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Abstract. We prove that any mapping torus of a pseudo-Anosov mapping class with
bounded normalized Weil–Petersson translation length contains a finite set of transverse
and level closed curves with the property that drilling out this set of curves results in one of
a finite number of cusped hyperbolic 3–manifolds. Moreover, the set of resulting manifolds
depends only on the bound for normalized translation length. This gives a Weil–Petersson
analog of a theorem of Farb–Leininger–Margalit [FLM11] about Teichmüller translation
length. We also prove a complementary result that explains the necessity of removing
level curves by producing new estimates for the Weil–Petersson translation length of
compositions of pseudo-Anosov mapping classes and arbitrary powers of a Dehn twist.

1. Introduction

Let S be a hyperbolic surface and let T (S) be its Teichmüller space equipped with the
Weil–Petersson (WP) metric dwp. For any mapping class φ, let ‖φ‖wp be the translation
length of φ with respect to its isometric action on (T (S), dwp). The focus of this article
is on the structure of pseudo-Anosov homeomorphisms (on any surface) with bounded
normalized WP translation length. More precisely, let L > 0 and define

Φwp(L) =
{
φ : S → S | φ is pA and

√
|χ(S)| · ||φ||wp ≤ L

}
to be the set of pseudo-Anosov homeomorphisms on all orientable surfaces whose normal-
ized WP translation length is at most L. For L sufficiently large, Φwp(L) contains pseudo-
Anosov homeomorphisms on all closed surfaces of genus g ≥ 2. This is a consequence of the
analogous statement for normalized Teichmüller translation length, |χ(S)| · ‖φ‖T , proved
by Penner [Pen91], and an inequality due to Linch [Lin74]; see Section 2.2.

We will prove results constraining Φwp(L) from two directions. Theorem 1.1 will give
upper bounds on normalized WP translation length for compositions with arbitrary powers
of Dehn twists, thus showing (Corollary 1.2) that for large enough L, Φwp(L) contains
infinitely many conjugacy classes in each genus. Theorems 1.4 and 1.5 show that Φwp(L) is
controlled by a finite number of 3-manifolds, obtained from each φ : S → S by forming the
mapping torus and then deleting a collection of curves transverse to fibers or level within
fibers. The level curves in particular account for the Dehn twist phenomenon analyzed in
Theorem 1.1.

Our first result extends Linch’s inequality.
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Theorem 1.1. There exists c > 0 so that if φ : S → S is a pseudo-Anosov on a closed
surface, α ⊂ S is a simple closed curve with τα = τα(φ) ≥ 9, and k ∈ Z, then

‖T kα ◦ φ‖wp ≤ ‖φ‖T
√
c|χ(S)|.

Here Tα is a Dehn twist in α and τα(φ) is the twisting number of φ about α; see §5.4
for definitions and §5.5 for a more precise statement. From this theorem we obtain the
following additional information about Φwp(L).

Corollary 1.2. There exists L > 0 so that the set Φwp(L) contains infinitely many conju-
gacy classes of pseudo-Anosov mapping classes for every closed surface of genus g ≥ 2.

Remark 1.3. The key point of Corollary 1.2 is that the conclusion holds for every closed
surface of genus g ≥ 2. Indeed, it was already known that for a fixed surface one can
find infinitely many conjugacy classes of pseudo-Anosov mapping classes with bounded
WP translation distance because of the nature of the incompleteness of dwp discovered by
Wolpert [Wol75] and Chu [Chu76]. We also note that these statements sharply contrast the
situation for the Teichmüller metric, where there are only finitely many conjugacy classes
with any bound on translation distance for a fixed surface; see [AY81, Iva88].

The idea of the proof of Corollary 1.2 from Theorem 1.1 is as follows (see §5.6 for
details). We can explicitly construct a 3–manifold M that contains fibers Sg of genus g for
all g ≥ 2, each of which contains a fixed simple closed curve α ⊂M . Appealing to results of
Fried [Fri82] and Thurston [Thu86b], we can find a constant c′ > 0 so that the monodromies
φg : Sg → Sg have bounded normalized Teichmüller translation length |χ(Sg)|‖φg‖T ≤ c′

(c.f. McMullen [McM00]). Moreover, these can be chosen so that τα(φg) ≥ 9 for all g.
Theorem 1.1 provides a c > 0 so that√

|χ(Sg)| ‖φg ◦ T kα‖wp ≤ |χ(Sg)|
√
c ‖φg‖T ≤

√
cc′.

For all but finitely many k, φg ◦ T kα is pseudo-Anosov, and all such pseudo-Anosov homeo-
morphisms are in Φwp(L), for L =

√
cc′. This construction can be carried out explicitly to

produce concrete bounds, but is actually much more robust; see Corollary 5.7.

For any fixed k ∈ Z, the mapping classes φg ◦ T kα in the construction just described
are all monodromies of a fixed 3–manifold Mk, independent of g. We could alternatively
describe all the manifolds Mk as being obtained by an integral Dehn surgery of the single
3–manifold M along α. Our next result, the main theorem, states that all pseudo-Anosov
homeomorphisms in Φwp(L) arise from this and a related construction.

To state the main theorem, let φ : S → S be a homeomorphism and M = Mφ the
mapping torus, which fibers over the circle with fiber S. An embedded 1-manifold C in
M is called monotonic with respect to S if there is a foliation of M by S–fibers such that
each component of C is either transverse to the foliation, or level, i.e. embedded in some
leaf. When C is monotonic, we let C` be the union of level curves and Ct be the union
of transverse curves. Note that if M is fibered and C ⊂ M is monotonic, then M r Ct is
fibered and C` is a collection of level curves of M r Ct with respect to some fibration.



WP LENGTH AND FIBERED FILLINGS 3

Theorem 1.4. Fix L > 0. For each (φ : S → S) ∈ Φwp(L) there is a monotonic 1-manifold
Cφ ⊂Mφ with respect to S so that the resulting collection of 3-manifolds{

Mφ r Cφ : φ ∈ Φwp(L)
}

is finite.

Theorem 1.4 is the WP analog of the result of Farb–Leininger–Margalit [FLM11] for
pseudo-Anosovs with bounded normalized Teichmüller translation length. In the Te-
ichmüller setting, it sufficed to remove only transverse curves. For the WP metric, re-
moving certain level curves is necessary since integral Dehn surgery along a level curve
changes the monodromy by composition with a power of a Dehn twist as in the example
proving Corollary 1.2 above. As composing with such a power of a twist can still result in
pseudo-Anosovs with bounded normalized WP translation length (Theorem 1.1), removing
level curves is unavoidable if the resulting collection of manifolds is to be finite.

In fact, Theorem 1.4 is really a corollary of the following result together with work of
Brock–Bromberg [BB16] and Kojima–McShane [KM18].

Theorem 1.5 (Many fibered fillings). Let M̊ be a compact 3-manifold whose boundary

components are tori such that int(M̊) is hyperbolic. Then all sufficiently long fibered

fillings M of M̊ have the following form: For any fiber S of M , there is a 1-manifold
C = C` t Ct such that

(1) M̊ = M r C.
(2) The curves Ct are transverse in M with respect to S. So M r Ct is fibered.
(3) The curves C` are level in M with respect to S.

In this theorem, sufficiently long fillings refers to the set of Dehn fillings of the manifold
M whose filling slopes exclude finitely many slopes on each boundary component; see
Section 4. Example 1 in §4.7 below shows that when a Dehn filling fibers in multiple ways,
even though the 1–manifold C is the same for all fibers, the decomposition C = C` t Ct
depends on the particular fiber chosen, even over a single fibered face (see §2.3).

1.1. Outlines. The proofs of Theorem 1.1 and Theorem 1.4 are essentially independent.
The first half of the paper is devoted to the latter, while the second half to the former.

In Section 2, we recall the definition of the Weil–Petersson metric on Teichmüller space
and its connection to hyperbolic volume. We also review the Floyd–Oertel branched sur-
faces, which play a central role in the proof of Theorem 1.5. Section 3 then establishes a
few important facts from 3-manifold topology. These are needed in Section 4 where Theo-
rems 1.4 and 1.5 are proven using a combination of branched surface theory and hyperbolic
geometry.

Proof of Theorem 1.5 (outline). Let Mβ be a fibered filling of M̊ (the index β is a tuple of
Dehn filling parameters on the boundary components, described in Section 4.1) and let Sβ
be a fiber. To simplify the discussion, assume that Mβ , and hence S, has empty boundary.
We cut M along Sβ to produce a product I-bundle Fβ ∼= Sβ × [0, 1]. The goal is to show,
for sufficiently long fillings β, and suitably chosen Sβ in its isotopy class, that the cores of
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the filling solid tori of Mβ , when intersected with Fβ , are vertical arcs x× [0, 1] and level
curves c× {t}.

Our tool for this is a decomposition of the product Fβ into an I-foliated part and a
bounded part Xβ , with these properties:

• The I-foliated part is foliated by intervals, and contains as a subproduct the inter-
sections with Fβ of the filling tubes that intersect Sβ .
• The bounded part contains the filling tubes disjoint from Sβ , which we call the

floating tubes V F
β . The complement X = Xβ r V F

β is one of a finite collection of

submanifolds of M̊ , which exists independently of β.

Figure 1. The decomposition of the I-bundle Fβ . The I-foliated part is
indicated in gray and the tubes in yellow.

Figure 1 indicates this decomposition schematically, as well as the three basic obstruc-
tions to completing the argument:

(1) Knotting of the I-foliated part
(2) Nonorientability of the I-foliation: a component of the I-foliated part whose fibers

have both endpoints on the same component of ∂Fβ .
(3) Knotting of the floating tubes

The construction comes from the Floyd–Oertel theory of branched surfaces. After an
isotopy of Sβ in Mβ to minimize a certain complexity function, S̊β = Sβ ∩ M̊ is a properly

embedded essential surface in M̊ and so is fully carried by one of finitely many incom-
pressible branched surfaces B, as discussed in Section 2.4. Such a branched surface has a
regular fibered neighborhood N and its complement in M̊ is our desired region X. After
carefully arranging Sβ within N the I-foliated regions are obtained from the I-fibration of
N , and Xβ is X union the floating solid tori. Moreover, ∂X decomposes as a vertical part
∂vX which inherits the I-foliation on the corresponding part of ∂N , and a horizontal part
∂hX which lies in ∂Fβ ∩ ∂N . This construction of Xβ and the foliation I is carried out in
detail in Sections 4.1–4.3.



WP LENGTH AND FIBERED FILLINGS 5

The first major goal is to show that, for sufficiently long fillings β, the I-foliation of Fβ
in the complement of Xβ extends to agree, up to isotopy, with the product foliation. The
proof of this is completed in Proposition 4.6, and requires the resolution of obstructions
(1) and (2).

For the first, knottedness of the foliated part, we have Lemma 3.1 which says that a
side-preserving embedding of E × [0, 1] into S × [0, 1] is unknotted (isotopic to a standard
embedding) when E is not homotopically trivial. In order to apply this we show, in
Lemma 4.4, that for sufficiently long fillings β the components of the fibered part are indeed
homotopically trivial. The main idea, carried out in Lemma 4.2, is that, since ∂hX is among
a fixed finite collection of surfaces in M̊ , any bounded-complexity component of ∂Fβr∂hX
has a bounded-area homotope in each Mβ , which is used to rule out intersections with the
filling solid tori when meridians are long. We use this to show in Lemma 4.4 that trivial
regions in S × {0, 1} correspond to disks of contact for B, contradicting incompressibility
of the branched surface.

The second obstruction, the possibility that components of the foliated part have both
ends on the same component of ∂Fβ , is handled in Lemma 4.5 using the minimal complexity
assumption on the choice of S within its isotopy class.

This allows us to prove Proposition 4.6, and in particular, we see that Xβ is itself a
subproduct of Fβ .

We are left with the third obstruction: showing that the floating solid tori are level
in Xβ . This is accomplished by a reduction to a theorem of Otal, which states that
sufficiently short curves in a Kleinian surface group are level curves. The constants in
this theorem depend on the genus of the surface, so to obtain the needed uniformity we
consider a fixed fiber surface from one filling which, after puncturing along those solid tori
that meet the branched surface, can be embedded simultaneously in all the fibered fillings,
and represents a fiber in each of them. This means, for sufficiently long fillings, that the
cores of the floating tori are sufficiently short to apply Otal’s theorem with respect to this
fiber. A short topological argument then implies that these curves are level with respect
to all of the fiberings.

Proof of Theorem 1.1 (outline). Theorem 1.1 and its several corollaries concerning WP
translation length and twisting are proven in Section 5. The argument uses a fibered version
of Dehn surgery on the mapping torus in order to twist about the curve α. Informally,
we start with the singular solv structure on the mapping torus of the pseudo-Anosov
homeomorphism φ, locate a solid torus foliated by flat annuli about α, and replace this
solid torus with one that performs the desired twisting while affecting the WP translation
length of the new monodromy in a controlled manner. To do this, we show in Section
6 that there exists a solid torus (the one used in the filling) with a leaf-wise conformal
structure that carries out the required twisting while moving a bounded distance in the
WP metric. That section concludes by showing that in the singular solv structure on the
mapping torus of φ, one can indeed find a sufficiently large solid torus about α to drill
out which is foliated by flat annuli. The proof of Theorem 1.1 shows that replacing this
solid torus with the one found in Section 6 has the necessary effect on the WP translation
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length of the new monodromy. Section 5 concludes by constructing some explicit examples
(for example, proving Corollary 1.2), as well as strengthening the construction to produce
homeomorphisms with bounded normalized WP translation length from pseudo-Anosovs
over a fibered face of essentially any fixed manifold.
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Added in proof: After this paper was written, Yue Zhang proved a generalization of Theo-
rem 1.5 weakening the assumption that the interior of the manifold is hyperbolic [Zha20].

2. Background

Here we recall some basic background on the Weil–Petersson metric and branched sur-
faces.

2.1. The Weil–Petersson metric on T (S). The Teichmüller space T (S) of the surface S
is the space of marked hyperbolic structures on S, i.e. pairs (X, f) where X is a hyperbolic
surface and f : S → X is a homeomorphism, up to the equivalence that identifies (X, f)
and (Y, h) if there is an isometry Ψ: X → Y such that Ψ is homotopic to h ◦ f−1.

We will primarily be interested in the Weil–Petersson (WP) metric on T (S). The cotan-
gent space of T (S) at X is naturally identified with the space Q(X) of (integrable) holo-
morphic quadratic differentials q(z)dz2 on X, and the WP conorm on Q(X) is given by

‖ϕ‖2wp =

∫
X

ϕϕ

σ2
,

where σ = λ(z)|dz| is the hyperbolic metric on X. For µ = µ(z)dz̄dz ∈ B(X), an infinitesimal
L∞ Beltrami differential on X representing a tangent vector to T (S) at X, its WP norm
is defined using the pairing of Beltrami and quadratic differentials:

‖µ‖wp = max
ϕ

∣∣∫
X µϕ

∣∣
‖ϕ‖wp

where the max is taken over all non-zero ϕ ∈ Q(X). The WP distance function dwp(X,Y )
between X,Y ∈ T (S) is then defined in the usual way as the infimal length of paths joining
X and Y . (For additional background, see [Wol87].)

The mapping class group Mod(S) of S acts on (T (S), dwp) by isometries, and for φ ∈
Mod(S) the Weil–Petersson translation length of φ is

||φ||wp = inf
X∈T (S)

dwp(X,φ(X)).
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In the same manner we can define the Teichmüller translation length ‖φ‖T of φ, which is
equal to log(λ) when φ is pseudo-Anosov with dilatation λ.

2.2. Bounds for the WP metric and volume. We will need the fact that the Weil–
Petersson metric on the tangent space of T (S) is bounded above by the L2 metric on the
space of infinitesimal Beltrami differentials B(S), with respect to the hyperbolic area form.

