thus

x = x + x

2
= −b1 + b2

2
+ (t1 − log s)T−1

1

(
u + v

2

)
. (37)

Since ‖(u + v)/2‖ ≤ ‖u‖/2 + ‖v‖/2 ≤ 1,

x = −b1 + b2
2

+ (t1 − log s)T−1
1

(
u + v

2

)
∈ −b1 + b2

2
+ (t1 − log s)T−1

1 Bn
2 .

In the following we show that there is T̃1 with det(T̃1) > det(T1) satisfying

G f1(s) ∩ G f2(s) ⊂ −b1 + b2
2

+ (t1 − log s)T̃1
−1

Bn
2

⊂ −b1 + b2
2

+ (t1 − log s)T−1
1 Bn

2 .

Both, G f1(s)∩G f2(s) and − b1+b2
2 + (t1 − log s)T−1

1 Bn
2 , are closed sets and centrally

symmetric with respect to the same center − b1+b2
2 .

Nextweobserve thatG f1(s)∩G f2(s)does not intersect the boundary of the ellipsoid
− b1+b2

2 + (t1 − log s)T−1
1 Bn

2 . Indeed, if x ∈ G f1(s) ∩ G f2(s) as represented in (37)

is on the boundary of − b1+b2
2 + (t1 − log s)T−1

1 Bn
2 , it follows that u = v ∈ Sn−1.

Hence by (36), b1 = b2, a contradiction.
Therefore G f1(s) ∩ G f2(s) is a convex body such that

(
G f1(s) ∩ G f2(s)

) ∩
(

−b1 + b2
2

+ (t1 − log s)T−1
1 Bn

2

)c

= ∅,
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and thus

dist

(
G f1(s) ∩ G f2(s),

(
−b1 + b2

2
+ (t1 − log s)T−1

1 Bn
2

)c
)

> 0,

where dist(A, B) = inf{‖x − y‖2, x ∈ A, y ∈ B}. Hence we may shrink the ellipsoid
− b1+b2

2 + (t1 − log s)T−1
1 Bn

2 with respect to the center −(b1 + b2)/2 homothetically

to get a new ellipsoid − b1+b2
2 + (t1 − log s)T̃1

−1
Bn
2 such that still

G f1(s) ∩ G f2(s) ⊂ −b1 + b2
2

+ (t1 − log s)T̃1
−1

Bn
2

and such that− b1+b2
2 +(t1−log s)T̃1

−1
Bn
2 intersects the boundary ofG f1(s)∩G f2(s).

Given such a T̃1
−1

, it follows from

G f (s) ⊂ G f1(s) ∩ G f2(s) ⊂ −b1 + b2
2

+ (t1 − log s)T̃1
−1

Bn
2

that
∥∥∥∥T̃1

(
x + b1 + b2

2

)∥∥∥∥
2
− t1 ≤ ψ(x).

However

∫
Rn

e
−

∥∥∥T̃1
(
x+ b1+b2

2

)∥∥∥
2
+t1dx = n!vol(Bn

2 )
et1

det T̃1
< n!vol(Bn

2 )
et1

det T1
,

which is a contradiction.
Consequently, we have proved that b1 = b2. ��

4 John Function and Duality

4.1 The John Function of Alonso–Gutiérrez, Merino, Jiménez, andVilla

A notion of a John ellipsoid function has already been introduced in [1, Theorem 1.1].
We first recall the definition from this work.

Theorem 2 [1] Let f : R
n → R be an integrable log-concave function. There exists

a unique solution (s0, A0) ∈ R × A to the maximization problem

max{s| det A| : s ≤ ‖ f ‖∞, A ∈ A} subject to s 1ABn
2

≤ f . (38)

A0 is unique up to right orthogonal transformations. Then s0 1A0Bn
2
is called the John

ellipsoid of f , J ( f ) = s0 1A0Bn
2
.
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Note that, as for the Löwner function, J ( f ) = s0 1A0Bn
2
up to an orthogonal transfor-

mation.
We show that Theorem 2 can be obtained from Proposition 3 and Lemma 5. How-

ever, it seems that Theorem 1 cannot be obtained immediately from Theorem 2 as
the optimization in (38) is over all affine maps, i.e., translation is allowed under the
constraint that s1ABn

