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Abstract. We study properties of generic elements of groups of isometries of hyperbolic spaces.
Under general combinatorial conditions, we prove that loxodromic elements are generic (i.e. they
have full density with respect to counting in balls for the word metric in the Cayley graph) and
translation length grows linearly. We provide applications to a large class of relatively hyperbolic
groups and graph products, including all right-angled Artin groups and right-angled Coxeter groups.

1. Introduction

Let G be a finitely generated group. One can learn a great deal about the geometric and algebraic
structure of G by studying its actions on various negatively curved spaces. Indeed, Gromov’s
theory of hyperbolic groups [Gro87] provides the clearest illustration of this philosophy. However,
weaker forms of negative curvature, ranging from relative hyperbolicity [Far98, Bow12, Osi06] to
acylindrical hyperbolicity [Osi15, Bow08], apply to much larger classes of groups and still provide
rather strong consequences. In all of these theories, a special role is played by the loxodromic (or
hyperbolic) elements of the action, i.e. those elements which act with sink-source dynamics. In
this paper, we are interested in quantifying the abundance of such isometries for the action of
G on a hyperbolic space X. We emphasize that in all but the simplest situations, the natural
hyperbolic spaces that arise are not locally compact. This includes actions associated to relatively
hyperbolic groups [Far98], cubulated groups [KK14, Hag14], mapping class groups [MM99], and
Out(Fn) [BF14, HM13], to name only a few. Hence, in this paper we make no assumptions of local
finiteness or discreteness of the action.

Suppose that G y X is an action by isometries on a hyperbolic space X. We address the
question: How does a typical element of G act on X?

When G is not amenable, the word “typical” has no well defined meaning, and depends heavily
on the averaging procedure: a family of finitely supported measures exhausting G. Although much
is now known about measures generated from a random walk on G [Mah11, CM15, MT14, MS14],
very little is known about counting with respect to balls in the word metric. This will be our main
focus.

In more precise terms, fix a finite generating set S for the group G. Let Bn be the ball of radius
n about 1 with respect to the word metric d determined by S. Then we call a property P generic
if

#{g ∈ Bn : g has P}
#Bn

→ 1 as n→∞.

In this language, a refinement of our questions asks when the loxodromic elements of a particular
action Gy X are generic with respect to a generating set S. It is important to note that genericity
in the counting model depends on the generating set: a priori, sets may be generic with respect to
one word metric, but not with respect to another.

The results of this paper are modeled on our previous work [GTT16], where we studied the
situation where G is itself hyperbolic. Recall that g ∈ G is loxodromic with respect to the action
G y X if and only if its translation length τX(g) = lim dX(x, gnx)/n is strictly positive. In
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[GTT16], we prove that for any isometric action of a hyperbolic group G on a hyperbolic metric
space X, loxodromic elements are generic, and translation length grows linearly. However, the
genericity of loxodromic elements is in general false when the hypothesis that G is hyperbolic is
dropped (see Example 1). In the present paper, we generalize this theorem to a much larger class
of groups. Our general setup is discussed below, but here is a sample:

Theorem 1.1. Suppose that either

(1) G is a finitely generated group which admits a geometrically finite action on a CAT(−1)
space with virtually abelian parabolic subgroups and S an admissible generating set, or

(2) G is a right-angled Artin or Coxeter group which does not split as a direct product, and S
is its standard vertex generating set.

Then for any nonelementary isometric action G y X on a hyperbolic metric space X there is an
L > 0 such that

(1)
#{g ∈ Bn : τX(g) ≥ Ln}

#Bn
→ 1.

In particular, loxodromic elements are generic.

In fact, our theorem applies to a more general class of relatively hyperbolic groups and graph
products (see Section 2 for precise statements and definitions) and in fact to any group satisfying
certain combinatorial conditions. Before moving to our general framework, we state one more
result which may be of independent interest. It is a direct generalization of a theorem of Gouëzel,
Mathéus, and Maucourant [GMM15] who consider the case where G is hyperbolic.

Theorem 1.2. Let the group G and generating set S be as in Theorem 1.1, and suppose that H is
any infinite index subgroup of G. Then

lim
n→∞

#(H ∩Bn)

#Bn
= 0.

That is, the proportion of elements of G of length less than n which lie in H goes to 0 as n→∞.

1.1. General framework and results. Our general framework is as follows. We define a graph
structure to be a pair (G,Γ) where G is a countable group and Γ is a directed, finite graph such
that:

(1) there is a labeled vertex v0, called the initial vertex ; for every other vertex v there exists a
directed path from v0 to v;

(2) every edge is labeled by a group element such that edges directed out of a fixed vertex have
distinct labels.

By (2), there exists an evaluation map ev: E(Γ) → G and this map extends to the set of finite
paths in Γ by concatenating edge labels on the right. We denote by Ω0 the set of finite paths
starting at v0, by Sn ⊂ Ω0 the set of paths of length n, and by #X the cardinality of X. A graph
structure is a geodesic combing if the evaluation map ev : Ω0 → G is bijective, and each path in
Ω0 evaluates to a geodesic in the associated Cayley graph. See Section 3.1 for details. We introduce
the counting measure Pn on Ω0 as

Pn(A) :=
#(Sn ∩A)

#Sn
,

for A ⊂ Ω0 The graph structure is almost semisimple if the number of paths of length n starting
from v0 has pure exponential growth, i.e. there exists c > 0, λ > 1 such that

c−1λn ≤ #Sn ≤ cλn

for each n. See Section 3.2 for details.
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As a simple example, consider the rank N ≥ 2 free group G = FN and fix a free basis {a1, . . . , aN}
of FN . Then one has the usual geodesic combing with underlying graph Γ as follows. The graph Γ
has 2N + 1 vertices, with initial vertex v0 and other vertices labelled aεi with i = 1, . . . , N , ε = ±1.
For each vertex v = aεi , there is a directed edge labelled aηj to the vertex aηj unless i = j and
ε = −η. Moreover, there is a directed edge from v0 to each of the other vertices labeled by its
terminal vertex.

To state our results in fully generality, we first introduce a few dynamical properties of graph
structures.

Definition 1.3. For each vertex v of Γ, we denote by Lv the set of loops based at v, and by
Γv = ev(Lv) its image in G. We call Γv the loop semigroup associated to v.

Consider an action Gy X, where X is a hyperbolic metric space. A semigroup L < G is nonele-
mentary if it contains two independent loxodromics. A graph structure (G,Γ) is nonelementary
for the action Gy X if for any vertex v of maximal growth (i.e. the growth rate of Γv is maximal
among all vertices; see Definition 3.1) the loop semigroup Γv is nonelementary.

We now introduce several criteria on a graph structure that guarantee it is nonelementary: we
call them thickness and quasitightness. Although they may appear slightly technical, each is meant
to capture ‘mixing’ properties of the graph structure. To help with the reader’s intuition, we also
illustrate each property in the case of the free group FN .

Definition 1.4 (Thickness). A graph structure is thick if for any vertex v of maximal growth
there exists a finite set B ⊆ G such that

G = BΓvB,

where the notation on the right-hand side means group multiplication between subsets of G. More
generally, a graph structure is thick relative to a subgroup H < G if for every vertex v of maximal
growth there exists a finite set B ⊆ G such that

H ⊆ BΓvB.

For example, the geodesic combing described above for FN is thick. Indeed, in this case each Γv
is maximal, and if v corresponds to, say, the generator a, then Γa is the set of words that end with
a and do not begin with a−1. From this description, it is easy to see that we may take B in the
definition of thickness to be the set of words of FN of length at most 2.

Given a path γ in Γ, we say it c–almost contains an element w ∈ G if γ contains a subpath p
such that w = a · ev(p) · b in G, with |a|, |b| ≤ c. Here, |a| denotes the word length of a ∈ G with
respect to the generating set given by edge labels. We denote as Yw,c the set of paths in Γ starting
at the initial vertex which do not c–almost contain w. The following definition is modeled on the
one found in [AL02].

Definition 1.5 (Growth quasitightness). A graph structure (G,Γ) is called growth quasitight if
there exists c ≥ 0 such that for every w ∈ G the set Yw,c has density zero with respect to Pn; that
is,

Pn(Yw,c)→ 0 as n→ 0.

More generally, given a subgroup H < G we say that (G,Γ) is growth quasitight relative to H if
there exists a constant c ≥ 0 such that for every w ∈ H the set Yw,c has density zero.

It is also the case that the geodesic combing previously described for FN is growth quasitight.
(In fact, a similar property holds for all hyperbolic groups [AL02].) In this case, we may take c = 0,
and so Yw,0 is precisely the set of words that do not contain w as a subword. It is then an exercise
to show that the proportion of elements of FN with word length n that lie in Yw,0 goes to 0 as
n→∞. We will see in Example 1 a case in which growth quasitightness fails.

In the most general form, the main theorem we are going to prove is the following.
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Theorem 1.6. Let G be a countable group of isometries of a δ-hyperbolic metric space X, and let
(G,Γ) be an almost semisimple graph structure which is either:

(1) nonelementary;
(2) thick relative to a nonelementary subgroup H < G; or
(3) growth quasitight relative to a nonelementary subgroup H < G.

Then there exists L > 0 such that for every ε > 0 one has that:

(i) Displacement grows linearly:

#{g ∈ Sn : dX(gx, x) ≥ (L− ε)n}
#Sn

→ 1 as n→∞.

(ii) Translation length grows linearly:

#{g ∈ Sn : τX(g) ≥ (L− ε)n}
#Sn

→ 1 as n→∞.

(iii) As a consequence, loxodromic elements are generic:

#{g ∈ Sn : g is X − loxodromic}
#Sn

→ 1 as n→∞.

If we are interested in counting with respect to balls in the Cayley graph, we get the following
immediate consequence.

Corollary 1.7. Let G be a group with finite generating set S. Suppose that

(i) there is a geodesic combing for (G,S);
(ii) G has pure exponential growth with respect to S; and

(iii) the combing for (G,S) satisfies at least one of the conditions (1), (2), (3) above.

Then for any nonelementary action G y X on a hyperbolic space, the set of loxodromic elements
is generic with respect to S.

Note that, as we will see in detail later in Example 1, the right-angled Artin group G = F2 ×
F3 with the standard generators has a geodesic combing and has pure exponential growth but
loxodromic elements are not generic, so an additional dynamical condition (such as (1), (2), (3))
must be added. In fact, we will show that for graph products such as RAAGs and RACGs this
condition amounts essentially to the group G not being a product. Moreover, we will prove that
the three conditions are related, namely (3)⇒ (2)⇒ (1).

2. Applications

2.1. Hyperbolic groups. By Cannon’s theorem [Can84], a hyperbolic group G admits a geodesic
combing for any generating set. In fact, the language recognized by the graph is defined by choosing
for each g ∈ G the smallest word (in lexicographic order) among all words of minimal length which
represent g. This is called the ShortLex representative. We proved in [GTT16] that this graph
structure is nonelementary, hence we can apply Theorem 1.6. This shows that Theorem 1.6 is a
direct generalization of the main theorem from [GTT16].

2.2. RAAGs, RACGs, and graph products. Let G be a right angled Artin or Coxeter group,
and let S be its standard vertex generating set. A result of Hermiller and Meier [HM95] implies that
(G,S) is ShortLex automatic. In our language, (G,S) admits a geodesic combing. However, the
graph Γ parameterizing this language of geodesics does not have the correct dynamical properties
needed to apply Theorem 1.6. In Section 10, we modify their construction to show that when G
is not a direct product, it has a graph structure with respect to the standard generators with the
strongest possible dynamical properties. We then obtain the following:
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Theorem 2.1. Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and
does not split as a product, and consider an action of G on a hyperbolic metric space X. Then eq.
(1) holds, and loxodromic elements are generic with respect to the standard generators.

We note that there are many examples of actions of such G on locally infinite hyperbolic graphs.
The most natural of which are the extension graph [KK14] (in the case of a RAAG) and the contact
graph [Hag14] (in the case of a RACG). For both of these actions, the loxodromic isometries are all
rank 1 (or Morse) elements of G [BC12, CS14] and so Theorem 2.1 implies that the rank 1 elements
of these groups are generic.

Actually, Theorem 2.1 applies to all graph products of groups with geodesic combing (Theorem
10.5). We refer the reader to Section 10 for details. Let us point out that RAAGs which are
products give examples of actions where loxodromics are not generic:

Example 1 (Nongenericity in general). Denote the free group of rank n by Fn and fix a free basis
as a generating set. Let G = F2×F3 and let X denote a Cayley graph for F2. Give G its standard
generating set; that is, the generating set consisting of a basis for F2 and a basis for F3. Consider
the action G y X in which the F2 factor acts by left multiplication and the right factor acts
trivially. If we denote the set of loxodromics for the action by LOX, then

lim
n→∞

# (LOX ∩Bn)

#Bn
=

2

3
6= 1.