Lemma 2.1. Let S be a closed Riemann surface uniformized by the hyperbolic metric σ.
We have

‖µ‖wp ≤

√∫
S
|σµ|2

for every µ ∈ B(S).

Proof. Fix µ ∈ B(S). From Cauchy–Schwartz, we get that for every ϕ ∈ Q(S),∣∣∣∣∫
S
µϕ

∣∣∣∣ =

∣∣∣∣∫
S
σµϕσ−1

∣∣∣∣ ≤ (∫
S
|σµ|2

) 1
2

·
(∫

S
|ϕσ−1|2

) 1
2

= ‖ϕ‖wp
(∫

S
|σµ|2

) 1
2

.

It thus follows that

‖µ‖wp = max
ϕ

∣∣∫
S µϕ

∣∣
‖ϕ‖wp

≤ max
ϕ

(∫
S |σµ|

2
) 1

2 · ‖ϕ‖wp
‖ϕ‖wp

=

(∫
S
|σµ|2

) 1
2

as we had claimed. �

The proof of this lemma includes the basic application of the Cauchy–Schwarz inequality
used in the proof of the following result first observed by Linch [Lin74]. We give the proof
to illustrate this.

Theorem 2.2. We have ‖v‖wp ≤ ‖v‖T
√

Area(S) = ‖v‖T
√

2π|χ(S)|, for any tangent vec-
tor v to Teichmüller space T (S).

Proof. For any tangent vector v to T (S) at a point [X], let µ ∈ B(X) be an infinitesimal
Beltrami differential representing v so that ‖v‖T = ‖µ‖∞. Then by Lemma 2.1 we have

‖v‖wp = ‖µ‖wp ≤

√∫
S
|σµ|2 ≤ ‖µ‖∞

√∫
S
|σ|2 = ‖v‖T

√
Area(S). �

In particular, this immediately implies that for any pseudo-Anosov φ : S → S, the
translation lengths satisfy the following:

‖φ‖wp ≤
√

2π|χ(S)|‖φ‖T .

Remark 2.3. Here is a slightly more conceptual way of explaining the inequalities in
Lemma 2.1 and Theorem 2.2. The Lp norm with respect to the hyperbolic metric can be
defined for µ and for ϕ/σ2, where µ ∈ B is an infinitesimally trivial Beltrami differential and
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ϕ ∈ Q is a holomorphic quadratic differential, because both quantities have a well-defined
pointwise norm. We write these as follows:

‖µ‖p =

(∫
|µ|pσ2

)1/p

and ‖ϕ‖p =

(∫
|ϕ/σ2|pσ2

)1/p

.

Note that ‖ϕ‖1 is exactly
∫
|ϕ|, which is the usual L1 norm on Q, and ‖ϕ‖2 is the Weil–

Petersson conorm as defined above.
The usual pairing

∫
µϕ between B and Q can be written

〈µ, ϕ〉 =

∫
µ(ϕ/σ2)σ2

and the Lp norm on Q induces a dual (semi)norm on B via the pairing, namely

‖µ‖p∗ ≡ sup{|〈µ, ϕ〉| : ‖ϕ‖p = 1}.
So ‖µ‖1∗ is exactly the Teichmüller norm ‖µ‖T , and ‖µ‖2∗ is the Weil–Petersson norm
‖µ‖wp. Now Cauchy–Schwartz applied to Q gives

‖ϕ‖1 ≤ ‖ϕ‖2
√

Area(S),

and the definition of ‖ · ‖1∗ and ‖ · ‖2∗ above shows that

(Theorem 2.2) ‖µ‖wp ≤ ‖µ‖T
√

Area(S).

Alternatively applying Cauchy–Schwartz to the pairing 〈·, ·〉 and the L2 norms on both B
and Q gives

|〈µ, ϕ〉| ≤ ‖µ‖2‖ϕ‖2,
and so

(Lemma 2.1) ‖µ‖wp = ‖µ‖2∗ ≤ ‖µ‖2.

When φ is pseudo-Anosov, the associated mapping torus Mφ is hyperbolic by Thurston’s
geometrization theorem for fibered manifolds [Thu98, Ota01]. We will need the following
result due to Brock–Bromberg [BB16] and Kojima–McShane [KM18], building on work of
Krasnov–Schlenker [KS08] and Schlenker [Sch13], which relates the volume of Mφ to the
WP translation length of φ.

Theorem 2.4. Let φ : S → S be pseudo-Anosov. Then

vol(Mφ) ≤ 3

2

√
2π|χ(S)|) ||φ||wp.

2.3. Fibrations of a fixed 3–manifold. Suppose that M is a compact, orientable 3–
manifold (with possibly non-empty boundary) and that M fibers over the circle f : M →
S1 ∼= R/Z with fiber a compact, connected, oriented surface S. Poincaré–Lefschetz Duality
and the deRham Theorem provide isomorphisms (for (co)homology with real coefficients),
H2(M,∂M) ∼= H1(M) ∼= H1

dR(M). Via this isomorphism, the homology class of the fiber S
is identified with the cohomology class represented by the closed 1–form ω = f∗(dt), where
dt is a nonwhere zero 1–form defining the orientation on S1. Note that ω is nowhere zero,
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as is the restriction to ∂M , and there is a neighborhood U ∈ H1(M ;R) of [ω] so that every
element is represented (in deRham cohomology) by such a closed 1–form. Any primitive
integral class ω′ representing a class in R+U can be integrated to define another fibration
f ′ : M → S1 whose fiber S′ is identified with [ω′] (via the above isomorphism); see [Tis70].

This construction gives rise to infinitely many fibrations of M as long as b1(M) > 1,
which happens precisely when the monodromy φ : S → S has a nontrivial fixed cohomology
class. Indeed, the subspace of H1(S) fixed by φ is precisely the image of the homomor-
phism H1(M)→ H1(S) induced by inclusion, with the kernel generated by the dual of [S]
(because these are the classes in H1(S) that extend to H1(M)).

Thurston proved that the maximal connected neighborhood U of [S] = [ω] as in the
previous paragraph has a particularly nice description. To state his result, we recall that
in [Thu86b], Thurston constructs a norm n on H1(M), the Thurston norm, when M is
irreducible and atoroidal, so that the unit ball B of n is a polyhedron.

Theorem 2.5 (Thurston). If S is a fiber of the compact, orientable, irreducible, atoroidal
3–manifold M , then there is a top-dimensional face F of B so that [S] ∈ R+int(F ) and
every element of R+int(F ) is represented by a closed 1–form which is nowhere vanishing
on M or ∂M . Moreover, any primitive integral point of R+int(F ) determines a fibration
of M with fiber S′, and n([S′]) = −χ(S′).

A face F of B as in this theorem is called a fibered face. Note that the restriction of
n to R+int(F ) is linear (since F is a face of B). In fact, n is given by pairing with the
negative of the Euler class of the 2–plane bundle tangent to the foliation of M by fibers S
of f : M → S1.

A fibered manifold M with fiber S of negative Euler characteristic is atoroidal if and
only if the monodromy φ : S → S is isotopic to a pseudo-Anosov homeomorphism. In
this case, Fried showed that the Teichmüller translation length (which is also equal to the
topological entropy of the pseudo-Anosov homeomorphism) extends to a nice function on
the cones over interiors of fibered faces; see [Fri82, Theorem F].

Theorem 2.6 (Fried). For any compact, orientable, atoroidal manifold M and fibered
face F of the Thurston norm ball B, there is a continuous, convex, homogeneous function,
h : R+int(F ) → R+, homogeneous of degree −1, such that if S is a fiber of a fibration of
M with [S] ∈ R+int(F ) and monodromy φ : S → S, then ‖φ‖T = h(u).

These two theorems provide examples of pseudo-Anosovs with small Teichmüller trans-
lation length illustrating Penner’s upper bound as follows (see [McM00]). Note that the
product of the two functions n(·)h(·) is continuous and constant on rays. In particular, if
K ⊂ int(F ) is any compact subset of the interior of a fibered face F , there is a constant LK
that bounds the value of nh on R+K. For any primitive integral point in R+K representing
a fiber with monodromy φ : S → S, we have

|χ(S)|‖φ‖T = n([S])h([S]) ≤ LK .
In particular, supposing there are surfaces of all genera at least 2 which are fibers represent-
ing elements in R+K (see e.g. the proof of Corollary 5.6 below), then one finds examples
of pseudo-Anosov homeomorphisms on every closed surface of genus at least 2 in ΨT (LK).
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2.4. Incompressible branched surfaces. Next, we recall the construction of the in-
compressible branched surfaces of Floyd–Oertel [FO84]. Our discussion closely follows
that of Oertel [Oer84, Section 4]), except that, as in Tollefson–Wang [TW96, Section 6],
we describe the construction of these branched surfaces in terms of normal surfaces to a
triangulation, rather than to a handle decomposition. For background on normal surfaces,
see [Hak61, JO84, TW96].

Let M be a Haken 3-manifold with incompressible boundary and a triangulation t. The
weight w(S) of a properly embedded surface S in general position with the 1–skeleton t(1)

is the number of points in S ∩ t(1). We recall that the minimal weight for S within its
isotopy class can be realized by a normal representative since a minimal weight S can be
isotoped to be normal rel t(1) [JR89].

For each incompressible normal surface S with minimal weight in its isotopy class, there

is a branched surface fibered neighborhood ÑS produced as follows: ÑS is the union of
thickenings of the normal disks appearing in S together with all 3-balls lying between two
thickened normal disks of the same type. We choose compatible product structures on these
thickened disks and 3-balls so that the I–fibers (intervals) agree on the boundary of each

tetrahedron. Hence, ÑS is foliated by I–fibers. The corresponding branched surface B̃S is

the 2-complex obtained from ÑS by collapsing each of the I–fibers to a point. (Usually one
thinks of the branched surface as properly embedded in M with N a regular neighborhood
of it; this won’t be crucial for us as we will work explicitly with the fibered neighborhood
itself.) See Figure 2.

Figure 2. Thickened normal disks (blue), fibered 3-balls (green), and the
branched surface fibered neighborhood.

For any branched surface fibered neighborhood N , its boundary decomposes into a
union of three subsurfaces, the horizontal boundary ∂hN , the vertical boundary ∂vN , and
N∩∂M . While ∂vN is foliated by subintervals of fibers, each I–fiber of N meets ∂hN at its
endpoints. A surface F in M is carried by B if it can be properly isotoped into the interior
of a fibered neighborhood N = N (B) of B so that it intersects each fiber transversely. It
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is fully carried if in addition it has nonempty intersection with each fiber. For example, S

is fully carried by ÑS by construction.
Floyd–Oertel define a branched surface B to be incompressible if

(i) there are no disks (or half-disks) of contact,
(ii) there are no complementary monogons, and

(iii) ∂hN (B) is incompressible and ∂-incompressible in M rN (B).

Here, a disk of contact is a disk D ⊂ N that is transverse to the I–fibers of N and
∂D ⊂ int(∂vN ). A half-disk of contact is a disk D ⊂ N that is transverse to the fibers
with ∂D = α ∪ β, where α r ∂α ⊂ int(∂vN ) and β ⊂ ∂M are arcs and α ∩ β = S0. A
complementary monogon is a disk D ⊂ M r int(N ) with ∂D = D ∩ N = α ∪ β where
α ⊂ ∂vN is an I–fiber and β ⊂ ∂hN . Floyd–Oertel show [FO84, Theorem 2] that if B is
an incompressible branched surface, then any surface fully carried by B is incompressible
and boundary incompressible.

Unfortunately the branched surface B̃S constructed above may have many disks of con-
tact and therefore is not incompressible. However, Floyd–Oertel show that such a disk

of contact D may be removed by deleting from ÑS a fibered neighborhood of D in ÑS ,
thereby producing a new branched surface fibered neighborhood in which S is fully carried.
They prove that by applying this operation finitely many times, one can produce a fibered
neighborhood NS of an incompressible branched surface BS [FO84, Proposition 3]. See
also [Oer84, Lemma 4.6] where the construction of NS is done more systematically. We
denote the corresponding branched surface by BS and also write NS = N (BS).

We say that a branched surface (and its fibered neighborhod) obtained in this way is
adapted to the triangulation t, and record two important properties of the construction:

• Each component of ∂vÑS contains a subarc of the 1-skeleton of t as a fiber of ∂vÑS .
Since eliminating a disk of contact is done by deleting a fibered neighborhood of the
disk, the property that each component of ∂vN meet the 1-skeleton is preserved.
• The normal surface S, which was assumed to have minimal weight in its isotopy

class, is contained in the branched surface fibered neighborhood NS , where it in-
tersects each fiber transversely.

By Floyd–Oertel [FO84, Theorem 1] (see also [Oer84, Theorem 3]) this procedure pro-
duces a finite collection of properly embedded branched surfaces B1, . . . ,Bn in M such that
(a) any surface fully carried by one of the Bi is incompressible and boundary incompress-
ible, and (b) every incompressible and boundary incompressible orientable surface is fully
carried by some Bi. In particular, the branched surface BS constructed from the surface S

appears up to isotopy as one of the Bi in this list. (That fact that {ÑS} forms a finite set
of branched surfaces is obvious since there are only finitely many choices for normal disks
in the construction. Showing that {NS} is finite is more difficult and requires showing that
one only needs to consider least weight disks of contact, of which there are finitely many.)

We summarize all of this in the following statement:
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Proposition 2.7 (Floyd–Oertel). Let M be a compact Haken 3-manifold with a triangula-
tion t. There is a finite collection B1, . . . ,Bn of incompressible properly embedded branched
surfaces, so that

• Each fibered neighborhood N (Bi) is adapted to t, and in particular every component

of ∂vN (Bi) has a fiber which is a subarc of an edge of t(1).
• Every properly embedded incompressible boundary-incompressible surface S in M

is properly isotopic to a surface S′ fully carried in one of the Bi, which realizes the
minimum weight with respect to t in the isotopy class of S.

3. Topological preliminaries

This section covers a number of fairly basic results from 3-manifold topology that we
will need for the proof of Theorem 1.5.

3.1. Embeddings in products. We first require the following lemma, which follows easily
from work of Waldhausen [Wal68].

If S is a compact surface we say that (W,∂bW ) ⊂ (S, ∂S) is a subsurface with corners (or
just subsurface for short) if W is a compact 2-manifold and ∂bW = ∂W ∩ ∂S is a compact
1-submanifold of ∂W . The endpoints of ∂bW are the corners and ∂W minus the corners is
the smooth part of ∂W . We denote the closure of ∂W r ∂bW as ∂′W .

We call (W,∂bW ) (or just W ) trivial if it is contained in a disk D whose intersection
with ∂S is empty or a single arc. Note that if W is not trivial, then either the image of
π1W in π1S is nontrivial, or there is an essential arc of S contained in W .

Define a modified Euler characteristic as

χ̂(W,∂bW ) = χ(W )− 1

2
n

where n denotes the number of arc components of ∂bW (see e.g. [CB88]).

Lemma 3.1. Suppose that (W,∂bW ) ⊂ (S, ∂S) is a subsurface with corners and that the
restriction to each component of W is not trivial. Let Y = W × [0, 1] and suppose we have
an embedding of quadruples

F : (Y,W × {0},W × {1}, ∂bW × [0, 1]) ↪→ (S × [0, 1], S × {0}, S × {1}, ∂S × [0, 1]),

where W × {0} → S × {0} is given by the inclusion map.
Then F is isotopic, as a map of quadruples, to the inclusion map of Y .

Note that the nontriviality condition is necessary – consider a knotted 1-handle attached
to two disks in S × {0} and S × {1}.

Proof. By applying a preliminary isotopy of S × [0, 1] supported on a neighborhood of
∂S × [0, 1], we may assume that the image of each arc of ∂∂′W × [0, 1] is vertical in
∂S × [0, 1].

