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ABSTRACT. We prove that any mapping torus of a pseudo-Anosov mapping class with
bounded normalized Weil-Petersson translation length contains a finite set of transverse
and level closed curves with the property that drilling out this set of curves results in one of
a finite number of cusped hyperbolic 3—manifolds. Moreover, the set of resulting manifolds
depends only on the bound for normalized translation length. This gives a Weil-Petersson
analog of a theorem of Farb—Leininger-Margalit [FLM11] about Teichmiiller translation
length. We also prove a complementary result that explains the necessity of removing
level curves by producing new estimates for the Weil-Petersson translation length of
compositions of pseudo-Anosov mapping classes and arbitrary powers of a Dehn twist.

1. INTRODUCTION

Let S be a hyperbolic surface and let 7(S) be its Teichmiiller space equipped with the
Weil-Petersson (WP) metric dy,,. For any mapping class ¢, let ||¢|/,p be the translation
length of ¢ with respect to its isometric action on (7(S),dyyp). The focus of this article
is on the structure of pseudo-Anosov homeomorphisms (on any surface) with bounded
normalized WP translation length. More precisely, let L > 0 and define

Dyp(L) = {¢: S — S| ¢ is pA and /|x(S)] - [|4]|wp < L}
to be the set of pseudo-Anosov homeomorphisms on all orientable surfaces whose normal-
ized WP translation length is at most L. For L sufficiently large, ®,,,(L) contains pseudo-
Anosov homeomorphisms on all closed surfaces of genus g > 2. This is a consequence of the
analogous statement for normalized Teichmiiller translation length, |x(S)| - ||¢|T, proved
by Penner [Pen91], and an inequality due to Linch [Lin74]; see Section 2.2.

We will prove results constraining ®,,,(L) from two directions. Theorem 1.1 will give
upper bounds on normalized WP translation length for compositions with arbitrary powers
of Dehn twists, thus showing (Corollary 1.2) that for large enough L, ®,,(L) contains
infinitely many conjugacy classes in each genus. Theorems 1.4 and 1.5 show that ®,,,(L) is
controlled by a finite number of 3-manifolds, obtained from each ¢ : S — S by forming the
mapping torus and then deleting a collection of curves transverse to fibers or level within

fibers. The level curves in particular account for the Dehn twist phenomenon analyzed in
Theorem 1.1.

Our first result extends Linch’s inequality.
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Theorem 1.1. There exists ¢ > 0 so that if ¢: S — S is a pseudo-Anosov on a closed
surface, o C S is a simple closed curve with 7o = To($) > 9, and k € Z, then

IT% © Bllup < ll6llmv/elx(S)]-

Here T, is a Dehn twist in o and 7,(¢) is the twisting number of ¢ about «; see §5.4
for definitions and §5.5 for a more precise statement. From this theorem we obtain the
following additional information about ®,,,(L).

Corollary 1.2. There exists L > 0 so that the set ®y,,(L) contains infinitely many conju-
gacy classes of pseudo-Anosov mapping classes for every closed surface of genus g > 2.

Remark 1.3. The key point of Corollary 1.2 is that the conclusion holds for every closed
surface of genus g > 2. Indeed, it was already known that for a fixed surface one can
find infinitely many conjugacy classes of pseudo-Anosov mapping classes with bounded
WP translation distance because of the nature of the incompleteness of d,,, discovered by
Wolpert [Wol75] and Chu [Chu76]. We also note that these statements sharply contrast the
situation for the Teichmiiller metric, where there are only finitely many conjugacy classes
with any bound on translation distance for a fixed surface; see [AY81, Iva88].

The idea of the proof of Corollary 1.2 from Theorem 1.1 is as follows (see §5.6 for
details). We can explicitly construct a 3—manifold A that contains fibers S, of genus g for
all g > 2, each of which contains a fixed simple closed curve a« C M. Appealing to results of
Fried [Fri82] and Thurston [Thu86b], we can find a constant ¢’ > 0 so that the monodromies
¢g: Sg — S4 have bounded normalized Teichmiiller translation length |x(Sg)|||¢gll7 < ¢
(c.f. McMullen [McMO00]). Moreover, these can be chosen so that 7,(¢4) > 9 for all g.
Theorem 1.1 provides a ¢ > 0 so that

‘X(Sg)’ ||¢g onHwP < ’X(Sg)‘\/z ||¢g||T <yl

For all but finitely many k, ¢4 0 T* is pseudo-Anosov, and all such pseudo-Anosov homeo-
morphisms are in ®,,,(L), for L = y/cc’. This construction can be carried out explicitly to
produce concrete bounds, but is actually much more robust; see Corollary 5.7.

For any fixed k € Z, the mapping classes ¢4 o T* in the construction just described
are all monodromies of a fixed 3—manifold My, independent of g. We could alternatively
describe all the manifolds M}, as being obtained by an integral Dehn surgery of the single
3—manifold M along «. Our next result, the main theorem, states that all pseudo-Anosov
homeomorphisms in ®,,,(L) arise from this and a related construction.

To state the main theorem, let ¢: S — S be a homeomorphism and M = M, the
mapping torus, which fibers over the circle with fiber S. An embedded 1-manifold C in
M is called monotonic with respect to S if there is a foliation of M by S—fibers such that
each component of C is either transverse to the foliation, or level, i.e. embedded in some
leaf. When C is monotonic, we let C; be the union of level curves and C; be the union
of transverse curves. Note that if M is fibered and C C M is monotonic, then M \ C; is
fibered and Cy is a collection of level curves of M ~ C; with respect to some fibration.
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Theorem 1.4. Fiz L > 0. For each (¢: S — S) € ®yp(L) there is a monotonic 1-manifold
Cy C My with respect to S so that the resulting collection of 3-manifolds

(Mo~ Co 6 € (D)}
1s finite.

Theorem 1.4 is the WP analog of the result of Farb—Leininger-Margalit [FLM11] for
pseudo-Anosovs with bounded normalized Teichmiiller translation length. In the Te-
ichmiiller setting, it sufficed to remove only transverse curves. For the WP metric, re-
moving certain level curves is necessary since integral Dehn surgery along a level curve
changes the monodromy by composition with a power of a Dehn twist as in the example
proving Corollary 1.2 above. As composing with such a power of a twist can still result in
pseudo-Anosovs with bounded normalized WP translation length (Theorem 1.1), removing
level curves is unavoidable if the resulting collection of manifolds is to be finite.

In fact, Theorem 1.4 is really a corollary of the following result together with work of
Brock—Bromberg [BB16] and Kojima—McShane [KM18].

Theorem 1.5 (Many fibered fillings). Let M be a compact 3-manifold whose boundary
components are tori such that int(]\o4 ) is hyperbolic. Then all sufficiently long fibered
fillings M of M have the following form: For any fiber S of M, there is a 1-manifold
C =CpUCy; such that

(1) M = M ~.C.

(2) The curves Cy are transverse in M with respect to S. So M ~\ C; is fibered.

(3) The curves Cp are level in M with respect to S.

In this theorem, sufficiently long fillings refers to the set of Dehn fillings of the manifold
M whose filling slopes exclude finitely many slopes on each boundary component; see
Section 4. Example 1 in §4.7 below shows that when a Dehn filling fibers in multiple ways,
even though the 1-manifold C is the same for all fibers, the decomposition C = Cy U C;
depends on the particular fiber chosen, even over a single fibered face (see §2.3).

1.1. Outlines. The proofs of Theorem 1.1 and Theorem 1.4 are essentially independent.
The first half of the paper is devoted to the latter, while the second half to the former.

In Section 2, we recall the definition of the Weil-Petersson metric on Teichmiiller space
and its connection to hyperbolic volume. We also review the Floyd—Oertel branched sur-
faces, which play a central role in the proof of Theorem 1.5. Section 3 then establishes a
few important facts from 3-manifold topology. These are needed in Section 4 where Theo-
rems 1.4 and 1.5 are proven using a combination of branched surface theory and hyperbolic
geometry.

Proof of Theorem 1.5 (outline). Let Mg be a fibered filling of M (the index § is a tuple of
Dehn filling parameters on the boundary components, described in Section 4.1) and let Sg
be a fiber. To simplify the discussion, assume that Mg, and hence S, has empty boundary.
We cut M along Sg to produce a product I-bundle F3 = Sz x [0,1]. The goal is to show,
for sufficiently long fillings 3, and suitably chosen Sg in its isotopy class, that the cores of
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the filling solid tori of Mg, when intersected with Fjp, are vertical arcs x x [0, 1] and level
curves ¢ X {t}.

Our tool for this is a decomposition of the product Fg into an I-foliated part and a
bounded part Xg, with these properties:

e The [-foliated part is foliated by intervals, and contains as a subproduct the inter-
sections with Fj3 of the filling tubes that intersect Sg.

e The bounded part contains the filling tubes disjoint from Sg, which we call the
floating tubes VBF . The complement X = Xz \ VﬁF is one of a finite collection of

submanifolds of M , which exists independently of 5.

FIGURE 1. The decomposition of the I-bundle Fg. The I-foliated part is
indicated in gray and the tubes in yellow.

Figure 1 indicates this decomposition schematically, as well as the three basic obstruc-
tions to completing the argument:

(1) Knotting of the I-foliated part

(2) Nonorientability of the I-foliation: a component of the I-foliated part whose fibers
have both endpoints on the same component of 0F3.

(3) Knotting of the floating tubes

The construction comes from the Floyd—Oertel theory of branched surfaces. After an
isotopy of Sg in Mg to minimize a certain complexity function, 5’5 = 53N Mis a properly
embedded essential surface in M and so is fully carried by one of finitely many incom-
pressible branched surfaces B, as discussed in Section 2.4. Such a branched surface has a
regular fibered neighborhood N and its complement in M is our desired region X. After
carefully arranging Sg within N the I-foliated regions are obtained from the I-fibration of
N, and X3 is X union the floating solid tori. Moreover, X decomposes as a vertical part
0, X which inherits the I-foliation on the corresponding part of ON, and a horizontal part
OpX which lies in 0Fg NON. This construction of Xg and the foliation Z is carried out in
detail in Sections 4.1-4.3.
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The first major goal is to show that, for sufficiently long fillings 3, the I-foliation of Fp
in the complement of X3 extends to agree, up to isotopy, with the product foliation. The
proof of this is completed in Proposition 4.6, and requires the resolution of obstructions
(1) and (2).

For the first, knottedness of the foliated part, we have Lemma 3.1 which says that a
side-preserving embedding of E x [0, 1] into S x [0, 1] is unknotted (isotopic to a standard
embedding) when E is not homotopically trivial. In order to apply this we show, in
Lemma 4.4, that for sufficiently long fillings # the components of the fibered part are indeed
homotopically trivial. The main idea, carried out in Lemma 4.2, is that, since 9, X is among
a fixed finite collection of surfaces in M , any bounded-complexity component of 0Fg\ 0 X
has a bounded-area homotope in each Mg, which is used to rule out intersections with the
filling solid tori when meridians are long. We use this to show in Lemma 4.4 that trivial
regions in S x {0,1} correspond to disks of contact for B, contradicting incompressibility
of the branched surface.

The second obstruction, the possibility that components of the foliated part have both
ends on the same component of 0.Fg, is handled in Lemma 4.5 using the minimal complexity
assumption on the choice of S within its isotopy class.

This allows us to prove Proposition 4.6, and in particular, we see that Xg is itself a
subproduct of Fjg.

We are left with the third obstruction: showing that the floating solid tori are level
in Xg. This is accomplished by a reduction to a theorem of Otal, which states that
sufficiently short curves in a Kleinian surface group are level curves. The constants in
this theorem depend on the genus of the surface, so to obtain the needed uniformity we
consider a fixed fiber surface from one filling which, after puncturing along those solid tori
that meet the branched surface, can be embedded simultaneously in all the fibered fillings,
and represents a fiber in each of them. This means, for sufficiently long fillings, that the
cores of the floating tori are sufficiently short to apply Otal’s theorem with respect to this
fiber. A short topological argument then implies that these curves are level with respect
to all of the fiberings.

Proof of Theorem 1.1 (outline). Theorem 1.1 and its several corollaries concerning WP
translation length and twisting are proven in Section 5. The argument uses a fibered version
of Dehn surgery on the mapping torus in order to twist about the curve a. Informally,
we start with the singular solv structure on the mapping torus of the pseudo-Anosov
homeomorphism ¢, locate a solid torus foliated by flat annuli about «, and replace this
solid torus with one that performs the desired twisting while affecting the WP translation
length of the new monodromy in a controlled manner. To do this, we show in Section
6 that there exists a solid torus (the one used in the filling) with a leaf-wise conformal
structure that carries out the required twisting while moving a bounded distance in the
WP metric. That section concludes by showing that in the singular solv structure on the
mapping torus of ¢, one can indeed find a sufficiently large solid torus about « to drill
out which is foliated by flat annuli. The proof of Theorem 1.1 shows that replacing this
solid torus with the one found in Section 6 has the necessary effect on the WP translation
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length of the new monodromy. Section 5 concludes by constructing some explicit examples
(for example, proving Corollary 1.2), as well as strengthening the construction to produce
homeomorphisms with bounded normalized WP translation length from pseudo-Anosovs
over a fibered face of essentially any fixed manifold.
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Added in proof: After this paper was written, Yue Zhang proved a generalization of Theo-
rem 1.5 weakening the assumption that the interior of the manifold is hyperbolic [Zha20].

2. BACKGROUND

Here we recall some basic background on the Weil-Petersson metric and branched sur-
faces.

2.1. The Weil-Petersson metric on 7(S). The Teichmiiller space 7 (.S) of the surface S
is the space of marked hyperbolic structures on S, i.e. pairs (X, f) where X is a hyperbolic
surface and f: S — X is a homeomorphism, up to the equivalence that identifies (X, f)
and (Y, h) if there is an isometry ¥: X — Y such that ¥ is homotopic to ho f~1.

We will primarily be interested in the Weil-Petersson (WP) metric on 7(.5). The cotan-
gent space of T(S) at X is naturally identified with the space Q(X) of (integrable) holo-
morphic quadratic differentials ¢(z)dz% on X, and the WP conorm on Q(X) is given by

ol = | oz
where 0 = A(z)|dz| is the hyperbolic metric on X. For p = u(z)% € B(X), an infinitesimal
L Beltrami differential on X representing a tangent vector to 7(S) at X, its WP norm
is defined using the pairing of Beltrami and quadratic differentials:

R—T
e ol

where the max is taken over all non-zero ¢ € Q(X). The WP distance function d,,(X,Y)
between X,Y € T(5) is then defined in the usual way as the infimal length of paths joining
X and Y. (For additional background, see [Wol87].)