Note that in the example above G has pure exponential growth and a geodesic combing, so these
two conditions are not sufficient to yield genericity of loxodromics. Moreover, the complement of
LOX is a subgroup H < G which has infinite index and positive density, showing that conditions
are needed also in Theorem 1.2.

Let us also see that growth quasitightness fails. To construct a geodesic combing for G, let Γ1 be
a geodesic combing for F3 and let Γ2 be a geodesic combing for F2 as discussed above. To obtain
a geodesic combing for G, take the disjoint union of Γ1 and Γ2, remove the initial vertex for Γ2

and introduce arrows from any non-initial vertex of Γ1 to any (non-initial) vertex of Γ2, with the
appropriate labels.

Let us consider the set Ω of paths starting at the initial vertex which always stay inside Γ1, and
let w ∈ F2 × {1}. We claim that the set Yw,c contains Ω whenever |w| > 2c. Since Ω has positive
density in G, the claim contradicts growth quasitightness. To prove the claim, let γ ∈ Ω. If γ does
not belong to Yw,c, then there exists a, b with |a|, |b| ≤ c and such that w = a · ev(p) · b with p a
subpath of γ. Since p is a subpath of γ, then ev(p) lies in H = {1} × F3. Consider the projection
π : F2 × F3 → F2. If w = a · ev(p) · b, then π(w) = π(a)π(b) hence |w| = |π(w)| ≤ 2c, which proves
the claim.

Moreover, as a consequence of the geodesic combing that we produce in order to prove the
previous theorem, we also prove the following fine counting statement for the number of elements
in a sphere with respect to the standard generating set. As far as we know, this result is also new,
and it may be of independent interest.

Theorem 2.2. Let G be a right-angled Artin group or Coxeter group which is not virtually cyclic
and does not split as a product. Then there exists λ > 1, C > 0 such that

lim
n→∞

#Sn
λn

= C.

We say that a group with a generating set with the previous property has exact exponential
growth. This is stronger than pure exponential growth (where one only requires C−1λn ≤ #Sn ≤
Cλn), and depends very subtly on the choice of generating set. In fact, in Theorem 11.1 we will
establish this result more generally for graph products.
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Note that growth functions for graph products are known by Chiswell [Chi94] and Athreya-
Prasad [AP14]; however, it does not seem obvious how to use them to prove the result above.

2.3. Relatively hyperbolic groups. Our results also apply to a large class of relatively hyperbolic
groups. Just as above, we note that there are many natural action of relatively hyperbolic groups
on locally infinite hyperbolic graphs. The most famous of these is the coned-off Cayley graph
introduced by Farb [Far98], where the loxodromics of G are exactly the elements not conjugate into
a peripheral subgroup.

To apply our general theorem to relatively hyperbolic groups, we need two hypotheses.
First, recall that a relatively hyperbolic group (G,P) is equipped with a compact metric space

∂G known as its Bowditch boundary, and such a space carries a natural Patterson-Sullivan measure
ν, defined with respect to the word metric on Cay(G,S) (see Section 9.2). We call a relatively
hyperbolic group G with a generating set S doubly ergodic if the action of G on ∂G×∂G is ergodic
with respect to the measure ν × ν.

Second, we need a geodesic combing with respect to some generating set S. Let us call a finite
generating set S admissible if G admits a geodesic combing with respect to S. We have the following
general statement:

Theorem 2.3. Let G be a relatively hyperbolic group with an admissible generating set S for which
G is doubly ergodic. Then, for each action of G on a hyperbolic metric space X, there exists L > 0
such that

#{g ∈ Bn : τX(g) ≥ Ln}
#Bn

→ 1 as n→∞.

As a consequence, X-loxodromic elements are generic.

In fact, by [AC16] and [NS95], many relatively hyperbolic groups admit geodesic combings as
follows. Let us call a finitely generated group G geodesically completable if any finite generating
set S of G can be extended to a finite generating set S′ ⊇ S for which there exists a geodesic
biautomatic structure. Antoĺın and Ciobanu ([AC16], Theorem 1.5) proved that whenever G is
hyperbolic relative to a collection of subgroups P each of which is geodesically completable, then G
is geodesically completable. Moreover, from automata theory ([HRR17], Theorem 5.2.7) one gets
that if G admits a geodesic biautomatic structure for S, then it also admits a geodesic combing for
the same S. This yields:

Proposition 2.4. Let (G,P) be a relatively hyperbolic group such that each parabolic subgroup
P ∈ P is geodesically completable. Then every finite generating set S can be extended to a finite
generating set S′ which admits a geodesic combing.

Let us note that in particular, virtually abelian groups are geodesically completable ([AC16],
Proposition 10.1), hence any group hyperbolic relative to a collection of virtually abelian subgroups
is geodesically completable and admits a geodesic combing. Moreover, we will prove (Proposition
9.17):

Proposition 2.5. If a group G acts geometrically finitely on a CAT(−1) proper metric space, then
G is doubly ergodic with respect to any finite generating set.

In particular, geometrically finite Kleinian groups satisfy both hypotheses of Theorem 2.3, which
establishes Theorem 1.1 (1) as a corollary of Theorem 2.3.

2.4. Actions with strongly contracting elements. Let us now remark that by combining our
work with recent work of W. Yang one can apply our theorem in greater generality. Following
[ACT15] and [Yan16], we call an element g ∈ G strongly contracting for the action on Cay(G,S)
if n 7→ gn is a quasigeodesic and there exists C,D ≥ 0 such that for any geodesics γ in Cay(G,S)
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whose distance from 〈g〉 is at least C, the diameter of the image of γ under the nearest point
projection to 〈g〉 is bounded by D.

Wenyuan Yang [Yan16] has recently announced that whenever the action Gy Cay(G,S) has a
strongly contracting element, G is growth quasitight and has pure exponential growth with respect
to S. Combining Theorem 1.7 with Yang’s result we obtain the following:

Corollary 2.6. Let G be a group with finite generating set S. Suppose that the Cayley graph
Cay(G,S) has a strongly contracting element and that (G,S) has a geodesic combing. Then for
any nonelementary action Gy X on a hyperbolic space, the set of loxodromic elements is generic
with respect to S.

2.5. Genericity with respect to the Markov chain. Our approach is to deduce typical prop-
erties of elements of G from typical long term behavior of paths in the associated graph structure.
As a by-product, we also obtain a general theorem about generic elements for sample paths in a
Markov chain, which may be of independent interest. More precisely, an almost semisimple graph
Γ defines a Markov chain on the vertices of Γ (see Section 3.3), hence it defines a Markov measure
P on the set Ω0 of infinite paths from the initial vertex. For such Markov chains, we prove the
following:

Theorem 2.7. Let (G,Γ) be an almost semisimple, nonelementary graph structure for G y X,
and let x ∈ X. Then:

(1) For P-almost every sample path (wn), the sequence (wnx) converges to a point in ∂X;
(2) There exist finitely many constants Li > 0 (i = 1, . . . , r) such that for P-almost every sample

path there exists an index i such that

lim
n→∞

d(wnx, x)

n
= Li;

(3) If we denote L := min1≤i≤r Li, then for each ε > 0 one has

P(τX(wn) ≥ n(L− ε))→ 1

as n→∞. As a consequence,

P(wn is loxodromic)→ 1 as n→∞.

2.6. Non-backtracking random walks. An illustration of the previous result is given by looking
at non-backtracking random walks. Let G be a group and S = S−1 a generating set. The non-
backtracking random walk on G is the process defined by taking gn uniformly at random among
the elements of S \ {(gn−1)−1} and considering the sample path wn = g1g2 . . . gn. We prove the
following, which answers a question of I. Kapovich.

Theorem 2.8. Let G be a nonelementary group of isometries of a hyperbolic metric space X, and
let S be a finite generating set. Consider the non-backtracking random walk

wn := g1 . . . gn

defined as above, and let P be corresponding the measure on the set Ω0 of sample paths. Then

P (wn is loxodromic on X)→ 1

as n→∞.

Proof. Let us consider F = F (S) the free group generated by S, with its standard word metric. By
composing the surjection F → G with the action on X, we can think of F as a group of isometries
of X. Then F has a standard geodesic combing, whose graph Γ has only one non-trivial component,
hence (by Proposition 6.3) the graph structure (F,Γ) is thick, hence nonelementary. The result
then follows from Theorem 2.7. �
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2.7. Previous results. Beginning with Gromov’s influential works [Gro87, Gro93, Gro03], there
is a large literature devoted to studying typical behavior in finitely generated groups. More re-
cent developments can be found, for example, in [AO96, Arz98, BMR03, Cha95, KMSS03, KS05,
KRSS07, Ol’92].

If one takes the definition of genericity with respect to random walks, instead of using counting
in balls, then genericity of loxodromics has been established in many cases. In particular, the
question of genericity of pseudo-Anosovs in the mapping class group goes back to at least Dunfield-
Thurston [DT06], and for random walks it has been proven independently by Rivin [Riv08] and
Maher [Mah11]. This relates to our setup, as a mapping class is pseudo-Anosov if and only if it
acts loxodromically on the curve complex. Genericity of loxodromics for random walks on groups
of isometries of hyperbolic spaces has been established with increasing level of generality in [CM15,
Sis11, MT14]. Let us note that in general counting in balls and counting with random walks need
not yield the same result. For instance, in Example 1, loxodromics are not generic with respect to
counting the the Cayley graph despite that fact that they are typical with respect to reasonable
random walks. In fact it is a very important problem to establish whether the harmonic measure
for the random walk can coincide with a Patterson-Sullivan-type measure, given by taking limits
of counting measures over balls. Many results in this area show that the two measures do not
coincide except in particular cases (cf. [GMM15]), while an existence result of a random walk for
which harmonic and PS measure coincide is due for groups of isometries of CAT (−1) spaces to
Connell-Muchnik [CM07].

As for counting in balls, Wiest [Wie14] recently showed that if a group G satisfies a weak
automaticity condition and the action G y X on a hyperbolic space X satisfies a strong geodesic
word hypothesis, then the loxodromics make up a definite proportion of elements of the n ball. This
geodesic word hypothesis essentially requires geodesics in the group G, given by the normal forms,
to project to unparameterized quasigeodesics in the space X under the orbit map. In our work, on
the other hand, we do not assume any nice property of the action except it being by isometries.
Let us note that our theorems answer (when the hypotheses of our two approaches overlap) the
open problems (3) (4) in ([Wie14], section 2.12).
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supported by NSF grants DMS-1400498 and DMS-1744551, and the third author is partially sup-
ported by NSERC and the Alfred P. Sloan Foundation. We also thank the referee for corrections
and suggestions that improved the paper.

3. Background material

Since graph structures play a central role in our work, we begin by discussing some further
details. The reader will notices that much of this is inspired by the theory of regular languages and
automatics groups [EPC+92], but we place a special focus on the graph which parameterizes the
language. Thus our terminology may differ from that in the literature.

3.1. Graph structures. The general framework is as follows. We define a graph structure to
be a pair (G,Γ) where G is a countable group and Γ is a directed, finite graph such that:

(1) there is a labeled vertex v0, called the initial vertex ; for every other vertex v there exists a
directed path from v0 to v;

(2) every edge is labeled by a group element such that edges directed out of a fixed vertex have
distinct label.

Thus, there exists an evaluation map ev: E(Γ)→ G and this map extends to the set of finite
paths in Γ by concatenating edge labels. Here and in what follows, the term path will always
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refer to a directed path. If S = ev(E(Γ)), we say that (G,Γ) is a graph structure with respect
to S. We denote by Ω0 the set of finite paths starting at v0 and by Ω the set of all finite paths.
When ev(Ω0) = G, we call the graph structure surjective; in this case S = ev(E(Γ)) generates
G as a semigroup. A surjective graph structure is geodesic if for each path p ∈ Ω, the word
length |ev(p)|S is equal to the length of the path. In this case, all paths in Γ evaluate naturally to
geodesic paths in the Cayley graph Cay(G,S). Finally, the graph structure is called injective, if
ev : Ω0 → G is injective. For example, if each path in Ω0 labels the ShortLex geodesic representative
of its evaluation (with respect to some ordering on S), then (G,Γ) is injective. A bijective, geodesic
graph structure (G,Γ) with respect to S is called a geodesic combing of G with respect to S.