If a null-homotopic closed curve γ of ∂′W bounds a disk E in S then the image of
∂(E× [0, 1]) bounds a ball by irreducibility and F can be extended over E× [0, 1]. Thus we
may assume that each component of W injects on π1. Similarly if α is an arc component
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of ∂′W that cobounds a disk E with an arc β ⊂ ∂S, we can again extend over E × [0, 1].
Hence, we may assume that ∂′W consists of homotopically essential curves and essential
proper arcs.

Thus each component of F (∂′W × [0, 1]) is either an incompressible annulus in S× [0, 1]
or a disk which meets ∂S × [0, 1] in two vertical arcs. Hence (see for example [Wal68,
Lemma 3.4]) F (∂′W × [0, 1]) is isotopic to ∂′W × [0, 1], and we may adjust F by an isotopy
that is constant on W × {0} to obtain a map that is the identity on ∂′W × [0, 1].

One further isotopy, constant on W × {0} and supported on a neighborhood of ∂bW ×
[0, 1], yields a map (which we still call F ) that is the identity on all of ∂W × [0, 1].

Now F is the identity on W×{0}∪∂W×[0, 1], and it follows that F (W×{1}) = W×{1},
and from this that F (Y ) = Y . Hence, by [Wal68, Lemma 3.5], the homeomorphism
F−1 : Y → Y is isotopic to the identity via an isotopy that is constant on W ×{0}∪∂W ×
[0, 1]. Precomposing F with this isotopy gives the required isotopy from F to the identity
and completes the proof. �

3.2. Level curves. Let Y = Z × I where Z is a surface and I an interval. Let C be
a disjoint closed union of simple loops in int(Y ). We say C is level with respect to this
product structure on Y if it is isotopic to a union of the form

⋃
ci×{ti} where ci are loops

in Z and ti ∈ [0, 1].

Lemma 3.2. Let Y = Z × [0, 1] where Z is a surface. Let C be a finite union of simple
loops in Y . Then C is level if and only if there is an ordering c1, . . . , cn of its components
so that each ci is isotopic into Z × {0} in the complement of ci+1 ∪ · · · ∪ cn.

The proof is an easy induction.

Lemma 3.3. Let S be a compact orientable surface and let C be a level disjoint closed
union of essential curves in S×R. Let T1 and T2 be surfaces isotopic to S×{0} rel ∂S×R,
and disjoint from each other and from C. If X is the region bounded by T1 and T2 (so
X ∼= S × [0, 1]), then C ∩X is level in X.

Furthermore, if C ⊂ Y ⊂ X where Y ⊂ X is a subproduct, then the isotopy can be
chosen to be supported in Y—that is, the image of C remains in Y throughout the isotopy.

By saying that Y is a subproduct of X we mean that there is a subsurface R ⊂ S and a
homeomorphism of pairs (X,Y ) ∼= (S × [0, 1], R× [0, 1]).

Proof. By applying an (ambient) isotopy, we may assume that the components of C have
the form c× {t} for some t ∈ R with respect to the given product structure on S × R.

We first prove this in the case that T2 is a level surface S ×{t}. We may assume T1 lies
above T2. Let c be a component of C ∩X of minimal height with respect to the product
structure S × R. The vertical annulus A taking c to T2 is disjoint from C \ c, but might
intersect T1. An innermost region of A∩X or A∩Xc with boundary in T1 must be a disk
or annulus, and an exchange move will simplify the intersection reducing the number of
components of intersection. Thus an annulus from c to T2 meeting T2 only in one boundary
component, disjoint from C \ c, and intersecting T1 minimally, will in fact be disjoint from
T1, hence contained in X. This gives an isotopy from c to T2 avoiding the remaining curves.
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Proceeding by induction on the heights of components of C, we can now apply Lemma 3.2
to conclude that C ∩X is level in X.

Now if T1 and T2 are arbitrary, let T3 = S × {t} be a level surface below both. Let Xij

be the region bounded by Ti and Tj and suppose X13 contains T2. Then the previous case
applies to X13, and after choosing a product structure on X13 in which the top and bottom
are level surfaces, we can again apply the previous case to X12. This concludes the proof
of the first claim.

Finally, suppose C ⊂ Y , with (X,Y ) ∼= (S × [0, 1], R × [0, 1]). If at any stage of the
isotopy of the ith component the corresponding annulus passes outside Y ∼= R × [0, 1],
and hence through ∂R× [0, 1], another innermost region exchange move argument implies
that we can replace the annulus with one having fewer intersections with ∂R × [0, 1]. In
particular, such an annulus with the fewest intersections with ∂R × [0, 1] will be disjoint,
and hence the isotopy will be supported in Y . �

3.3. Minimal intersections. Finally, we will need a few facts regarding intersections of
surfaces and 1–manifolds. One such fact is the following proposition which roughly states
that if S is an embedded surface in M which minimizes intersection with some 1-manifold
C in its isotopy class, then one cannot homotope S to reduce intersections with C.

Proposition 3.4. Let M be a compact, irreducible, orientable 3-manifold and C ⊂ M is
a closed, embedded 1–manifold. Suppose S ⊂ M is an incompressible, boundary incom-
pressible, properly embedded surface that minimizes the cardinality |S ∩ C| in its proper
isotopy class. If f : S → M is any piecewise smooth map which is properly homotopic to
the inclusion of S and transverse to C, then |f−1(C)| ≥ |S ∩ C|.

Proof. Suppose f : S →M is any piecewise smooth map properly homotopic to the inclu-
sion of S into M , and which is transverse to C. Set k = |f−1(C)|. Let VC ∼= C ×D2 be
a small tubular neighborhood of C. Adjusting f by a proper homotopy, we may assume
that f(S) ∩ VC is a union of k disjoint meridian disks. Next let N ∼= ∂M × [0, 1) be a
tubular neighborhood of the boundary of M whose closure is disjoint from VC . Using the
neighborhood N and the homotopy from the inclusion of S to f , we can find a further
homotopy so that f |∂S is the inclusion ∂S → ∂M (and is hence an embedding) and so that
f(S) ∩ VC is still a union of k disjoint meridian disks.

Next, choose any Riemannian metric on M with the following properties:

(1) the restriction to VC ∼= C ×D2 is a product metric,
(2) the restriction to N ∼= ∂M × [0, 1) is a product metric,
(3) the area of each meridian disk of VC is some number A > 0, and
(4) Area(f) ≤ (k + 1

4)A.

It is straightforward to construct such a metric.
Now let h : S →M be a least area surface properly homotopic to the inclusion of S into

M rel ∂S. Such an h exists by [SU82, SY79] in the closed case and [Lem82, HS88] in the
case of non-empty boundary. Note that Area(h) ≤ (k + 1

4)A.
According to [FHS83], h is an embedding, or in the case that S is closed, possibly a

double cover of an embedded non-orientable surface with a tubular neighborhood that is
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a twisted I–bundle over the non-orientable surface (see Section 7 of [FHS83] for the case
∂S 6= ∅). In the latter case, we may replace h with an embedding at the expense of an
arbitrarily small increase in the area. In either case, by a further small isotopy if necessary,
we can also assume that h is transverse to ∂VC and Area(h) ≤ (k + 1

2)A. The embedding
h is properly isotopic to the inclusion of S into M since M is irreducible [Wal68, Corollary
5.5].

Consider any component W of h(S) ∩ VC and suppose V ∼= S1 ×D2 is the component
containing W .

Note that the projection V → D2 onto the second factor is an isomorphism H2(V, ∂V )→
H2(D2, ∂D2), where the latter group is Z[D2]. Thus we can define deg(W ) to be the integer
such that

[W ] = deg(W )[D2] ∈ H2(V, ∂V ).

This is equal to the topological degree of the projection (W,∂W )→ (D2, ∂D2), as well as
the topological degree of the map ∂W → ∂D2.

Now consider the metric on D2 for which the projection V → D2 is a Riemannian
submersion, and in particular a contraction. We thus have

Area(W ) ≥ | deg(W )|A.

Setting

d(h) =
∑

W⊂h(S)∩VC

| deg(W )|

where the sum is over all components of intersection, and combining with our area bound
on h, we have

d(h)A ≤ Area(h) ≤ (k +
1

2
)A.

Since d(h) is an integer, we have d(h) ≤ k. The next claim essentially completes the proof.

Claim 1. The map h is properly isotopic to an embedding h′, transverse to ∂VC with
d(h′) ≤ d(h) so that h′(S) ∩ VC is a union of meridian disks.

Assuming the claim, it follows that |h′(S) ∩ C| is the number of meridian disks of
intersection h′(S) ∩ VC , which is d(h′) ≤ d(h) ≤ k. Since S was assumed to meet C in the
fewest number of points in the proper isotopy class, and since h′ is properly isotopic to h,
and hence also the inclusion of S, it follows that

|S ∩ C| ≤ d(h′) ≤ k = |f−1(C)|,

as required. This completes the proof of the proposition.

Proof of Claim. Recall first a lemma of Thurston [Thu86b, Lemma 1], that if a properly
embedded surface in a 3-manifold V represents a k-th multiple of a homology class in
H2(V, ∂V ), then the surface has at least k components. Thus for our connected components
W of h(S) ∩ VC , we have

| deg(W )| ≤ 1.
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To avoid cluttering the notation, we write S0 = h(S), d(S0) = d(h). Throughout the
proof, we repeatedly replace S0 with isotopic images which we again denote by S0. We
first isotope S0 to remove trivial intersections with ∂VC . That is, if some component of
S0 ∩ ∂VC bounds a disk D in ∂VC , then it also bounds a disk E in S0 by incompressibility.
Suppose that D is innermost on ∂VC , and consider the disk swap that replaces the disk E
in S0 with D. (This can be done via isotopy of S0 in M since D ∪E bounds a ball.) This
may reduce the number of intersections with VC , but it does not increase d(S0). To see
this, note that if W was the component of S0 ∩ VC whose boundary contained ∂D, then
since ∂D → ∂D2 has degree 0, the degree of W is unaffected by capping this boundary
component off with the disk D. After pushing D slightly into VC , we have a new surface
isotopic to S0 with fewer trivial intersections with ∂VC and no greater degree.

Hence, we may suppose that S0 does not meet ∂VC in trivial circles. We next isotope
S0 so that each component of S0 ∩ VC is incompressible: If D is a compressing disk for
some component W of S0 ∩ VC , then again suppose that D is innermost in the sense that
S0 does not meet the interior of D. Incompressibility of S0 in M implies that there is a
disk E ⊂ S0 with ∂E = ∂D and we may assume that E is not contained in VC .

Let W be the component of S0 ∩ VC meeting D. Compressing along D results in two
surfaces W1 and W2 and we call S′0 the surface isotopic to S0 obtained by replacing E with
D (again possible since D∪E bounds a ball). Label so that W1 is a component of S′0∩VC .
Let Y be the components of S0∩VC contained in S0 rE and Z the components of S0∩VC
contained in E. Then

d(S0) =
∑
Y ∈Y
| deg(Y )|+ | deg(W )|+

∑
Z∈Z
| deg(Z)|

and

d(S′0) =
∑
Y ∈Y
| deg(Y )|+ | deg(W1)|.

We must show that d(S′0) ≤ d(S0). Since | deg(W1)| and | deg(W )| are both at most 1, it
suffices to prove that there is at least one Z ∈ Z with | deg(Z)| = 1.

Let E′ be an innermost disk on E bounded by a component of E ∩ ∂VC . Then ∂E′ is
an essential curve on the boundary of some component of VC . If int(E′) is in the exterior

of VC then ∂VC is compressible in M̊ , and this is impossible as M̊ is hyperbolic. Thus E′

is a meridian of VC , which implies it is a component of Z with | deg(E′)| = 1.
Thus we have isotoped S0 to reduce intersections with ∂VC while not increasing its

degree. We may therefore assume that each component of S0 ∩VC is incompressible in VC .
This makes each component either a boundary parallel annulus (degree 0) or a meridian
disk (degree ±1). Pushing the annuli out of VC does not affect the degree and completes
the proof. �

�
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4. Fibered fillings of manifolds

In this section we prove Theorem 1.5 and Theorem 1.4. After setting up notation for
Dehn filling and bringing in the branched surfaces from Section 2.4, we begin the proof in
earnest in Section 4.4.

4.1. Fillings and complexity. Let M̊ be a compact 3-manifold whose boundary is a
union of tori ∂M̊ = ∂1M̊t· · ·t∂rM̊ , such that int(M̊) is a complete finite-volume hyperbolic

manifold. A Dehn surgery coefficient βi on ∂iM̊ is either the isotopy class of an essential
simple closed curve in ∂iM̊ , or “∞”. Each simple closed curve βi in ∂iM̊ determines a Dehn
filling attaching a solid torus whose meridian is identified with βi, and ∞ corresponds to
no filling at all. Given β = (β1, . . . βr), we denote the manifold obtained by these specified
fillings by Mβ .

Letting ∆i denote the set of Dehn surgery coefficients for ∂iM̊ , we say that a property
P holds for all sufficiently long fillings if there are finite sets Ki ⊂ ∆i that that Mβ has
P for all β ∈

∏r
i=1(∆i rKi). For example, Thurston’s hyperbolic Dehn surgery theorem

[Thu88, Theorem 5.8.2] states that for any ` > 0, the interior of Mβ is hyperbolic and the
lengths of the cores of the filled solid tori are less than `, for all sufficiently long fillings.

Now let M̊ be as in the statement of Theorem 1.5 and let S be the collection of all
fibers of all fibered fillings of M̊ . (Formally S is a set of pairs (S, β) where β determines a
filled manifold Mβ in which S is a fiber of a fibration.) Note that we do not require each

boundary component of M̊ to be filled, so some surfaces in S may have boundary. We also
fix a triangulation t of M̊ .

Given (S, β) ∈ S, isotope S in Mβ to intersect the added solid tori in meridian disks,

and choose it so the number of disks is minimal. Now let S̊ = S ∩ M̊ , and assume by
further isotopy if necessary, that S̊ is also transverse to t(1) and intersects it minimally.
Let S̊ = {S̊ : (S, β) ∈ S} denote the resulting set of properly embedded surfaces in M̊ .

Said differently, for each (S, β) ∈ S, S̊ is a properly embedded surface in M̊ which after
capping off with a disk is isotopic in Mβ to S and, among all such surfaces, minimize the

complexity defined by the pair (|∂S̊|, w(S̊)) in the lexicographic order, where w(S̊) is the

weight of S̊.

Lemma 4.1. Each S̊ ∈ S̊ is incompressible and boundary incompressible in M̊ .

Proof. The proof is standard, but we sketch it for completeness.
Suppose that S̊ is compressible and let D be a compressing disk for S̊ in M̊ . Since S

is incompressible in its filling Mβ , this disk shares a boundary with a disk D′ in S, which
must meet the cores of the filling tori. Swapping out D′ for D, which can be done by an
isotopy in Mβ , results in a copy of S meeting the cores of the solid tori fewer times, a

contradiction. Hence, S̊ is incompressible.
Now if S̊ is boundary-compressible let E be a boundary compression, so that ∂E is the

union of an arc b in S̊ and an arc a in ∂M̊ . Then a is contained in an annular component A
of ∂M̊ r ∂S̊, and it must be essential there since otherwise E is not an essential boundary
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compression. Now A cut along a and attached to two parallel copies of E gives us a
compressing disk for S̊, which therefore is parallel to a disk of S̊ by incompressibility. But
this disk, attached to itself along b, forms an annulus which must be all of S̊, so that S̊ is
a boundary-parallel annulus. This is a contradiction. �

Now Proposition 2.7 gives us a finite collection B1 . . . ,Bn of incompressible branched
surfaces in M̊ so that each S̊ ∈ S̊ is fully carried in a weight-minimizing way in one of
them.

For each Bi let SBi contain those (S, β) ∈ S for which S̊ is fully carried by Bi. After
restricting to “sufficiently long” fillings in this collection, we can make some additional
assumptions about Bi:

Let Tj be a component of ∂M̊ . If, for (S, β) ∈ SBi , the coordinate βj only takes on
finitely many values, we can exclude all of the non-∞ values in our definition of sufficiently
long. Then unless ∞ is also one of the values, we can ignore Bi altogether.