The mapping class group Mod(S) of S acts on (7(S), dwp) by isometries, and for ¢ €
Mod(S) the Weil-Petersson translation length of ¢ is

[@|wp = Xei%l_f(s) dup(X, 9(X)).
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In the same manner we can define the Teichmiiller translation length ||¢|r of ¢, which is
equal to log(A) when ¢ is pseudo-Anosov with dilatation A.

2.2. Bounds for the WP metric and volume. We will need the fact that the Weil—-
Petersson metric on the tangent space of 7(S) is bounded above by the L? metric on the
space of infinitesimal Beltrami differentials B(.S), with respect to the hyperbolic area form.

Lemma 2.1. Let S be a closed Riemann surface uniformized by the hyperbolic metric o.

We have
lilhun < / joul?
S

Proof. Fix p € B(S). From Cauchy—Schwartz, we get that for every ¢ € Q(S),

Joe| =| fomen| < ([ \auﬁ)% ([ rsoo-lr?)é ~ i ( [ W)%.

It thus follows that
1

1

2\2 ., 2
sl e Uslonl®)? - lielhun </ \aul2>2
||90pr ® H‘Ppr S

as we had claimed. OJ

for every p € B(S).

= max
1l = s

The proof of this lemma includes the basic application of the Cauchy—Schwarz inequality
used in the proof of the following result first observed by Linch [Lin74]. We give the proof
to illustrate this.

Theorem 2.2. We have ||v||wp < ||v||7v/Area(S) = ||v||7v/27|x(S)]|, for any tangent vec-
tor v to Teichmiiller space T(S5).

Proof. For any tangent vector v to 7 (S) at a point [X], let u € B(X) be an infinitesimal
Beltrami differential representing v so that ||v|7 = ||¢t/|cc- Then by Lemma 2.1 we have

0llap = llup < /S ol < ooy /5 o2 = [[v]lv/Area(S). 0

In particular, this immediately implies that for any pseudo-Anosov ¢: S — S, the
translation lengths satisfy the following;:

[@llwp < V27X ()[4l

Remark 2.3. Here is a slightly more conceptual way of explaining the inequalities in
Lemma 2.1 and Theorem 2.2. The LP norm with respect to the hyperbolic metric can be
defined for p and for ¢/0?, where p € B is an infinitesimally trivial Beltrami differential and
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p € Q is a holomorphic quadratic differential, because both quantities have a well-defined
pointwise norm. We write these as follows:

) 1/p o o 1/p
Hmrp—(/ |u|p0> and Hsva—</ /o |po) .

Note that ||¢[]1 is exactly [ |¢|, which is the usual L' norm on Q, and ||¢||2 is the Weil-
Petersson conorm as defined above.
The usual pairing [ pp between B and Q can be written

) = [ uteloo?
and the LP norm on Q induces a dual (semi)norm on B via the pairing, namely

l1tllpe = sup{|(, 9} = llollp = 1}-

So ||p|li« is exactly the Teichmiiller norm ||u||7, and ||p]|2« is the Weil-Petersson norm
|| ]| wp- Now Cauchy-Schwartz applied to Q gives

el < llwlla/Area(s),

and the definition of || - |14« and || - |2« above shows that

(Theorem 2.2) liellwp < llpellr/ Area(s).

Alternatively applying Cauchy—Schwartz to the pairing (-,-) and the L? norms on both B
and Q gives

(s ) < lull2llell2,
and so

(Lemma 2.1) ltllwp = Hlellze < [lpell2-

When ¢ is pseudo-Anosov, the associated mapping torus My is hyperbolic by Thurston’s
geometrization theorem for fibered manifolds [Thu98, Ota01]. We will need the following
result due to Brock-Bromberg [BB16] and Kojima-McShane [KM18], building on work of
Krasnov-Schlenker [KS08] and Schlenker [Sch13], which relates the volume of M to the
WP translation length of ¢.

Theorem 2.4. Let ¢: S — S be pseudo-Anosov. Then

vol(My) < > /2 XS [y

2.3. Fibrations of a fixed 3—manifold. Suppose that M is a compact, orientable 3—
manifold (with possibly non-empty boundary) and that M fibers over the circle f: M —
S! =~ R/Z with fiber a compact, connected, oriented surface S. Poincaré-Lefschetz Duality
and the deRham Theorem provide isomorphisms (for (co)homology with real coefficients),
Hy(M,0M) = H'(M) = H}.(M). Via this isomorphism, the homology class of the fiber S
is identified with the cohomology class represented by the closed 1-form w = f*(dt), where
dt is a nonwhere zero 1-form defining the orientation on S'. Note that w is nowhere zero,
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as is the restriction to M, and there is a neighborhood U € H'(M;R) of [w] so that every
element is represented (in deRham cohomology) by such a closed 1-form. Any primitive
integral class w’ representing a class in R U can be integrated to define another fibration
f': M — S! whose fiber S’ is identified with [w'] (via the above isomorphism); see [Tis70].

This construction gives rise to infinitely many fibrations of M as long as by (M) > 1,
which happens precisely when the monodromy ¢: S — S has a nontrivial fixed cohomology
class. Indeed, the subspace of H'(S) fixed by ¢ is precisely the image of the homomor-
phism H'(M) — H'(S) induced by inclusion, with the kernel generated by the dual of [S]
(because these are the classes in H'(S) that extend to H'(M)).

Thurston proved that the maximal connected neighborhood U of [S] = [w] as in the
previous paragraph has a particularly nice description. To state his result, we recall that
in [Thu86b], Thurston constructs a norm n on H'(M), the Thurston norm, when M is
irreducible and atoroidal, so that the unit ball B of n is a polyhedron.

Theorem 2.5 (Thurston). If S is a fiber of the compact, orientable, irreducible, atoroidal
3—manifold M, then there is a top-dimensional face F' of B so that [S] € Ryint(F) and
every element of Ryint(F') is represented by a closed 1-form which is nowhere vanishing
on M or OM. Moreover, any primitive integral point of Ryint(F) determines a fibration
of M with fiber S’, and n([S"]) = —x(S5").

A face F of B as in this theorem is called a fibered face. Note that the restriction of
n to Ryint(F') is linear (since F' is a face of B). In fact, n is given by pairing with the
negative of the Euler class of the 2-plane bundle tangent to the foliation of M by fibers S
of f: M — Sh.

A fibered manifold M with fiber S of negative Euler characteristic is atoroidal if and
only if the monodromy ¢: S — S is isotopic to a pseudo-Anosov homeomorphism. In
this case, Fried showed that the Teichmiiller translation length (which is also equal to the
topological entropy of the pseudo-Anosov homeomorphism) extends to a nice function on
the cones over interiors of fibered faces; see [Fri82, Theorem F].

Theorem 2.6 (Fried). For any compact, orientable, atoroidal manifold M and fibered
face F' of the Thurston norm ball B, there is a continuous, convex, homogeneous function,
h: Ryint(F) — R4, homogeneous of degree —1, such that if S is a fiber of a fibration of
M with [S] € Ryint(F) and monodromy ¢: S — S, then ||¢||r = h(u).

These two theorems provide examples of pseudo-Anosovs with small Teichmiiller trans-
lation length illustrating Penner’s upper bound as follows (see [McMO00]). Note that the
product of the two functions n(-)h(-) is continuous and constant on rays. In particular, if
K C int(F') is any compact subset of the interior of a fibered face F', there is a constant L
that bounds the value of nh on Ry K. For any primitive integral point in Ry K representing
a fiber with monodromy ¢: S — S, we have

IX(S)llellr = n((SHH(S]) < Lk
In particular, supposing there are surfaces of all genera at least 2 which are fibers represent-
ing elements in Ry K (see e.g. the proof of Corollary 5.6 below), then one finds examples
of pseudo-Anosov homeomorphisms on every closed surface of genus at least 2 in ¥ p(Lg).
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2.4. Incompressible branched surfaces. Next, we recall the construction of the in-
compressible branched surfaces of Floyd-Oertel [FO84]. Our discussion closely follows
that of Oertel [Oer84, Section 4]), except that, as in Tollefson-Wang [TW96, Section 6],
we describe the construction of these branched surfaces in terms of normal surfaces to a
triangulation, rather than to a handle decomposition. For background on normal surfaces,
see [Hak61, JO84, TW96.

Let M be a Haken 3-manifold with incompressible boundary and a triangulation t. The
weight w(S) of a properly embedded surface S in general position with the 1-skeleton t(!)
is the number of points in S N t™1). We recall that the minimal weight for S within its
isotopy class can be realized by a normal representative since a minimal weight S can be
isotoped to be normal rel t™) [JR8Y)].

For each incompressible normal surface S with minimal weight in its isotopy class, there
is a branched surface fibered neighborhood NS produced as follows: ./\fg is the union of
thickenings of the normal disks appearing in S together with all 3-balls lying between two
thickened normal disks of the same type. We choose compatible product structures on these
thickened disks and 3-balls so that the I-fibers (intervals) agree on the boundary of each
tetrahedron. Hence, N. s is foliated by I-fibers. The corresponding branched surface gs is
the 2-complex obtained from Ng by collapsing each of the I-fibers to a point. (Usually one
thinks of the branched surface as properly embedded in M with N a regular neighborhood
of it; this won’t be crucial for us as we will work explicitly with the fibered neighborhood
itself.) See Figure 2.

FIGURE 2. Thickened normal disks (blue), fibered 3-balls (green), and the
branched surface fibered neighborhood.

For any branched surface fibered neighborhood N, its boundary decomposes into a
union of three subsurfaces, the horizontal boundary 9, N\, the vertical boundary 9,, and
NNOM. While 9, is foliated by subintervals of fibers, each I-fiber of A" meets 9,/ at its
endpoints. A surface F'in M is carried by B if it can be properly isotoped into the interior
of a fibered neighborhood N' = N (B) of B so that it intersects each fiber transversely. It
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is fully carried if in addition it has nonempty intersection with each fiber. For example, S
is fully carried by Ng by construction.
Floyd—Oertel define a branched surface B to be incompressible if

(i) there are no disks (or half-disks) of contact,
(ii) there are no complementary monogons, and
(11i) OpN (B) is incompressible and d-incompressible in M ~\ N (B).

Here, a disk of contact is a disk D C N that is transverse to the I-fibers of N and
0D C int(9,N). A half-disk of contact is a disk D C N that is transverse to the fibers
with D = a U B, where a \ da C int(9,N) and 8 C OM are arcs and a N B = S°. A
complementary monogon is a disk D C M \ int(N) with D = DNN = a U 8 where
a C 9N is an I-fiber and 8 C 9pN. Floyd-Oertel show [FO84, Theorem 2] that if B is
an incompressible branched surface, then any surface fully carried by B is incompressible
and boundary incompressible. N

Unfortunately the branched surface Bg constructed above may have many disks of con-
tact and therefore is not incompressible. However, Floyd-Oertel show that such a disk
of contact D may be removed by deleting from Ng a fibered neighborhood of D in N,
thereby producing a new branched surface fibered neighborhood in which S is fully carried.
They prove that by applying this operation finitely many times, one can produce a fibered
neighborhood Ng of an incompressible branched surface Bg [FO84, Proposition 3]. See
also [Oer84, Lemma 4.6] where the construction of Ng is done more systematically. We
denote the corresponding branched surface by Bg and also write Ng = N (Bg).

We say that a branched surface (and its fibered neighborhod) obtained in this way is
adapted to the triangulation t, and record two important properties of the construction:

e Each component of AN s contains a subarc of the 1-skeleton of t as a fiber of N S.
Since eliminating a disk of contact is done by deleting a fibered neighborhood of the
disk, the property that each component of 9, N’ meet the 1-skeleton is preserved.

e The normal surface S, which was assumed to have minimal weight in its isotopy
class, is contained in the branched surface fibered neighborhood Ng, where it in-
tersects each fiber transversely.

By Floyd-Oertel [FO84, Theorem 1] (see also [Oer84, Theorem 3]) this procedure pro-
duces a finite collection of properly embedded branched surfaces B, ..., B, in M such that
(a) any surface fully carried by one of the B; is incompressible and boundary incompress-
ible, and (b) every incompressible and boundary incompressible orientable surface is fully
carried by some B;. In particular, the branched surface Bg constructed from the surface S
appears up to isotopy as one of the B; in this list. (That fact that {Ng} forms a finite set
of branched surfaces is obvious since there are only finitely many choices for normal disks
in the construction. Showing that {Ng} is finite is more difficult and requires showing that
one only needs to consider least weight disks of contact, of which there are finitely many.)

We summarize all of this in the following statement:
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Proposition 2.7 (Floyd—Oertel). Let M be a compact Haken 3-manifold with a triangula-
tion t. There is a finite collection By, ..., B, of incompressible properly embedded branched
surfaces, so that

e Each fibered neighborhood N (BB;) is adapted to t, and in particular every component
of OuN(B;) has a fiber which is a subarc of an edge of t(V).

o Fuvery properly embedded incompressible boundary-incompressible surface S in M
is properly isotopic to a surface S’ fully carried in one of the B;, which realizes the
minimum weight with respect to t in the isotopy class of S.

3. TOPOLOGICAL PRELIMINARIES

This section covers a number of fairly basic results from 3-manifold topology that we
will need for the proof of Theorem 1.5.

3.1. Embeddings in products. We first require the following lemma, which follows easily
from work of Waldhausen [Wal68].

If S is a compact surface we say that (W, 9,W) C (S, 05) is a subsurface with corners (or
just subsurface for short) if W is a compact 2-manifold and 9,/W' = 0W N 9S is a compact
1-submanifold of OW. The endpoints of d,W are the corners and OW minus the corners is
the smooth part of 9W. We denote the closure of OW ~\ 9,W as 0'W.

We call (W,0,W) (or just W) trivial if it is contained in a disk D whose intersection
with 0S5 is empty or a single arc. Note that if W is not trivial, then either the image of
m1W in w15 is nontrivial, or there is an essential arc of S contained in W.

Define a modified Euler characteristic as

. 1
XW,0W) = x(W) — 3"

where n denotes the number of arc components of 0,W (see e.g. [CB88]).

Lemma 3.1. Suppose that (W,0,W) C (S,0S) is a subsurface with corners and that the
restriction to each component of W is not trivial. Let Y = W x [0,1] and suppose we have
an embedding of quadruples

F: (Y, W x {0}, W x {1},8,W x [0,1]) = (S x [0,1], 5 x {0}, x {1},0S x [0,1]),

where W x {0} — S x {0} is given by the inclusion map.
Then F 1is isotopic, as a map of quadruples, to the inclusion map of Y.