Note the evaluation map, restricted to Ω0, factors through S∗, the set of all words in the alphabet
S. The image in S∗ of Ω0 (i.e. all words which can be spelled starting at v0) is called the language
parameterized (or recognized) by Γ. This language is prefix closed by construction; an initial
subword of a recognized word is also recognized. We warn the reader that references differ on the
exact meaning on some of these terms. For example, Calegari–Fujiwara use the term “combing” to
refer to the language of a bijective, geodesic graph structure rather than the graph structure itself
[CF10, Cal13]. Since we will be most interested in dynamical properties of the graph parameterizing
the language of geodesics, we choose to emphasize the graph structure.

3.2. Almost semisimple graphs. Let us summarize some of the fundamental properties about
graphs and Markov chains. Much of this material appears in Calegari–Fujiwara [CF10], and we
refer to that article and [GTT16] for more details and proofs.

Let Γ be a finite, directed graph with vertex set V (Γ) = {v0, v1, . . . , vr−1}. The adjacency matrix
of Γ is the r × r matrix M = (Mij) defined so that Mij is the number of edges from vi to vj .

Such a graph is almost semisimple of growth λ > 1 if the following hold:

(1) There is an initial vertex, which we denote as v0;
(2) For any other vertex v, there is a (directed) path from v0 to v;
(3) The largest modulus of the eigenvalues of M is λ, and for any eigenvalue of modulus λ, its

geometric multiplicity and algebraic multiplicity coincide.

Note that by Perron-Frobenius theory λ is in fact an eigenvalue. We denote by Ω the set of all
finite paths in Γ, Ωv for the set of finite paths starting at v, and Ω0 = Ωv0 the set of finite paths
starting at v0. For a path g ∈ Ω, we use [g] to denote its terminal vertex. Similarly, we denote as
Ω∞ the set of all infinite paths in Γ, Ω∞v the set of infinite paths starting at v and Ω∞0 = Ω∞v0 .

Given two vertices v1, v2 of a directed graph, we say that v2 is accessible from v1 and write
v1 → v2 if there is a path from v1 to v2, and two vertices are mutually accessible if v1 → v2

and v2 → v1. Mutual accessibility is an equivalence relation, and equivalence classes are called
irreducible components of Γ.

For any subset A ⊆ Ω0, we define the growth λ(A) of A as

λ(A) := lim sup
n→∞

n
√

#(A ∩ Sn),

where Sn ⊂ Ω0 is the set of all paths starting at v0 that have length n.

For each vertex v of Γ which lies in an irreducible component C, let Pv(C) denote the set of
finite paths in Γ based at v which lie entirely in C. Moreover, for any path g from v0 to v, we let
Pg(C) = g · Pv(C) be the set of finite paths in Ω which can be written as a concatenation of g with
a path contained entirely in C.

Definition 3.1. An irreducible component C of Γ is called maximal if for some (equivalently, any)
g ∈ Ω0 with [g] ∈ C, the growth of Pg(C) equals λ. A vertex is maximal if it belong to a component
of maximal growth. Moreover, we say a vertex vi of Γ has large growth if there exists a path from
vi to a vertex in a maximal component, and it has small growth otherwise.
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Definition 3.2. For every vertex v of Γ, the loop semigroup of v is the set Lv of loops in the graph
Γ which begin and end at v. It is a semigroup with respect to concatenation. A loop in Lv is
primitive if it is not the concatenation of two (non-trivial) loops in Lv.

Let Γ be an almost semisimple graph of growth λ > 1. Then there exist constants c > 0 and
λ1 < λ such that ([GTT16], Lemma 2.3):

(1) For any vertex v of large growth and any n ≥ 0,

c−1λn ≤ #{paths from v of length n} ≤ cλn

(2) For any vertex v of small growth and any n ≥ 0,

#{paths from v of length n} ≤ cλn1
(3) If v belongs to the maximal component C, then for any n ≥ 0

c−1λn ≤ #{paths in Pv(C) of length n} ≤ cλn

and also ([GTT16], Lemma 6.5)

c−1λn ≤ #{paths in Lv of length n} ≤ cλn

3.3. Markov chains. Given an almost semisimple graph Γ of growth λ with edge set E(Γ), one
constructs a Markov chain on the vertices of Γ as follows. Let us define for each i the quantity

ρi := lim
N→∞

1

N

N∑
n=0

(Mn1)i
λn

,

where 1 is the vector all of whose coordinates equal 1, and wi denotes the ith coordinate of the
vector w. Note that ρi > 0 if and only if vi has large growth. Then if vi has large growth, we set
the probability µ(vi → vj) of going from vi to vj as

(2) µ(vi → vj) =
Mijρj
λρi

,

and if vi has small growth, we set µ(vi → vj) = 0 for i 6= j and µ(vi → vi) = 1.

Now, for each vertex v the measure µ induces measures Pnv on the space Ωv of finite paths starting
at v, simply by setting

Pnv (γ) = µ(e1) · · ·µ(en)

for each path γ = e1 . . . en of length n starting at v, and Pnv (γ) = 0 otherwise. Similarly, we
define a measure Pv on the space Ω∞v of infinite paths starting at v by setting the measure Pv of
the (cylinder) set of all infinite paths starting with γ equal to Pnv (γ), where n = |γ|. The most
important cases for us will be the measures on the set of (finite and infinite, respectively) paths
starting at v0, which we will denote as Pn = Pnv0 and P = Pv0 . Each measure Pv defines a Markov
chain on the space V (Γ), and we consider for each n the random variable

wn : Ω∞ → Ω

wn((e1, . . . , en, . . . )) = e1 . . . en

defined as the concatenation of the first n edges of the infinite path.
In order to compare the n-step distribution for the Markov chain to the counting measure, let us

denote as ΩLG the set of paths from v0 ending at a vertex of large growth. Then we note ([GTT16],
Lemma 3.4) that there exists c > 1 such that, for each A ⊆ Ω0,

(3) c−1 Pn(A) ≤ Pn(A ∩ ΩLG) ≤ c Pn(A).

It turns out (see [GTT16], Lemma 3.3) that, with respect to this choice of measure, a vertex v
belongs to a maximal irreducible component of Γ if and only if it is recurrent, i.e. :

(1) there is a path from v0 to v of positive probability; and
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(2) whenever there is a path from v to another vertex w of positive probability, there is also a
path from w to v of positive probability.

For this reason, maximal components will also be called recurrent components.
It is easy to see that for almost every path of the Markov chain there exists one recurrent

component C such that the path lies completely in C from some time on, and visits each vertex of
C infinitely many times. Thus, for each recurrent component C, we let ΩC be the set of all infinite
paths from the initial vertex which enter C and remain inside C forever, and denote as PC the
conditional probability of P on ΩC .

Moreover, for each recurrent vertex v the distribution of return times decays exponentially: There
is a c > 1 such that

(4) Pv
(
τ+
v = n

)
≤ ce−n/c

where τ+
v = min{n ≥ 1 : [wn] = v} denotes the first return time to vertex v.

We will associate to each recurrent vertex of the Markov chain a random walk, and use previous
results on random walks to prove statements about the asymptotic behavior of the Markov chain.

For each sample path ω ∈ Ω∞, let us define n(k, v, ω) as the kth time the path ω lies at the
vertex v. In formulas,

n(k, v, ω) :=

{
0 if k = 0
min (h > n(k − 1, v, ω) : [wh] = v) if k ≥ 1

To simplify notation, we will write n(k, v) instead of n(k, v, ω) when the sample path ω is fixed.

We now define the first return measure µv on the set of primitive loops by setting, for each
primitive loop γ = e1 . . . en with edges e1, . . . , en,

µv(γ) = µ(e1) . . . µ(en).

Extend µv to the entire loop semigroup Lv by setting µv(γ) = 0 if γ ∈ Lv is not primitive. Note
that almost every path starting at v visits v infinitely many times, so it can be decomposed as the
infinite concatenation of primitive loops; moreover, µv(γ) equals the probability that the first loop
in this decomposition equals γ. Hence, µv is a probability measure.

By equation (4), for every recurrent vertex v, the first return measure µv has finite exponential
moment, i.e. there exists a constant α > 0 such that

(5)

∫
Lv

eα|γ| dµv(γ) <∞.

3.4. Hyperbolic spaces. In this paper, X will always be a geodesic metric space. Such a space
is called δ-hyperbolic for some δ ≥ 0 if for every geodesic triangle in X, each side is contained
within the δ–neighborhood of the other two sides. Given x, y, z ∈ X, their Gromov product is
defined as (y, z)x := 1

2(d(x, y)+d(x, z)−d(y, z)). Each hyperbolic space has a well-defined Gromov
boundary ∂X, and we refer the reader to [BH09, Section III.H.3], [GdlH90], or [KB02, Section 2]
for definitions and properties.

If g is an isometry of X, its translation length is defined as

τX(g) := lim
n→∞

d(gnx, x)

n

where the limit does not depend on the choice of x ∈ X. In order to estimate the translation
length, we will use the following well-known lemma; see for example [MT14, Proposition 5.8].

Lemma 3.3. There exists a constant c, which depends only on δ, such that for any isometry g of
a δ-hyperbolic space X and any x ∈ X with d(x, gx) ≥ 2(gx, g−1x)x + c, the translation length of g
is given by

τX(g) = d(x, gx)− 2(gx, g−1x)x +O(δ).
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An isometry g of X is loxodromic if it has positive translation length; in that case, it has precisely
two fixed points on ∂X. We say two loxodromic elements are independent if their fixed point sets
are disjoint. A semigroup (or a group) G < Isom X is nonelementary if it contains two independent
loxodromics. We will use the following criterion.

Proposition 3.4 ([DSU14, Proposition 7.3.1]). Let L be a semigroup of isometries of a hyperbolic
metric space X. If the limit set ΛL ⊂ ∂X of L on the boundary of X is nonempty and L does not
have a finite orbit in ∂X, then L is nonelementary.

Finally, we turn to the definition and basic properties of shadows in the δ-hyperbolic space X.
For x, y ∈ X, the shadow in X around y based at x is

Sx(y,R) = {z ∈ X : (y, z)x ≥ d(x, y)−R},

where R > 0. The distance parameter of Sx(y,R) is by definition the number r = d(x, y)−R, which
up to an additive constant depending only on δ, measures the distance from x to Sx(y,R). Indeed,
z ∈ Sx(y,R) if and only if any geodesic [x, z] 2δ–fellow travels any geodesic [x, y] for distance
r +O(δ). The following observation is well-known.

Lemma 3.5. For each D ≥ 0, and each x, y in a metric space, we have

ND(Sx(y,R)) ⊆ Sx(y,R+D).

3.5. Random walks. A probability measure µ on G is said to be nonelementary with respect to
the action Gy X if the semigroup generated by the support of µ is nonelementary.

We will need the fact that a random walk on G whose increments are distributed according to
a nonelementary measure µ almost surely converge to the boundary of X and has positive drift in
X.

Theorem 3.6 ([MT14, Theorems 1.1, 1.2]). Let G be a countable group which acts by isometries
on a hyperbolic space X, and let µ be a nonelementary probability distribution on G. Fix x ∈ X,
and let (un) be the sample path of a random walk with independent increments with distribution µ.
Then:

(1) almost every sample path (unx) converges to a point in the boundary of ∂X, and the resulting
hitting measure ν is nonatomic;

(2) moreover, if µ has finite first moment, then there is a constant L > 0 such that for almost
every sample path

lim
n→∞

d(x, unx)

n
= L > 0.

The constant L > 0 in Theorem 3.6 is called the drift of the random walk (un). Let us remark, as
suggested in [GST17, Remark 4], we do not need to assume that X is separable (see also [MT18,
Lemma 2.6]).

4. Behavior of generic sample paths for the Markov chain

Let G be a group with a nonelementary action Gy X on a hyperbolic space X. In this section
we assume that G has a graph structure (G,Γ) which is almost semisimple and nonelementary.

4.1. Convergence to the boundary of X. Here we show that almost every sample path for the
Markov chain converges to the boundary of X. Since we are assuming that the graph structure is
nonelementary, the exact same proof as in ([GTT16], Theorem 6.8) yields the following.

Theorem 4.1. For P-almost every path (wn) in the Markov chain, the projection (wnx) to the
space converges to a point in the boundary ∂X.



COUNTING PROBLEMS 13

As a consequence, we have for every vertex v of large growth a well-defined harmonic measure
νXv , namely the hitting measure for the Markov chain on ∂X: for each (Borel) A ⊆ ∂X we define

νXv (A) := Pv( lim
n→∞

wnx ∈ A).