Thus we can assume that for each boundary component Tj of M̊ meeting Bi, either
the fibers of SBi determine infinitely many slopes in Tj or Tj is not filled in any of the

fillings corresponding to SBi . If the intersection Bi ∩ Tj with a boundary torus Tj of ∂M̊
is nonempty, it is necessarily a train track, and so we are left with three possibilities: Tj
is disjoint from Bi, Bi ∩ Tj has bigon complementary components in Tj , or Bi ∩ Tj is a
disjoint union of parallel simple closed curves in Tj whose complement is a union of annuli.
In the last case, the train track Bi∩Tj can only carry a single isotopy class of simple closed
curves, and thus βj =∞ for all (S, β) ∈ SBi with β sufficiently long.

4.2. Branched surface decomposition. From here on, we work with a single B = Bi,
restricted as above. The notion of “sufficiently long filling” will depend on the particular
branched surface B, but finiteness of the number of branched surfaces provides a uniform
notion of sufficiently long filling, independent of B. We continue to write N = N (B) for

the fibered neighborhood of B in M̊ .
Divide ∂M̊ into the tori that meet B – called ∂BM̊ – and the rest, ∂F M̊ (F for “floating”).

Given (S, β) ∈ SB, let Vβ be the union of solid tori associated to the fillings, Mβ = M̊∪Vβ .

We write V B
β and V F

β for the solid tori that meet and do not meet B, respectively. We

remark that ∂V F
β = ∂F M̊ and ∂V B

β ⊂ ∂BM̊ with this containment being proper if there

are unfilled boundary components of M̊ for β.
Now let X = M̊rN (B) and set Xβ = X∪V F

β . We divide ∂Xβ into ∂Xβ = ∂hXβ∪∂vXβ ,
where ∂hXβ = ∂hN , and ∂vXβ consists of annuli which are either annulus components of

∂vN , annulus components of X ∩ ∂M̊ , or unions of rectangle components of ∂vN with
bigon regions in ∂M̊ rN . We similarly decompose ∂X = ∂hX ∪∂vX, where ∂hX = ∂hXβ ,

and ∂vX = ∂vXβ ∪ ∂F M̊ .
The foliation by interval fibers of N (B) extends first to a foliation on each of the non-

floating boundary tori ∂BM̊ ; this is because the complement of ∂vN in ∂BM̊ is a union of
bigons and annuli. For each β, the meridians are transverse to this foliation so it extends
to a foliation of the solid tori V B

β , which is transverse to (a fixed family of) meridian disks.
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Call the resulting foliation I, and note that it is defined in Mβrint(Xβ) = N∪∂BM̊∪V B
β .

Figure 3. Left: S̊β is carried by N . Right: Sβ is thickened to the I-bundle
Tβ (blue). The I-foliation is shown in the complementary part of N , which
is part of Fβ .

Figure 4. A cutaway view of N near a component of V B
β . The I-bundle

Tβ is indicated in blue inside N and the complementary I-bundle Fβ is in

gray. The surfaces S±β are indicated with blue edges in ∂hN , with yellow

along the meridians, and with red edges in the remainder Wβ .

4.3. Product regions in Mβ. Fix (S, β) ∈ SB, and for convenience denote S by Sβ .

We can realize Sβ as a surface contained in N (B) union the solid tori V B
β , in which it is

transverse to the foliation I. Thicken Sβ to make a product I-bundle Tβ with I–fibers being
arcs of leaves of I, then isotope Tβ so that its boundary contains ∂hN (B). This is done by
pushing the boundary surfaces outward along I-leaves until they touch the endpoints. See
Figure 3 for a schematic of this, and Figure 4 for a 3-D view near a component of Vβ .



20 C. LEININGER, Y.N. MINSKY, J. SOUTO, AND S.J. TAYLOR

Let Fβ be the closure of Mβ r Tβ . Since Sβ is a fiber of Mβ , Fβ is also a product
I-bundle. We use the I-bundle structure to define ∂v and ∂h for both Fβ and Tβ , writing

∂hFβ = ∂hTβ = S+
β t S

−
β ,

and noting that ∂vFβ ∪ ∂vTβ = ∂Mβ .

Note that Fβ contains Xβ , FβrXβ is contained in N ∪V B
β , and the foliation I restricts

to a foliation I|(Fβ rXβ). Hence, Fβ decomposes into the ‘I-foliated part’ I|(Fβ rXβ)
and the ‘bounded part’ Xβ , as anticipated by our discussion in Section 1.1.

Our main goal now is to show that I|(Fβ r Xβ) is (up to isotopy) also the restriction
of the product interval foliation on Fβ ∼= Sβ × [0, 1]. For a summary of our strategy, see
the outline in Section 1.1. From this we will deduce that I is the foliation by flow lines of
the suspension flow for the monodromy of the fiber Sβ of the given fibration of Mβ . This
is completed in Proposition 4.6.

4.4. Regions in ∂hFβ and hyperbolic geometry. Let Wβ denote the closure of ∂hFβr
∂hX. Note that Wβ is the union of the meridian disks Dβ = ∂hFβ ∩ V B

β and regions that

are contained in the interior of N (B).

Note that ∂hX is a subsurface with corners in ∂hFβ ∩ M̊ in the sense of Section 3.1 – it

is bounded by circles and arcs whose endpoints are on the circles of ∂hFβ ∩ ∂M̊ – some of
which are boundaries of the meridian disks and some can be in ∂Mβ itself, when that is
nonempty. See Figures 5 and 6 for some example local configurations.

Figure 5. Examples of the decomposition of ∂hFβ . Wβ is the union of red
and the yellow meridians. (a) shows a component of Wβ of low complexity
containing meridians, which is ruled out for long fillings by Lemma 4.2. (b)
shows part of a larger component of Wβ adjacent to the boundary of Mβ .

For any component E of Wβ , let Ê denote the union of E with any disks of ∂hFβrint(E)

that meet ∂(∂hFβ) in at most one arc. Note that E and Ê are subsurfaces with corners of
∂hFβ in the sense of Section 3.1.

Lemmas 4.2 and 4.4 restrict the structure of components of Wβ for sufficiently long
fillings.
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Lemma 4.2. Fix an integer k. For all sufficiently long fillings, if E is a component of Wβ

with χ̂(Ê) = k, then Ê is disjoint from Dβ.

Here χ̂ is modified Euler characteristic as in Section 3.1.

Proof. Consider first those β for which ∂Mβ = ∅, in which case ∂hFβ is a closed surface

and χ̂(Ê) = χ(Ê).

Identify M̊ once and for all with the complement of some standard cusps in the finite-
volume hyperbolic metric on int(M̊). Thurston’s Dehn filling theorem tells us that M̊
embeds nearly isometrically in the hyperbolic structure on Mβ , for sufficiently long fillings,
so that its complement int(Vβ) consists of the Margulis tubes for the corresponding curves.
Moreover the radii of these tubes are arbitrarily large for sufficiently long fillings β. Note
that ∂Ê is contained in ∂∂hX, which is independent of β. There is therefore some bound
κ, independent of β, on the total curvature of ∂Ê in Mβ .

Fix a triangulation of Ê with vertices on the boundary so that each triangle has at most
one edge on the boundary. For each β let fβ : Ê →Mβ be a map which is a ruled surface on
each triangle and is homotopic rel boundary to the inclusion map. Then the Gauss–Bonnet
theorem for the induced metric on fβ(Ê) gives us

Area(fβ(Ê)) ≤ −2πχ(Ê) + κ.

Note that the right hand side is independent of β.
The following lemma (whose proof appears below) now allows us to finish the proof:

Lemma 4.3. Given A ≥ 0 there is an R ≥ 0 such that the following holds. Let V be a
hyperbolic Margulis tube of radius R and let W be a compact, connected, oriented surface
with a map f : (W,∂W ) → (V, ∂V ) such that Area(f(W )) < A. Then f is homotopic rel
∂W into ∂V .

Applying this to each intersection of fβ(Ê) with the Margulis tubes Vβ , and choosing
β long enough to give the needed value for the tube radii, we find that we can homotope
∂hFβ in Mβ (and hence Sβ in Mβ) to remove its intersections with the cores of Vβ that

occur in Ê. Since Sβ was already chosen to minimize these intersections in its isotopy
class, and Proposition 3.4 says that it must also minimize them in its homotopy class, we
conclude that Ê could not in fact have contained any meridian disks.

Now consider those β for which some specific set of coordinates is∞. The corresponding
tori are unfilled so ∂Mβ is nonempty, and each component is associated to a cusp in Mβ .
We adapt the argument to handle these cusps.

We identify M∂
β ≡ M̊ r ∂Mβ with the complement of the remaining standard cusps in

the finite-volume hyperbolic structure on int(M̊). Again for sufficiently long fillings we can
embed this nearly isometrically in the hyperbolic structure on int(Mβ) as the complement
of the Margulis tubes of the filled boundary components.

Let Êβ = Ê∩M∂
β , which is Ê minus the arcs and curves of its boundary that lie in ∂Mβ .

We can (after suitable isotopy of the hyperbolic metric) assume that the boundary arcs

of Êβ are, in some neighborhood of the boundary, totally geodesic rays exiting the cusps.
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Thus the ends of Êβ can be deformed to finite-area cusps or “spikes” (regions between two
asymptotic geodesics).

Now our triangulation of Êβ can be chosen with an ideal vertex at each end of the surface,
and when we homotope it rel boundary (and rel ideal boundary points) to a ruled surface,
the Gauss–Bonnet theorem applies again, but with an additional π in the boundary term
for each spike. Thus we have

Area(fβ(Êβ)) ≤ −2πχ̂(Ê) + κ.

Lemma 4.3 again applies, allowing us for sufficiently long fillings to find a proper homotopy
of Êβ rel boundary and rel ends which removes all intersections of Ê with Vβ . A standard

argument in the collar of ∂Mβ allows us to obtain a homotopy of Ê itself which does the

same thing. Again we conclude that Ê could not have contained any meridian disks. �

We now supply the proof of Lemma 4.3.

Proof. We can write V = D2 × S1, where D2 × {t} are totally geodesic meridian disks for
t ∈ S1, and let p : V → D2 be the projection, in such a way that p is area preserving on
the meridian disks.

We can write the area form of the meridian disks of V explicitly in cylindrical coordinates
(r, θ, z) in the universal cover of V , namely α = sinh r dr ∧ dθ. Note that this is closed,
and evaluates to 2π(coshR−1) on a meridian disk. Thus α represents 2π(coshR−1)p∗(η)
where η is the fundamental class of H2(D2, ∂D2).

Now the map (p ◦ f)∗ : H2(W,∂W )→ H2(D2, ∂D2) is just multiplication by an integer,
the degree deg(p◦f). We can therefore compute this degree by integrating α/2π(coshR−1).
That is,

deg(p ◦ f) =
1

2π(coshR− 1)

∫
W
f∗α.

On the other hand, because (fiberwise) orthogonal projection in the tangent bundle of V
to the meridian disk direction is contracting, we also have∣∣∣∣∫

W
f∗α

∣∣∣∣ ≤ Area(f(W )) < A.

Thus we have
| deg(p ◦ f)| < A/2π(coshR− 1).

Since the degree is an integer, for suitably large R we conclude deg(p ◦ f) = 0.
Now a relative version of the Hopf Degree Theorem (see for example the Extension

Theorem in [GP10, Chapter 3]) tells us that, since deg(p ◦ f) = 0, there is a homotopy
G rel ∂W taking p ◦ f to a map g that takes values in ∂D2. Writing f = (f1, f2) where
f1 = p ◦ f and applying the homotopy G to the first coordinate completes the proof. �

Recall from Section 3.1 that a component of Wβ is called trivial if it is contained in a disk

D which is either contained in the interior of S±β or meets ∂S±β in a single arc. Note that

if a component E of Wβ is not trivial, then ∂Ê r ∂S±β consists of homotopically essential

curves and essential proper arcs in S±β .



WP LENGTH AND FIBERED FILLINGS 23

Lemma 4.4. For sufficiently long fillings, Wβ has no trivial components.

Figure 6. Two trivial components of Wβ which result in a disk and half-
disk of contact.

Proof. First suppose that a component E of Wβ were contained in a disk that does not

meet ∂(∂hFβ). Then E would be a (possibly punctured) disk, so Ê ⊂ ∂hFβ would also be
a disk not meeting ∂(∂hFβ).

Lemma 4.2 implies that for sufficiently long fillings, Ê (and hence E) contains no merid-

ians. In particular ∂Ê must be a smooth boundary component of ∂hX (as in Figure 6(a)).

That is, Ê ⊂ N and ∂Ê ⊂ ∂vN . But then, as in [FO84, Claim 1], we can isotope Ê to

slide ∂Ê into int(∂vN ) thereby producing a disk of contact for B. See Figure 7. This is a

Figure 7. A disk Ê (red) in N with boundary in ∂vN . Sliding ∂Ê slightly
downward produces the disk of contact.

contradiction and the proof is complete in this case.
If instead E were contained in some disk in ∂hFβ which meets ∂(∂hFβ) in a single arc,

then Ê would also be a disk whose boundary has a single arc in common with ∂(∂hFβ)

(as in Figure 6(b)). Just as in the previous case, Lemma 4.2 implies that Ê contains no

meridians and so is contained in N . This time since ∂E consists of one arc in ∂M̊ and
one arc in ∂vN we see that Ê produces a half-disk of contact for B and also results in a
contradiction. �
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4.5. Transverse orientability of B.

Lemma 4.5. The branched surface B is transversely orientable. Equivalently, the foliation
I, defined on Mβ \Xβ = N (B) ∪ V B

β , is orientable.

Transverse orientability of B is clearly equivalent to the orientability of the foliation
of N = N (B) by I–fibers. Any orientation on this foliation of N easily extends to an
orientation of the foliation I.

The proof is an adaptation of an argument of Oertel [Oer86] who proved that branched
surfaces constructed from Thurston-norm minimizing surfaces are transversely orientable.
In our case we appeal to the notion of complexity defined in Section 4.1 and minimization
in an isotopy class, rather than Thurston’s complexity, χ−, minimized over a homology
class.

Proof. Suppose B is not transversely orientable. Let (Sβ , β) ∈ SB, and fix a transverse

orientation on Sβ , and hence on S̊β . We will show that, for sufficiently long β, this leads
to a contradiction.

Since S̊β is fully carried on B there must be a branch of B where the orientations are
inconsistent. So there is a region in N where there are two adjacent sheets of ∂hFβ whose
transverse orientations point into (or out of) the region of Fβ between them. Extending this
region maximally along Fβr int(Xβ), one obtains a subset of Fβ of the form P ∼= E× [0, 1]
where E × {0} and E × {1} are identified with components E0 and E1 of Wβ on the same

component of ∂hFβ , which we denote S+
β without loss of generality.

Just as at the beginning of the proof of Lemma 3.1, if Ê0 6= E0 then we can extend the
product region P to P̂ ∼= Ê × [0, 1] such that Ê × {0} and Ê × {1} are identified with Ê0

and Ê1. In a bit more detail, any disk D0 of Ê0 rE0 corresponds to a disk D1 in Ê1 rE1

(by incompressibility and boundary incompressibility of S+
β in Fβ) and these disks, along

with a foliated annulus of P , cobound a ball in Fβ (by irreducibility of Fβ). Each such

ball can be foliated with intervals, extending the foliation of P , and P̂ is the subset of Fβ
obtained by taking the union of P with all such foliated balls.

Since (S+
β , ∂S

+
β ) ↪→ (Fβ , ∂vFβ) is a homotopy equivalence of pairs, the homotopy of Ê0

to Ê1 along P̂ implies that these two regions are homotopic in S+
β through maps preserving

∂S+
β . But on the other hand, the regions Ê0 and Ê1 are disjoint. This is only possible if

Ê is a disk meeting ∂S+
β in at most two arcs or an annulus not meeting ∂S+

β .