Note that the nontriviality condition is necessary — consider a knotted 1-handle attached
to two disks in S x {0} and S x {1}.

Proof. By applying a preliminary isotopy of S x [0, 1] supported on a neighborhood of
S x [0,1], we may assume that the image of each arc of dO'W x [0,1] is vertical in
0S5 x [0, 1].

If a null-homotopic closed curve v of &W bounds a disk E in S then the image of
O(E % [0,1]) bounds a ball by irreducibility and F' can be extended over E x [0, 1]. Thus we
may assume that each component of W injects on 7. Similarly if « is an arc component
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of &'W that cobounds a disk E with an arc 8 C 95, we can again extend over F x [0, 1].
Hence, we may assume that &’WW consists of homotopically essential curves and essential
proper arcs.

Thus each component of F(&'W x [0,1]) is either an incompressible annulus in S x [0, 1]
or a disk which meets 95 x [0,1] in two vertical arcs. Hence (see for example [Wal68,
Lemma 3.4]) F(0'W x [0, 1]) is isotopic to @'W x [0, 1], and we may adjust F' by an isotopy
that is constant on W x {0} to obtain a map that is the identity on &'W x [0, 1].

One further isotopy, constant on W x {0} and supported on a neighborhood of 9,W x
[0, 1], yields a map (which we still call F') that is the identity on all of OW x [0, 1].

Now F is the identity on W x {0}UOW x [0, 1], and it follows that F/(W x{1}) = W x {1},
and from this that F(Y) = Y. Hence, by [Wal68, Lemma 3.5], the homeomorphism
F~1:Y — Y is isotopic to the identity via an isotopy that is constant on W x {0} UOW x
[0, 1]. Precomposing F' with this isotopy gives the required isotopy from F' to the identity
and completes the proof. ]

3.2. Level curves. Let Y = Z x I where Z is a surface and I an interval. Let C be
a disjoint closed union of simple loops in int(Y). We say C' is level with respect to this
product structure on Y if it is isotopic to a union of the form |J¢; x {¢;} where ¢; are loops
in Z and ¢; € [0,1].

Lemma 3.2. Let Y = Z x [0,1] where Z is a surface. Let C be a finite union of simple
loops in' Y. Then C is level if and only if there is an ordering ci,...,cy of its components
so that each ¢; is isotopic into Z x {0} in the complement of ¢;41 U+ Ucy,.

The proof is an easy induction.

Lemma 3.3. Let S be a compact orientable surface and let C' be a level disjoint closed
union of essential curves in S xR. Let T\ and Ty be surfaces isotopic to S x {0} rel 0S5 xR,
and disjoint from each other and from C. If X is the region bounded by Ty and Ty (so
X 2S5 x10,1]), then CN X is level in X.

Furthermore, if C C'Y C X where Y C X is a subproduct, then the isotopy can be
chosen to be supported in Y —that is, the image of C' remains in Y throughout the isotopy.

By saying that Y is a subproduct of X we mean that there is a subsurface R C S and a
homeomorphism of pairs (X,Y) = (S x [0,1], R x [0, 1]).

Proof. By applying an (ambient) isotopy, we may assume that the components of C' have
the form ¢ x {t} for some ¢t € R with respect to the given product structure on S x R.
We first prove this in the case that T3 is a level surface S x {t}. We may assume T lies
above T5. Let ¢ be a component of C'N X of minimal height with respect to the product
structure S x R. The vertical annulus A taking ¢ to Ts is disjoint from C'\ ¢, but might
intersect T7. An innermost region of AN X or AN X¢ with boundary in 77 must be a disk
or annulus, and an exchange move will simplify the intersection reducing the number of
components of intersection. Thus an annulus from ¢ to T5 meeting 75 only in one boundary
component, disjoint from C'\ ¢, and intersecting 77 minimally, will in fact be disjoint from
T1, hence contained in X. This gives an isotopy from c to T avoiding the remaining curves.
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Proceeding by induction on the heights of components of C, we can now apply Lemma 3.2
to conclude that C'N X is level in X.

Now if T7 and T5 are arbitrary, let 75 = .S x {t} be a level surface below both. Let Xj;
be the region bounded by T; and T} and suppose X13 contains T5. Then the previous case
applies to X13, and after choosing a product structure on X3 in which the top and bottom
are level surfaces, we can again apply the previous case to X15. This concludes the proof
of the first claim.

Finally, suppose C' C Y, with (X,Y) = (S x [0,1], R x [0,1]). If at any stage of the
isotopy of the ' component the corresponding annulus passes outside Y = R x [0,1],
and hence through 9R x [0, 1], another innermost region exchange move argument implies
that we can replace the annulus with one having fewer intersections with R x [0,1]. In
particular, such an annulus with the fewest intersections with R x [0, 1] will be disjoint,
and hence the isotopy will be supported in Y. ]

3.3. Minimal intersections. Finally, we will need a few facts regarding intersections of
surfaces and 1-manifolds. One such fact is the following proposition which roughly states
that if S is an embedded surface in M which minimizes intersection with some 1-manifold
C in its isotopy class, then one cannot homotope S to reduce intersections with C.

Proposition 3.4. Let M be a compact, irreducible, orientable 3-manifold and C C M is
a closed, embedded 1-manifold. Suppose S C M is an incompressible, boundary incom-
pressible, properly embedded surface that minimizes the cardinality |S N C| in its proper
isotopy class. If f: S — M is any piecewise smooth map which is properly homotopic to
the inclusion of S and transverse to C, then |f~1(C)| > |SNC|.

Proof. Suppose f: .S — M is any piecewise smooth map properly homotopic to the inclu-
sion of S into M, and which is transverse to C. Set k = |f~1(C)|. Let Vo = C x D? be
a small tubular neighborhood of C. Adjusting f by a proper homotopy, we may assume
that f(S) N Ve is a union of k disjoint meridian disks. Next let N = 9M x [0,1) be a
tubular neighborhood of the boundary of M whose closure is disjoint from V. Using the
neighborhood N and the homotopy from the inclusion of S to f, we can find a further
homotopy so that f|sg is the inclusion 9S — M (and is hence an embedding) and so that
f(S) NV is still a union of k disjoint meridian disks.

Next, choose any Riemannian metric on M with the following properties:

(1) the restriction to Vo =2 C x D? is a product metric,
(2) the restriction to N =2 dM x [0,1) is a product metric,
(3) the area of each meridian disk of Vi is some number A > 0, and
(4) Area(f) < (k+ 4)A.
It is straightforward to construct such a metric.

Now let h: S — M be a least area surface properly homotopic to the inclusion of .S into
M rel 9S. Such an h exists by [SU82, SY79] in the closed case and [Lem82, HS88] in the
case of non-empty boundary. Note that Area(h) < (k + 1)A.

According to [FHS83], h is an embedding, or in the case that S is closed, possibly a
double cover of an embedded non-orientable surface with a tubular neighborhood that is
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a twisted I-bundle over the non-orientable surface (see Section 7 of [FHS83] for the case
9S # (). In the latter case, we may replace h with an embedding at the expense of an
arbitrarily small increase in the area. In either case, by a further small isotopy if necessary,
we can also assume that h is transverse to Ve and Area(h) < (k + 3)A. The embedding
h is properly isotopic to the inclusion of S into M since M is irreducible [Wal68, Corollary
5.5].

Consider any component W of h(S) N V¢ and suppose V = S! x D? is the component
containing W.

Note that the projection V' — D? onto the second factor is an isomorphism H(V, V) —
Hy(D?,0D?), where the latter group is Z[D?]. Thus we can define deg(W) to be the integer
such that

(W] = deg(W)[D?] € Hy(V,dV).
This is equal to the topological degree of the projection (W,0W) — (D?,0D?), as well as
the topological degree of the map OW — 0D?2.

Now consider the metric on D? for which the projection V' — D? is a Riemannian
submersion, and in particular a contraction. We thus have

Area(W) > | deg(W)]A.
Setting

dhy=" > |deg(W)]
WCh(S)NVe
where the sum is over all components of intersection, and combining with our area bound

on h, we have

d(h)A < Area(h) < (k + %)A

Since d(h) is an integer, we have d(h) < k. The next claim essentially completes the proof.

Claim 1. The map h is properly isotopic to an embedding h', transverse to OVo with
d(h') < d(h) so that W' (S) N Vg is a union of meridian disks.

Assuming the claim, it follows that |[h/(S) N C] is the number of meridian disks of
intersection h'(S) N Vg, which is d(h') < d(h) < k. Since S was assumed to meet C' in the
fewest number of points in the proper isotopy class, and since k' is properly isotopic to h,
and hence also the inclusion of S, it follows that

ISNCl<d(l) <k=|f(0),
as required. This completes the proof of the proposition.

Proof of Claim. Recall first a lemma of Thurston [Thu86b, Lemma 1], that if a properly
embedded surface in a 3-manifold V' represents a k-th multiple of a homology class in
Hs(V,0V), then the surface has at least k components. Thus for our connected components
W of h(S) N Ve, we have

| deg(W)| < 1.



16 C. LEININGER, Y.N. MINSKY, J. SOUTO, AND S.J. TAYLOR

To avoid cluttering the notation, we write Sy = h(S), d(Sp) = d(h). Throughout the
proof, we repeatedly replace Sy with isotopic images which we again denote by Sy. We
first isotope Sp to remove trivial intersections with dV. That is, if some component of
SoNIVe bounds a disk D in 9V, then it also bounds a disk F in Sy by incompressibility.
Suppose that D is innermost on OV, and consider the disk swap that replaces the disk F
in Sy with D. (This can be done via isotopy of Sy in M since D U E bounds a ball.) This
may reduce the number of intersections with Vi, but it does not increase d(Sp). To see
this, note that if W was the component of Sy N Vo whose boundary contained 0D, then
since 0D — 0D? has degree 0, the degree of W is unaffected by capping this boundary
component off with the disk D. After pushing D slightly into Vi, we have a new surface
isotopic to Sy with fewer trivial intersections with 0V and no greater degree.

Hence, we may suppose that Sy does not meet V¢ in trivial circles. We next isotope
So so that each component of Sy N Vi is incompressible: If D is a compressing disk for
some component W of Sy N Vi, then again suppose that D is innermost in the sense that
So does not meet the interior of D. Incompressibility of Sy in M implies that there is a
disk E C Sy with OF = 0D and we may assume that F is not contained in V.

Let W be the component of So N Vo meeting D. Compressing along D results in two
surfaces W1 and W3 and we call S{, the surface isotopic to Sy obtained by replacing E with
D (again possible since DU E bounds a ball). Label so that W is a component of S{NV¢.
Let YV be the components of SyN Ve contained in Sy~ E and Z the components of SoN Ve
contained in E. Then

d(So) =Y |deg(Y)| + |deg(W)| + > | deg(2)]

Yey zZeZ

and

d(Sp) = | deg(Y)| + | deg(W1)].
Yey

We must show that d(S) < d(Sp). Since |deg(W7)| and | deg(WW)| are both at most 1, it
suffices to prove that there is at least one Z € Z with |deg(Z)| = 1.

Let E' be an innermost disk on F bounded by a component of E N dVe. Then OF’ is
an essential curve on the boundary of some component of Vi If int(E’) is in the exterior
of Vo then OV is compressible in M , and this is impossible as M is hyperbolic. Thus E’
is a meridian of Vo, which implies it is a component of Z with |deg(E’)| = 1.

Thus we have isotoped Sy to reduce intersections with 9V while not increasing its
degree. We may therefore assume that each component of Sy N V¢ is incompressible in V.
This makes each component either a boundary parallel annulus (degree 0) or a meridian
disk (degree £1). Pushing the annuli out of Vo does not affect the degree and completes
the proof. O

O
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4. FIBERED FILLINGS OF MANIFOLDS

In this section we prove Theorem 1.5 and Theorem 1.4. After setting up notation for
Dehn filling and bringing in the branched surfaces from Section 2.4, we begin the proof in
earnest in Section 4.4.

4.1. Fillings and complexity. Let M be a compact 3- manifold whose boundary is a
union of tori 9M = 9y MU- - -0, M, such that mt(M ) is a complete finite-volume hyperbolic
manifold. A Dehn surgery coefficient 3; on 9;M is either the isotopy class of an essential
simple closed curve in 0; M , or “oc0”. Each simple closed curve f; in 9;M determines a Dehn
filling attaching a solid torus whose meridian is identified with (;, and oo corresponds to
no filling at all. Given 8 = (81, ... ,), we denote the manifold obtained by these specified
fillings by Mg.

Letting A; denote the set of Dehn surgery coefficients for ;M , we say that a property
P holds for all sufficiently long fillings if there are finite sets K; C A; that that Mz has
P for all § € [[;_;(A; \ K;). For example, Thurston’s hyperbolic Dehn surgery theorem
[Thu88, Theorem 5.8.2] states that for any ¢ > 0, the interior of Mg is hyperbolic and the
lengths of the cores of the filled solid tori are less than ¢, for all sufficiently long fillings.

Now let M be as in the statement of Theorem 1.5 and let S be the collection of all
fibers of all fibered fillings of M. (Formally S is a set of pairs (S, 8) where 5 determines a
filled manifold Mg in which S is a fiber of a fibration.) Note that we do not require each
boundary component of M to be filled, so some surfaces in S may have boundary. We also
fix a triangulation t of M.

Given (5, 8) € S, isotope S in Mg to intersect the added solid tori in meridian disks,
and choose it so the number of disks is minimal. Now let § = SN M , and assume by
further isotopy if necessary, that S is also transverse to t() and intersects it minimally.
Let S = {S : (S,8) € S} denote the resulting set of properly embedded surfaces in M.
Said differently, for each (S,5) € S, S is a properly embedded surface in M which after
capping off with a disk is isotopic in Mg to S and, among all such surfaces, minimize the
complezity defined by the pair (|9S|,w(S)) in the lexicographic order, where w(S) is the
weight of S.

Lemma 4.1. Each S € S is incompressible and boundary incompressible in M.

Proof. The proof is standard, but we sketch it for completeness.

Suppose that S is compressible and let D be a compressing disk for Sin M. Since S
is incompressible in its filling Mg, this disk shares a boundary with a disk D’ in S, which
must meet the cores of the filling tori. Swapping out D’ for D, which can be done by an
isotopy in Mg, results in a copy of S meeting the cores of the solid tori fewer times, a
contradiction. Hence, S is incompressible.