Theorem 4.1 together with the Markov property implies a decomposition result for the harmonic
measures νXv . Indeed, if R is the set of recurrent vertices of Γ, then we have:

(6) νXv =
∑
w∈R

∑
γ:v→w

µ(γ)ev(γ)∗ν
X
w

Here, the sum is over all finite paths from v to w which only meet a recurrent vertex at their
terminal endpoint. Note that if v is recurrent, then νXv is the harmonic measure for the random
walk on G generated by the first return measure µv, as defined in Section 3.3 (see also [GTT16],
Lemma 4.2).

Lemma 4.2. For any v of large growth, the measure νXv is non-atomic.

Proof. Since the random walk measures νXw are non-atomic, so are the measures ev(γ)∗ν
X
w for

each γ, hence by equation (6) the measure νXv is also non-atomic as it is a linear combination of
non-atomic measures. �

4.2. Positive drift along geodesics. Next we show that almost every sample path has a well-
defined and positive drift in X.

Theorem 4.3. For P-almost every sample path ω = (wn) there exists a recurrent component
C = C(ω) for which we have

lim
n→∞

d(wnx, x)

n
= LC ,

where LC > 0 depends only on C.

Since Γ is finite, this gives at most finitely many potential drifts for the Markov chain.

Proof. Let v be a recurrent vertex. Since the graph structure is nonelementary, the loop semigroup
Γv is nonelementary, hence the random walk given by the return times to v has positive drift. More
precisely, from Theorem 3.6, there exists a constant `v > 0 such that for almost every sample path
which enters v,

lim
k→∞

d(wn(k,v)x, x)

k
= `v.

Morever, as the distribution of return times has finite exponential moment, for almost every sample
path the limit

Tv := lim
k→∞

n(k, v, ω)

k
exists. These two facts imply

lim
k→∞

d(wn(k,v)x, x)

n(k, v)
=
`v
Tv
.

Now, almost every infinite path visits every vertex of some recurrent component infinitely often.
Thus, for each recurrent vertex vi which belongs to a component C, there exists a constant Li > 0
such that for PC-almost every path (wn), there is a limit

Li = lim
k→∞

d(wn(k,vi)x, x)

n(k, vi)
.

Let C be a maximal component, and v1, . . . , vk its vertices. Our goal now is to prove that L1 =
L2 = . . . Lk. Let us pick a path ω ∈ Ω0 such that the limit Li above exists for each i = 1, . . . , k,
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and define Ai = {n(k, vi), k ∈ N}, and the equivalence relation i ∼ j if Li = Lj . Since wn(k,vi) and
wn(k,vi)+1 differ by one generator, d(wn(k,vi)x,wn(k,vi)+1x) is uniformly bounded, hence

lim
k→∞

d(wn(k,vi)+1x, x)

n(k, vi) + 1
= lim

k→∞

d(wn(k,vi)x, x)

n(k, vi)
= Li

so the equivalence relation satisfies the hypothesis of ([GTT16], Lemma 6.9), hence there is a unique
limit LC = Li so that

lim
n→∞

d(wnx, x)

n
= LC .

�

Corollary 4.4. For every vertex v of large growth, and for Pv-almost every sample path (wn) there
exists a recurrent component C accessible from v such that we have

lim
n→∞

d(wnx, x)

n
= LC .

Proof. By Theorem 4.3, for P-almost every path which passes through v, the drift equals LC for
some recurrent component C. Let g0 be a path from v0 to v of positive probability. Then for any
ω = (wn) ∈ Ω∞v , the path (w̃n) = g0·ω belongs to Ω∞0 , and moreover w̃n+k = wn+k(g0·ω) = g0·wn(ω)
where k = |g0|. Hence

d(wnx, x)− d(x, g0x) ≤ d(w̃n+kx, x) = d(wnx, g0x) ≤ d(wnx, x) + d(x, g0x)

and so by Theorem 4.3

lim
n→∞

d(wnx, x)

n
= lim

n→∞

d(w̃n+kx, x)

n
= LC

as required. �

For application in Section 5, we will need the following convergence in measure statement. Let
us denote

(7) L := min
C recurrent

LC > 0

the smallest drift.

Corollary 4.5. For any ε > 0, and for any v of large growth,

Pv
(
d(x,wnx)

n
≤ L− ε

)
→ 0.

Proof. By the theorem, the sequence of random variables Xn = d(wnx,x)
n converges almost surely to

a function X∞ with the finitely many values L1, . . . , Lr. Moreover, for every n the variable Xn is
bounded above by the Lipschitz constant of the orbit map G→ X. Thus, Xn converges to X∞ in
L1, yielding the claim. �

4.3. Decay of shadows for P. For any shadow S, we denote its closure in X ∪ ∂X by S. Since
the harmonic measures νXv for the Markov chain are nonatomic (by Lemma 4.2), we get by the
same proof as in [GTT16] the following decay of shadows results.

Proposition 4.6 ([GTT16], Proposition 6.19). There exists a function p : R→ [0, 1] with p(r)→ 0
as r →∞, such that for each vertex v and any shadow Sx(gx,R) we have

Pv
(
∃n ≥ 0 : wnx ∈ Sx(gx,R)

)
≤ p(r),

where r = d(x, gx)−R is the distance parameter of the shadow.
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5. Generic elements with respect to the counting measure

We now use the results about generic paths in the Markov chain to obtain results about generic
paths with respect to the counting measure.

5.1. Genericity of positive drift. The first result is that the drift is positive along generic paths:

Theorem 5.1. Let (G,Γ) be an almost semisimple, nonelementary graph structure, and L > 0 be
the smallest drift as given by eq. (7). Then for every ε > 0 one has

#{g ∈ Sn : d(gx, x) ≥ (L− ε) |g|}
#Sn

→ 1 as n→∞.

The result follows from Corollary 4.5 similarly as in the proof of ([GTT16], Theorem 5.1).

Proof. Let AL denote the set of paths

AL := {g ∈ Ω0 : d(gx, x) ≤ L|g|}.

We know by Corollary 4.5 that for any L′ < L one has

Pn(AL′)→ 0 as n→∞.

Let us recall that ΩLG denotes the set of paths starting at v0 and ending at a vertex of large growth,
and for each path g of length n let us denote as ĝ the prefix of g of length n − blog nc. Then we
observe that

Pn(AL−ε) ≤
#{g ∈ Sn : ĝ /∈ ΩLG}

#Sn
+

#{g ∈ Sn ∩AL−ε : ĝ ∈ ΩLG}
#Sn

and it is easy to see that the first term tends to 0 (see [GTT16, Proposition 2.5]). Now, by writing
g = ĝh with |h| = blog |g|c we have that d(gx, x) ≤ (L− ε)|g| implies

d(ĝx, x) ≤ d(gx, x) + d(ĝx, gx) ≤ (L− ε)|g|+ d(x, hx)

hence, there exists C such that

d(ĝx, x) ≤ (L− ε)|g|+ Cblog |g|c ≤ L′|ĝ|

for any L− ε < L′ < L whenever |g| is sufficiently large. This proves the inclusion

{g ∈ Sn ∩AL−ε : ĝ ∈ ΩLG} ⊆ {g ∈ Sn : ĝ ∈ AL′ ∩ ΩLG}

and by Lemma 3.2 (1)

#{g ∈ Sn : ĝ ∈ AL′ ∩ ΩLG} ≤ cλblognc#(Sn−blognc ∩AL′ ∩ ΩLG) ≤

hence by equation (3) and considering the size of Sn−blognc

≤ c1λ
blogncPn−blognc(AL′)#Sn−blognc ≤ c2λ

nPn−blognc(AL′).

Finally, using that Pn−blognc(AL′)→ 0 we get

lim sup
n→∞

#{g ∈ Sn ∩AL−ε : ĝ ∈ ΩLG}
#Sn

≤ lim sup
n→∞

c3Pn−blognc(AL′) = 0

which proves the claim. �
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5.2. Decay of shadows for the counting measure. For g ∈ G, we set

SΓ
x (gx,R) = {h ∈ Ω0 : hx ∈ Sx(gx,R)} ,

where as usual, Sx(gx,R) is the shadow in X around gx centered at the basepoint x ∈ X and
hx = ev(h)x. We will need the following decay property for SΓ

x (gx,R) ⊆ Ω0.

Proposition 5.2. There is a function ρ : R → [0, 1] with ρ(r) → 0 as r → ∞ such that for every
n ≥ 0

Pn(SΓ
x (gx,R)) ≤ ρ (d(x, gx)−R) .

We start with the following lemma in basic calculus.

Lemma 5.3. Let p : R→ [0, 1] be a function with p(x) = 1 if x < 0 and p(x)→ 0 as x→∞. For
each α > 0 and each C > 0, there exists a function p̃ : R→ R+ such that:

(1) p̃(x) = 1 for x < 0;
(2) p̃(x) ≥ p(x) for each x ∈ R+;
(3) p̃(x+mC) ≥ p̃(x)e−αm for each x ∈ R+, m ∈ N:
(4) p̃(x)→ 0 as x→∞.

Proof. Begin by setting mk = sup{p(x) : x ≥ kC}, for k ≥ 0. For x < 0, define p̃(x) = p(x) = 1.
Otherwise, x ∈ [Ck,C(k + 1)] for k ≥ 0 an integer, and define

p̃(x) = max
0≤i≤k

{mi · e−α(k−i)}.

Item (1) follows by definition. For (2), we have that for x ∈ [Ck,C(k + 1)], p̃(x) ≥ mk ≥ p(x).
For (3), we again suppose that x ∈ [Ck,C(k + 1)] so that x + mC ∈ [C(k + m), C(k + m + 1)].
Then

p̃(x+mC) = max
0≤i≤k+m

{mi · e−α(k+m−i)}

= max
0≤i≤k+m

{mi · e−α(k−i) · e−αm}

≥ max
0≤i≤k

{mi · e−α(k−i) · e−αm}

= p̃(x)e−αm.

Finally, if the max in the definition of p̃(x) occurs for i ≤ k/2, then p̃(x) ≤ m0e
−αk/2. If i ≥ k/2,

then p̃(x) ≤ mk/2. Hence, p̃(x) ≤ m0e
−αk/2 +mk/2 → 0 as x→∞, completing the proof of (4). �

Proof of Proposition 5.2. Pick a path h ∈ Ω0 of length n in SΓ
x (gx,R), and let ĥ denote the longest

subpath of h starting at the initial vertex and which ends in a vertex of large growth. Let us write

h = ĥl where l is the second part of the path. Note that we have

d(hx, ĥx) = d(ĥlx, ĥx) = d(lx, x) ≤ kC

where k := |l| and C is the Lipschitz constant of the orbit map, hence by Lemma 3.5

ĥ ∈ SΓ
x (gx,R′ + kC)

where R′ = R + D and D = O(δ). Note that for each element ĥ there are at most cλk1 choices of
the continuation l, hence

#(Sn ∩ SΓ
x (gx,R)) ≤ c

n∑
k=0

λk1#(Sn−k ∩ SΓ
x (gx,R′ + kC) ∩ ΩLG) ≤
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and by using eq. (3) and Proposition 4.6

≤ c1

n∑
k=0

λk1λ
n−k Pn−k(SΓ

x (gx,R′ + kC)) ≤ c1λ
n

n∑
k=0

(λ1/λ)k p(d(x, gx)−R′ − kC)

Now, by Lemma 5.3 we can replace p by p̃, choosing α so that eαλ1 < λ, thus getting

p̃(d(x, gx)−R′ − kC) ≤ eαkp̃(d(x, gx)−R′)

Thus, the previous estimate becomes

Pn(SΓ
x (gx,R)) ≤ c2

n∑
k=0

(eαλ1/λ)k p̃(d(x, gx)−R′) ≤ c3 p̃(d(x, gx)−R′)

which proves the lemma if one sets ρ(r) := min{c3 p̃(r −D), 1}. �

5.3. Genericity of loxodromics. We now use the previous counting results to prove that loxo-
dromic elements are generic with respect to the counting measure.

The strategy is to apply the formula of Lemma 3.3 to show that translation length grows linearly
as function of the length of the path: in order to do so, one needs to show that the distance d(gx, x)
is large (as we did in Theorem 5.1) and, on the other hand, the Gromov product (gx, g−1x)x is not
too large. The trick to do this is to split the path g in two subpaths of roughly the same length,
and show that the first and second half of the paths are almost independent.