Lemma 4.4 rules out disks meeting ∂Sβ in at most one arc for sufficiently long fillings.

Since orientability of B is independent of filling slope β, we may assume that Ê does not
have this form. Therefore, Ê is either a disk meeting ∂Sβ in exactly two arcs (a “rectangle”)
or is an essential annulus. In either case, Lemma 4.2 tells us that for sufficiently long fillings,
Ê0 and Ê1 contain no meridians.

Let us first consider the annular case. Thus, we have that Ê0 and Ê1 are two annuli
bounded by smooth curves and parallel in S+

β , and P̂ is a solid torus. The vertical boundary

∂vP̂ consists of two annuli identified with ∂Ê × [0, 1]. Each of them is incompressible with
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boundary on S+
β and must therefore be boundary compressible. By irreducibility of Fβ ,

they must each cobound a solid torus with an annulus in S+
β . Choosing U the innermost

of these two solid tori, we see that U meets S+
β in an annulus A between Ê0 and Ê1, and

meets P̂ in one of the annuli of ∂vP̂ , which we denote by Av. See Figure 8. The meridian
disk mβ of U , given by the boundary compression of Av, meets Av in a single arc.

Though U may contain other foliated solid tori parallel to P̂ , we can take P̂ innermost
so that U is a component of Xβ . Note that U cannot be a solid torus in M̊ , since that
would make mβ a monogon for B. Thus it must contain a solid torus V of Vβ .

Figure 8. This figure crossed with S1 illustrates the annulus case in
Lemma 4.5. Crossed with [0, 1] and without the yellow disk, it illustrates
the rectangle case.

Now replace A with Av in S+
β to produce:

S′β = (S+
β \A) ∪Av.

Push S′β slightly further into N (B) so that it misses Av.

This surface is isotopic to Sβ (through U), because the meridian mβ meets Av and A in
a single arc. The isotopy does not change the intersection with the cores of the solid tori,
but reduces the intersection with the 1-skeleton of t. This is because, by Proposition 2.7,
the annulus Av, which is a component of ∂vN (B), contains arcs of t(1) which intersected S+

β

but miss S′β . This contradicts the complexity-minimizing choice of Sβ , also made possible
by Proposition 2.7.

It remains to consider the case where each Êi is an essential rectangle, i.e. a nontrivial
disk in S+

β which meets ∂S+
β along two arcs. Figure 8 again describes the situation, but

one should interpret the diagram cross [0, 1] instead of S1. Thus we see Ê1 and Ê2 as

rectangles in S+
β , and P̂ as a cube, with its front and back faces (the diagram rectangle

crossed with {0} and {1}) lying in ∂Mβ . The arcs labeled Av and A represent rectangles

lying in ∂vN and S+
β respectively, and their union Av ∪A is a properly embedded annulus,

whose boundary circles lie in the toroidal boundary ∂Mβ .
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Suppose it is not null-homotopic. Then, because M̊ is hyperbolic Av ∪ A must be a
boundary-parallel annulus. This means that each arc connecting its boundaries can be
deformed rel endpoints to ∂Mβ . Applying this to such an arc lying just in A, we obtain a

boundary-compression of S+
β , which is a contradiction.

Thus Av ∪A is null-homotopic so its boundary circles bound disks in ∂Mβ because ∂Mβ

is incompressible. By irreducibility then the region between Av ∪A and these two disks is
a ball, labeled U in the figure.

Again by choosing P̂ innermost we can assume that U is a component of Xβ . There is
no component of Vβ in U this time, since it is a ball, so it is in fact a component of X.
This means that a disk mβ constructed as a compression of the annulus Av∪A is an actual

monogon for B in M̊ , and this is a contradiction to the incompressibility of B.
This contradiction implies that B is orientable. �

4.6. Product structures are tame. We can now assemble the proof of the key fact that,
for sufficiently long fillings, the foliation I|(Fβ rXβ) comes from a product structure on
Fβ .

Proposition 4.6. For sufficiently long fillings, the foliation I|(Fβ rXβ) can be extended
to a foliation of all of Fβ. Consequently, I|(Fβ r Xβ) agrees with a product foliation
Fβ ∼= Sβ×[0, 1] (up to isotopy), and each component of Xβ is a subproduct of the associated
product structure on Fβ.

Proof. On each component P of FβrXβ , the foliation I|(FβrXβ) by intervals determines
a product structure E × [0, 1]. Lemma 4.5 implies that I is orientable, and hence any leaf
must intersect both components of ∂Fβ . In particular, E×{0} and E×{1} are components
of Wi on opposite sides of ∂Fβ . Furthermore, Lemma 4.4 implies that for all sufficiently
long fillings E×{0} is not trivial. Therefore, Lemma 3.1 implies that the product structure
of Fβ can be isotoped so that it matches the product structure determined by the foliation
I|(Fβ rXβ). �

4.7. Fixed-fiber reduction and the completion of the proof. We are now ready for
the proofs of Theorems 1.5 and 1.4.

Proof of Theorem 1.5. As in our setup so far (Section 4.2) we restrict attention to a single
branched surface B and the associated fillings and fibers SB.

For (S, β) ∈ SB sufficiently long we can apply Proposition 4.6, which tells us that the
foliation I on N ∪ V B

β extends to Xβ , giving a product foliation on Fβ for which Xβ is a
subproduct. The product structures on Fβ and Tβ define a specific mapping torus structure
on Mβ and hence suspension flow (ψs) on Mβ (well-defined up to reparameterization). By
construction of I on Vβ , we see that Vβ is invariant by (ψs) and the I–fibers of N are arcs
of flow lines.

In particular the cores of V B
β are already vertical with respect to this structure. Left to

handle are the solid tori V F
β , which may still be knotted in Fβ . To address this we need

to establish additional uniformity which will allow us to invoke a theorem of Otal about
unknottedness of short geodesics in Kleinian surface groups.
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Let M̌β = M̊ ∪ V F
β be the manifold obtained by filling M̊ along only the floating tori

V F
β , and note that M̌β = N ∪Xβ = Mβ r int(V B

β ). Since (ψs) preserves V B
β , it restricts to

a flow on M̌β .

Now we observe that for any surface S̊ fully carried by B – for example we can start with
(S, β0) in Mβ0 and remove intersections with V B

β0
– we can embed it in N in the standard

way and view it as a surface in M̌β for a different value of β. We henceforth fix such a S̊

and allow β to vary. Then S̊ is transverse to the flow (ψs) and in fact meets every flow
line in forward and backward time; otherwise a flow half-line ψ[s,∞) or ψ(−∞,s] would miss
N meaning that it was trapped in some component of Xβ , which is impossible since Xβ is
a product and the flow lines intersect it in compact arcs of the product foliation. Hence,
there is a well-defined first return map φ : S̊ → S̊ of (ψs) and M̌β is the mapping torus on
φ.

As in our previous constructions, we thicken S̊ to a product TS̊ and push it out along
I–fibers of N , so that ∂hTS̊ contains ∂hN . The closure of the complement Fβ,S̊ is also a

product, since S̊ is a fiber in M̌β . Since the product structures on each of TS̊ and Fβ,S̊ are

compatible with (ψs), it follows that Xβ is a subproduct of Fβ,S̊ . Note that this product

structure is the same up to isotopy as the product structure inherited from Fβ , since both
are determined by the decomposition ∂Xβ = ∂hXβ ∪ ∂vXβ .

Consider the infinite cyclic cover Nβ,S̊ of M̌β associated to S̊. Otal’s theorem [Ota95]

implies that there is an ` > 0 depending only on |χ(S̊)| so that if the cores of the solid

tori V F
β have hyperbolic length less than ` then their lifts to Nβ,S̊

∼= S̊ × R are level. (We

note that although Otal only explicitly treats the case where S̊ is closed, the general case
is similar. Alternatively, the version needed here is explicitly stated by Bowditch [Bow11,
Theorem 2.2.1] and also follows directly from a more general result of Souto [Sou08].)
Henceforth, we consider only β sufficiently long so that the cores of V F

β have length less
than `, which is again possible by Thurston’s Dehn surgery theorem.

The product structure Nβ,S̊
∼= S̊×R is obtained by gluing the Z–indexed lifts of TS̊ and

Fβ,S̊ together. Observe that all V F
β ⊂ Xβ ⊂ Fβ,S̊ , and that Xβ is a subproduct of Fβ,S̊ by

Proposition 4.6. By Lemma 3.3, working in one of the lifts of Fβ,S̊ to Nβ,S̊ (which projects

homeomorphically to M̌β), the cores of V F
β are level in the product structure of Fβ,S̊ , and

further more the isotopy is supported in Xβ . That is, after an isotopy, we may assume

that the cores of V F
β are level with respect to S̊.

But the product structures on Xβ are isotopic, so we see that the cores of V F
β are level

with respect to S̊β , and hence Sβ as well. Since the cores of V B
β are already transverse, it

follows that the cores of all filling solid tori Vβ are standard, and since M is obtained from
Mβ by drilling out these cores, we are done. �

We conclude this section by proving Theorem 1.4.
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Proof of Theorem 1.4. Fix L > 0. If φ ∈ Φwp(L), then vol(Mφ) ≤ 3
2

√
2πL by Theorem 2.4.

By the Jørgensen–Thurston theorem [Thu78, Theorem 5.12.1], there is a finite collection
M0 of hyperbolic 3-manifolds of volume at most V = 3

2

√
2πL so that every hyperbolic 3-

manifold of volume at most V is obtained from some manifold in M0 by hyperbolic Dehn
filling.

Since the set M0 is finite, Theorem 1.5 gives that after excluding at most finitely many
slopes per boundary component per manifold in M0, all other fillings of the manifolds in
M0 have cores that are level or transverse.

For each M̊ ∈ M0 choose a boundary component and consider the finitely many man-
ifolds obtained by filling along the excluded slopes for that boundary. Let M1 be the
collection of all such fillings over all members of M0. Since M1 is also finite, we may re-
peat the process of applying Theorem 1.5. Proceeding inductively, we terminate when no
more fillings are needed to obtain elements of Φwp(L). Along the way we have accounted
for all of the members of Φwp(L), showing that they come from our combined union of
finite families by drilling along level or transverse curves. �

We end this section by describing an example of 1–manifolds in a sequence of Dehn
fillings on a compact manifold with hyperbolic interior, such that (a) each manifold fibers
in infinitely many ways and (b) for all sufficiently long fillings, the 1–manifold in each filling
identified by the theorem is level with respect to one fiber and transverse with respect to
another.

Example 1 (Level/transverse is relative). Let a and b be homologous nonseparating curves
that fill a closed surface S of genus g ≥ 2, and let φn = Tna ◦T−nb where Tc is the Dehn twist
about c. These mapping classes are pseudo-Anosov for n ≥ 1 by Thurston’s construction
[Thu88], and so the mapping tori Mn = Mφn are hyperbolic 3–manifolds by Thurston’s
hyperbolization theorem [Thu86a, Ota01].

We can view Mn as obtained from a sequence of Dehn surgeries on C = a×{2
3}∪b×{

1
3} in

the mapping torus of the identity M0 = S×[0, 1]/(x, 1) ∼ (x, 0) ∼= S×S1. By the Jørgensen–
Thurston theorem [Thu78, Theorem 5.12.1], the sequence of hyperbolic manifolds Mn =

Mfn limits to the cusped hyperbolic manifold M̊ = Mn r (a∗ ∪ b∗) obtained by removing
the geodesic representatives of a and b from Mn for n� 1. This is the manifold obtained
by drilling along (disjoint copies of) the level curves a and b of the fiber S in any manifold
of the sequence, and is homeomorphic to M0 \ C.

Now chose a different fiber Sn of the manifold Mn over the same fibered face as S into
which a and b cannot be homotoped (see §2.3). To see that it is possible to find such a fiber
Sn, first observe that the Poincaré dual of S lies in the subspace of H1(M) which vanishes
on the homology class of a (and b, since a and b are homologous). The linear subspace of
H1(M) consisting of classes that vanish on this homology class has codimension 1 since
φn acts trivially on H1(S) (that is, φn is in the Torelli group), and hence any element of
H1(S), in particular one that is nonzero on a, extends to an element of H1(M).

Since a∗ and b∗ become arbitrarily short as n tends to infinity, these curves are necessarily
a part of C from Theorem 1.5; in fact, their union is equal to C. According to that theorem,
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a and b must be transverse in Sn, for n sufficiently large. In fact, we see that M̊ is a fibered
manifold with fibers Sn punctured along a ∪ b.

Therefore, for all n sufficiently large, a∗ ∪ b∗ = C in Mn is level with respect to the fiber
S but transverse with respect to the fiber Sn.

5. Bounding Weil–Petersson translation length

In this section we prove the following theorem from the introduction.

Theorem 1.1. There exists c > 0 so that if φ : S → S is a pseudo-Anosov on a closed
surface, α ⊂ S is a simple closed curve with τα = τα(φ) ≥ 9, and k ∈ Z, then

‖T kα ◦ φ‖wp ≤ ‖φ‖T
√
c|χ(S)|.

The bound on translation length in the theorem is obtained by producing an explicit
(T kα ◦ φ)–invariant path R→ T (S) and bounding the WP-length of a fundamental domain
for the action of 〈T kα ◦ φ〉. The path is constructed as a leaf-wise conformal structure on
the mapping torus of T kα ◦ φ.

The remainder of this section is concerned with constructing the required structure and
proving the bound on the Weil–Petersson translation length. We begin in Section 5.1
where we make precise what we mean by a suspension and leaf-wise conformal structure
on a fibered 3–manifold. This provides a more convenient framework for carrying out the
construction. In Section 5.2 we describe the leaf-wise conformal structure coming from the
singular-solv structure which is essentially the starting point for our construction. Since
the singular-solv structure is constructed from the axis for a pseudo-Anosov with respect
to the Teichmüller metric, this explains the appearance of ‖φ‖T in the bound we obtain.

Next, in Section 5.3 we describe how we will perform Dehn surgery on the manifold
M , viewed as a suspension, so that the Dehn filled manifold is still a suspension, and the
monodromy has been composed with a power of a Dehn twist. This is followed by Section
5.4, which contains two technical lemmas: one describes a particular solid torus in M
that is situated nicely with respect to the singular-solv structure; the second produces the
explicit solid torus and leaf-wise conformal structure that we will use in our Dehn filling.

We assemble the ingredients in Section 5.5 and prove a more precise version of Theo-
rem 1.1. In Section 5.6 we explain how to use this to show that Ψwp(L) contains infinitely
many conjugacy classes of pseudo-Anosov mapping classes on every closed, orientable sur-
face of genus at least 2, and finally in Section 5.7 we explain how to apply the theorem to
produce examples in a much more general setting.

For the remainder of this section, we will take Σ to be an arbitrary surface. The two
cases of interest to us are when Σ is a closed surface (in which case we often denote it by
S) and when Σ is an annulus (and we denote it A).

5.1. Leaf-wise conformal structures. Suppose Σ is a surface and π : E → B a Σ–
bundle over a connected 1–manifold B which we view as either an interval in R or a circle
LS1 = R/LZ of length L > 0 (in particular, R locally acts on B by translation). We
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consider local flows φt on E such that for all x ∈ E and t ∈ R, π(φt(x)) = π(x) + t, as long
as φt(x) is defined. If E = Σ×J for an interval J ⊆ R and π the projection onto the second
factor, then after changing the product structure we may assume that φt(x, s) = (x, s+ t).
For s ∈ B, we write Σs = π−1(s). Given s, t ∈ B, we can restrict φt−s to a homeomorphism

φt−s : Σs → Σt.