Now if S is boundary-compressible let E be a boundary compression, so that OF is the
union of an arc b in S and an arc a in M. Then a is contained in an annular component A
of OM ~. 98 , and it must be essential there since otherwise FE is not an essential boundary
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compression. Now A cut along a and attached to two parallel copies of E gives us a
compressing disk for S , which therefore is parallel to a disk of S by incompressibility. But
this disk, attached to itself along b, forms an annulus which must be all of S , so that S is
a boundary-parallel annulus. This is a contradiction. O

Now Proposmon 2.7 glves us a finite collection Bj ..., B, of incompressible branched
surfaces in M so that each S € S is fully carried in a welght minimizing way in one of
them. .

For each B; let Sp, contain those (S,3) € S for which S is fully carried by B;. After
restricting to “sufficiently long” fillings in this collection, we can make some additional
assumptions about B;:

Let T; be a component of OM. If, for (S,B) € Sgp,, the coordinate ; only takes on
finitely many values, we can exclude all of the non-co values in our definition of sufficiently
long. Then unless oo is also one of the values, we can ignore B; altogether.

Thus we can assume that for each boundary component T} of M meeting B;, either
the fibers of Sp, determine infinitely many slopes in T or Tj is not filled in any of the
fillings corresponding to Sp,. If the intersection B; NT; with a boundary torus 7} of oM
is nonempty, it is necessarily a train track, and so we are left with three possibilities: Tj
is disjoint from B;, B; N T} has bigon complementary components in T}, or B; N7} is a
disjoint union of parallel simple closed curves in 7; whose complement is a union of annuli.
In the last case, the train track B; N7} can only carry a single isotopy class of simple closed
curves, and thus §; = oo for all (S, ) € Sg, with § sufficiently long.

4.2. Branched surface decomposition. From here on, we work with a single B = B;,
restricted as above. The notion of “sufficiently long filling” will depend on the particular
branched surface B, but finiteness of the number of branched surfaces provides a uniform
notion of sufficiently long filling, independent of B. We continue to write N' = N (B) for
the fibered neighborhood of B in M.

Divide &M into the tori that meet B — called 9P M — and the rest, 8 M (F for “floating”).

Given (5, B) € Sg, let Vj be the union of solid tori associated to the fillings, Mz = MUVg.
We write VBB and VBF for the solid tori that meet and do not meet B, respectively. We
remark that 8V6F = OF M and 8VBB C OBM with this containment being proper if there
are unfilled boundary components of M for 5.

Now let X = M~ N (B) and set Xg = XUVBF. We divide 0X 3 into 0Xg = 0, XgU0, X3,
where 9, Xg = 0N, and 9, X3 consists of annuli which are either annulus components of
d,N', annulus components of X N &M, or unions of rectangle components of 9, with
bigon regions in OM ~N. We similarly decompose 0X = 0, X U0, X, where 0, X = 0, X3,
and 9,X = 9,X5Ud" M.

The foliation by interval fibers of N'(B) extends first to a foliation on each of the non-
floating boundary tori 6% M - this is because the complement of 9, in OF M is a union of
bigons and annuli. For each 3, the meridians are transverse to this foliation so it extends
to a foliation of the solid tori VBB , which is transverse to (a fixed family of) meridian disks.
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Call the resulting foliation Z, and note that it is defined in Mg~int(Xg) = NUIEM UVBB .

—
T

X Jﬁ

FIGURE 3. Left: 50’5 is carried by NV. Right: Sg is thickened to the I-bundle
T3 (blue). The I-foliation is shown in the complementary part of A/, which
is part of Fg.

FIGURE 4. A cutaway view of N near a component of VﬁB. The I-bundle
T3 is indicated in blue inside A" and the complementary I-bundle Fp is in
gray. The surfaces Sﬁi are indicated with blue edges in 9N, with yellow
along the meridians, and with red edges in the remainder Wjg.

4.3. Product regions in Mgs. Fix (S,5) € Sp, and for convenience denote S by Sg.
We can realize Sg as a surface contained in N (B) union the solid tori VBB , in which it is
transverse to the foliation Z. Thicken Sg to make a product I-bundle 7z with I-fibers being
arcs of leaves of Z, then isotope 73 so that its boundary contains 0,V (B). This is done by
pushing the boundary surfaces outward along Z-leaves until they touch the endpoints. See
Figure 3 for a schematic of this, and Figure 4 for a 3-D view near a component of Vj.
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Let Fg be the closure of Mg ~\ T3. Since Sg is a fiber of Mg, Fp is also a product
I-bundle. We use the I-bundle structure to define 9, and 9, for both F3 and 7, writing

8hf5 = (9}{7}3 = SE L Sﬁ_’

and noting that 0,F3 U 0,73 = O0Mp.

Note that F3 contains Xg, Fz~\ X3 is contained in N'U VBB , and the foliation Z restricts
to a foliation Z|(Fg ~ X3). Hence, Fg decomposes into the ‘I-foliated part’ Z|(Fz ~ Xg)
and the ‘bounded part’ Xg, as anticipated by our discussion in Section 1.1.

Our main goal now is to show that Z|(Fg \ X3) is (up to isotopy) also the restriction
of the product interval foliation on F3 = Sg x [0,1]. For a summary of our strategy, see
the outline in Section 1.1. From this we will deduce that Z is the foliation by flow lines of
the suspension flow for the monodromy of the fiber Sg of the given fibration of Mg. This
is completed in Proposition 4.6.

4.4. Regions in 05, F3 and hyperbolic geometry. Let W3 denote the closure of 9, Fg
OnX. Note that Wp is the union of the meridian disks Dg = 0pFg N V/BB and regions that
are contained in the interior of N'(B).

Note that 0, X is a subsurface with corners in d5F3 N M in the sense of Section 3.1 — it
is bounded by circles and arcs whose endpoints are on the circles of 95F3 N M — some of
which are boundaries of the meridian disks and some can be in dMp itself, when that is
nonempty. See Figures 5 and 6 for some example local configurations.

(a) (b)

FIGURE 5. Examples of the decomposition of 05 F3. Wj is the union of red
and the yellow meridians. (a) shows a component of Wjs of low complexity
containing meridians, which is ruled out for long fillings by Lemma 4.2. (b)
shows part of a larger component of Wy adjacent to the boundary of Mg.

For any component E of Wp, let E denote the union of F with any disks of O Fg\int(E)
that meet 0(0,F3) in at most one arc. Note that £ and E are subsurfaces with corners of
OnFp in the sense of Section 3.1.

Lemmas 4.2 and 4.4 restrict the structure of components of Wy for sufficiently long
fillings.
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Lemma 4.2. Fiz an integer k. For all sufficiently long fillings, if E is a component of Wg
with X(E) =k, then E is disjoint from Dg.

Here x is modified Euler characteristic as in Section 3.1.

Proof. Consider first those 3 for which Mg = (), in which case 9}, Fp is a closed surface
and ¥(E) = v(E).

Identify M once and for all with the complement of some standard cusps in the finite-
volume hyperbolic metric on int(]\oi ). Thurston’s Dehn filling theorem tells us that M
embeds nearly isometrically in the hyperbolic structure on Mg, for sufficiently long fillings,
so that its complement int(V3) consists of the Margulis tubes for the corresponding curves.
Moreover the radii of these tubes are arbitrarily large for sufficiently long fillings 8. Note
that OF is contained in 99, X , which is independent of 8. There is therefore some bound
x, independent of 3, on the total curvature of 9E in M 3.

Fix a triangulation of E with vertices on the boundary so that each triangle has at most
one edge on the boundary. For each 3 let f3: E—M 5 be a map which is a ruled surface on
each triangle and is homotopic rel boundary to the inclusion map. Then the Gauss—Bonnet
theorem for the induced metric on fg(E) gives us

Area(fs(E)) < —2nx(E) + k.

Note that the right hand side is independent of S.
The following lemma (whose proof appears below) now allows us to finish the proof:

Lemma 4.3. Given A > 0 there is an R > 0 such that the following holds. Let V' be a
hyperbolic Margulis tube of radius R and let W be a compact, connected, oriented surface
with a map f: (W,0W) — (V,0V) such that Area(f(W)) < A. Then f is homotopic rel
OW into OV

Applying this to each intersection of fg(E) with the Margulis tubes V3, and choosing
B long enough to give the needed value for the tube radii, we find that we can homotope
OpFs in Mg (and hence Sg in Mpg) to remove its intersections with the cores of Vj that
occur in F. Since Sp was already chosen to minimize these intersections in its isotopy
class, and Proposition 3.4 says that it must also minimize them in its homotopy class, we
conclude that E could not in fact have contained any meridian disks.

Now consider those 5 for which some specific set of coordinates is oco. The corresponding
tori are unfilled so Mg is nonempty, and each component is associated to a cusp in Mg.
We adapt the argument to handle these cusps.

We identify M9 = M~ OM, 5 with the complement of the remaining standard cusps in

°

the finite-volume hyperbolic structure on int(A). Again for sufficiently long fillings we can
embed this nearly isometrically in the hyperbolic structure on int(M3) as the complement
of the Margulis tubes of the filled boundary components.

Let Eg =FEnM 58 , which is F minus the arcs and curves of its boundary that lie in dMjp.
We can (after suitable isotopy of the hyperbolic metric) assume that the boundary arcs
of Eg are, in some neighborhood of the boundary, totally geodesic rays exiting the cusps.
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Thus the ends of Eg can be deformed to finite-area cusps or “spikes” (regions between two
asymptotic geodesics).

Now our triangulation of Eg can be chosen with an ideal vertex at each end of the surface,
and when we homotope it rel boundary (and rel ideal boundary points) to a ruled surface,
the Gauss—Bonnet theorem applies again, but with an additional 7 in the boundary term
for each spike. Thus we have

Area(f3(Ep)) < —2mR(E) + k.
Lemma 4.3 again applies, allowing us for sufficiently long fillings to find a proper homotopy
of EB rel boundary and rel ends which removes all intersections of F with Vg. A standard
argument in the collar of Mgz allows us to obtain a homotopy of E itself which does the
same thing. Again we conclude that E could not have contained any meridian disks. [

We now supply the proof of Lemma 4.3.

Proof. We can write V = D? x 8!, where D? x {t} are totally geodesic meridian disks for
t € S', and let p : V. — D? be the projection, in such a way that p is area preserving on
the meridian disks.

We can write the area form of the meridian disks of V' explicitly in cylindrical coordinates
(r,0,z) in the universal cover of V', namely a = sinhrdr A df. Note that this is closed,
and evaluates to 2m(cosh R — 1) on a meridian disk. Thus « represents 27 (cosh R — 1)p*(n)
where 7 is the fundamental class of H2(D?,0D?).

Now the map (po f). : Ho(W,0W) — Hy(D? 0D?) is just multiplication by an integer,
the degree deg(po f). We can therefore compute this degree by integrating a/2m(cosh R—1).

That is,
1 *
deg(po f) = 271'(COShR—1)/Wf *

On the other hand, because (fiberwise) orthogonal projection in the tangent bundle of V'
to the meridian disk direction is contracting, we also have

Jr

|deg(po f)| < A/2m(cosh R — 1).
Since the degree is an integer, for suitably large R we conclude deg(p o f) = 0.

Now a relative version of the Hopf Degree Theorem (see for example the Extension
Theorem in [GP10, Chapter 3]) tells us that, since deg(p o f) = 0, there is a homotopy
G rel OW taking po f to a map g that takes values in D%, Writing f = (f1, f2) where
f1 =po f and applying the homotopy G to the first coordinate completes the proof. [

< Area(f(W)) < A.

Thus we have

Recall from Section 3.1 that a component of Wj is called trivial if it is contained in a disk
D which is either contained in the interior of Séc or meets 85'2: in a single arc. Note that

if a component I of Wjg is not trivial, then OF ~ 05’; consists of homotopically essential
curves and essential proper arcs in Séc.
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Lemma 4.4. For sufficiently long fillings, Wg has no trivial components.

(a) (b)

FIGURE 6. Two trivial components of Wy which result in a disk and half-
disk of contact.

Proof. First suppose that a component F of Wz were contained in a disk that does not
meet d(9Fs). Then E would be a (possibly punctured) disk, so £ C 9, F5 would also be
a disk not meeting 0(0,F3).

Lemma 4.2 implies that for sufficiently long fillings, E (and hence E) contains no merid-
ians. In particular AE must be a smooth boundary component of 9, X (as in Figure 6(a))-
That is, £ C¢ N and dE C 9,N. But then, as in [FO84, Claim 1], we can isotope E to
slide OE into int(d,N) thereby producing a disk of contact for B. See Figure 7. This is a

OuN

/\

FIGURE 7. A disk E (red) in A with boundary in 8,V Sliding OF slightly
downward produces the disk of contact.

contradiction and the proof is complete in this case.

If instead E were contained in some disk in 0 Fs which meets 9(05F3) in a single arc,
then £ would also be a disk whose boundary has a single arc in common with 0(0nFp)
(as in Figure 6(b)). Just as in the previous case, Lemma 4.2 implies that E contains no
meridians and so is contained in A. This time since E consists of one arc in M and
one arc in d,N we see that £ produces a half-disk of contact for B and also results in a
contradiction. O
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4.5. Transverse orientability of B.

Lemma 4.5. The branched surface B is transversely orientable. Equivalently, the foliation
Z, defined on Mg\ Xg =N (B)U VﬁB, is orientable.

Transverse orientability of B is clearly equivalent to the orientability of the foliation
of N' = N(B) by I-fibers. Any orientation on this foliation of A easily extends to an
orientation of the foliation Z.

The proof is an adaptation of an argument of Oertel [Oer86] who proved that branched
surfaces constructed from Thurston-norm minimizing surfaces are transversely orientable.
In our case we appeal to the notion of complexity defined in Section 4.1 and minimization
in an isotopy class, rather than Thurston’s complexity, x—, minimized over a homology
class.

Proof. Suppose B is not transversely orientable. Let (S3,3) € Sp, and fix a transverse
orientation on Sg, and hence on 50’5. We will show that, for sufficiently long (3, this leads
to a contradiction.

Since 50'5 is fully carried on B there must be a branch of B where the orientations are
inconsistent. So there is a region in N where there are two adjacent sheets of 05 F3 whose
transverse orientations point into (or out of) the region of Fz between them. Extending this
region maximally along Fg \ int(X3), one obtains a subset of F5 of the form P = E x [0, 1]
where E/ x {0} and E x {1} are identified with components Ey and E; of W3 on the same
component of 9y, Fz, which we denote S; without loss of generality.