To define this precisely, for each n let us denote n1 = bn2 c and n2 = n−n1. For each path g ∈ Ω,
we define its initial part i(g) to be the subpath given by the first n1 edges of g, and its terminal
part t(g) to be the subpath given by the last n2 edges of g. With this definition, g = i(g) · t(g) and
|i(g)| = n1, |t(g)| = n2. Moreover, we define the random variables in, tn : Ω∞ → Ω by in(w) = i(wn)
and tn(w) = t(wn). Note that by definition in = wn1 and by the Markov property we have for each
paths g, h ∈ Ω:

P(in = g and tn = h) = P(wn1 = g)Pv(wn2 = h)

where v = [g]. In the next lemma, we use the notation C(ω) to refer to the recurrent component
to which the sample path ω = (wn) eventually belongs, as in Theorem 4.3.

Lemma 5.4. For any ε > 0 we have

P
(

lim
n→∞

∣∣∣∣d(x, tn(ω)x)

n
−
LC(ω)

2

∣∣∣∣ > ε

)
→ 0

as n→∞.

Proof. Note that by definition tn(ω) = wn2(Tn1ω), where T : Ω∞ → Ω∞ is the shift in the space of
infinite paths. Note that for every A ⊆ Ω∞ by the Markov property we have

P(T−nA) =
∑
v∈V

P([wn] = v)Pv(A)

Let us define the function

Sn(ω, ω′) :=

∣∣∣∣d(x,wn(ω)x)

n
− LC(ω′)

∣∣∣∣ .
Note that from Corollary 4.4 for every vertex v of large growth and every ε > 0

Pv(Sn(ω, ω) ≥ ε)→ 0

Moreover, for every n, if the path (e1, . . . , en, . . . ) lies entirely in the component C from some point
on, then the same is true for the shifted path (en+1, en+2, . . . ), i.e. C(Tnω) = C(ω) almost surely,
and so

Sn(ω, T kω′) = Sn(ω, ω′) for all n, k
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hence

P(Sn2(Tn1ω, ω) > ε) = P(Sn2(Tn1ω, Tn1ω) > ε) =

=
∑
v∈V

P([wn1 ] = v])Pv(Sn2(ω, ω) > ε) ≤
∑

v∈V ∩ΩLG

Pv(Sn2(ω, ω) > ε)

and the right-hand side tends to 0 by Corollary 4.4, proving the claim. �

We now show that i(g) and t(g)−1 generically do not fellow travel. For the argument, let Sn(v)
denote the set of paths in Ω which start at v and have length n.

Lemma 5.5. Let f : R→ R be any function such that f(n)→ +∞ as n→ +∞. Then

Pn
(
g ∈ Ω0 : (i(g)x, t(g)−1x)x ≥ f(n)

)
→ 0

as n→∞.

Proof. We compute

Pn
(
g : (i(g)x, t(g)−1x)x ≥ f(n)

)
=

#{g ∈ Sn1 , [g] = v, h ∈ Sn2(v) : (gx, h−1x)x ≥ f(n)}
#Sn

≤

and by fixing v and forgetting the requirement that [g] = v we have

≤
∑
v∈V

#{g ∈ Sn1 , h ∈ Sn2(v) : (gx, h−1x)x ≥ f(n)}
#Sn

≤

then by fixing a value of h

≤
∑
v∈V

1

#Sn

∑
h∈Sn2 (v)

#
{
g ∈ Sn1 : gx ∈ Sx(h−1x, d(x, h−1x)− f(n))

}
≤

hence from decay of shadows (Proposition 5.2) follows that

≤
∑
v∈V

∑
h∈Sn2 (v)

ρ(f(n))#Sn1

#Sn
≤ #V#Sn1#Sn2ρ(f(n))

#Sn
≤ cρ(f(n))→ 0.

�

Once we have shown that i(g) and t(g)−1 are almost independent, we still need to show that also
g and g−1 are almost independent. In order to do so, we note that i(g) is the beginning of g while
t(g)−1 is the beginning of g−1, and then we use the following trick from hyperbolic geometry. See
e.g. [TT15].

Lemma 5.6 (Fellow traveling is contagious). Let X be a δ–hyperbolic space with basepoint x and
let that A ≥ 0. If a, b, c, d are points of X with (a, b)x ≥ A, (c, d)x ≥ A, and (a, c)x ≤ A− 3δ. Then
(b, d)x − 2δ ≤ (a, c)x ≤ (b, d)x + 2δ.

In order to apply Lemma 5.6, we need to check that the first half of g (which is i(g)) and the
first half of g−1 (which is t(g)−1) generically do not fellow travel.

Lemma 5.7. For each η > 0, the probability

Pn
(
g ∈ Ω0 : (t(g)−1x, g−1x)x ≤

n(L− η)

2

)
→ 0

and

Pn
(
g ∈ Ω0 : (i(g)x, gx)x ≤

n(L− η)

2

)
→ 0

as n→∞.
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Proof. Consider the set BL := {g ∈ Ω0 : d(x, gx)− d(x, i(g)x) ≤ |g|L2 }. We know by Theorem 4.3
for P-almost every sample path we have

lim
n→∞

d(x,wnx)− d(x,wn1x)

n
=
LC
2
≥ L

2

hence for any L′ < L one has Pn(BL′) → 0 as n → ∞. Hence, as in the proof of Theorem 5.1 we
get for any ε > 0,

(8) Pn
(
d(x, gx)− d(x, i(g)x) ≥ n(L− ε)

2

)
→ 1

Finally, by writing out the Gromov product, the triangle inequality and the fact that the action is
isometric we get

(t(g)−1x, g−1x)x ≥ d(x, g−1x)− d(t(g)−1x, g−1x) = d(x, gx)− d(x, i(g)x)

which combined with (8) proves the first half of the claim.
The second claim follows analogously. Namely, from Theorem 4.3 and Lemma 5.4, we have for

any ε > 0

P
(
d(x,wn(ω)x)− d(x, tn(ω)x) ≤

n(LC(ω) − ε)
2

)
→ 0

which then implies as before

Pn
(
d(x, gx)− d(x, t(g)x) ≥ n(L− ε)

2

)
→ 1

and to conclude we use that

(i(g)x, gx)x ≥ d(x, gx)− d(i(g)x, gx) = d(x, gx)− d(x, t(g)x).

�

We now use Lemma 5.6 (fellow traveling is contagious) to show that the Gromov products
(gx, g−1x)x do not grow too fast with respect to our counting measures.

Proposition 5.8. Let f : N→ R be a function such that f(n)→ +∞ as n→∞. Then

Pn
(

(gx, g−1x)x ≤ f(n)
)
→ 1

as n→∞.

Proof. Define

f1(n) = min

{
f(n)− 2δ,

n(L− η)

2
− 3δ

}
It is easy to see that f1(n)→∞ as n→∞. By Lemma 5.6, if we know that:

(1) (i(g)x, gx)x ≥ n(L− η)/2,
(2) (t(g)−1x, g−1x)x ≥ n(L− η)/2, and
(3) (i(g)x, t(g)−1x)x ≤ f1(n) ≤ n(L− η)/2− 3δ,

then
(gx, g−1x)x ≤ (i(g)x, t(g)−1x)x + 2δ ≤ f1(n) + 2δ.

Using Lemmas 5.5 and 5.7, the probability that conditions (1),(2), (3) hold tends to 1, hence we
have

Pn((gx, g−1x)x ≤ f(n))→ 1

as n→∞. �

Finally, we put together the previous estimates and use Lemma 3.3 to prove that translation
length grows linearly and loxodromic elements are generic.
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Theorem 5.9 (Linear growth of translation length). Let (G,Γ) be an almost semisimple, nonele-
mentary graph structure, and L the smallest drift given by eq. (7). Then for any ε > 0 we have

#{g ∈ Sn : τX(g) ≥ n(L− ε)}
#Sn

→ 1,

as n→∞. As a consequence,

#{g ∈ Sn : g is X − loxodromic}
#Sn

→ 1,

as n→∞.

Proof. If we set f(n) = ηn with η > 0, then by Proposition 5.8 and Theorem 5.1 the events
(gx, g−1x)x ≤ ηn and d(x, gx) ≥ n(L− η) occur with probability (Pn) which tends to 1, hence by
Lemma 3.3

Pn
(
τX(g) ≥ n(L− 3η)

)
≥ Pn

(
d(x, gx)− 2(gx, g−1x)x +O(δ) ≥ n(L− 3η)

)
which approaches 1 as n → ∞. This implies the statement if we choose ε > 3η. The second
statements follows immediately since elements with positive translation length are loxodromic. �

5.4. Genericity of loxodromics for the Markov chain. We now remark that a very similar
proof yields that loxodromics are generic for P-almost every sample path of the Markov chain. More
precisely, we have the following (which is a reformulation of Theorem 2.7):

Theorem 5.10. Let (G,Γ) be an almost semisimple, nonelementary graph structure, and let L be
the smallest drift. Then for every ε > 0, one has

P
(
τX(wn) ≥ n(L− ε)

)
→ 1,

as n→∞. As a consequence,

P
(
wn is loxodromic on X

)
→ 1

as n→∞.

Proof. The proof is very similar to the proof of Theorem 5.9, so we will just sketch it. First, by
using the Markov property we establish that

lim
n→∞

P
(
(inx, t

−1
n x)x ≥ g(n)

)
= 0

for any choice of function g : N→ R such that limn→+∞ g(n) = +∞. Then, by using positivity of
the drift as in the proof of Lemma 5.7 we prove that for each ε > 0, we have

lim
n→∞

P
(
(w−1

n x, t−1
n x)x ≤ n(L− ε)/2

)
= 0

and

lim
n→∞

P
(
(inx,wnx)x ≤ n(L− ε)/2

)
= 0

From the previous three facts, using Lemma 5.6 one proves:

lim
n→∞

P
(

(wnx,w
−1
n x)x ≥ f(n)

)
= 0

for any f : N → R such that limn→+∞ f(n) = +∞. The theorem then follows immediately from
this fact and Corollary 4.5, applying the formula of Lemma 3.3. �
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6. Thick graph structures

We begin by recalling the definition of a thick graph structure.

Definition 6.1. A graph structure (G,Γ) is thick if for every vertex v of maximal growth there
exists a finite set B ⊆ G such that

(9) G = BΓvB

where Γv is the loop semigroup of v.
In greater generality, if H < G is a subgroup, we say that the graph structure (G,Γ) is thick

relative to H if for any vertex v of maximal growth there exists a finite set B ⊆ G such that

(10) H ⊆ BΓvB.

6.1. The case of only one non-trivial component. We say that a component C is non-trivial
if there is at least one closed path of positive length entirely contained in C.

Proposition 6.2. If a graph structure (G,Γ) has only one non-trivial component, then it is thick.

Proof. Let C be the unique maximal component of Γ. Every finite path γ in the graph can be
written as γ = h1gh2, where h1 is a path from the initial vertex to C, g is a path entirely in C, and
h1 is a path going out of C. By assumption, the lengths of h1 and h2 are uniformly bounded. Fix
some vertex v of C and let s be a shortest path from v to the last vertex of h. Further, let t be a
shortest path from the last vertex of g to v. Then one can write

γ = h1gh2 = h1s
−1(sgt)t−1h2

where h1s
−1 and t−1h2 vary in a finite set, and sgt ∈ Γv. Hence G = BΓvB with B a finite set. �

6.2. Thick implies nonelementary.

Proposition 6.3. Fix an action G y X of G on a hyperbolic metric space X. Let (G,Γ) be an
almost semisimple graph structure, and H < G a nonelementary subgroup. If (G,Γ) is thick relative
to H, then it is nonelementary. That is, for any maximal vertex v the action of the loop semigroup
Γv on X is nonelementary.

Proof. Since the action of H is nonelementary, there exists a free subgroup F ⊆ H of rank 2
which quasi-isometrically embeds in X. Hence, the orbit map F → X extends to an embedding
∂F → ∂X, and we identify ∂F with its image. Thickness implies F ⊆ BΓvB, and taking limit sets
in ∂X we see that

∂F ⊂
⋃
b∈B

b · ΛΓv ⊂ X,

from which we conclude that ΛΓv is infinite. To complete the proof that Γv is nonelementary, it
suffices to show that Γv does not have a fixed point on ∂X (Proposition 3.4). Suppose toward a
contradiction that p ∈ ∂X is such a fixed point.