For fibrations π : M → LS1 and s, t ∈ LS1, t − s is only defined modulo LZ. In this
situation, we pass to the infinite cyclic cover of M corresponding to the kernel of the
homomorphism π∗ : π1M → π1LS1 ∼= Z, and lift the flow and fibration over LS1 to a
fibration over R, to well-define φt−s. Then we have Σ0 = ΣL in M and φ = φL : Σ0 → Σ0

is the monodromy of the bundle. We refer to the bundle and flow (π : M → LS1, (φt)) as
a suspension (since φt is naturally the suspension flow of the monodromy φ).

A leaf-wise conformal structure ζ on any Σ–bundle E is a conformal structure on each

surface Σs, making it into a Riemann surface Σζ
s, such that φt−s : Σs → Σt is a quasi-

conformal homeomorphism whenever it is defined. Let νt,s ∈ B1(Σζ
s) ⊂ B(Σζ

s) denote the
Beltrami differential of φt−s.

If the path of Beltrami differentials t 7→ νt,s ∈ B1(Σζ
s) is piecewise smooth, we write

µζs =
d

dt

∣∣∣
t=s
νt,s.

We call this the tangent field of the family. To justify this name, observe that the map

t 7→ [νt,s] ∈ T (Σζ
s) = T (Σ) defines a path in the Teichmüller space and that µζt ∈ B(Σζ

t )
represents the tangent vector at time t to this path, for each t ∈ J .

Proposition 5.1. Let (π : M → L S1, (φt)) be a suspension with fibers St = π−1(t), let ζ

be a leaf-wise conformal structure, and let µζt ∈ B(Sζt ) be its tangent field. The mapping
class φ = φL ∈ Mod(S0) has Weil–Petersson translation length ‖φ‖wp bounded by

‖φ‖wp ≤
∫ L

0

(√∫
St

|µζtσ
ζ
t |2
)
dt,

where σζt is the hyperbolic metric uniformizing Sζt .

Proof of Proposition 5.1. The translation length ‖φ‖wp is bounded from above by the
length of the path

[0, L]→ T (S0), t 7→ [φt : S0 → Sζt ].

In formulas this means that

‖φ‖wp ≤
∫ L

0
‖µζt ‖wp.

The desired bound follows now from Lemma 2.1. �
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5.2. Singular solv structure. Suppose φ : S → S is a pseudo-Anosov homeomorphism
and M = Mφ is the mapping torus. The singular-solv metric on M is a piecewise Riemann-
ian metric that induces a Euclidean cone metric on the fibers of a fibration π : M → LS1,
where L = log(λ(φ)) = ‖φ‖T ; see e.g. [CT07, McM00]. There is a natural unit speed flow
(φt) making (π : M → LS1, (φt)) into a suspension so that:

(1) The Euclidean cone metrics on the fibers defines a leafwise conformal structure ζ,

(2) the maps φt−s : Sζs → Sζt are Teichmüller mappings for all s, t, with initial and
terminal quadratic differentials ϕs and ϕt, respectively,

(3) for all s, t, the Beltrami differential of φt−s is given by νt−s = tanh(t− s) ϕ̄s
|ϕs| ,

(4) the tangent field is given by µζt = ϕ̄t
|ϕt| , and

(5) the vertical and horizontal foliations of ϕs are the stable and unstable foliations for
φ, for all s.

Note that the tangent field (µζt ) to the singular-solv leaf-wise conformal structure ζ has

|µζt | = 1, for all t. Therefore, applying Proposition 5.1, we obtain

‖φ‖wp ≤
∫ L

0

(√∫
St

|µζtσ
ζ
t |2
)
dt ≤

∫ L

0

√∫
St

(σζt )
2 = L

√
Area(S) = ‖φ‖T

√
Area(S),

as expected. To prove Theorem 1.1 we will perform an appropriate Dehn surgery on M
by drilling out the curve α on a fiber S, and replacing it with an appropriate solid torus
and leaf-wise conformal structure. The goal of the next section is to describe the setup for
such a surgery construction.

5.3. Dehn twists and Dehn filling. For any interval J ⊂ R, the product

TJ = A× J,

is a (not necessarily compact) solid torus. We denote the local flow in this special case by
φTt (x, s) = (x, t+ s) (defined for s, t+ s ∈ J , as usual), and denote the projection onto the
second factor by πT : TJ → J . In particular, we have πTφ

T
t (x, s) = πT(x, s) + t = s + t,

where defined. As usual, we define As = A× {s} for all s ∈ J .
If we have a suspension (π : M → LS1, (φt)), an embedding of a compact solid torus

ι : TJ ↪→M , and an orientation preserving local isometry ῑ : J → LS1, then we say that the
suspension and solid torus are compatible (via ι and ῑ) if the following diagram commutes,
whenever all maps are defined

TJ
φTs //

ι

��

TJ
πT

//

ι

��

J

ῑ
��

M
φs // M

π // LS1.

Given a compatible suspension (π : M → LS1, (φt)) and solid torus ι : TJ → M with
J = [a, b], let M ′ = M − ι(int(TJ)). For each k, the 1

k–Dehn surgery on ι(TJ) in M is
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obtained gluing TJ to M ′ via a homeomorphism gk : ∂TJ → ∂M ′ = ι(∂TJ), given by

gk(x) =

{
ι(x) for x ∈ A× {a} ∪ ∂A× J
ι ◦ tk(x) for x ∈ A× {b}.

where tk : A → A is a homeomorphism representing the kth power of a Dehn twist in the
core curve of A. The resulting manifold Mk = M ′ ∪gk TJ admits a flow (φs) which locally
agrees with the flow of the same name on M ′ ⊂ M and on TJ locally agrees with (φTs ),
since the original solid torus was compatible. The monodromy is conjugate (by a power of
φ) to the composition T kα ◦ φ, where α is a curve in S0 in the isotopy class of the core of
ι(TJ); see e.g. [Sta78, Har82, LM86].

5.4. Good solid tori. Throughout this section, we let M = Mφ for a pseudo-Anosov φ.
We will perform Dehn surgeries as described in the previous section in the presence of leaf-
wise conformal structures on both M and the filling solid tori TJ . The leaf-wise conformal
structure on M will come from the singular-solv metric, and the solid torus which we will
remove is described in Lemma 5.2 below. The leaf-wise conformal structure on TJ will
be constructed by hand and will be such that the gluing maps restricted to the top and
bottom A× ∂J are conformal. This is described in Lemma 5.3. As the proofs of these are
somewhat lengthy and technical, we defer their proofs to Section 6.

Recall that for any simple closed curve α ⊂ S the twisting coefficient of α for φ, denoted
τα(φ), is defined to be the distance in the subsurface projection to the annulus with core
curve α of the stable and unstable laminations L+,L− for φ:

τα(φ) = dα(L+,L−),

see [MM00] for details. As in Theorem 1.1 we now assume τα = τα(φ) ≥ 9.
The importance of this condition rests on a result of Rafi [Raf05] which provides a definite

modulus Euclidean annulus (depending on τα) isometrically embedded in the Euclidean
cone metric ϕt defining the conformal structure ζt on St for some t. Using φt to flow this
backward and forward produces the required solid torus. Carrying out this construction
carefully leads to the following, whose proof we defer to Section 6.6.

Lemma 5.2. For some h ≥ 1
2 arccosh( τα2 − 3) and J = [−h, h] there is an embedding

ι : TJ → M compatible with the suspension (π : M → LS1, (φt)) which is disjoint from the
singularities. Furthermore, the induced leaf-wise conformal structure ζ on TJ agrees with

the standard one on A−h, and there exists Ψ: Aζh → Aζ−h conformal so Ψ◦φT2h : A−h → A−h
is the rth power of a Dehn twist for some integer r.

To fill M ′ = M \ ι(int(TJ)) with TJ affecting an arbitrary Dehn twist in α as described
in the previous subsection, we will need a different leaf-wise conformal structure on AJ . To
do this we essentially follow the same idea as in the proof of incompleteness of the Weil–
Petersson metric by Wolpert [Wol75] and Chu [Chu76]. Specifically, we recall that the
incompleteness comes from paths in Teichmüller space exiting every compact set in which
a curve on the surface is “pinched” to have length tending to zero, but which nonetheless
has finite WP-length. We apply this idea to first pinch α to be arbitrarily short along
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the first half of the interval J , then perform as much twisting as we like on a negligible
sub-interval in the middle of J , and then “un-pinch”. By carrying out all the estimates
using the complete (infinite area) hyperbolic structure on the interior of the annulus, we
may apply the Scwartz–Pick Theorem to obtain upper bounds whenever the annulus is
conformally embedded into a Riemann surface. The specific construction we use provides
the following. It will be proven in Section 6.5.

Lemma 5.3. Given k ∈ Z, h > 0, ρ > 1, there exists a leaf-wise conformal structure ηk on
the solid torus TJ = A×J for J = [−h, h] agreeing with the standard structure (of modulus
1) on A−h = A, with tangent field (µηks ) identically zero in a neighborhood of ∂A × J , so
that for all s ∈ J , ∫

Aηks
|µηks σηks |2 ≤

8ρπ

h2
,

where σηks is the complete hyperbolic metric on the interior of As, and so the local flow
(φTs ) restricted to the boundary circles are dilations. Moreover, there is a conformal map

Tk : Aηkh → Aηk−h so that the composition Tk ◦ φT2h : Aξk−h → Aξk−h is the kth power of a Dehn
twist in the core curve.

5.5. Proof of Theorem 1.1. This theorem will follow easily from the following more
precise version by setting c = 2π(1 + 6

h2
).

Theorem 5.4. Suppose φ : S → S is a pseudo-Anosov on a closed surface, α ⊂ S is a
simple closed curve with τα ≥ 9, and k ∈ Z. Then

‖T kα ◦ φ‖wp ≤ ‖φ‖T

√
2π|χ(S)|

(
1 +

6

h2

)
for some h ≥ 1

2 arccosh
(
τα
2 − 3

)
.

Proof. Suppose ι : TJ →M is the solid torus from Lemma 5.2 and Ψ: Ah → A−h and r as
in Lemma 5.2. Fix k ∈ Z, ρ > 1, and let ηk be the leaf-wise conformal structure on TJ ,
and Tk : Ah → A−h as in Lemma 6.4. We will prove the required bound for ‖T k−rα ◦ φ‖wp,
which will suffice since k was arbitrary.

Let M ′ = M − ι(int(TJ)) and glue TJ to M ′ along their boundaries via the map

gk : ∂TJ → ∂M ′ = ι(∂TJ),

given by

gk(z, t) =

{
ι(z, t) for (z, t) ∈ A× {−h} ∪ ∂A× J
ι ◦Ψ−1 ◦ Tk(z, t) for (z, t) ∈ A× {h}.

The resulting manifold Mk = M ′ ∪gk TJ admits a flow (φs) which locally agrees with the
flow of the same name on M ′ ⊂ M and on TJ locally agrees with (φTs ), since the original
solid torus was compatible. Let ιk : TJ →Mk denote the compatible inclusion of the solid
torus TJ .

We claim that the leaf-wise conformal structures ζ on M (restricted to M ′) and ηk on
TJ glue together to give a leaf-wise conformal structure ζk on Mk. Near A−h in the fiber
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containing this annulus, Aζ−h and Aηk−h are the standard structures, while near Ah in the

fiber containing it, we note that the map Ψ−1 ◦ Tk : Aηkh → Aζh is the composition of two
conformal maps, hence is conformal. Near all other annuli, we have removed a locally
isometrically embedded flat cylinder and glued in another one. Since (φTs ) is a dilation on
the boundary for both ζ and ηk, the gluing maps of boundaries are in fact dilations, and

the conformal structures can be explicitly glued together. Let (µζks ) denote the tangent

field, which is given by µζs on St ∩M ′ and by µηks on Ss ∩ ιk(TJ).
The monodromy of Mk is given by T k−rα ◦ φ. To see this, note that conjugating Ψ−1Tk

by φT2h we get

(φT2h)−1Ψ−1Tkφ
T
2h = (ΨφT2h)−1(Tkφ

T
2h)

which is the composition of the kth power of a Dehn twist and the inverse of the rth power
of a Dehn twist, both in the core curve of the annulus. Thus we have changed the original
monodromy by the (k − r)th power of a Dehn twist in the core curve of Ah, which is the
image of α by the flow. Hence the monodromy is conjugate (by a power of φ) to T k−rα φ.

For any s ∈ LS1, set S0
s = Ss ∩M ′. The closure of the complement of S0

s in Ss is a
disjoint union of annuli (slices of the product TJ = A× J) which we denote

Ss − Ss,0 =

n(s)⊔
i=1

As,i.

The number of annuli n(s) is bounded by 3
2 |χ(S)|, which is the largest number of disjoint

essential annuli on S that are pairwise nonhomotopic.
Now we write the integral as a sum of integrals on the subsurfaces∫

S
ζk
s

|µζks σζks |2 =

∫
S
ζk
s,0

|µζks σζks |2 +

n(s)∑
i=1

∫
Aζks,i
|µζks σζks |2.

The flow in M has unit Teichmüller speed, and so |µζs| = 1. Since µζks = µζs on Sζks,0 = Sζs,0,

the first integral is bounded by the hyperbolic area (as it was with M itself)∫
S
ζk
s,0

|µζks σζks |2 ≤ Area(Sζks,0) ≤ Area(Sζks ) = 2π|χ(S)|.

Each annulus As,i is the ιk–image of As(i) where ῑk(s(i)) = s, and ιk induces a conformal

map Aηks(i) → Aζks,i. By the Schwartz–Pick theorem, the hyperbolic metric σζks on Sζks

restricted to Aζks is bounded above by the complete hyperbolic metric σηks(i) on Aηks(i) ∼= Aζks,i.
Combining this with Lemma 6.4 implies that for each i = 1, . . . , n(s),∫

Aζks,i
|µζks σζks |2 ≤

∫
Aζ
s(i)

|µηks(i)σ
ηk
s(i)|

2 ≤ 8ρπ

h2
.
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Now, by Proposition 5.1 and since n(s) ≤ 3
2 |χ(S)|, we have

‖T k−rα ◦ φ‖wp ≤
∫ L

0

√∫
S
ζk
s

|µζks σζks |2ds ≤
∫ L

0

√√√√2π|χ(S)|+
n(s)∑
i=1

8ρπ

h2
ds(1)

≤ ‖φ‖T

√
2π|χ(S)|+ 8ρπ

h2

(
3

2
|χ(S)|

)
Taking the limit as ρ→ 1, we obtain

‖T k−rα ◦ φ‖wp ≤ ‖φ‖T

√
2π|χ(S)|

(
1 +

6

h2

)
.

This completes the proof. �

We also record the following corollary of Theorem 1.1.

Corollary 5.5. If ‖φ‖T ≤ c′

|χ(S)| for some c′ > 0, and if α is a curve with τα(φ) ≥ 9, then

for all k ∈ Z

‖T kα ◦ φ‖wp ≤
c′
√
c√

|χ(S)|
.

where c is the constant from Theorem 1.1. �

5.6. Examples in all genus. From Corollary 5.5 we can prove Corollary 1.2 from the
introduction, which we restate here, with an explicit bound on L.

Corollary 5.6. For any L ≥ 124 the set Φwp(L) contains infinitely many conjugacy classes
of pseudo-Anosov mapping classes for every closed surface of genus g ≥ 2.

Proof. Consider the curves α, α′, β on a genus two surface S2 shown in Figure 9. Suppose
φ2 : S2 → S2 is the mapping class defined by φ2 = Tα′T

9
αT
−1
β . We can (explicitly) construct

a square-tiled flat metric on S so that β is vertical and α, α′ are horizontal, and so that
φ2 is affine (c.f. Thurston’s construction [Thu88]). Specifically, this surface is built from a
cylinder of height 9 and circumference 2 about α and height 1 and circumference 2 about
α′ as shown in the middle of the figure. This can be done so that the derivative of φ2 is
given by the matrix on the right of the figure.