2
≤ f . To see how Theorem 2 follows from Proposition 3 and

Lemma 5, we first rewrite (38) in Theorem 2. Let A = T − b,

s0 det A0 = max{s det A : s ≤ ‖ f ‖∞, A ∈ A, s1ABn
2

≤ f }
= max{s det T : s ≤ ‖ f ‖∞, T ∈ S+, b ∈ R

n, s1T Bn
2−b(x) ≤ f (x) ∀x ∈ R

n}
= max{s det T : s ≤ ‖ f ‖∞, T ∈ S+, b ∈ R

n, s1T Bn
2
(x + b) ≤ f (x) ∀x ∈ R

n}
= max{s det T : s ≤ ‖ f ‖∞, T ∈ S+, b ∈ R

n, s1T Bn
2
(x) ≤ f (x − b) ∀x ∈ R

n}
= max

b∈Rn
max{s det T : s ≤ ‖ f ‖∞, T ∈ S+, s1T Bn

2
(x) ≤ f (x − b) ∀x ∈ R

n}

If we put J = s0 det A0 and

J f (b) = max{s det T : s ≤ ‖ f ‖∞, T ∈ S+, s1T Bn
2
(x) ≤ f (x − b) ∀x ∈ R

n},

then J = maxb∈Rn J f (b). Note also that J f (b) is continuous in b by Lemma 5.
We show now that the existence of the John function follows from Proposition 3

and Lemma 5.

Existence of the John function in Theorem 2 Recall that existence and uniqueness
of J f (b) are proved in Proposition 3 . Choose b′ ∈ R

n such that J f (b′) > 0. Now let
ε = J f (b′). Since f is integrable, there exists δ(ε) such that

∫ δ(ε)

0
voln(G f (s))ds < ε.

Then for b /∈ G f (δ(ε)), J f (b) < ε. In fact,

J f (b) ≤
∫ δ(ε)

0
voln(G f (s))ds < ε.

Hence

max
b∈Rn

J f (b) = max
b∈G f (δ(ε))

J f (b).

Since G f (δ(ε)) is compact and J f (b) is continuous in b by Lemma 5, maxb∈Rn J f (b)
= maxb∈G f (δ(ε)) J f (b) exists.

We include the uniqueness argument for the reader’s convenience.

Uniqueness of the John function in Theorem 2 Suppose that maxb∈Rn J f (b) =
J f (b1) = J f (b2) for some b1 �= b2. If b1 = b2, then the solution is unique modulo
O(n), by Proposition 3 . Suppose that t1, t2, T1, T2 are maximizers satisfying
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J f (b1) = t1 det T1 and J f (b2) = t2 det T2.

f (T1v + b1) ≥ t1 and f (T2v + b2) ≥ t2, ∀ v ∈ Bn
2 .

Thus we have

log t1 + log det T1 = log t2 + log det T2.

We may furthermore assume that t1 �= t2. Indeed, observe that T1Bn
2 + b1 is the John

ellipsoid of G f (t1) and T2Bn
2 + b2 is the John ellipsoid of G f (t2). If t1 = t2, then

G f (t1) = G f (t2) and by the uniqueness of John ellipsoid of a convex body [20,26,41],
T1 = T2. Hence without loss of generality, we assume t1 < t2.

Now we consider the function

√
t1t21 T1+T2

2 Bn
2+ b1+b2

2
.

We first show that

√
t1t21 T1+T2

2 Bn
2+ b1+b2

2
≤ f .

In fact, by the concavity of log f , we have for any u ∈ Bn
2 ,

log f

(
T1 + T2

2
u + b1 + b2

2

)
≥ 1

2
log f (T1u + b1) + 1

2
log f (T2u + b2)

≥ 1

2
log t1 + 1

2
log t2 = log

√
t1t2.

However,
√
t1t2 det(

T1+T2
2 ) > J f (b1). Indeed, using again the strict concavity of the

function T → log det T on positive definite operators we have

log

(√
t1t2 det

(
T1 + T2

2

))
= 1

2
log t1 + 1

2
log t2 + log det

(
T1 + T2

2

)

>
1

2
log t1 + 1

2
log t2 + 1

2
log det T1 + 1

2
log det T2

= 1

2
(log t1 + log det T1) + 1

2
(log t2 + log det T2)

= log t1 + log det T1 = log(J f (b1)),

which is a contradiction to the assumption that maxb∈Rn J f (b) = J f (b1). Conse-
quently, b1 = b2.

4.2 Duality

Let K be a convex body in R
n such that 0 is the center of the Löwner ellipsoid L(K ).

Then it holds that (L(K ))◦ = J (K ◦), where J (K ◦) is the John ellipsoid of K ◦. This
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duality relation carries over when we consider the convex bodies in the functional
setting.