Let us write F = 〈f, g〉 where f, g are free generators of F , and consider the sequence of elements
hi,j = f igj in F . For each i, j there are ai,j , ci,j ∈ B such that hi,j = ai,jli,jci,j for some li,j in Γv.
Since B is finite, we may pass to a subsequence and assume that ai,j = a and ci,j = c for all i, j.
Then li,j = a−1hi,jc

−1 fixes the point p for all i and so

hi,j(c
−1(p)) = a(p)

for all i, j. Hence h−1
i0,j0

hi,j = g−i0f i−i0gj is a sequence of elements of F which fix the point

q = c−1(p) ∈ ∂F ⊂ ∂X. Since F is a free group, this implies that g−i0f i−i0gj agree up to powers
for infinitely many i, j, a clear contradiction. �

From Proposition 6.3 and Theorem 5.9 we get:
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Theorem 6.4. Let Gy X be a nonelementary action of a countable group on a hyperbolic metric
space. Suppose that G has an almost semisimple graph structure Γ which is thick with respect to a
nonelementary subgroup H. Then loxodromic elements are generic:

lim
n→∞

#{g ∈ Sn : g is loxodromic on X}
#Sn

= 1

In fact, the translation length generically grows linearly: there exists L > 0 such that

lim
n→∞

#{g ∈ Sn : τX(g) ≥ Ln}
#Sn

= 1.

7. Relative growth quasitightness

Fix a graph structure (G,Γ). In practice, we will often show that the graph structure is thick
by establishing the property of growth quasitightness. This property was introduced in [AL02]
and and further studied in [Yan16]. Our notion of quasitightness depends on the particular graph
structure.

Given a path γ in Γ, we say it c–almost contains an element w ∈ G if γ contains a subpath p
such that w = a · ev(p) · b in G, with |a|, |b| ≤ c. We denote as Yw,c the set of paths in Γ starting
at the initial vertex which do not c–almost contain w.

Definition 7.1. A graph structure (G,Γ) is called growth quasitight if there exists c > 0 such that
for every w ∈ G the set Yw,c has density zero with respect to Pn; that is,

Pn(Yw,c)→ 0 as n→ 0.

More generally, given a subgroup H < G we say that (G,Γ) is growth quasitight relative to H if
there exists a constant c > 0 such that for every w ∈ H the set Yw,c has density zero.

7.1. Growth quasitight implies thick.

Proposition 7.2. Let (G,Γ) be an almost semisimple graph structure, and H < G a subgroup. If
(G,Γ) is growth quasitight relative to H, then it is thick relative to H.

Proof. Let C be a component of maximal growth, let v a vertex in C, and let γ be some path
from the initial vertex to v. Denote the length of γ by d. Let w ∈ H. By growth quasitightness
plus maximal growth, there is a path of the form γγ1, which c–almost contains w and where γ1 is
entirely contained in C. Since γ has length d, the path γ1 (c+ d)–almost contains w; that is,

γ1 = p1p2p3

where ev(p2) = awb for |a|, |b| ≤ c+ d. Let q1 be a shortest path from v to the initial vertex of p2

and q2 be a shortest path from the terminal vertex of p2 to v. Then

w = (a−1ev(q1)−1) · ev(q1p2q2) · (ev(q2)−1b−1),

where (a−1ev(q1)−1) and (ev(q2)−1b−1) vary in a finite set B. Since ev(q1p2q2) ∈ Γv, this completes
the proof. �

Combining Proposition 7.2 with Theorem 6.4 we get:

Theorem 7.3. Let (G,Γ) be an almost semisimple graph structure which is growth quasitight with
respect to a nonelementary subgroup H. Then loxodromic elements are generic.

This completes the proof of Theorem 1.6.
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8. Infinite index subgroups have zero density

In this section, we prove that in our general setup a subgroup H < G of infinite index has zero
density with respect to counting. Combined with what we are going to prove in Section 9 and
10, this immediately implies Theorem 1.2 in the introduction. Recall that ev : Ω0 → G is the
evaluation map for paths starting at v0.

Theorem 8.1. Let (G,Γ) be an injective, almost semisimple, thick graph structure. Let H < G be
an infinite index subgroup. Then

Pn ({p ∈ Ω0 : ev(p) ∈ H})→ 0,

as n→∞. That is, the proportion of paths starting at v0 and spelling elements of H goes to 0 as
the length of the path goes to ∞.

The proof is an adaptation of ([GMM15], Theorem 4.3) to the non-hyperbolic case. We will
consider an extension ΓH of Γ = (V,E) defined as follows. The vertex set of ΓH is V ×H \G. For
any edge σ : x→ y in Γ there is an edge in ΓH from (x,Hg) to (y,Hgg′) where g′ = ev(σ).

Lemma 8.2. Let C be a component of maximal growth of Γ. For any v1 ∈ C and g1 ∈ G there are
infinitely many Hg ∈ H \G such that (v1, Hg) can be reached from (v1, Hg1) by a path contained
in C ×H \G.

Proof. Suppose not, so that the only points of H \ G that can be reached in this manner are
{Hz : z ∈ T} where T is a set of size D. Consider w ∈ G. By thickness, there exists a finite set
B ⊆ G and some path γ lying in C, starting and ending at v1 such that

ev(γ) = g2wg3

where g2, g3 lie in B. Then γ lifts to a path in ΓH from (v1, Hg1) to (v1, Hg1ev(γ)). By assumption,
this implies Hg1ev(γ) = Hz for some z ∈ T . Thus, there is an h ∈ H with g2wg3 = ev(γ) = g−1

1 hz

and hence w ⊂ B−1g−1
1 HTB−1. Thus there is a finite subset Υ = B−1g−1

1 ∪TB−1 with G = ΥHΥ,
so by Neumann’s theorem [Neu54] H must be of finite index, giving a contradiction. �

The following general result about Markov chains is Lemma 4.4 of [GMM15].

Lemma 8.3. Let Xn be a Markov chain on a countable set V , and m a stationary measure. Let

Ṽ be the set of points x ∈ V such that
∑

y:x→ym(y) = ∞ where x → y means there is a positive

probability path from x to y. Then for all x ∈ V and x′ ∈ Ṽ we have Px(Xn = x′)→ 0.

Combining Lemmas 8.3 and 8.2 we obtain:

Corollary 8.4. For any x1, x2 ∈ Γ lying in a maximal component C and g1, g2 ∈ G, the number
of paths of length n in ΓH from (x1, Hg1) to (x2, Hg2) is o(λn).

Proof. The Markov chain µ on Γ restricts to a Markov chain µC on C, which in turn lifts to a
Markov chain µC,H on the induced graph CH on the vertex set C × H \ G of ΓH (obtained by
assigning to an edge the transition probability of its projection to C). A µC,H stationary measure
m̃ on CH is given by taking the product of the stationary measure m on C and the counting measure
on H \ Γ. Any vertex v ∈ C has positive m measure and all lifts of v in CH have equal positive
m̃ measure. Thus, Lemma 8.2 implies

∑
y:x→y m̃(y) = ∞. The corollary now follows by applying

Lemma 8.3 to the chain µC,H . �

Note, paths of length n in ΓH from (x1, Hg1) to (x2, Hg2) are in bijection with paths of length
n in Γ beginning at x1, ending at x2, and evaluating to elements of g−1

1 Hg2. Thus, we obtain:

Corollary 8.5. For any x1, x2 ∈ Γ lying in a maximal component C and g1, g2 ∈ G, the number
of paths of length n in Γ beginning at x1, ending at x2, and evaluating to elements of g−1

1 Hg2 is
o(λn).
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We now complete the proof of Theorem 8.1. Given k > 0, let Pn,k (resp. Qn,k) be the set of paths
p ∈ Ω0 of length n which spend time at most k (resp. more than k) in non-maximal components.

Note that there is a η < λ with |Qn,k| ≤ ηkλn−k for all n and k. Now, consider a path γ in
Pn,k ∩ ev−1H. We can decompose it as γ = γ1γ2γ3 where γ1 and γ3 have length adding up to at
most k and γ2 is contained in a maximal component C. Since a path in Pn,k spends at most time

k in nonmaximal components, there are only Dk possibilities for γ1 and γ3, where D depends only
on the graph. Now, given a path γ in ev−1H, once γ1 and γ3 are fixed, by Corollary 8.5 there are
at most fk(n) possibilities for γ2, where for each fixed k fk(n)/λn → 0 as n → ∞. Thus, for all
k < n we have |Pn,k ∩ ev−1H| ≤ Dkf(n) and so

Pn(ev−1H) ≤ C ′′λ−n(|Pn,k ∩ ev−1H|+ |Qn,k|) ≤ C ′′Dkλ−nf(n) + C ′′(η/λ)k.

Fixing k we see that

lim sup
n→∞

Pn(ev−1H) ≤ C ′′(η/λ)k.

As this is true for arbitrary k, we get limn→∞ P
n(ev−1H) = 0, as claimed.

9. Application to relatively hyperbolic groups

In this section, we show how our main theorem applies to a large class of relatively hyperbolic
groups.

Let G be a finitely generated group, and P be a collection of subgroups. Following [Bow12], let
us recall that G is hyperbolic relative to P if there is a compactum M on which G acts geometri-
cally finitely, and the maximal parabolic subgroups are the conjugates of elements of P. Such a
compactum M is then unique up to G-equivariant homeomorphisms, and it is called the Bowditch
boundary of G. We will denote it as ∂G.

More precisely, let G act by homeomorphisms on a compact, perfect, metrizable space M . Then
a point ζ ∈ M is called conical if there is a sequence (gn) and distinct points α, β ∈ M such that
gnζ → α and gnη → β for all η ∈M \{ζ}. A point ζ ∈M is called bounded parabolic if the stabilizer
of ζ in G is infinite, and acts cocompactly and properly discontinuously on M \{ζ}. We say that the
action of G on M is a convergence action if G acts properly discontinuously on triples of elements of
M , and the action is geometrically finite if it is a convergence action and every point of M is either a
conical limit point or a bounded parabolic point. Note that there are only countably many parabolic
points. Finally, the maximal parabolic subgroups are the stabilizers of bounded parabolic points.
An action of a group G on a proper δ-hyperbolic space X is geometrically finite if the induced
action on the limit set is geometrically finite. We refer the reader to [Far98, Bow12, Osi06, GM08]
for the relevant background material.

Fix a relatively hyperbolic group (G,P), a generating set S of G, and let dG denote distance

in G with respect to S. Let Ĝ be the vertices of Cay(G,S ∪ P) with the induced metric, which

we denote by d̂ or dĜ. Here Cay(G,S ∪ P) is the corresponding electrified Cayley graph, that is
the Cayley graph of G with respect to the generating set S ∪

⋃
P. We remind the reader that

Cay(G,S ∪P) is hyperbolic and that ∂Cay(G,S ∪P) naturally includes as a subspace into ∂G, the
complement of which is the collection of parabolic fixed points.

Let h be the exponent of convergence for Cay(G,S). That is,

h := lim
n→∞

1

n
log |Bn|,

where Bn denotes the ball of radius n in G with respect to dG. For ζ ∈ ∂G and g, h ∈ G let

βζ(g, h) = lim sup
z→ζ

(d(g, z)− d(h, z))

be the Busemann function for the word metric on G.
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Following [Yan13], the Bowditch boundary ∂G is equipped with a nonatomic measure ν, which
is given by the Patterson-Sullivan construction by taking average on balls for the word metric on
G. Such a measure ν is supported on conical points and is h-quasiconformal, in the sense that there
is a D > 0 such that:

(11) D−1e−hβζ(g,e) ≤ dg?ν

dν
(ζ) ≤ De−hβζ(g,e)

for all g ∈ G and ζ ∈ ∂G.

Definition 9.1. We define a relatively hyperbolic group G to be doubly ergodic if its action on
∂G× ∂G with the measure ν × ν is ergodic.

We will also see (Proposition 9.17) that a relatively hyperbolic group is doubly ergodic if it admits
a geometrically finitely action on a CAT (−1) proper metric space. For instance, geometrically finite
Kleinian groups satisfy this hypothesis. Note that, once G admits such an action, Theorem 9.2
works for isometric actions of G on any hyperbolic, metric space X.

In this section, we will prove the following result.

Theorem 9.2. Let G be a doubly ergodic, relatively hyperbolic group, and let (G,Γ) be a geodesic
combing. Then for any nonelementary action of G on a hyperbolic metric space X, the graph
structure (G,Γ) is nonelementary.

Combining this result with Theorem 1.6, the discussion in Section 2.3, and the fact that relatively
hyperbolic groups have pure exponential growth for any generating set ([Yan13], Theorem 1.9)
Theorem 9.2 establishes Theorem 2.3 in the introduction.