Just as at the beginning of the proof of Lemma 3.1, if Ey # Ej then we can extend the
product region P to P = FE x [0,1] such that E x {0} and E x {1} are identified with Ej
and E1 In a bit more detail, any disk Dg of EO ~ Fy corresponds to a disk D; in E1 ~ Eq
(by incompressibility and boundary incompressibility of S+ in F3) and these disks, along
with a foliated annulus of P, cobound a ball in F3 (by irreducibility of F3). Each such
ball can be foliated with intervals, extending the foliation of P, and P is the subset of Fs
obtained by taking the union of P with all such foliated balls.

Since (S, 853) — (Fp,0pF3) is a homotopy equivalence of pairs, the homotopy of E,
to B4 along P implies that these two regions are homotopic in Sg through maps preserving
85’;. But on the other hand, the regions Fy and E are disjoint. This is only possible if

E is a disk meeting OS5 in at most two arcs or an annulus not meeting 853.

Lemma 4.4 rules out disks meeting 053 in at most one arc for sufficiently long fillings.
Since orientability of B is independent of filling slope £, we may assume that E does not
have this form. Therefore, F is either a disk meeting 05p in exactly two arcs (a “rectangle”)
or is an essential annulus. In either case, Lemma 4.2 tells us that for sufficiently long fillings,
Eo and El contain no meridians.

Let us first consider the annular case. Thus, we have that Fy and F; are two annuli
bounded by smooth curves and parallel in S, and P is a solid torus. The vertical boundary

9, P consists of two annuli identified with OF x [0,1]. Each of them is incompressible with
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boundary on S; and must therefore be boundary compressible. By irreducibility of Fjg,
they must each cobound a solid torus with an annulus in SE. Choosing U the innermost
of these two solid tori, we see that U meets Sg in an annulus A between Ey and Ej, and
meets P in one of the annuli of 9, P, which we denote by A,. See Figure 8. The meridian
disk mg of U, given by the boundary compression of A,, meets A, in a single arc.
Though U may contain other foliated solid tori parallel to P, we can take P innermost

so that U is a component of Xz. Note that U cannot be a solid torus in M , since that
would make mg a monogon for B. Thus it must contain a solid torus V' of V.

R +

B Sg
Sj

]D

Ey

FIGURE 8. This figure crossed with S' illustrates the annulus case in
Lemma 4.5. Crossed with [0,1] and without the yellow disk, it illustrates
the rectangle case.

Now replace A with A, in Sg to produce:
Si = (S5 \ AU A,.

Push S} slightly further into AV/(3) so that it misses A,.

This surface is isotopic to Sg (through U), because the meridian mg meets A, and A in
a single arc. The isotopy does not change the intersection with the cores of the solid tori,
but reduces the intersection with the 1-skeleton of t. This is because, by Proposition 2.7,
the annulus A,,, which is a component of 9,NV'(B), contains arcs of (1) which intersected SZ{
but miss S,/B' This contradicts the complexity-minimizing choice of Sg, also made possible
by Proposition 2.7.

It remains to consider the case where each Ej; is an essential rectangle, i.e. a nontrivial
disk in SE which meets E)S;f along two arcs. Figure 8 again describes the situation, but

one should interpret the diagram cross [0,1] instead of S'. Thus we see Ey and Fs as
rectangles in Sg, and P as a cube, with its front and back faces (the diagram rectangle
crossed with {0} and {1}) lying in 0Mpg. The arcs labeled A, and A represent rectangles
lying in 9, N and Sg’ respectively, and their union A, U A is a properly embedded annulus,
whose boundary circles lie in the toroidal boundary 0Mg.
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Suppose it is not null-homotopic. Then, because M is hyperbolic A, U A must be a
boundary-parallel annulus. This means that each arc connecting its boundaries can be
deformed rel endpoints to dMpg. Applying this to such an arc lying just in A, we obtain a
boundary-compression of Sg’, which is a contradiction.

Thus A, U A is null-homotopic so its boundary circles bound disks in Mg because OMpg
is incompressible. By irreducibility then the region between A, U A and these two disks is
a ball, labeled U in the figure.

Again by choosing P innermost we can assume that U is a component of Xg. There is
no component of Vg in U this time, since it is a ball, so it is in fact a component of X.
This means that a disk mg constructed as a compression of the annulus A, U A is an actual
monogon for B in M , and this is a contradiction to the incompressibility of B.

This contradiction implies that B is orientable. U

4.6. Product structures are tame. We can now assemble the proof of the key fact that,
for sufficiently long fillings, the foliation Z|(Fg ~ Xj3) comes from a product structure on
Fa.

Proposition 4.6. For sufficiently long fillings, the foliation Z|(Fg ~ Xg) can be extended
to a foliation of all of Fg. Consequently, Z|(Fp ~ Xg) agrees with a product foliation
Fp = Spx[0,1] (up to isotopy), and each component of Xg is a subproduct of the associated
product structure on Fg.

Proof. On each component P of Fg~ Xg, the foliation Z|(Fz\ X3) by intervals determines
a product structure E x [0,1]. Lemma 4.5 implies that Z is orientable, and hence any leaf
must intersect both components of 0F3. In particular, E'x {0} and E x {1} are components
of W; on opposite sides of 0Fg. Furthermore, Lemma 4.4 implies that for all sufficiently
long fillings E x {0} is not trivial. Therefore, Lemma 3.1 implies that the product structure
of Fj can be isotoped so that it matches the product structure determined by the foliation
T|(Fz~ Xp3). O

4.7. Fixed-fiber reduction and the completion of the proof. We are now ready for
the proofs of Theorems 1.5 and 1.4.

Proof of Theorem 1.5. As in our setup so far (Section 4.2) we restrict attention to a single
branched surface B and the associated fillings and fibers Sg.

For (S,8) € Sp sufficiently long we can apply Proposition 4.6, which tells us that the
foliation Z on N U VBB extends to X, giving a product foliation on Fg for which Xz is a
subproduct. The product structures on F3 and 73 define a specific mapping torus structure
on Mg and hence suspension flow (¢5) on Mg (well-defined up to reparameterization). By
construction of Z on V3, we see that Vj is invariant by (1)s) and the I-fibers of N are arcs
of flow lines.

In particular the cores of VBB are already vertical with respect to this structure. Left to

handle are the solid tori VBF , which may still be knotted in F3. To address this we need
to establish additional uniformity which will allow us to invoke a theorem of Otal about
unknottedness of short geodesics in Kleinian surface groups.
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Let M/B = MU VﬁF be the manifold obtained by filling M along only the floating tori
VBF, and novte that Mz = N'UXg = Ms~ int(VBB). Since (1)) preserves VﬁB, it restricts to
a flow on Mg.

Now we observe that for any surface S fully carried by B — for example we can start with
(S, Bo) in Mg, and remove intersections with Vﬁf — we can embed it in A in the standard

way and view it as a surface in M, 3 for a different value of 8. We henceforth fix such a S
and allow 3 to vary. Then $ is transverse to the flow (1) and in fact meets every flow
line in forward and backward time; otherwise a flow half-line ¥, o) or ¥(_ s Would miss
N meaning that it was trapped in some component of X3, which is impossible since X3 is
a product and the flow lines intersect it in compact arcs of the product foliation. Hence,
there is a well-defined first return map ¢: S — S of (1s) and M, 3 is the mapping torus on
0.

As in our previous constructions, we thicken S to a product Tg and push it out along
I-fibers of N, so that On'Tg contains OpN. The closure of the complement JF 5.8 is also a

product, since S is a fiber in M, - Since the product structures on each of Tg and F, 5.4 are
compatible with (1)5), it follows that X3 is a subproduct of F, 5.4 Note that this product
structure is the same up to isotopy as the product structure inherited from Fg, since both
are determined by the decomposition 0Xg = 0, X3 U 0, X3.

Consider the infinite cyclic cover Ny & of Mp associated to S. Otal’s theorem [Ota95]

implies that there is an ¢ > 0 depending only on |y(S)| so that if the cores of the solid

tori VBF have hyperbolic length less than ¢ then their lifts to N 5.8 = S x R are level. (We

note that although Otal only explicitly treats the case where S is closed, the general case
is similar. Alternatively, the version needed here is explicitly stated by Bowditch [Bowll1,
Theorem 2.2.1] and also follows directly from a more general result of Souto [Sou08].)
Henceforth, we consider only g sufficiently long so that the cores of VﬁF have length less
than £, which is again possible by Thurston’s Dehn surgery theorem.

The product structure NV 5.8 >~ § x R is obtained by gluing the Z-indexed lifts of 7¢ and

fﬁ & together. Observe that all V{ CcXgC .7-"5 &, and that Xz is a subproduct of ]-'ﬁ & by
Proposition 4.6. By Lemma 3.3, working in one of the lifts of F 5.4 to N 5.8 (which projects

o

homeomorphically to M 3), the cores of VﬁF are level in the product structure of F 5.8 and
further more the isotopy is supported in Xg. That is, after an isotopy, we may assume
that the cores of VBF are level with respect to S.

But the product structures on Xz are isotopic, so we see that the cores of VﬁF are level
with respect to 5’5, and hence Sg as well. Since the cores of VﬁB are already transverse, it

follows that the cores of all filling solid tori Vz are standard, and since M is obtained from
Mg by drilling out these cores, we are done. O

We conclude this section by proving Theorem 1.4.
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Proof of Theorem 1.4. Fix L > 0. If ¢ € ®,,,(L), then vol(My) < 3+/27L by Theorem 2.4.
By the Jorgensen—Thurston theorem [Thu78, Theorem 5.12.1], there is a finite collection
Mg of hyperbolic 3-manifolds of volume at most V = %\/%L so that every hyperbolic 3-
manifold of volume at most V is obtained from some manifold in Mg by hyperbolic Dehn
filling.

Since the set My is finite, Theorem 1.5 gives that after excluding at most finitely many
slopes per boundary component per manifold in M, all other fillings of the manifolds in
M, have cores that are level or transverse.

For each M € Mg choose a boundary component and consider the finitely many man-
ifolds obtained by filling along the excluded slopes for that boundary. Let M; be the
collection of all such fillings over all members of My. Since M is also finite, we may re-
peat the process of applying Theorem 1.5. Proceeding inductively, we terminate when no
more fillings are needed to obtain elements of ®,,,(L). Along the way we have accounted
for all of the members of ®,,,(L), showing that they come from our combined union of
finite families by drilling along level or transverse curves. O

We end this section by describing an example of 1-manifolds in a sequence of Dehn
fillings on a compact manifold with hyperbolic interior, such that (a) each manifold fibers
in infinitely many ways and (b) for all sufficiently long fillings, the 1-manifold in each filling
identified by the theorem is level with respect to one fiber and transverse with respect to
another.

Example 1 (Level/transverse is relative). Let a and b be homologous nonseparating curves
that fill a closed surface S of genus g > 2, and let ¢,, = T}’ o7, ™ where T, is the Dehn twist
about ¢. These mapping classes are pseudo-Anosov for n > 1 by Thurston’s construction
[Thu88|, and so the mapping tori M,, = My, are hyperbolic 3-manifolds by Thurston’s
hyperbolization theorem [Thu86a, Ota01].

We can view M, as obtained from a sequence of Dehn surgeries on C = ax{3}Ubx {1} in
the mapping torus of the identity My = Sx[0,1]/(x,1) ~ (x,0) = SxS!. By the Jgrgensen—
Thurston theorem [Thu78, Theorem 5.12.1], the sequence of hyperbolic manifolds M,, =
My, limits to the cusped hyperbolic manifold M = M, ~ (a* U b*) obtained by removing
the geodesic representatives of @ and b from M, for n > 1. This is the manifold obtained
by drilling along (disjoint copies of) the level curves a and b of the fiber S in any manifold
of the sequence, and is homeomorphic to M \ C.

Now chose a different fiber S,, of the manifold M,, over the same fibered face as S into
which a and b cannot be homotoped (see §2.3). To see that it is possible to find such a fiber
S, first observe that the Poincaré dual of S lies in the subspace of H!(M) which vanishes
on the homology class of a (and b, since a and b are homologous). The linear subspace of
H'(M) consisting of classes that vanish on this homology class has codimension 1 since
¢n acts trivially on H;(S) (that is, ¢, is in the Torelli group), and hence any element of
H'(S), in particular one that is nonzero on a, extends to an element of H'(M).

Since a* and b* become arbitrarily short as n tends to infinity, these curves are necessarily
a part of C from Theorem 1.5; in fact, their union is equal to C. According to that theorem,
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a and b must be transverse in \5,,, for n sufficiently large. In fact, we see that M is a fibered
manifold with fibers S,, punctured along a U b.

Therefore, for all n sufficiently large, a* Ub* = C in M, is level with respect to the fiber
S but transverse with respect to the fiber S,.

5. BOUNDING WEIL-PETERSSON TRANSLATION LENGTH

In this section we prove the following theorem from the introduction.

Theorem 1.1. There exists ¢ > 0 so that if ¢: S — S is a pseudo-Anosov on a closed
surface, o C S is a simple closed curve with 7o = 7o(¢) > 9, and k € Z, then

IT% © Sllup < ISl /cIX(S)]-

The bound on translation length in the theorem is obtained by producing an explicit
(TF o ¢)-invariant path R — 7(S) and bounding the WP-length of a fundamental domain
for the action of (T¥ o ¢). The path is constructed as a leaf-wise conformal structure on
the mapping torus of T* o ¢.

The remainder of this section is concerned with constructing the required structure and
proving the bound on the Weil-Petersson translation length. We begin in Section 5.1
where we make precise what we mean by a suspension and leaf-wise conformal structure
on a fibered 3—manifold. This provides a more convenient framework for carrying out the
construction. In Section 5.2 we describe the leaf-wise conformal structure coming from the
singular-solv structure which is essentially the starting point for our construction. Since
the singular-solv structure is constructed from the axis for a pseudo-Anosov with respect
to the Teichmiiller metric, this explains the appearance of ||¢|r in the bound we obtain.

Next, in Section 5.3 we describe how we will perform Dehn surgery on the manifold
M, viewed as a suspension, so that the Dehn filled manifold is still a suspension, and the
monodromy has been composed with a power of a Dehn twist. This is followed by Section
5.4, which contains two technical lemmas: one describes a particular solid torus in M
that is situated nicely with respect to the singular-solv structure; the second produces the
explicit solid torus and leaf-wise conformal structure that we will use in our Dehn filling.

We assemble the ingredients in Section 5.5 and prove a more precise version of Theo-
rem 1.1. In Section 5.6 we explain how to use this to show that ¥,,,(L) contains infinitely
many conjugacy classes of pseudo-Anosov mapping classes on every closed, orientable sur-
face of genus at least 2, and finally in Section 5.7 we explain how to apply the theorem to
produce examples in a much more general setting.