From this we compute that λ(φ2) = 21+2
√

110, and the eigenspaces of Dφ2, which define
the stable/unstable foliations for φ2, have slopes

√
110− 10 ≤ 1

2 and −
√

110− 10 ≤ −20.
From the description of the cylinder about α, we see that τα ≥ 11.

Now let M be the mapping torus of φ2. Since α and β intersect twice, as was shown
in [ALM16, Lemma 3.8-3.9], there is a genus 2 surface S′ ⊂ M which contains α and is
transverse to the suspension flow of φ2. Thus S′ represents a class [S′] in the closure of the
cone C = R+F on the fibered face F of the Thurston norm ball B containing the class [S]
of S. In fact, it was also shown in [ALM16] that [S] and [S′] are linearly independent. It
follows that for all g ≥ 3, the class (g − 2)[S] + [S′] is represented by a surface Sg which
is a fiber in a fibration of M over S1 and contains α. By linearity of the Thurston norm
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Dφ2 =

(
41 2
20 1

)

β

α

α′
α

α′
2

2

3

3

1

1

Figure 9. Left: curves on a genus 2 surface. Middle: square tiled surface
built by isometrically identifying vertical sides by isometry in the obvious
way and horizontal sides as indicated by the numbering. The tall rectangle
has height 9 and width 2, while the smaller one has height 1 and width 2.
The horizotonal curves are α and α′ as labeled, and the vertical curve is β.
Right: Derivative of the pseudo-Anosov φ2.

n, −χ(Sg) = n(Sg) = 2g − 2, and since [Sg] is primitive, Sg is connected of genus g; see
Theorem 2.5. Moreover, since both S and S′ contain α, we can realize Sg so that it also
contains α.

Let φg : Sg → Sg denote the monodromy. Recall from Theorem 2.6 that h : C → R+,
which extends ‖ · ‖T , is convex and homogeneous of degree −1 and thus

‖φ3‖T = h([S3]) ≤ h([S2]) = ‖φ2‖;

see [ALM16, Lemma 3.11]. Applying convexity again we have

|χ(Sg)|‖φg‖T ≤ 4 log(λ(φ2)) = 4 log(21 + 2
√

110) ≤ 14.95.

The twisting numbers τα(φg) and τα(φ2) are equal: this is because these are twisting num-
bers for the monodromy maps of fibers [S] and [Sg] in the same fibered face of the Thurston
norm ball. As observed in [MT17], the universal covers of S and Sg can both be identified
with the leaf space of the suspension flow in the universal cover of M , the stable/unstable
laminations of φ2 and φg have identical lifts in this cover, and τα is computed using this
data in the annular quotient associated to the conjugacy class [α] in π1(M).

In particular τα(φg) = τα(φ2) ≥ 11. Therefore, by Corollary 5.5, we have

‖T kα ◦ φg‖wp ≤
√
c

14.95√
|χ(Sg)|

≤ 124√
|χ(Sg)|

,
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where we have used c = 2π
(
1 + 6

h2

)
with h = 1

2 arccosh
(

11
2 − 3

)
. It follows that Φwp(L)

contains infinitely many pseudo-Anosov mapping classes on every surface of genus g ≥ 2
for L ≥ 124. �

5.7. Generalities. This construction is much more robust, as the following corollary
shows. Given a closed curve α in M , there is a subspace Vα ⊂ H1(M) consisting of
cohomology classes that evaluate to zero on α.

Corollary 5.7. Suppose M is a closed fibered 3–manifold with pseudo-Anosov monodromy
φ : S → S, and suppose that α is a curve in S. Then there is a constant c0 > 0 and an
R+–invariant neighborhood U of [S] ∈ H1(M) with the following property. If S′ ⊂ M is
another fiber of M with [S′] ∈ U ∩ Vα, then α is isotopic into S′, and for all k ∈ Z, the
monodromy φ′ : S′ → S′ satisfies

‖T kα ◦ φ′‖wp ≤
c0√
|χ(S′)|

.

Observe that this corollary does not require any assumption on the twisting coefficient
of α, though one loses explicit control on c0 because of this.

Proof. Since S is a fiber we can represent [S] ∈ H2(M) ∼= H1(M) as a closed 1-form ω
which is nowhere zero. Fixing a Riemannian metric on M , for each ε let Uε denote a
neighborhood of [S] with the property that every element in Uε is represented by a closed
nowhere-zero 1-form ω′ with |ω′ − ω| < ε. The primitive integral classes in R+Uε are
precisely the classes in R+Uε dual to fibers of a fibration.

We would like to say that there is a regular neighborhood N of α and an ε > 0 such
that when S′ is a fiber with [S′] ∈ R+Uε ∩ Vα then after an isotopy both S and S′ meet N
in an annulus containing α.

First choose a regular neighborhood W which can be written in the form A × (−b, b)
where A0 = A × {0} is a regular neighborhood of α in S and ω|W = dt, where t is the
coordinate for (−b, b). If ω′ is the 1-form representing [S′] then, since [S′] ∈ Vα, we have∫
α ω
′ = 0 so ω′ is exact in W . For suitably small ε we can write ω′ = dh on W .

Thus for small ε the level sets of h are surfaces transverse to the t direction. It follows
that there is a smaller regular neighborhood N of α so that for each ω′ representing a point
in Uε there is a compactly supported isotopy in W (moving along vertical lines) which takes
ω′ to dt in N . The integral manifold of (the isotope of) kerω′ passing through α contains
the annulus A0 ∩N , and after another isotopy any other intersections of it with N can be
pushed off. This gives the desired fiber S′.

Now in H1(∂N) we have a basis µ, λ where µ is the boundary of a meridian disk and λ

is represented by a component of ∂(A0 ∩N). Let M̊ = M rN . For j ∈ Z, the Dehn filling

of M̊ associated to µ+ jλ gives a manifold Mj that can be simultaneously described as the

mapping torus of T jαφ, and as the mapping torus of T ′α
jφ′, where φ is the monodromy of

the fibering of S, φ′ is the monodromy of the fibering of S′, and Tα and T ′α are the Dehn
twist of α in A0 ∩N , considered as a homeomorphism of S and S′ respectively.
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We want to relate homology classes in M to those in Mj . Note that the inclusion map

H2(M̊) → H2(M) is injective (since ∂M̊ = ∂N has one component), and that its image
is exactly Vα (this is an exercise in Poincaré duality). Thus we can invert it on Vα and

compose with the inclusion H2(M̊)→ H2(Mj) to obtain a linear map Vα → H2(Mj). Let
Fj denote the fibered face of the Thurston norm ball in H2(Mj) containing the image [Sj ]
of [S]. Then R+Fj is open, and we may choose ε sufficiently small that it contains the
closure of the image of R+Uε ∩ V , which we denote Kj . Let [S′j ] denote the image of [S′]

in H2(Mj).

Now let U = R+Uε, and choose j > 0 so that T jαφ is pseudo-Anosov and τα(T jαφ) ≥ 9.
For any S′ such that [S′] ∈ U ∩ Vα, as observed above in the proof of Corollary 5.5,

the twisting numbers τα(T jαφ) and τα(T ′α
jφ′) are equal since [Sj ] and [S′j ] are in the same

fibered face Fj .
In particular τα(T ′α

jφ′) ≥ 9 and we can therefore apply Theorem 1.1 to T ′α
jφ′, obtaining

‖T ′α
k ◦ φ′‖wp = ‖T ′α

k−j ◦ T ′α
j
φ′‖wp

≤ ‖T ′α
j
φ′‖T

√
c|χ(S′)|.

To complete the argument we need to obtain a bound on ‖T ′α
jφ′‖T . As described in Section

2.3, by Theorem 2.6 there is a cj ≥ 1 depending only on Kj such that if S′′ is a fiber of
Mj such that [S′′] ∈ Kj with monodromy φS′′ then |χ(S′′)|‖φS′′‖T ≤ cj . We conclude that

‖T ′α
k ◦ φ′‖wp ≤

cj
√
c√

|χ(S′)|
,

as required. �

6. Constructions and estimates

In this section, we will describe constructions of some specific leaf-wise conformal struc-
tures and estimates for the Weil–Petersson norm of their tangent fields. We begin with
some generalities on reparameterizing and gluing leaf-wise conformal structures. Next we
set up some notation for annuli and carry out some computations of hyperbolic area, before
turning to the construction of the required leaf-wise conformal structures on solid tori from
Lemma 5.3 necessary for our main construction. We end this section with the construction
of the solid torus from Lemma 5.2 we remove from the original manifold M .

6.1. Reparameterizing and gluing. Given a piecewise differentiable, monotone, surjec-
tive map g : I → J , we define G : Σ × I → Σ × J by G(x, t) = (x, g(t)). If ζ is a leaf-wise
conformal structure on Σ × J , then it pulls back via G to one on Σ × I denoted G∗ζ, so

that ΣG∗ζ
s = Σζ

g(s) as Riemann surface structures on Σ. For any s ∈ I, the resulting path

of Beltrami differentials in B1(ΣG∗ζ
s ) = B1(Σζ

g(s)) is just the composition t 7→ νg(t),g(s), and

consequently the tangent field is given by

µG
∗ζ

s = g′(s)µζg(s).
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Suppose that ζ1 and ζ2 are leaf-wise conformal structures on Σ× J1 and Σ× J2, respec-

tively, such that J1 ∩ J2 = {s} and there is a conformal map g : Σζ1
s → Σζ2

s . Then we can
glue together the leaf-wise conformal structures to a single leaf-wise conformal structure ζ
on Σ×J1∪J2 using the conformal map g. More precisely, we define the leaf-wise conformal
structure on Σ × J1 to be ζ1 and on Σ × J2 to be g∗ζ2. The path in Teichmüller space
J → T (Σ) is the concatenation of the path J1 → T (Σ) with J2 → T (Σ) after adjusting
the marking of the latter by the conformal map g.

6.2. Annuli and solid tori. As above, we let LS1 = R/LZ denote a circle of length
L > 0. Any annular Riemann surfaces with finite modulus can be uniformized by Euclidean
metrics of the form LS1 × J , where J ⊂ R is an interval; the conformal modulus is |J |/L.
Equivalently, this surface is the quotient

LS1 × J = {z = x+ iy ∈ C | y ∈ J}/〈z 7→ z + L〉.
Note that LS1× J is conformally equivalent to rLS1× rJ , for any r > 0, and we will write
mA for any annular Riemann surface with conformal modulus m. For m = 1, we just write
1A = A, though we also allow A to denote a topological annulus.

The middle sub-annulus of the annulus 2mA of modulus 2m is the sub-annulus of mod-
ulus m invariant under the full conformal automorphism group. More precisely, it is given
by

S1 ×
[
−m

2 ,
m
2

]
⊂ S1 × [−m,m].

Although the middle sub-annulus encompasses half the Euclidean area, it’s hyperbolic area
is inversely proportional to the modulus, as the next lemma shows.

Lemma 6.1. Suppose mA ⊂ 2mA is the middle sub-annulus and σ is the complete hyper-
bolic metric on the interior of 2mA. Then∫

mA
σ2 =

π

m
.

Proof. We view the annulus 2mA as the quotient of

Hm = {x+ iy ∈ C | |y| ≤ m},
by the action of 〈z 7→ z + 1〉. A fundamental domain for the middle sub-annulus is

Dm
2

= {x+ iy | 0 ≤ x ≤ 1, −m
2 ≤ y ≤

m
2 } ⊂ Hm

2
⊂ Hm.

To find the hyperbolic metric on the interior of Hm, map it to the upper half-plane with

the conformal map z 7→ ie
πz
2m . The pull-back to Hm of the hyperbolic metric |dz|

Im(z) in the

upper-half plane is

σ̃ =
π

2m cos( πy2m)
|dz| = π

2m
sec( πy2m)|dz|.

Therefore, integrating this over Dm
2

provides the required computation:∫
Am
σ2 =

∫
Dm

2

σ̃2 =

∫
Dm

2

π2

4m2 sec2( πy2m)|dz|2= π2

4m2

∫ 1

0

∫ m/2

−m/2
sec2( πy2m) dy dx=

π

m
.
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�

In the next three subsections, we carry out the explicit construction of a leaf-wise con-
formal structure on solid tori and estimates on the Weil–Petersson norm of the associated
tangent fields. This really divides into three parts: pinching, twisting, and then combining
the two. Some care is necessary with the parameterizations involved since, when using
these solid tori in Dehn filling, a fiber will typically meet the solid torus in many copies of
the annulus.

6.3. Pinching construction/estimates. Here we explicitly describe the leaf-wise con-
formal structure on a solid torus that “pinches the core curve,” and estimate the Weil–
Petersson norm of its tangent field. Specifically, for h > 0 and solid torus A × [0, h) we
construct a leaf-wise conformal structure that has modulus 1 on A0, modulus of At tending
to infinity as t→ h, and so that the Weil–Petersson norm of the tangent field is bounded

by
√

8π
h for every t. The desired structure will be obtained from the one in the following

proposition by an appropriate reparameterization.

Proposition 6.2. There exists a leaf-wise conformal structure ζ on A× [1,∞) such that

(a) Aζt is isomorphic to tA.

(b) The associated flow φs : Aζt → Aζt+s is conformal in neighborhoods of the boundaries,
and is a dilation on the boundaries.

(c) The tangent field µζt satisfies |µζt | = 1/t in the middle annulus of Aζt , and is iden-
tically 0 outside it.

In particular, we have

(2)

∫
Aζt
|µζtσ

ζ
t |2 =

2π

t3
,

and therefore

(3)

∫ ∞
1

√∫
Aζt
|µζtσ

ζ
t |2 dt =

√
8π.

Note that this construction gives a path of finite Weil–Petersson length that diverges in
Teichmüller space, by embedding A1 into some Riemann surface and using this family to
deform. This recovers the result, due to Wolpert [Wol75] and Chu [Chu76], that the WP
metric is incomplete.

Proof. To begin, we define a 1–parameter family of quasi-conformal maps (f̃t : C→ C)t≥1,
so that, defining

Hs = {x+ iy ∈ C | |y| ≤ s},
• f̃t is the identity on the real coordinate x,
• f̃t takes H1/t to Ht, dilating the y coordinate by t2,

• f̃t takes H1 to H2t−1 and H2 to H2t.
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Explicitly, f̃t is defined by

f̃t(x+ iy) =


x+ i(t2y) for 0 ≤ y ≤ 1/t,

x+ i(2t− 1
y ) for 1/t ≤ y ≤ 1,

x+ i(y + 2(t− 1)) for 1 ≤ y,

and extend over x+ iy ∈ C with y < 0 by reflection.
Now since horizontal translations in C commute with f̃t and preserve Hs for all s, t, the

map f̃t descends to a map

ft : A = H2/〈z 7→ z + 4〉 → H2t/〈z 7→ z + 4〉 = tA.

These maps define a leaf-wise conformal structure ζ on the (noncompact) solid torus A×
[1,∞) so that Aζt = tA and φTt−1 = ft : Aζ1 → Aζt .

Parts (a) and (b) of the proposition follow immediately from the definition. For part (c)

and the two integral equalities, we need to compute the tangent field µζt .

For any fixed t ≥ 1, s ≥ 0, consider the maps f̃t,t+s = f̃t+s ◦ f̃−1
t : C→ C. If y ≥ t, then

f̃t,t+s(x+ iy) = x+ i(y + 2s),

while if −y ≥ t, then f̃t,t+s(x+ iy) = x+ i(y − 2s).
On the other hand, if 0 ≤ |y| < t, then for sufficiently small s > 0, we have

f̃t,t+s(x+ iy) = f̃t+s(x+ i(y/t2)) = x+ i

(
(t+ s)2

t2
y

)
.