Proposition 4 Let K be a convex body in R
n. Assume, without loss of generality, that

0 is the center of the Löwner ellipsoid L(K ) of K . Then

(L(1K ))◦ = J ((1K )◦).

Proof It was shown in (5), that L(1K )(x) = e
−n

(
‖T−1

L(K )
x‖2−1

)
. Then

L
(
n

(
‖T−1

L(K )x‖2 − 1
))

(y) = n + sup
x∈Rn

〈x, y〉 − n‖T−1
L(K )x‖2

= n + sup
z∈Rn

〈z, T t
L(K )y〉 − n‖z‖2

= n + sup
z∈Rn

‖z‖2
(
‖T t

L(K )y‖2 − n
)

= n +
{

∞ y /∈ n(T t
L(K ))

−1Bn
2

0 y ∈ n(T t
L(K ))

−1Bn
2 .

Hence,

(L(1K ))◦ = e−n1n(T t
L(K )

)−1Bn
2

= e−n1nJ (K ◦).

The last identity holds as L(K ) = TLK Bn
2 , and thus J (K ◦) = (L(K ))◦ =

(TLK Bn
2 )◦ = (T t

L(K ))
−1Bn

2 . Now we compute (1K )◦ = (e−IK )◦, where

IK (x) =
{
0 x ∈ K ,

∞ x /∈ K .

The Legendre transform of IK is

L(IK )(y) = sup
x∈Rn

〈x, y〉 − IK (x) = sup
x∈K

〈x, y〉 = hK (y),

where hK is the support function of K . K ◦ is a convex body since 0 is contained in
the interior of K . Thus, (1K )◦(y) = e−hK (y). Next we compute the John function
J ((1K )◦) of (1K )◦. For 0 < s ≤ 1,

e−hK (y) ≥ s ⇔ hK (y) ≤ − log s ⇔ y ∈ (− log s)K ◦.

So the super-level set of (1K )◦ at s is G(1K )◦(s) = (− log s)K ◦. Moreover,

J (− log s K ◦) = − log s J (K ◦) = − log s(L(K ))◦

and maxs s(− log s)n is reached at s = e−n . Thus J ((1K )◦) = e−n1nJ (K ◦). ��
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In a functional context, we view as ellipsoidal functions or, ellipsoids in short,
functions of the form

t1E and exp(−‖T x + a‖2 + t),

where E is an ellipsoid in R
n and t ∈ R, a ∈ R

n, T ∈ S+.
We want to establish a duality relation between the ellipsoidal functions, similar

to the one that holds for convex bodies. As in the case of convex bodies, we can only
expect such a duality relation if we take polarity with respect to the proper point.
Indeed, let f = e−ψ be a log-concave function. Let L( f )(x) = e−‖T0x+a0‖+t0 be the
Löwner function of f . Let b ∈ R

n . Then

Lb (‖T0x + a0‖2 + t0) (y) = t0 + sup
x∈Rn

〈x − b, y − b〉 − ‖T0x + a0‖2
= t0 + sup

z∈Rn
〈T−1

0 (z − a0) − b, y − b〉 − ‖z‖2
= t0 − 〈b, y − b〉 − 〈T−1

0 (a0), y − b〉
+ sup

z∈Rn
〈z, T−1

0 (y − b)〉 − ‖z‖2
= t0 − 〈b, y − b〉 − 〈T−1

0 (a0), y − b〉
+ sup

z∈Rn
‖z‖2

(
‖T−1

0 (y − b)‖2 − 1
)

= t0 − 〈b, y − b〉 − 〈T−1
0 (a0), y − b〉 +

{
∞ y /∈ T0Bn

2 + b

0 y ∈ T0Bn
2 + b

and (L( f ))b = e−Lb(‖T0x+a0‖2+t0) is again an ellipsoidal function if and only if
b = b0 = −T−1

0 a0. In this case

(L( f ))−b0 = e−L−b0 (‖T0x+a0‖2+t0) = e−t0 1T0Bn
2−b0 .

For log-concave functions f = e−ψ that are even, i.e., ψ(x) = ψ(−x), the point
b0 = 0 and such a duality relation holds.

Proposition 5 If f = e−ψ is an even log-concave function, then (L( f ))◦ = J ( f ◦).