For the remainder of this section, we will take ¥ to be an arbitrary surface. The two
cases of interest to us are when ¥ is a closed surface (in which case we often denote it by
S) and when ¥ is an annulus (and we denote it A).

5.1. Leaf-wise conformal structures. Suppose ¥ is a surface and 7: £ — B a Y-
bundle over a connected 1-manifold B which we view as either an interval in R or a circle
LS! = R/LZ of length L > 0 (in particular, R locally acts on B by translation). We



30 C. LEININGER, Y.N. MINSKY, J. SOUTO, AND S.J. TAYLOR

consider local flows ¢; on E such that for all z € E and t € R, w(¢¢(x)) = 7(z) +1¢, as long
as ¢¢(x) is defined. If E = ¥ x J for an interval J C R and 7 the projection onto the second
factor, then after changing the product structure we may assume that ¢.(z,s) = (x,s+1t).
For s € B, we write ¥y = 7 1(s). Given s,t € B, we can restrict ¢;_ to a homeomorphism

Gt—s: Ng — My

For fibrations 7: M — LS' and s,t € LS!, t — s is only defined modulo LZ. In this
situation, we pass to the infinite cyclic cover of M corresponding to the kernel of the
homomorphism 7, : m M — mLS' = Z, and lift the flow and fibration over LS' to a
fibration over R, to well-define ¢_s. Then we have Yo = X in M and ¢ = ¢p: g — g
is the monodromy of the bundle. We refer to the bundle and flow (7: M — LS!, (¢;)) as
a suspension (since ¢; is naturally the suspension flow of the monodromy ¢).

A leaf-wise conformal structure ¢ on any Y-bundle F is a conformal structure on each

surface Y, making it into a Riemann surface Zg, such that ¢,_s: X3 — X4 is a quasi-
conformal homeomorphism whenever it is defined. Let v, € By (2$) C B(Z$) denote the
Beltrami differential of ¢;_.

If the path of Beltrami differentials ¢ — v, € IBl(Eg) is piecewise smooth, we write

¢ d

g Vs

:gt:s ’

We call this the tangent field of the family. To justify this name, observe that the map
t— (s € T(X$) = T(Z) defines a path in the Teichmiiller space and that u§ € IB(E§ )
represents the tangent vector at time ¢ to this path, for each ¢t € J.

Proposition 5.1. Let (1 : M — LS',(¢;)) be a suspension with fibers Sy = w=1(t), let ¢

be a leaf-wise conformal structure, and let ug € IB%(SE) be its tangent field. The mapping
class ¢ = ¢r, € Mod(Sy) has Weil-Petersson translation length ||¢||wp bounded by

L
18llup < / ( / |u§0§|2) d,
0 St
¢

where oy 1s the hyperbolic metric uniformizing StC .

Proof of Proposition 5.1. The translation length ||¢|., is bounded from above by the
length of the path

[0,Z] — T(So), ¢+ [¢¢: So — S°).

In formulas this means that

L
16llup < /O 1S -

The desired bound follows now from Lemma 2.1. O
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5.2. Singular solv structure. Suppose ¢: S — S is a pseudo-Anosov homeomorphism
and M = My is the mapping torus. The singular-solv metric on M is a piecewise Riemann-
ian metric that induces a Euclidean cone metric on the fibers of a fibration 7: M — LS!,
where L = log(A(¢)) = ||¢]lT; see e.g. [CT07, McMO00]. There is a natural unit speed flow
(¢¢) making (m: M — LS', (¢;)) into a suspension so that:

(1) The Euclidean cone metrics on the fibers defines a leafwise conformal structure ¢,

(2) the maps ¢;—: 5§ = Sf are Teichmiiller mappings for all s,¢, with initial and
terminal quadratic differentials g and ¢y, respectively,

(3) for all s,t, the Beltrami differential of ¢;_s is given by 14_s = tanh(t — s)2

“Ps' ’
(4) the tangent field is given by ug = %, and
(5) the vertical and horizontal foliations of 4 are the stable and unstable foliations for

¢, for all s.

Note that the tangent field (ug) to the singular-solv leaf-wise conformal structure ¢ has
| ,ug| =1, for all t. Therefore, applying Proposition 5.1, we obtain

L
||¢”wp§/0 (“/ o |2> dt</ \/ g (6%)2 = L+/Arca(S) = ||¢||7/Area(S),

as expected. To prove Theorem 1.1 we will perform an appropriate Dehn surgery on M
by drilling out the curve a on a fiber S, and replacing it with an appropriate solid torus
and leaf-wise conformal structure. The goal of the next section is to describe the setup for
such a surgery construction.

5.3. Dehn twists and Dehn filling. For any interval J C R, the product
T;=AXxJ,

is a (not necessarily compact) solid torus. We denote the local flow in this special case by
#; (z,8) = (x,t + s) (defined for s,t+ s € J, as usual), and denote the projection onto the
second factor by 7 : T; — J. In particular, we have mr¢; (z,5) = mp(z,s) +t = s + 1,
where defined. As usual, we define Ay = A x {s} for all s € J.

If we have a suspension (7 : M — LS' (¢;)), an embedding of a compact solid torus
¢ : Ty < M, and an orientation preserving local isometry z: J — LS', then we say that the
suspension and solid torus are compatible (via ¢ and t) if the following diagram commutes,
whenever all maps are defined

T
T, 2, g
R
M- AT ISt

Given a compatible suspension (7: M — LS', (¢;)) and solid torus ¢: T; — M with
J = [a,b], let M' = M — +(int(Ty)). For each k:, the 7-Dehn surgery on «(T,) in M is
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obtained gluing T; to M’ via a homeomorphism gi: T ; — M’ = (9T ), given by

() forx € A x {al UOA x J
gr(x) = { totg(x) forxe A i }b}} "

where t,: A — A is a homeomorphism representing the k*"* power of a Dehn twist in the
core curve of A. The resulting manifold My = M’ U, T; admits a flow (¢,) which locally
agrees with the flow of the same name on M’ C M and on T locally agrees with (¢L),
since the original solid torus was compatible. The monodromy is conjugate (by a power of
#) to the composition TF o ¢, where « is a curve in Sy in the isotopy class of the core of
t(Ty); see e.g. [Sta78, Har82, LMS86].

5.4. Good solid tori. Throughout this section, we let M = M for a pseudo-Anosov ¢.
We will perform Dehn surgeries as described in the previous section in the presence of leaf-
wise conformal structures on both M and the filling solid tori T ;. The leaf-wise conformal
structure on M will come from the singular-solv metric, and the solid torus which we will
remove is described in Lemma 5.2 below. The leaf-wise conformal structure on T; will
be constructed by hand and will be such that the gluing maps restricted to the top and
bottom A x 9J are conformal. This is described in Lemma 5.3. As the proofs of these are
somewhat lengthy and technical, we defer their proofs to Section 6.

Recall that for any simple closed curve a C S the twisting coefficient of o for ¢, denoted
Ta(¢), is defined to be the distance in the subsurface projection to the annulus with core
curve « of the stable and unstable laminations £, £L_ for ¢:

Ta(‘b) = da(‘c-l-a £_>,

see [MMOO] for details. As in Theorem 1.1 we now assume 7, = 74(¢) > 9.

The importance of this condition rests on a result of Rafi [Raf05] which provides a definite
modulus Euclidean annulus (depending on 7,) isometrically embedded in the Euclidean
cone metric p; defining the conformal structure ¢; on S; for some t. Using ¢; to flow this
backward and forward produces the required solid torus. Carrying out this construction
carefully leads to the following, whose proof we defer to Section 6.6.

Lemma 5.2. For some h > %arccosh(% — 3) and J = [—h,h] there is an embedding

v: Ty — M compatible with the suspension (w: M — LS, (¢;)) which is disjoint from the
singularities. Furthermore, the induced leaf-wise conformal structure { on Tj agrees with
the standard one on A_y, and there exists WU : Ag — Ac_h conformal so \Ilo¢>12rh: Ay —A_y
is the r" power of a Dehn twist for some integer r.

To fill M" = M \ ¢(int(T;)) with T affecting an arbitrary Dehn twist in « as described
in the previous subsection, we will need a different leaf-wise conformal structure on A ;. To
do this we essentially follow the same idea as in the proof of incompleteness of the Weil—-
Petersson metric by Wolpert [Wol75] and Chu [Chu76]. Specifically, we recall that the
incompleteness comes from paths in Teichmiiller space exiting every compact set in which
a curve on the surface is “pinched” to have length tending to zero, but which nonetheless
has finite WP-length. We apply this idea to first pinch « to be arbitrarily short along
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the first half of the interval J, then perform as much twisting as we like on a negligible
sub-interval in the middle of J, and then “un-pinch”. By carrying out all the estimates
using the complete (infinite area) hyperbolic structure on the interior of the annulus, we
may apply the Scwartz—Pick Theorem to obtain upper bounds whenever the annulus is
conformally embedded into a Riemann surface. The specific construction we use provides
the following. It will be proven in Section 6.5.

Lemma 5.3. Given k € Z, h > 0, p > 1, there exists a leaf-wise conformal structure n on
the solid torus Ty = A x J for J = [—h, h| agreeing with the standard structure (of modulus
1) on A_j, = A, with tangent field (ud*) identically zero in a neighborhood of OA x J, so

that for all s € J,
8pm
2
[ o < S
Mk )

where 04" is the complete hyperbolic metric on the interior of Ag, and so the local flow
(¢Y) restricted to the boundary circles are dilations. Moreover, there is a conformal map
Ty: AZ’“ — Azkh so that the composition T}, o ¢;Th: Aéch — Aé“h is the k™ power of a Dehn
tunst in the core curve.

5.5. Proof of Theorem 1.1. This theorem will follow easily from the following more
precise version by setting ¢ = 27 (1 + ).

Theorem 5.4. Suppose ¢: S — S is a pseudo-Anosov on a closed surface, o« C S is a
simple closed curve with 7, > 9, and k € Z. Then

6
1T 0 ¢lup < H¢HT\/27T’X(S)’ <1 + h2>

for some h > %arccosh (%0‘ — 3).

Proof. Suppose ¢: Ty — M is the solid torus from Lemma 5.2 and ¥: Ay, — A_j and r as
in Lemma 5.2. Fix k € Z, p > 1, and let n; be the leaf-wise conformal structure on T,
and Tj,: A, — A_p, as in Lemma 6.4. We will prove the required bound for [T~ o ¢||yp,
which will suffice since k was arbitrary.

Let M = M — «(int(T;)) and glue T; to M’ along their boundaries via the map

gk . 8TJ — GM’ = L(@TJ),

given by
t(z,t) for (z,t) €e Ax {—h}UOJA x J
9r(2:t) = { LoV toTy(z,t) for (z,t) € A x {h}.

The resulting manifold M = M’ Uy, T admits a flow (¢5) which locally agrees with the
flow of the same name on M’ C M and on T locally agrees with (¢! ), since the original
solid torus was compatible. Let ¢: T ; — M} denote the compatible inclusion of the solid
torus T ;.

We claim that the leaf-wise conformal structures ¢ on M (restricted to M') and 7 on
T ; glue together to give a leaf-wise conformal structure { on My. Near A_j in the fiber



34 C. LEININGER, Y.N. MINSKY, J. SOUTO, AND S.J. TAYLOR

containing this annulus, Agh and Ai’“h are the standard structures, while near Aj in the
fiber containing it, we note that the map ¥=' o Tj: AJ* — A% is the composition of two
conformal maps, hence is conformal. Near all other annuli, we have removed a locally
isometrically embedded flat cylinder and glued in another one. Since (¢.) is a dilation on
the boundary for both ¢ and 7, the gluing maps of boundaries are in fact dilations, and
the conformal structures can be explicitly glued together. Let (ug’“) denote the tangent
field, which is given by ,é on Sy N M’ and by p2* on Ss N u(Ty).

The monodromy of My, is given by TF~" o ¢. To see this, note that conjugating W17y,
by qﬁgh we get

(don) O Tty = (W) ™ (Thecby)

which is the composition of the k" power of a Dehn twist and the inverse of the r*" power
of a Dehn twist, both in the core curve of the annulus. Thus we have changed the original
monodromy by the (k — )" power of a Dehn twist in the core curve of Ay, which is the
image of « by the flow. Hence the monodromy is conjugate (by a power of ¢) to T, C]f_rgb.

For any s € LS!, set SO = Ss N M’. The closure of the complement of SO in S is a
disjoint union of annuli (slices of the product Ty = A x J) which we denote

n(s)
Ss - SS,O = |_| As,i'
=1

The number of annuli n(s) is bounded by 3|x(S)|, which is the largest number of disjoint
essential annuli on S that are pairwise nonhomotopic.
Now we write the integral as a sum of integrals on the subsurfaces

n(s)
Ck +Ck|2 — k Gk |2 Ck +Ck |2
/Sgk|uso-s|_/ngco‘/j’so-s|+;/Agi/J’sgs“

The flow in M has unit Teichmiiller speed, and so |u§| = 1. Since ¢ = 4§ on ngo = Sg,o’
the first integral is bounded by the hyperbolic area (as it was with M itself)

[ oS < Area(sth) < Area(s5) = 2alx(5)].

5,0
Each annulus A;; is the (—image of Ay;) where 7;(s(i)) = s, and ¢}, induces a conformal
map AZE"Z.) — Agf"i. By the Schwartz—Pick theorem, the hyperbolic metric oS on S
restricted to AS* is bounded above by the complete hyperbolic metric ag&) on AZ’&) = Ag’“l
Combining this with Lemma 6.4 implies that for each i = 1,...,n(s),

8pm
k ~Ck |2 e Mk |2
/Agg S| S/Ac(_) 12yl l® < o
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Now, by Proposition 5.1 and since n(s) < 3|x(S)|, we have

L n
(1) uﬁ%wmpsté /|u&ww</ 2 x(S HQZ

HMWV%M@)+2?<;M$O

Taking the limit as p — 1, we obtain

6
ITh " 0 dllup < H¢||T\/27rx(5)\ (1 + h2>

This completes the proof. O

IN

We also record the following corollary of Theorem 1.1.

Corollary 5.5. If ||¢]r < < % fm“ some ¢ >0, and if o is a curve with 74(¢) > 9, then
forallk e Z
d\/c
173 0 Gllup < —=—==-
: IX(S)|
where c¢ is the constant from Theorem 1.1. O

5.6. Examples in all genus. From Corollary 5.5 we can prove Corollary 1.2 from the
introduction, which we restate here, with an explicit bound on L.

Corollary 5.6. For any L > 124 the set ®,,,(L) contains infinitely many conjugacy classes
of pseudo-Anosov mapping classes for every closed surface of genus g > 2.