In particular, if ν̃t,t+s is the Beltrami coefficient of f̃t,t+s, then for each t, its derivative
with respect to s at s = 0 is

µ̃t(x+ iy) =

{
0 for |y| ≥ t
−1
t for |y| < t

The tangent field µζt is the descent of µ̃t, so we see that part (c) holds. Integrating this

over Aζt = tA, we have ∫
Aζt
|µζtσ

ζ
t |2 =

1

t2

∫
t
2A
σ2
t =

1

t2
π

t/2
=

2π

t3
,

where the second equality is by Lemma 6.1. This proves equality (2). An easy computation
proves (3). �

We can reparameterize the family of Proposition 6.2 by the moral equivalent of Weil–
Petersson arclength to obtain the following:

Corollary 6.3. For any h > 0, there exists a differentiable homeomorphism g : [0, h) →
[1,∞) so that if G : A × [0, h) → A × [1,∞) is the induced map of products and ξ = G∗ζ
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the pull-back of the leaf-wise conformal structure ζ on A × [1,∞) as above, with tangent

field µξs, then ∫
Aξs
|µξsσξs |2 =

8π

h2
.

Proof. Set

s(t) =

∫ t

1

√∫
Aζu
|µζuσζu|2 du =

∫ t

1

√
2π

u3/2
du =

√
8π(1− t−1/2).

Let t(s) be the inverse (given by t(s) = 8π
(
√

8π−s)2 ) which satisfies

t′(s) =
1

s′(t(s))
=
t(s)3/2

√
2π

.

For any h > 0, set g(s) = t(
√

8πs/h), and observe that g([0, h)) = [1,∞) with

g′(s) =

√
8π

h
t′(
√

8πs/h) =

√
8π

h

t(
√

8πs/h)3/2

√
2π

=
2g(s)3/2

h
.

Therefore, setting G : A× [0, h)→ A× [1,∞) the reparameterization and ξ = G∗ζ, we have∫
Aξs
|µξsσξs |2 =

∫
Aζ
g(s)

|g′(s)µζg(s)σ
ζ
g(s)|

2

=
4g(s)3

h2

∫
Aζ
g(s)

|µζg(s)σ
ζ
g(s)|

2

=
4g(s)3

h2

2π

g(s)3
=

8π

h2
,

as required. �

6.4. Twisting construction/estimates. Here we use an affine twist in the middle sub-
annulus and a simple construction to produce a solid torus A× [−ε, ε] with arbitrarily small
ε, and leaf-wise conformal structure for which the Weil–Petersson norm of the tangent field
is also arbitrarily small, and which affects the kth power of the Dehn twist in the core
curve. The trade-off is that the moduli of At are required to be large.

Lemma 6.4. Given k ∈ Z, ε > 0, and δ > 0 there exists mk > 0 so that for any m > mk,
there exists a leaf-wise conformal structure ξk on Tε = A× [−ε, ε] with associated tangent

field (µξks ), which is identically zero outside the middle sub-annulus for each Aξks , so that

for all s ∈ [−ε, ε], Aξks has modulus 2m,∫
Aξks
|µξks σξks |2 < δ,

and the local flow (φTs ) restricted to the boundary circles are dilations.

Moreover, there is a conformal map T ′k : Aξkε → Aξk−ε so that the composition T ′kφ
T
2ε : A

ξk
−ε →

Aξk−ε is the kth power of a Dehn twist in the core curve.
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Proof. First, we set

mk =
3

√
k2π

16δε2
.

Now fix any m > mk and let c = k
2εm . We identify 2mA conformally with

2mA = S1 ×
[
−m

2 ,
3m
2

]
.

We define fs : 2mA→ 2mA, for all s ∈ R by

fs(x+ iy) =


x+ iy for − m

2 ≤ y ≤ 0
x+ scy + iy for 0 ≤ y ≤ m
x+ scm+ iy for m ≤ y ≤ 3m

2 ,

and note that this is an affine shear on the middle sub-annulus S1× [0,m], and is conformal
outside. For s = 2ε, the effect of f2ε on the top boundary component of the annulus is

f2ε

(
x+ i3m

2

)
= (x+ 2εcm) + i3m

2 = (x+ k) + i3m
2 .

Since f2ε is the identity on the bottom component, it follows that f2ε is the kth power of a
Dehn twist in the core curve of 2mA.

The maps (ft)t∈[0,2ε] define a leaf-wise conformal structure on A × [0, 2ε] and by trans-
lating the interval back by ε and pulling back, it gives the desired leaf-wise conformal
structure ξk on A × [−ε, ε] so that At has modulus 2m for all t. Furthermore, the maps

φTt−s : Aξks → Aξkt , in product coordinates above, are given by ft−s (because f is already

a flow: fs ◦ ft = fs+t). Thus, the tangent field (µξks ) is easily seen to be zero outside the

middle sub-annulus and by a computation µξks = ci
2 in the middle sub-annulus. Appealing

to Lemma 6.1 we see that∫
Aξks
|µξks σξks |2 =

c2

4

∫
Aξks

(
σξks

)2
=
c2π

4m
=

k2π

16ε2m3
<
k2π

16ε2
1

m3
k

= δ.

Since f2ε is the kth power of a Dehn twist from 2mA to itself, the existence of the required
map T ′k follows. �

6.5. Gluing together solid tori. Here we combine the constructions above to produce
a single solid torus that first pinches, then twists, then “un-pinches”. This is obtained by
stacking together a sufficiently large piece of the solid torus from Corollary 6.3, a solid
torus from 6.4, and then another copy of the first solid torus, but with the reversed flow.
This will prove the following lemma claimed in Section 5.4.

Lemma 5.3. Given k ∈ Z, h > 0, ρ > 1, there exists a leaf-wise conformal structure ηk on
the solid torus TJ = A×J for J = [−h, h] agreeing with the standard structure (of modulus
1) on A−h = A, with tangent field (µηks ) identically zero in a neighborhood of ∂A × J , so
that for all s ∈ J , ∫

Aηks
|µηks σηks |2 ≤

8ρπ

h2
,

where σηks is the complete hyperbolic metric on the interior of As, and so the local flow
(φTs ) restricted to the boundary circles are dilations. Moreover, there is a conformal map
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Tk : Aηkh → Aηk−h so that the composition Tk ◦ φT2h : Aξk−h → Aξk−h is the kth power of a Dehn
twist in the core curve.

Proof. The idea of the proof is to first use Corollary 6.3 to define ηk on As for s ∈ [−h,−εk],
for some εk > 0 so that the modulus of Aηk−εk is as large as we like. Then define ηk on As,
for s ∈ [−εk, εk] using Lemma 6.4 to “do all the twisting”. Finally, we define ηk on As for
s ∈ [εk, h], by “reversing” what was done for s ∈ [−h,−εk]. We now explain the details.

Fix ε > 0 sufficiently small so that h2 ≤ ρ(h− ε)2, and note that this implies

8π

(h− ε)2
≤ 8ρπ

h2
.

We will choose εk ∈ (ε, h) and define ηk on A× [−h, h] by defining it on three sub-intervals:

J− = [−h,−εk], J0 = [−εk, εk], and J+ = [εk, h].

First, let ξ be the leaf-wise conformal structure on A× [0, h− ε) from Corollary 6.3. We
can translate the interval [−h,−ε) to [0, h−ε) and pull back to obtain a leaf-wise conformal
structure on A× [−h,−ε), also denoted ξ, so that for all s ∈ [−h,−ε)∫

Aξs
|νξsσξs |2 =

8π

(h− ε)2
≤ 8ρπ

h2
,

as in Corollary 6.3.

Observe that the modulus of Aξs tends to infinity as s tends to −ε. Therefore, we may

choose εk ∈ (ε, h) so that the modulus of Aξ−εk is at least 2m where m > mk and mk is as

in Lemma 6.4 for the given k, our chosen ε, and for δ = 8ρπ
h2

. Now we describe the leaf-
wise conformal structure ηk on each of the intervals, explaining how they are glued together.

The interval J−. We define ηk to be the restriction of ξ on J−. From the above we have

(4)

∫
Aηks
|νηks σηks |2 ≤

8ρπ

h2
,

for all s ∈ J−.

The interval J0. Next, let ξk be the conformal structure on A× [−ε, ε] as in Lemma 6.4

so that for all s ∈ [−ε, ε], Aξks has modulus 2m, and∫
Aξks
|µξks σξks |2 = δ.

Apply the affine map J0 = [−εk, εk] → [−ε, ε] and let ηk be the pulled back conformal
structure on A× J0. Since ε < εk, it follows that∫

Aηks
|µηks σηks |2 < δ =

8ρπ

h2
,
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for s ∈ J0. That is, (4) also holds for s ∈ J0. Because the modulus of Aηks is 2m for each
s ∈ [−εk, εk], we may glue to the two leaf-wise conformal structure on A× J− and A× J0.

For the final interval, let T ′k : Aηkεk → Aηk−εk be the conformal map from Lemma 6.4 so

that T ′kφ2εk : Aηk−εk → Aηk−εk is the kth power of a Dehn twist in the core curve of Aηk−εk .

The interval J+. On this final interval, the path of beltrami differentials is the one
on J−, “run backward and remarked by T ′k”. More precisely, we define ηk on Aεk+s, for
0 ≤ s ≤ h− εk so that the map

φT−sT
′
kφ

T
−s : Aηkεk+s → Aηk−εk−s

is conformal. Alternatively, we can define ηk on A × J+ as the pull-back of the leaf-wise
conformal structure by the map T ′k × g : A× J+ → A× J−, where g : J+ → J− is given by
g(t) = −t. Since T ′k is conformal from Aηkεk → Aηk−εk , the leaf-wise conformal structures glue
together at εk, and because we are simply following the first part of the path backward,
(4) holds for all s ∈ J−, and hence for all s ∈ [−h, h].

Finally, let

Tk = φT−h+εk
T ′kφ

T
−h+εk

: Aηkh → Aηk−h.

By construction, this map is conformal. Composing this map with φT2h : Aηk−h → Aηkh , and

from the fact that (φTs ) is a local flow on the product, it follows that on Aηk−h we have

Tkφ
T
2h = φT−h+εk

T ′kφ
T
−h+εk

φT2h = (φTh−εk)−1
(
T ′kφ2εk

)
φTh−εk .

Therefore, Tkφ
T
2h is the conjugate by φTh−εk of the kth power of a Dehn twist in the core

curve of A−εk , and hence is the kth power of a Dehn twist in the core curve of A−h, as
required.

Since µηks agrees with the tangent fields from the leaf-wise conformal structures from
Corollary 6.3 and Lemma 6.4, it is identically zero outside the middle sub-annulus for each
fiber, and hence is identically zero in a neighborhood of ∂A × J . Furthermore, on each
piece the flow φTs is a dilation on boundaries of annuli. These observations complete the
proof. �

6.6. Singular-solv solid tori. For the remainder of this section, we assume M = Mφ

with φ pseudo-Anosov and that (π : M → LS1, (φt)) is the suspension equipped with the
leaf-wise conformal structure from the singular-solv structure, and prove the remaining
lemma.

Lemma 5.2 For some h ≥ 1
2 arccosh( τα2 − 3) and J = [−h, h] there is an embedding

ι : TJ → M compatible with the suspension (π : M → LS1, (φt)) which is disjoint from the
singularities. Furthermore, the induced leaf-wise conformal structure ζ on TJ agrees with

the standard one on A−h, and there exists Ψ: Aζh → Aζ−h conformal so Ψ◦φT2h : A−h → A−h
is the rth power of a Dehn twist for some integer r.
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Proof of Lemma 5.2. As we pointed out in §5.4, τα(φ) = dα(L+,L−), is the projection
distance to the annulus with core curve α of the stable and unstable laminations for φ.
Since τα = τα(φ) ≥ 9, by a result of Rafi [Raf05] (see [LR17] for this specific statement),

in any fiber Sζt , there is a Euclidean cylinder neighborhood of (a representative of α), and
at the balance time for α, the modulus of the maximal Euclidean annulus is greater than
τα
2 − 2. By translating, we may assume that the balance time of α is 0.

Now we let

m0 =

√√√√(⌊√(τα
2
− 2
)2
− 1

⌋)2

+ 1.

An elementary computation shows

(5)
τα
2
− 3 ≤ m0 ≤

τα
2
− 2 and

√
m2

0 − 1 ∈ Z.

It follows that in Sζ0 there is a Euclidean annular neighborhood A′ of a flat geodesic
representative of α of modulus m0. Another computation shows that the modulus at
any time t ∈ R of φt(A

′) is given by mt = m0
cosh(2t) . Therefore, setting h = 1

2 arccosh(m0),

we see that A = φ−h(A′) is a Euclidean annulus of modulus 1, and hence by scaling the
singular-solv metric if necessary, we can find an isometry ι̂ : S1 × [0, 1]→ A. We also note

h =
1

2
arccosh(m0) ≥ 1

2
arccosh

(
τα
2 − 3

)
≥ 1

2
arccosh(3/2) > 0.

For J = [−h, h], we define ι : TJ →M by

ι((x+ iy), s) = φs+h(ι̂(x+ iy)).

For each s, the image ι(As) is a locally isometrically embedded Euclidean annulus (though
ι does not restrict to a local isometry). The map ῑ : J → LS1 is the composition of the
inclusion J → R with the covering R → LS1 (since we have translated to assume the
balance time of α is 0). We now establish the key properties of ι.

We first prove that ι is an embedding. Since TJ is compact and ι is continuous, it
suffices to prove that ι is injective. By construction, ι maps each annulus As, for s ∈ J ,
injectively to the Euclidean cylinder φh+s(A−h) = φs(A

′) which has modulus m0
cosh(2s) ≥ 1.

Suppose ι is not injective, in which case there are two different values s 6= s′ ∈ J so that
φs(A

′) ∩ φs′(A′) 6= ∅. Since s− s′ 6= 0, φs−s′ is a nonzero power of the first return map to
Σs′ , hence is a nonzero power of φ.

Now note that two Euclidean annuli in a Euclidean cone surface that intersect either
do so in Euclidean sub-annuli or else cross each other transversely. In the latter case the
product of the moduli is at most 1. If the annuli intersect in a sub-annulus, then the isotopy
class of the core curve of φs′(A

′) is sent by a power of a conjugate of φ to itself, contradicting
the fact that f is pseudo-Anosov. So, the annuli φs(A

′) and φs′(A
′) must cross each other

transversely. The same is true of the strictly larger maximal Euclidean annuli containing
these, whose moduli are therefore strictly greater than 1. This contradicts the fact that
the product of the moduli is no more than 1. Therefore, ι is injective.
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The fact that ζ agrees with the standard conformal structure on A−h = A just follows

from the fact that ι̂ is an isometry, hence conformal. Since φt−s : Sζs → Sζt is affine for
all t, s, it follows that ι|As : As → φs(A

′) is an affine map with respect to the standard
structure on As = S1× [0, 1] on the domain and the conformal structure ζ on the image. In
particular, ι|Ah : Ah → φh(A′) is an affine map from a Euclidean annulus of modulus 1 to
another Euclidean annulus of modulus 1 of the same area. We can therefore isometrically
parameterize φh(A′) by S1 × [0, 1] so that with respect to these coordinates, the map ι|Ah
is given by

(6) x+ iy 7→ (x+ ry) + iy

for some r ∈ R. The norm of the Beltrami coefficient of this map is |r|√
r2+4

, while on the

other hand the map is e4h–quasi-conformal (since the map φh : Sζ−h → Sζh is a Teichmüller
map), and hence the norm of the Beltrami coefficient is also given by

e4h − 1

e4h + 1
=

sinh(2h)

cosh(2h)
=

sinh(arccosh(m0))

cosh(arccosh(m0))
=

√
m2

0 − 1

m0
.

Setting these quasi-conformal dilatations equal, we have

|r|√
r2 + 4

=

√
m2

0 − 1

m0
,

and solving we see that r = ±2
√
m2

0 − 1 ∈ 2Z. Thus if we let Ψ: Aζh → Aζ−h be a conformal

map, the composition Ψ ◦ φT2h is given by the formula in (6) and so is the rth power of a
Dehn twist, completing the proof. �
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