In fact, using very recent work of W. Yang [Yan16], the theorem may be extended to all nontrivial
relatively hyperbolic groups, as relatively hyperbolic groups contain strongly contracting elements
by [ACT15] and [Yan16] (see Corollary 2.6 in the introduction). However, we give a self-contained
argument here.

9.1. Fellow traveling in the Cayley graph and coned-off space. We first remind the reader
that a K–quasigeodesic γ in a metric space X is a map γ : I → X from a subinterval I ⊂ R such
that for all s, t ∈ I

1

K
· |t− s| −K ≤ d(γ(s), γ(t)) ≤ K · |t− s|+K.

We will need the following proposition, which is certainly known to experts. We provide a proof
for completeness.

Proposition 9.3. For K,C ≥ 0, there are D,L ≥ 0 such that the following holds. Suppose that
γ = [a, b] is a geodesic in Cay(G,S) with length at least L which projects to a K–quasigeodesic in
Cay(G,S ∪ P). Let γ′ be any other geodesic in Cay(G,S) whose endpoints have distance no more
than C from a, b in Cay(G,S ∪ P). Then there are a′, b′ ∈ γ′ such that

dG(a, a′) ≤ D and dG(b, b′) ≤ D.

We will use the following theorem of Osin:

Theorem 9.4 ([Osi06], Theorem 3.26). There is an ν ≥ 0 such that if p, q, r are sides of a geodesic
triangle in Cay(G,S ∪ P), then for any vertex v on p there exists a vertex u on either q or r such
that

dG(v, u) ≤ ν.

Proof of Proposition 9.3. Suppose that dG(a, b) > K(2C + 4ν +K) so that dĜ(a, b) > 2C + 4ν, for
ν as in Theorem 9.4.

Let c, c′ be geodesics in Cay(G,S ∪ P) joining the endpoints of γ, γ′ respectively. Note that by

assumption the initial and terminal endpoints of these geodesics are at d̂–distance less than C from
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one another. Pick vertices ca, cb on c (ordered a, ca, cb, b) so that dĜ(a, ca) = dĜ(b, cb) = C + 2ν.
(This is possible since dĜ(a, b) > 2C + 4ν.) Consider a geodesic quadrilateral with opposite sides
c, c′. Applying Theorem 9.4 twice, we may find vertices c′a, c

′
b ∈ c′ such that dG(ca, c

′
a) ≤ 2ν and

dG(cb, c
′
b) ≤ 2ν.

Now using, for example, ([Hru10], Lemma 8.8), we can find vertices γa, γb ∈ γ and γ′a, γ
′
b ∈ γ′

which have dG–distance at most L from ca, cb, c
′
a, c
′
b, respectively, where L ≥ 0 depends only on

(G,P) and S. Note that dG(γa, γ
′
a) ≤ 2(L+ ν) and dG(γb, γ

′
b) ≤ 2(L+ ν). Moreover,

dĜ(a, γa) ≤ dĜ(a, ca) + dĜ(ca, γa) ≤ C + 2ν + L,

and so dG(a, γa) ≤ K(C + 2ν + L + 1) since both a and γa occur along γ. Similarly, dG(b, γb) ≤
K(C + 2ν + L+ 1).

Putting everything together, after setting a′ = γ′a and b′ = γ′b, we see that each of dG(a, a′) and
dG(b, b′) are less than 2(L+ ν) +K(C + 2ν + L+ 1) and this completes the proof. �

9.2. Patterson-Sullivan measures and sphere averages. Continuing with the notation from
the previous section, let h be the exponent of convergence for Cay(G,S).

Definition 9.5. For g ∈ G, we define the large shadow Πr(g) at g to be the set of ζ ∈ ∂G such that
there exists some geodesic in Cay(G,S) from 1 converging to ζ intersecting Br(g). Similarly, the
small shadow πr(g) is the set of ζ ∈ ∂G such that every geodesic in Cay(G,S) from 1 converging
to ζ intersects Br(g).

In Theorem 1.7 and Proposition A4 of [Yan13] Yang constructs an h-quasiconformal ergodic
density ν without atoms for the word metric on the Bowditch boundary ∂G. In Lemma 4.3 of
[Yan13] he shows that this satisfies the shadow lemma: for large enough r:

(12) ν(πr(g)) ' ν(Πr(g)) ' e−h·dG(1,g)

(up to a uniform multiplicative constant). In particular, ν has full support on ∂G. In what follows,
Sn denotes the set of elements g ∈ G with dS(1, g) = n.

Lemma 9.6. There is a C > 0 such that for any Borel set A ⊂ G ∪ ∂G one has

lim sup
n→∞

|A ∩ Sn|
|Sn|

≤ Cν(A),

where A denote the closure of A in G ∪ ∂G.

Proof. Let A ⊂ G ∪ ∂G be a Borel set. Since the number of elements in a ball of radius r in
Cay(G,S) is universally bounded, a point of ∂G lies in at most D small shadows πr(g), g ∈ Sn
where D depends only on r. Thus,∑

g∈Sn∩A
ν (πr(g)) ≤ Dν

 ⋃
g∈Sn∩A

πr(g)


Moreover, if we denote An := A \Bn−1 then An+1 ⊆ An and⋂

n∈N

⋃
g∈An

πr(g) ⊂ A.

Indeed, if ζ ∈
⋂
n∈N

⋃
g∈An πr(g), then there are gn ∈ A with |gn| ≥ n such that some (any) geodesic

from the identity to ζ meets Br(gn). Hence, gn → ζ and so ζ ∈ A.
Thus, since Sn ∩A ⊆ An we have for large enough n

ν

 ⋃
g∈Sn∩A

πr(g)

 ≤ ν
 ⋃
g∈An

πr(g)

 ≤ 2ν(A)
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so by exponential growth and the shadow lemma (12)

|Sn ∩A|
|Sn|

' e−hn|Sn ∩A| '
∑

g∈Sn∩A
ν(πr(g)) . 2Dν(A).

�

9.3. Growth quasitightness for relatively hyperbolic groups. We will now establish a form
of relative growth quasitightness for a relatively hyperbolic group G.

Let w be an element of G. A w-path is an infinite path of the form lw =
⋃
i∈Zw

iγw in the Cayley
graph Cay(G,S), where γw = [1, w] is a geodesic segment joining the identity and w. Of course
there may be finitely many choices of lw for each w.

Definition 9.7. The element w is called K–bounded if some w-path lw (with the arc length
parameterization) in the Cayley graph Cay(G,S) projects to a K-quasigeodesic in the electrified
graph Cay(G,S ∪ P).

The following lemma is well-known. See for example [DMS10, ADT].

Lemma 9.8. For each K, there is a function f : N → N such that if w is K–bounded, then every
w-path lw is an f -stable quasigeodesic in the Cayley graph Cay(G,S).

Recall that lw being f–stable means that any K–quasigeodesic with endpoints on lw has Hausdorff
distance at most f(K) from the subpath of lw its endpoints span.

Given w ∈ G and c ≥ 0, we say that a (finite or infinite) geodesic γ c-almost contains w if there
exists g ∈ G such that dG(g, γ) ≤ c and dG(gw, γ) ≤ c. Let Xw,c be the set of h ∈ G such that
there exists a geodesic γ from identity to h which does not c-almost contain w. That is, for every
g ∈ Nc(γ), γ does NOT pass within distance c of gw.

Proposition 9.9. For each K ≥ 1, there is c ≥ 0 such that for every K–bounded w ∈ G we have

|Sn ∩Xw,c|
ehn

→ 0

as n→∞.

We remark that, for fixed c, it suffices to prove the proposition for sufficiently long w, that is,
where |w|S is sufficiently large. We will prove this proposition by using the ergodicity of the double
boundary (Proposition 9.17). To do this, we will apply Proposition 9.3 several times, for K the
boundedness constant. Hence, we fix K once and for all, and consider the constant D produced by
that proposition as a function of C alone and write D = D(C).

Let Zw,c be the set of pairs (α, β) in ∂G × ∂G such that for every bi-infinite geodesic γ in
Cay(G,S) joining α and β there exist infinitely many x ∈ Nc(γ) such that γ passes within c of xw.
Let Znw,c be the set of pairs (α, β) in ∂G × ∂G such that for every bi-infinite geodesic γ joining α
and β there are at least n elements x ∈ Nc(γ) such that γ passes within c of xw. By definition,
Zw,c =

⋂
n∈N Z

n
w,c. Moreover, for each n,w, c, the sets Zw,c and Znw,c are G-invariant subsets of

∂G× ∂G.
Furthermore we have

Lemma 9.10. For each K ≥ 0 there is a constant c0 = c0(K) such that for all c ≥ c0, Zw,c
contains a pair of conical points for every K–bounded w ∈ G.

Proof. Let f be the function given by Lemma 9.8. By definition, the w-path lw projects to a K-
quasigeodesic in Cay(G,S ∪ P), hence it has two distinct limit points (w−∞, w∞) in the Bowditch
boundary ∂G. Then, by connecting further and further points on lw by a geodesic in the Cay(G,S),
using f -stability and the Ascoli-Arzelá theorem, one constructs a geodesic in Cay(G,S) which
connects w∞ to w−∞ and c-fellow travels lw, once c ≥ 2f(1). Hence, (w−∞, w∞) ∈ Zw,c. �
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Lemma 9.11. For each K, there is a c1 = c1(K) and L1 = L1(K) such that for c ≥ c1 and for any
K–bounded w ∈ G with |w| ≥ L1, the set Znw,c has nonempty interior. More precisely, the interior
of Znw,c contains every pair of conical points in Znw,c0 where c0 is as in Lemma 9.10.

Proof. Suppose that (α, β) ∈ Znw,c0 is a pair of conical points, and pick a geodesic γ joining α and
β. Then by definition there are segments [xj , x

′
j ] ⊆ [α, β] for 1 ≤ j ≤ n and points zj such that

dG(xj , zj), dG(x′j , zjw) ≤ c0 (for 1 ≤ j ≤ n).
Now, let αi, βi ∈ ∂G such that αi → α and βi → β. In particular, for some uniform R, the

projections of the geodesics [αi, βi] to Cay(G,S ∪ P) R–fellow travel the projection of [α, β] for
longer and longer intervals. Hence, there is an N ≥ 0 so that for i ≥ N , each [αi, βi] passes with

d̂–distance R from [xj , x
′
j ] ⊂ [α, β].

Since w is K–bounded, the geodesic segment zj · [1, w] = [zj , zjw] projects to a K–quasigeodesic,
so we may apply Proposition 9.3 (with C = R + c0) to find constants D, L such that if |w| ≥ L
there exist points yj , y

′
j ∈ [αi, βi] such that dG(yj , zj), dG(y′j , zjw) ≤ D.

Setting c1 = D, L1 = L we see that for sufficiently large i ≥ 0, (αi, βi) ∈ Znw,c1 and this completes
the proof. �

Since G is doubly ergodic, the action of G on ∂G× ∂G is ergodic, hence Lemma 9.11 implies

Lemma 9.12. For c ≥ c1(K) and for any K–bounded w ∈ G with |w| ≥ L1(K), the set Znw,c has
full ν × ν measure. Hence, under the same hypotheses the set Zw,c has full ν × ν measure.

Proof. For each n, the set Znw,c is G-invariant, hence by ergodicity its measure is either 0 or 1. Since
it has nonempty interior and the measure ν × ν has full support, then it must have full measure.
The second claim follows since Zw,c = ∩nZnw,c. �

Let Λw,c ⊂ ∂G be the set of conical points α ∈ ∂G such that for every geodesic ray γ from
the identity converging to α there are infinitely many points g ∈ Nc(γ) such that γ passes within
distance c of gw. Using Proposition 9.3 just as in Lemma 9.11 we have:

Lemma 9.13. For each K ≥ 0 there is a c2 = c2(K) and L2 = L2(K) such that for c ≥ c2, and
for any K–bounded w ∈ G with |w| ≥ L2, if (α, β) ∈ Zw,c1, then either α or β is in Λw,c.

This, together with the fact that conical limit points have full ν-measure, implies

Corollary 9.14. For each c ≥ c2 and for any K-bounded w ∈ G with |w| ≥ L2, the set Λw,c has
full ν measure.

Lemma 9.15. For each K ≥ 0 there is a c3 = c3(K) and L3 = L3(K) such that for each c ≥ c3

and for any K–bounded w ∈ G with |w| ≥ L3, the closure of Xw,c is contained in ∂G \ Λw,c2.