Proof. Consider the curves a, o/, 8 on a genus two surface Sy shown in Figure 9. Suppose
¢a: Sy — So is the mapping class defined by ¢ = T TOT, 5 . We can (explicitly) construct
a square-tiled flat metric on S so that 3 is vertical and «,a’ are horizontal, and so that
@9 is affine (c.f. Thurston’s construction [Thu88]). Specifically, this surface is built from a
cylinder of height 9 and circumference 2 about « and height 1 and circumference 2 about
o’ as shown in the middle of the figure. This can be done so that the derivative of ¢o is
given by the matrix on the right of the figure.

From this we compute that A(¢2) = 2142+/110, and the eigenspaces of D¢o, which define
the stable/unstable foliations for ¢o, have slopes V110 — 10 < % and —v/110 — 10 < —20.
From the description of the cylinder about «, we see that 7, > 11.

Now let M be the mapping torus of ¢s. Since a and S intersect twice, as was shown
in [ALM16, Lemma 3.8-3.9], there is a genus 2 surface S’ C M which contains « and is
transverse to the suspension flow of ¢,. Thus S’ represents a class [S’] in the closure of the
cone C = Ry F on the fibered face F' of the Thurston norm ball B containing the class [S]
of S. In fact, it was also shown in [ALM16] that [S] and [S’] are linearly independent. It
follows that for all g > 3, the class (g — 2)[S] + [S'] is represented by a surface S, which
is a fiber in a fibration of M over S' and contains . By linearity of the Thurston norm



36 C. LEININGER, Y.N. MINSKY, J. SOUTO, AND S.J. TAYLOR
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FIGURE 9. Left: curves on a genus 2 surface. Middle: square tiled surface
built by isometrically identifying vertical sides by isometry in the obvious
way and horizontal sides as indicated by the numbering. The tall rectangle
has height 9 and width 2, while the smaller one has height 1 and width 2.
The horizotonal curves are o and o’ as labeled, and the vertical curve is (.
Right: Derivative of the pseudo-Anosov ¢s.

n, —x(Sg) = n(Sy) = 29 — 2, and since [Sy] is primitive, S, is connected of genus g; see
Theorem 2.5. Moreover, since both S and S’ contain «, we can realize Sy so that it also
contains a.

Let ¢4: Sg — Sy denote the monodromy. Recall from Theorem 2.6 that h: C — R,
which extends || - ||, is convex and homogeneous of degree —1 and thus

@3]l = b([Ss]) < b([S2]) = l|P2];
see [ALM16, Lemma 3.11]. Applying convexity again we have

IX(Sg)l[[dgllT < 4log(A(g2)) = 4log(21 + 2v/110) < 14.95.

The twisting numbers 7,(¢4) and 7,(¢2) are equal: this is because these are twisting num-
bers for the monodromy maps of fibers [S] and [Sy] in the same fibered face of the Thurston
norm ball. As observed in [MT17], the universal covers of S and S, can both be identified
with the leaf space of the suspension flow in the universal cover of M, the stable/unstable
laminations of ¢2 and ¢, have identical lifts in this cover, and 7, is computed using this
data in the annular quotient associated to the conjugacy class [a] in m (M).

In particular 7,(¢g) = Ta(¢2) > 11. Therefore, by Corollary 5.5, we have

14.95 < 124

(Sl — VIx(Sp)I”

1T © Ggllup < Ve
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where we have used ¢ = 27 (1 + %) with h = %arccosh (% - ) It follows that ®,,(L)
contains infinitely many pseudo-Anosov mapping classes on every surface of genus g > 2
for L > 124. ]

5.7. Generalities. This construction is much more robust, as the following corollary
shows. Given a closed curve « in M, there is a subspace V, C H'(M) consisting of
cohomology classes that evaluate to zero on .

Corollary 5.7. Suppose M is a closed fibered 3—manifold with pseudo-Anosov monodromy
¢: S — S, and suppose that o is a curve in S. Then there is a constant cg > 0 and an
R, —invariant neighborhood U of [S] € H*(M) with the following property. If S C M is
another fiber of M with [S'] € U N V,, then « is isotopic into S’, and for all k € Z, the
monodromy ¢': S" — S’ satisfies

€0

VIS

Observe that this corollary does not require any assumption on the twisting coefficient
of a, though one loses explicit control on ¢y because of this.

1% © ¢'llup <

Proof. Since S is a fiber we can represent [S] € Hy(M) = H'(M) as a closed 1-form w
which is nowhere zero. Fixing a Riemannian metric on M, for each € let U, denote a
neighborhood of [S] with the property that every element in U, is represented by a closed
nowhere-zero 1-form w’ with |w’ — w| < e. The primitive integral classes in RyU, are
precisely the classes in R} U, dual to fibers of a fibration.

We would like to say that there is a regular neighborhood N of « and an € > 0 such
that when S’ is a fiber with [S"] € RTU, NV, then after an isotopy both S and S” meet N
in an annulus containing a.

First choose a regular neighborhood W which can be written in the form A x (—b,b)
where Ay = A x {0} is a regular neighborhood of « in S and w|y = dt, where ¢ is the
coordinate for (—b,b). If w’ is the 1-form representing [S’] then, since [S] € V,,, we have
J,,w' =0s0w is exact in W. For suitably small € we can write w’ = dh on W.

Thus for small e the level sets of h are surfaces transverse to the ¢t direction. It follows
that there is a smaller regular neighborhood N of « so that for each w’ representing a point
in U, there is a compactly supported isotopy in W (moving along vertical lines) which takes
W' to dt in N. The integral manifold of (the isotope of) ker w’ passing through « contains
the annulus Ag NN, and after another isotopy any other intersections of it with IV can be
pushed off. This gives the desired fiber S’.

Now in H;(ON) we have a basis p, A where p is the boundary of a meridian disk and A
is represented by a component of 9(AygNN). Let M = M~ N. For j € Z, the Dehn filling
of M associated to p+ jA gives a manifold M; that can be simultaneously described as the
mapping torus of T3¢, and as the mapping torus of T’ ¢', where ¢ is the monodromy of
the fibering of S, ¢’ is the monodromy of the fibering of S’, and T, and T/, are the Dehn
twist of @ in Ag N N, considered as a homeomorphism of S and S’ respectively.
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We want to relate homology classes in M to those in M. Note that the inclusion map
Hy(M) — Hy(M) is injective (since M = ON has one component), and that its image
is exactly V,, (this is an exercise in Poincaré duality). Thus we can invert it on V, and
compose with the inclusion Hy(M) — Hy(Mj) to obtain a linear map V,, — Ha(M;). Let
F; denote the fibered face of the Thurston norm ball in Hy(M;) containing the image [S;]
of [S]. Then R, F; is open, and we may choose e sufficiently small that it contains the
closure of the image of R U NV, which we denote K. Let [S}] denote the image of [S]
in HQ(M])

Now let U = RTU,, and choose j > 0 so that Ta¢ is pseudo-Anosov and 7, (Ta¢) > 9.

For any S’ such that [S’] € U NV,, as observed above in the proof of Corollary 5.5,
the twisting numbers 7,(T%¢) and 7o(T% ¢') are equal since [Sj] and [S7] are in the same
fibered face Fj.

In particular Ta(T(;j ¢') > 9 and we can therefore apply Theorem 1.1 to TC’Yj @', obtaining
. o .
172" 0 ¢'lluwp = 175" 0 To" & llup
< T3 &'l v/ elx(S")]-

To complete the argument we need to obtain a bound on || 77,7 ¢/||7. As described in Section
2.3, by Theorem 2.6 there is a ¢; > 1 depending only on K such that if S” is a fiber of
M; such that [S”] € K; with monodromy ¢g» then |x(S”)|||¢s” |7 < ¢;. We conclude that

cj\/e
ITF 0 ¢ [luwp < L,
" VIS

as required. ]

6. CONSTRUCTIONS AND ESTIMATES

In this section, we will describe constructions of some specific leaf-wise conformal struc-
tures and estimates for the Weil-Petersson norm of their tangent fields. We begin with
some generalities on reparameterizing and gluing leaf-wise conformal structures. Next we
set up some notation for annuli and carry out some computations of hyperbolic area, before
turning to the construction of the required leaf-wise conformal structures on solid tori from
Lemma 5.3 necessary for our main construction. We end this section with the construction
of the solid torus from Lemma 5.2 we remove from the original manifold M.

6.1. Reparameterizing and gluing. Given a piecewise differentiable, monotone, surjec-
tive map g: I — J, we define G: ¥ x I — ¥ x J by G(z,t) = (z,g(t)). If ¢ is a leaf-wise
conformal structure on 3 x J, then it pulls back via G to one on ¥ x I denoted G*(, so
that £5°¢ = Zg(s) as Riemann surface structures on Y. For any s € I, the resulting path

of Beltrami differentials in IB%l(EsG*C) = Bl(Eg(s)) is just the composition t — v () 4(s), and

9(s)
consequently the tangent field is given by

ST = g ()1 -



WP LENGTH AND FIBERED FILLINGS 39

Suppose that (; and (o are leaf-wise conformal structures on ¥ x J; and 3 X J, respec-
tively, such that J; N Jy = {s} and there is a conformal map ¢: ¥§' — ©%2. Then we can
glue together the leaf-wise conformal structures to a single leaf-wise conformal structure ¢
on X x Jy U Js using the conformal map g. More precisely, we define the leaf-wise conformal
structure on ¥ x Jj to be ¢; and on ¥ X Jy to be g*(o. The path in Teichmiiller space
J — T(X) is the concatenation of the path J; — 7 (X) with J; — T(X) after adjusting
the marking of the latter by the conformal map g.

6.2. Annuli and solid tori. As above, we let LS! = R/LZ denote a circle of length
L > 0. Any annular Riemann surfaces with finite modulus can be uniformized by Euclidean
metrics of the form LS' x J, where J C R is an interval; the conformal modulus is |.J|/L.
Equivalently, this surface is the quotient

IS'x J={z=a+iyeClyecJ}/{(z+ 2+ L).

Note that LS' x J is conformally equivalent to rLS' x rJ, for any r > 0, and we will write
mA for any annular Riemann surface with conformal modulus m. For m = 1, we just write
1A = A, though we also allow A to denote a topological annulus.

The middle sub-annulus of the annulus 2mA of modulus 2m is the sub-annulus of mod-
ulus m invariant under the full conformal automorphism group. More precisely, it is given
by

S' x [-2, 2] C S' x [-m,m].
Although the middle sub-annulus encompasses half the Euclidean area, it’s hyperbolic area
is inversely proportional to the modulus, as the next lemma shows.

Lemma 6.1. Suppose mA C 2mA is the middle sub-annulus and o is the complete hyper-
bolic metric on the interior of 2mA. Then

T
/ 2=
mA m

Proof. We view the annulus 2mA as the quotient of
Hpy =A{z+iy € C[ |yl <m},
by the action of (z — z + 1). A fundamental domain for the middle sub-annulus is

Dm ={z+iy|0<2 <1, -F <y< B} CHm C Hy.
2 2

To find the hyperbolic metric on the interior of H,,, map it to the upper half-plane with

the conformal map z — ie2m. The pull-back to H,, of the hyperbolic metric Ilgé) in the

upper-half plane is

T
o— — d = d
7 2mcos(—§%)‘ d 2m sec( g, )|d2].

Therefore, integrating this over Dm provides the required computation:

)| gz |2= 2 ™ ) i
/ma —/m / Y 2 sec? (32)|dz|"= 4m2//m/zec ST dydm:%.
2



40 C. LEININGER, Y.N. MINSKY, J. SOUTO, AND S.J. TAYLOR

O

In the next three subsections, we carry out the explicit construction of a leaf-wise con-
formal structure on solid tori and estimates on the Weil-Petersson norm of the associated
tangent fields. This really divides into three parts: pinching, twisting, and then combining
the two. Some care is necessary with the parameterizations involved since, when using
these solid tori in Dehn filling, a fiber will typically meet the solid torus in many copies of
the annulus.

6.3. Pinching construction/estimates. Here we explicitly describe the leaf-wise con-
formal structure on a solid torus that “pinches the core curve,” and estimate the Weil—
Petersson norm of its tangent field. Specifically, for A > 0 and solid torus A x [0,h) we
construct a leaf-wise conformal structure that has modulus 1 on Ag, modulus of A; tending
to infinity as ¢ — h, and so that the Weil-Petersson norm of the tangent field is bounded
by @ for every t. The desired structure will be obtained from the one in the following

proposition by an appropriate reparameterization.

Proposition 6.2. There exists a leaf-wise conformal structure ¢ on A x [1,00) such that
(a) AS is isomorphic to tA.
(b) The associated flow ¢ : Af — A§+s 1s conformal in neighborhoods of the boundaries,
and is a dilation on the boundaries.
(c) The tangent field ,uf satisfies \,ug\ = 1/t in the middle annulus of Af, and is iden-
tically O outside 1it.

In particular, we have

¢ ¢ 2m
(2) /AC ’Nt0t| e

t

and therefore

3) [ o= vam.
1 AS

Note that this construction gives a path of finite Weil-Petersson length that diverges in
Teichmiiller space, by embedding A; into some Riemann surface and using this family to
deform. This recovers the result, due to Wolpert [Wol75] and Chu [Chu76], that the WP

metric is incomplete.

Proof. To begin, we define a 1-parameter family of quasi-conformal maps (f;: C — C)s>1,
so that, defining

Hs={z+iycC|y| < s},
° Ji is the identity on the real coordinate x,
e fi takes Hy; to Hy, dilating the y coordinate by t2,
° ft takes Hy to Hoi—1 and Hy to Hoy.
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Explicitly, f; is defined by
r +i(t%y) for 0 <y <1/t,

fiz +iy) = z+i(2t— ) for 1/t <y <1,

r+i(y+2(t—1)) forl <y,

and extend over x + iy € C with y < 0 by reflection. 3
Now since horizontal translations in C commute with f; and preserve H; for all s, ¢, the
map f; descends to a map

fi: A=Hy/(z+— z+4) — Hy/(z — z+4) = tA.

These maps define a leaf-wise conformal structure ¢ on the (noncompact) solid torus A x
[1,00) so that AS = tA and ¢F | = fi: AS — AL,

Parts (a) and (b) of the proposition follow immediately from the definition. For part (c)
and the two integral equalities, we need to compute the tangent field Mg-

For any fixed t > 1, s > 0, consider the maps ft,Hs = st o f[lz C—C. If y > t, then

fravs(z +1iy) =z +i(y + 2s),

while if —y > ¢, then fi s\ (2 +iy) = = +i(y — 2s).