Proof Let L( f ) = e−‖T0(x+b0)‖2+t0 be the Löwner function of f . By Theorem 1,
(T0, b0, t0) are the unique solution, modulo O(n), to the optimization problem

n!voln(Bn
2 ) min

b∈Rn
min

{
et

det T
: T ∈ S+, t ∈ R, e−t1T Bn

2
(y) ≤ ( fb)

◦(y)
}

,

where fb(x) = S−b f . As f is even, b0 = 0. Hence the above minimum is obtained
when b = 0, that is,
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min
b∈Rn

min

{
et

det T
: T ∈ S+, t ∈ R, e−t1T Bn

2
(y) ≤ ( fb)

◦(y)
}

= min

{
et

det T
: T ∈ S+, t ∈ R, e−t1T Bn

2
(y) ≤ f ◦

}

=
(
max

{
e−t det T : T ∈ S+, t ∈ R, e−t1T Bn

2
(y) ≤ f ◦})−1

.

In other words, (T0, t0) also solves

max
{
e−t det T : T ∈ S+, t ∈ R, e−t1T Bn

2
(y) ≤ f ◦} . (39)

Now observe that f ◦ is an even function. In fact, since ψ(x) = ψ(−x),

L(ψ)(−y) = sup
x∈Rn

〈x,−y〉 − ψ(x) = sup
x∈Rn

〈−x,−y〉 − ψ(−x) = sup
x∈Rn

〈x, y〉 − ψ(x)

= L(ψ)(y).

Thus, f ◦(−y) = e−L(ψ)(−y) = e−L(ψ)(y) = f ◦(y). By the eveness of f ◦, the
maximum

max
b∈Rn

max
{
e−t det T : T ∈ S+, t ∈ R, e−t1T Bn

2+b(y) ≤ f ◦} (40)

is achieved at the same solution to (39). But the solution to (40) gives the John ellipsoid
function of f ◦. Therefore, J ( f ◦) = e−t01T0Bn

2
. It follows from a routine computation

that

(L( f ))◦ =
(
e−‖T0x‖2+t0

)◦ = e−t01T0Bn
2

= J ( f ◦).

��
However, it is not true in general that L( f )b0 = J ( f b0) or L( f b0) = J ( f )b0 . We
give a 1-dimensional counter example. The higher dimensional counter example is
constructed accordingly.
A counter example Let f (x) = e−ψ(x) be the log-concave function such that

ψ(x) =
{
4x2 x ≤ 0

x2 x > 0.

We compute that the Löwner function of f is

L( f ) = e
− 4√

5

∣∣∣x− 3
8
√
5

∣∣∣+ 1
2

and that the polar of L( f ) with respect to 3
8
√
5
is

(L( f ))
3

8
√
5 = e− 1

21[
− 4√

5
, 4√

5

]
+ 3

8
√
5

.
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The polar of f with respect to 3
8
√
5
is

( f )
3

8
√
5 = e

3
8
√
5

(
x− 3

8
√
5

)
− 1

16

(
x− 3

8
√
5

)2
1(

−∞, 3
8
√
5

] + e
3

8
√
5

(
x− 3

8
√
5

)
− 1

4

(
x− 3

8
√
5

)2
1(

3
8
√
5
,∞

).

To find the John ellipsoid J

(
( f )

3
8
√
5

)
of ( f )

3
8
√
5 we determine the super-level sets of

( f )
3

8
√
5 ,

G
( f )

3
8
√
5
(s) =

{
x : ( f )

3
8
√
5 ≥ s

}

=

⎧⎪⎪⎨
⎪⎪⎩

[
3

8
√
5

+ 3−(9−80 log s)
1
2√

5
, 3
8
√
5

+ 3+(9−320 log s)
1
2

4
√
5

]
, s ≤ 1[

3
8
√
5

+ 3−(9−320 log s)
1
2

4
√
5

, 3
8
√
5

+ 3+(9−320 log s)
1
2

4
√
5

]
, s ≥ 1

and then maximize the function

h(s) =
⎧⎨
⎩

s
4
√
5

(
4 (9 − 80 log s)

1
2 + (9 − 320 log s)

1
2 − 9

)
, s ≤ 1

s
2
√
5

(9 − 320 log s)
1
2 , s ≥ 1.

If it were so that

(L( f ))
3

8
√
5 = e− 1

21[
− 4√

5
, 4√

5

]
+ 3

8
√
5

= J

(
( f )

3
8
√
5

)
,

then the function h would have its maximum at s = e− 1
2 and thus the derivative of h

at s = e− 1
2 should be 0. But h′

(
e− 1

2

)
� −0.3538 < 0.
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