On the other hand, if 0 < |y| < ¢, then for sufficiently small s > 0, we have
t+s)?
ZE)

t2

frovs(@+iy) = frrs(x +i(y/t?) =z +1i <
In particular, if 74 ;¢ is the Beltrami coefficient of !f‘t’t+s, then for each t, its derivative
with respect to s at s =0 is
_ . 0 for |yl >t
fn( +iy) = { —% for |y| <t

The tangent field uf is the descent of fi;, so we see that part (c) holds. Integrating this

2= L p_ 1™ _ 27
/Af‘luto-t’ _tQéAUt tQt/2 t37

where the second equality is by Lemma 6.1. This proves equality (2). An easy computation
proves (3). O

over Ag = tA, we have

We can reparameterize the family of Proposition 6.2 by the moral equivalent of Weil-
Petersson arclength to obtain the following:

Corollary 6.3. For any h > 0, there exists a differentiable homeomorphism g: [0,h) —
[1,00) so that if G: A x [0,h) — A x [1,00) is the induced map of products and & = G*(
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the pull-back of the leaf-wise conformal structure { on A X [1,00) as above, with tangent

field ,ug, then
| ot

Proof. Set
V2T _
/ \/ |uuag|2du—/3/2du— 8m(l —t 1/2)
Let t(s) be the inverse (given by t(s 5 ) which satisfies

PR S C) i
Y= ey T v
For any h > 0, set g(s) = t(v/8ms/h), and observe that g([0,h)) = [1, 00) with
= Ly R HSBT _ 29(0)”
g'(s) = ——t'(v8ms/h) = Jor T

Therefore, setting G: A x[0,h) — A x[1, oo) the reparameterization and £ = G*(, we have
¢

_ / ¢ ¢ 2
/W = ’9(5):“9(5)09(3)’
g(s)

_ 4g(s) ¢ ¢ 42
= 12 /AC Hg(5)% 50
g(s)

4g(s)® 2m 8w
h2 g(s)3 TR’
as required. ]

—

6.4. Twisting construction/estimates. Here we use an affine twist in the middle sub-
annulus and a simple construction to produce a solid torus A x [—¢, €] with arbitrarily small
€, and leaf-wise conformal structure for which the Weil-Petersson norm of the tangent field
is also arbitrarily small, and which affects the k' power of the Dehn twist in the core
curve. The trade-off is that the moduli of A; are required to be large.

Lemma 6.4. Given k € Z, € > 0, and § > 0 there exists mg > 0 so that for any m > my,
there exists a leaf-wise conformal structure & on T, = A x [—¢, €] with associated tangent

field (ugk), which is identically zero outside the middle sub-annulus for each Agk, so that
for all s € [—e, €], ASE has modulus 2m,

[ ot <

and the local flow (L) restricted to the boundary circles are dilations.
Moreover, there is a conformal map Ty : A% Ai so that the composition T} ¢5. : Ai —

Ai is the k' power of a Dehn twist in the core curve.
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_ 3/ kxm
Mk =\ 165e2-

Now fix any m > my, and let ¢ = 5%, We identify 2mA conformally with

2em”
1 3
2mA =§" x [—%,Tm]
We define fs: 2mA — 2mA, for all s € R by
T+ iy for — 5 <y <0
fs(x+iy) = z+scy+iy for0<y<m
T + scm + iy formgyg%”,

Proof. First, we set

and note that this is an affine shear on the middle sub-annulus S* x [0, m], and is conformal
outside. For s = 2¢, the effect of fo on the top boundary component of the annulus is

fae (374—237’”) = (ar+2&cm)+i37m - (g;+k)+237m

Since fo is the identity on the bottom component, it follows that fa. is the k' power of a
Dehn twist in the core curve of 2mA.

The maps (ft)ic[0,2¢ define a leaf-wise conformal structure on A x [0, 2¢] and by trans-
lating the interval back by e and pulling back, it gives the desired leaf-wise conformal
structure & on A x [—e¢, €] so that A; has modulus 2m for all ¢. Furthermore, the maps
bp - ASE Af’“, in product coordinates above, are given by f;_s (because f is already

a flow: fso fy = fs+t). Thus, the tangent field (ugk) is easily seen to be zero outside the
middle sub-annulus and by a computation ,u,gk = % in the middle sub-annulus. Appealing

to Lemma 6.1 we see that
2

2 2 2
/ oS 2 = 0/ (afk)Q _cm_ km _Krl
Al 0 E 4 Jaee \7F 4m  16e2m? ~ 16€2 m;

Since fo is the k" power of a Dehn twist from 2mA to itself, the existence of the required
map 7T follows. O

6.5. Gluing together solid tori. Here we combine the constructions above to produce
a single solid torus that first pinches, then twists, then “un-pinches”. This is obtained by
stacking together a sufficiently large piece of the solid torus from Corollary 6.3, a solid
torus from 6.4, and then another copy of the first solid torus, but with the reversed flow.
This will prove the following lemma claimed in Section 5.4.

Lemma 5.3. Given k € Z, h > 0, p > 1, there exists a leaf-wise conformal structure ny on
the solid torus Ty = A x J for J = [—h, h] agreeing with the standard structure (of modulus
1) on A_j, = A, with tangent field (ud*) identically zero in a neighborhood of A x J, so

that for all s € J,
8pm
. 2
/A"k [urodt|” < 2
u

where og* is the complete hyperbolic metric on the interior of Ag, and so the local flow
(¢Y) restricted to the boundary circles are dilations. Moreover, there is a conformal map
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Ty : AZ’“ — Azkh so that the composition T}, o gbgh: Aé“h — Aé“h is the k'™ power of a Dehn
twist in the core curve.

Proof. The idea of the proof is to first use Corollary 6.3 to define n; on A for s € [—h, —eg],

for some €; > 0 so that the modulus of Ai’“ek is as large as we like. Then define 7, on Ag,

for s € [—e, €x] using Lemma 6.4 to “do all the twisting”. Finally, we define 7 on A, for

s € [ex, h], by “reversing” what was done for s € [—h, —¢;]. We now explain the details.
Fix € > 0 sufficiently small so that h? < p(h — €)?, and note that this implies

8w 8pm
J— < —_ .
(a2 = 12
We will choose €, € (¢, h) and define 1, on A X [—h, h] by defining it on three sub-intervals:
J_ = [~h,—ek], Jo = [—ex, €], and Jy = [eg, h].

First, let £ be the leaf-wise conformal structure on A x [0, h —¢) from Corollary 6.3. We
can translate the interval [—h, —e) to [0, h—¢€) and pull back to obtain a leaf-wise conformal
structure on A x [—h, —¢), also denoted &, so that for all s € [—h, —¢)

8 8pm
5812 = <
as in Corollary 6.3.

Observe that the modulus of AS tends to infinity as s tends to —e. Therefore, we may
choose €, € (€, h) so that the modulus of Ag_gk is at least 2m where m > my and my, is as
in Lemma 6.4 for the given k, our chosen ¢, and for § = 8,'%2”. Now we describe the leaf-
wise conformal structure 7 on each of the intervals, explaining how they are glued together.

The interval J_. We define 7 to be the restriction of £ on J_. From the above we have

8pm

M 57k |2 < 207

(4) [ ot < 5
forall s e J_.

The interval Jy. Next, let & be the conformal structure on A x [—e¢, €] as in Lemma 6.4
so that for all s € [—¢, €], AS* has modulus 2m, and

2
[ o =

Apply the affine map Jy = [—eg, €] — [—¢, €] and let 7 be the pulled back conformal
structure on A x Jy. Since € < €, it follows that

8pm
2
/A”k ot <0 = h2’
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for s € Jyo. That is, (4) also holds for s € Jy. Because the modulus of A is 2m for each
s € [—€g, €x], we may glue to the two leaf-wise conformal structure on A x J_ and A x Jp.

For the final interval, let T;: At — A™ be the conformal map from Lemma 6.4 so
that T} o, : AT — A™ is the k™ power of a Dehn twist in the core curve of AT .

The interval J,. On this final interval, the path of beltrami differentials is the one
on J_, “run backward and remarked by 7}”. More precisely, we define 7 on A, 4, for
0 < s < h — ¢ so that the map

oL Tiol,: Alty, — AT

€x+s —€r—S
is conformal. Alternatively, we can define n; on A x J; as the pull-back of the leaf-wise
conformal structure by the map T} x g: A x J; — A x J_, where g: J; — J_ is given by
g(t) = —t. Since T}, is conformal from Af* — A" the leaf-wise conformal structures glue

together at €, and because we are simply following the first part of the path backward,
(4) holds for all s € J_, and hence for all s € [—h, h].
Finally, let

_ 4T /T . A"k Nk
Tk; - ¢—h+€ka’¢—h+€k . Ah — A—h'

By construction, this map is conformal. Composing this map with ¢5, : A7 — AJ*, and
from the fact that (¢.) is a local flow on the product, it follows that on A™, we have

Tedan = O s, ThO e, ®on = (Dh—e) " (Th2e) Gh—c, -

Therefore, qu%rh is the conjugate by gb}l;_ o of the k¥ power of a Dehn twist in the core

curve of A_,,, and hence is the k" power of a Dehn twist in the core curve of A_j, as
required.

Since pd* agrees with the tangent fields from the leaf-wise conformal structures from
Corollary 6.3 and Lemma 6.4, it is identically zero outside the middle sub-annulus for each
fiber, and hence is identically zero in a neighborhood of JA x J. Furthermore, on each
piece the flow ¢! is a dilation on boundaries of annuli. These observations complete the
proof. O

6.6. Singular-solv solid tori. For the remainder of this section, we assume M = My
with ¢ pseudo-Anosov and that (m: M — LS', (¢;)) is the suspension equipped with the
leaf-wise conformal structure from the singular-solv structure, and prove the remaining
lemma.

Lemma 5.2 For some h > Larccosh(Z — 3) and J = [—h,h] there is an embedding
v: Ty — M compatible with the suspension (m: M — LS', (¢;)) which is disjoint from the
singularities. Furthermore, the induced leaf-wise conformal structure ¢ on T; agrees with
the standard one on A_y, and there exists U A,Cl — Agh conformal so \Ifoqﬁgh: A_p, —A_y

is the " power of a Dehn twist for some integer r.
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Proof of Lemma 5.2. As we pointed out in §5.4, 7,(¢) = do(Ly, L), is the projection
distance to the annulus with core curve « of the stable and unstable laminations for ¢.
Since 7o, = To(¢) > 9, by a result of Rafi [Raf05] (see [LR17] for this specific statement),
in any fiber Sf , there is a Euclidean cylinder neighborhood of (a representative of «/), and
at the balance time for «, the modulus of the maximal Euclidean annulus is greater than
To — 2. By translating, we may assume that the balance time of « is 0.

mo = Q (72‘”—2)2—1J>2+1.

Now we let
An elementary computation shows

(5) %—SSmog%—Qand\/mg—leZ.

It follows that in Sg there is a Euclidean annular neighborhood A’ of a flat geodesic
representative of o of modulus mg. Another computation shows that the modulus at
any time t € R of ¢(A’) is given by m; = ﬁ&t)‘ Therefore, setting h = %arccosh(mo),
we see that A = ¢_,(A’) is a Euclidean annulus of modulus 1, and hence by scaling the
singular-solv metric if necessary, we can find an isometry i: S* x [0,1] — A. We also note

arccosh(3/2) > 0.

N | =

1 1
h = 3 arccosh(mg) > 3 arccosh (%a - 3) >
For J = [—h, h], we define ¢: T; — M by
U(z + 1Y), s) = Gsyn(ilz +1y)).

For each s, the image ((Ay) is a locally isometrically embedded Euclidean annulus (though
¢ does not restrict to a local isometry). The map 7: J — LS! is the composition of the
inclusion J — R with the covering R — LS' (since we have translated to assume the
balance time of « is 0). We now establish the key properties of ..

We first prove that ¢ is an embedding. Since Tj; is compact and ¢ is continuous, it
suffices to prove that ¢ is injective. By construction, ¢ maps each annulus Ay, for s € J,

injectively to the Euclidean cylinder ¢p4s(A_p) = ¢s(A’) which has modulus Cosrh”% > 1.

Suppose ¢ is not injective, in which case there are two different values s # s’ € J so that
ds(A) N g (A") # (. Since s — ' # 0, ¢ps_¢ is a nonzero power of the first return map to
Y¢, hence is a nonzero power of ¢.

Now note that two Euclidean annuli in a FEuclidean cone surface that intersect either
do so in Euclidean sub-annuli or else cross each other transversely. In the latter case the
product of the moduli is at most 1. If the annuli intersect in a sub-annulus, then the isotopy
class of the core curve of ¢ (A’) is sent by a power of a conjugate of ¢ to itself, contradicting
the fact that f is pseudo-Anosov. So, the annuli ¢s(A’) and ¢4 (A’) must cross each other
transversely. The same is true of the strictly larger maximal Euclidean annuli containing
these, whose moduli are therefore strictly greater than 1. This contradicts the fact that
the product of the moduli is no more than 1. Therefore, ¢ is injective.
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The fact that ¢ agrees with the standard conformal structure on A_j, = A just follows
from the fact that 7 is an isometry, hence conformal. Since ¢;_s: 58— S,f is affine for
all t,s, it follows that t|a,: Ay — ¢s(A’) is an affine map with respect to the standard
structure on A; = S! x [0, 1] on the domain and the conformal structure ¢ on the image. In
particular, ¢|s, : Ay, — ¢p(A") is an affine map from a Euclidean annulus of modulus 1 to
another Euclidean annulus of modulus 1 of the same area. We can therefore isometrically
parameterize ¢p,(A’) by St x [0,1] so that with respect to these coordinates, the map ¢/,
is given by
(6) r+iy— (z+ry) +iy

||
Vr2+4?
other hand the map is e*"—quasi-conformal (since the map ¢y, : th — S,CL is a Teichmuller
map), and hence the norm of the Beltrami coefficient is also given by

for some r € R. The norm of the Beltrami coefficient of this map is while on the

e —1  sinh(2h)  sinh(arccosh(mg))  /md —1

e# + 1 cosh(2h)  cosh(arccosh(my)) mo

Setting these quasi-conformal dilatations equal, we have

rl _ V/mg—1

r2 4+ 4 mo

and solving we see that r = :|:2\/m3 — 1 € 27Z. Thus if we let ¥ Ai — Agh be a conformal

map, the composition ¥ o ¢, is given by the formula in (6) and so is the rth power of a
Dehn twist, completing the proof. O

9
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