Proof. If this were false, then for all large c ≥ 0 there would be a sequence (yi) ⊆ Xw,c converging
to η ∈ Λw,c2 . Since η is not a parabolic fixed point, then one can view η as belonging to the
boundary of Cay(G,S ∪ P). Then the projections to Cay(G,S ∪ P) of any geodesics γi = [1, yi]
must R–fellow travel the projection to Cay(G,S ∪P) of [1, η] for longer and longer intervals, where
R is independent of w. If η were in Λw,c2 , then just as in the proof of Lemma 9.11, we would obtain
by applying Proposition 9.3 (with C = c2 + R) two constants L3, c3 such that for |w| ≥ L and
for large i, the geodesic γi c3–almost contains w. Hence, for c ≥ c3 we obtain a contradiction to
yi ∈ Xw,c for all i. This completes the proof. �

We are now in position to prove Proposition 9.9.

Proof of Proposition 9.9. By Lemma 9.15 and Corollary 9.14, for c ≥ c3

ν(Xw,c) ≤ ν(∂G \ Λw,c2) = 0
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Hence, applying Lemma 9.6, for large enough c > 0 we have

lim sup
n
e−hn|Sn ∩Xw,c| ≤ Cν(Xw,c) = 0.

�

9.4. The loop semigroup is nonelementary. We will now assume that (G,P) is a doubly
ergodic relatively hyperbolic group which admits a geodesic combing for the generating set S.

Recall that a finitely generated group G is geodesically completable if any finite generating set S
of G can be extended to a finite generating set S′ ⊇ S for which there exists a geodesic biautomatic
structure. Moreover, by work of Antoĺın-Ciobanu [AC16], if the parabolic subgroups are geodesically
completable, then every generating set for G can be extended to a generating set for which G has
a geodesic combing. From here on, we will use such a generating set S.

Then for each w ∈ G and constant c, let us recall that Yw,c is the set of paths γ in the directing
graph from the initial vertex which do not c-almost contain w, i.e. such that one cannot write
ev(γ) = a1wa2 in G, with |ai| ≤ c for i = 1, 2. By identifying paths from the identity with group
elements, it is immediate from the definition that Yw,c ⊆ Xw,c. Hence, by Proposition 9.9, also Yw,c
has zero density if w is K–bounded.

Proposition 9.16. Let (G,Γ) be a geodesic combing for a doubly ergodic, relatively hyperbolic
group. Then (G,Γ) is nonelementary.

Proof. We are going to prove that the graph structure is thick relative to a nonelementary, free
subgroup F < G, which yields the claim by Proposition 6.3. Let v be a vertex of maximal growth
and w be any K–bounded word. Let d = diam Γ. Let c be the constant from Proposition 9.9. Let
h1 be a group element representing a path from the initial vertex to v, and consider the set

Σ = {h1h2 : h2 ∈ Γv}

Since v has maximal growth and Yw,c has zero density, the set Σ contains a path h which does not
belong to Yw,c. Then there is a path h = h1h2 such that h1 has length ≤ d, h2 is entirely contained
in the component Cv containing v, and h2 contains a subpath of the form w′ = awb where a and b
have length less than c+ d. Let s be a path from v to the start of w′ and t be a path from the end
of w′ to v, each of length at most D. Then sw′t is in Γv and w = as−1(swt)t−1b ⊂ BΓvB where B
is a finite set.

To complete the proof, it suffices to show that BΓvB contains a nonelementary subgroup (Propo-
sition 6.3). Using a standard ping-pong argument, construct a free subgroup H = 〈f, g〉 ≤ G which
K–quasi-isometrically embeds in Cay(G,S ∪ P) and which K–quasi-isometrically embeds into X
for some K ≥ 0. (Indeed, by [TT15], a random 2-generator subgroup of G will have this property.)
For this K, let B be the finite subset produced above enlarged to contain f±, g±. Then for any
w ∈ H, at least one of w, wf , or wg is cyclically reduced in H and hence K–bounded in G. Hence
w ∈ BΓvB and so H ≤ BΓvB, as required. �

9.5. Double Ergodicity. We conclude this section by proving that a group G which admits a
geometrically finite action on a CAT(−1) space is doubly ergodic.

Let us assume that G acts geometrically finitely on a CAT(−1) space Y . Recall that an orbit
map G → Y induces an embedding ∂G → ∂Y [Bow12, Theorem 9.4]. We continue to denote the
pushforward of the measure ν to ∂Y by ν.

Proposition 9.17. Suppose G acts geometrically finitely on a CAT(−1) space Y . Then the action
of G on ∂Y × ∂Y is ergodic with respect to ν × ν.

We remind the reader that ν is quasiconformal with respect to the word metric rather than the
metric on Y .
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Proof. Assume G acts geometrically finitely on a CAT(−1) space Y , with elements of P being the
parabolic subgroups. As above, the Bowditch boundary ∂G is identified with a closed subspace
of the Gromov boundary of Y . Let d = dG still denote the word metric on G. For ζ ∈ ∂G and
g, h ∈ G let βζ(g, h) be the Busemann function for the word metric on G. By W. Yang’s Lemma
2.20 in [Yan13] there is a C > 0 such that for every conical ζ ∈ ∂G we have

(13) | lim sup
z→ζ

[d(g, z)− d(h, z)]− lim inf
z→ζ

[d(g, z)− d(h, z)]| < C

Recall that the Patterson-Sullivan measure ν (for the word metric) gives full measure to conical
points and is h-quasiconformal, i.e. there is a D > 0 such that:

(14) D−1e−hβζ(g,e) ≤ dg?ν

dν
(ζ) ≤ De−hβζ(g,e)

for all g ∈ G and ζ ∈ ∂G. We claim there is a G-invariant measure in the measure class of ν × ν.
Indeed, let

ρe(ζ, ξ) = lim sup
z→ζ,y→ξ

(
d(e, y) + d(e, z)− d(y, z)

2

)
.

Define a locally finite measure m′ on (∂G× ∂G) \Diag by

dm′(ζ, ξ) = e2hρe(ζ,ξ) dν(ζ) dν(ξ)

The measure m′ is G quasi-invariant with a uniformly bounded derivative. Indeed, we can compute

2ρe(g
−1ζ, g−1ξ)− 2ρe(ζ, ξ) =

= lim sup
z→ζ,y→ξ

[
d(e, g−1y) + d(e, g−1z)− d(g−1y, g−1z)

]
− lim sup
z→ζ,y→ξ

[d(e, y) + d(e, z)− d(y, z)] =

= lim sup
y→ξ

[d(g, y)− d(e, y)] + lim sup
z→ζ

[d(g, z)− d(e, z)] +O(1) = βξ(g, e) + βζ(g, e) +O(1)

(where we could distribute the limsup since the limsup and liminf are within bounded difference as
in (13)). Hence, combining this with (14) one gets that the Radon-Nykodym cocycle is uniformly
bounded, i.e.

dg?m
′

dm′
(ζ, ξ) = e2hρe(g−1ζ,g−1ξ)−2hρe(ζ,ξ) dg?ν

dν
(ζ)

dg?ν

dν
(ξ) ∼= 1

Hence, by a general fact in ergodic theory the Radon-Nykodym cocycle is also a coboundary (see
[Fur02], Proposition 1). Thus, there exists a G-invariant measure m on (∂G × ∂G) \Diag in the
same measure class as m′, hence also in the same measure class as ν×ν. By [Yan13], the Patterson-
Sullivan measure is supported on conical limit points. Thus, m is also supported on pairs of conical
limit points. By Theorem 2.6 of [Kai94], any quasi-product G-invariant Radon measure on the
double boundary of a CAT(−1) space which gives full measure to pairs of conical limit points of G
is ergodic. Thus, ν × ν is ergodic. �

10. RAAGs, RACGs and graph products

Let Λ be a finite simplicial (undirected) graph. Recall that the corresponding right-angled Artin
group (RAAG) A(Λ) is the group given by the presentation

A(Λ) := 〈v ∈ V (Λ) : [v, w] = 1 ⇐⇒ (v, w) ∈ E(Λ)〉.

The corresponding right-angled Coxeter group (RACG) C(Λ) is the group obtained from A(Λ) by
adding the relators v2 = 1 for each v ∈ V (Λ). In each case, S = {v±1 : v ∈ V (Λ)} is called the set
of standard (or vertex ) generators of the group.
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In greater generality, let Λ be a finite simplicial graph, and for each vertex v of Λ let us pick a
finitely generated group Gv, which we call vertex group. Then we define the graph product from
the relative presentation

G(Λ) := 〈g ∈ Gv : [g, h] = 1 ⇐⇒ g ∈ Gv, h ∈ Gw and (v, w) ∈ E(Λ)〉

as the group generated by the vertex groups Gv with the relation that two vertex groups commute
if and only if the corresponding vertices are joined by an edge. Clearly, RAAGs are special cases of
graph products when Gx = Z for all x, and RACGs are graph products with Gx = Z/2Z. Graph
products were first introduced by Green [Gre90] and have received much attention, see for example
[BHP93, Chi94, Gre90, Hag08, HM95, HW+99, Mei96, Mei95, Rad03].

In this section, we are going to apply our counting techniques to graph products.

10.1. Geodesic combing for graph products. Let us call a group admissible if it has a geodesic
combing with respect to some finite generating set (i.e., in the language of the previous sections,
if it has an admissible generating set). Recall that a recurrent component of a directed graph Γ
is nontrivial if it contains at least one closed path. A component is terminal if there is no path
exiting it. Finally, a graph structure (G,Γ) is recurrent if every vertex admits a directed path to
every vertex other than the initial one.

Recall that, given a graph Λ, the opposite graph is the graph Λop with the same vertex set as Λ
and such that (v, w) ∈ E(Λop) if and only if (v, w) /∈ E(Λ). We will assume that Λ is anticonnected,
i.e. that the opposite graph Λop is connected. This implies that G(Λ) is not a direct product of
graph products associated to subgraphs of Λ. As an example, if Λ is a square, then the opposite
graph is the disjoint union of two segments, hence Λ is not anticonnected, while if Λ is a pentagon,
then its opposite graph is also a pentagon, hence Λ is anticonnected.

Proposition 10.1. Let Λ be anticonnected, and choose for each vertex x a group Gx with a geodesic
combing (Gx,Γx) for the generating set Sx. Then the graph product G(Λ) with the generating set
S = ∪xSx admits a geodesic combing which is recurrent.

We call the generating set S in Proposition 10.1, the standard generating set for G(Λ). Note
that this agrees with the standard vertex generators for the special case of right-angled Artin and
Coxeter groups.

The proof of Proposition 10.1 will be an explicit construction of a recurrent graph structure for
G(Λ) with the standard generators. First, Hermiller-Meier [HM95] produce a geodesic combing for
G(Λ) which is not recurrent. In the next few lemmas, we will show that if Λ is anticonnected we
can modify their construction in order to produce a new graph structure which is reccurent. Of
course it is necessary to assume that Λ is anticonnected, as the counting theorems fail for RAAGs
which decompose as direct products (Example 1).

We begin by reviewing the construction of [HM95]. First introduce a total ordering on the
vertices of Λ such that the first two vertices in the ordering are not adjacent in Λ. Each vertex of
Λ will be labeled by a capital letter A,B, . . . .

Then for each pair of vertices (I, J) such that I and J are not adjacent in Λ and with I > J
one constructs the (I, J)-admissible tree in the following way. An (I, J)-admissible word is a finite
sequence IJK1K2 . . .Kr (with r ≥ 0) such that:

(1)

J < K1 < K2 < · · · < Kr

and
(2) ifKi ≤ I for some i ≤ r, thenKi is not adjacent to at least one vertex among I, J,K1, . . . ,Ki−1.

Given (I, J), the (I, J)-admissible tree is the finite directed tree, whose vertices are labeled by
letters and whose paths spell exactly the (I, J)-admissible words. In particular, such a tree will



32 I. GEKHTMAN, S.J. TAYLOR, AND G. TIOZZO

have I as a root and there is only one edge coming out of this vertex, with endpoint J . Here, and
in what follows, a directed edge always has the same label as its terminal vertex.

Moreover, [HM95] define the header graph (the terminology is ours) as the graph with one vertex
for each letter, and an edge A→ B if and only if A < B.

Finally, they construct the graph structure for C(Λ) (the corresponding RACG) as follows.
Consider the union of an initial vertex v0, the header graph and all (I, J)-admissible trees. First,
one identifies the vertex I of the header graph with the root of the (I, J)-admissible tree for each
possible J . Then, one adds one edge from v0 to each vertex of the header graph, and if K > L
and K,L are not adjacent in Λ, one joins by a directed edge each vertex labeled K in the union of
the (I, J)-admissible trees with the L vertex in the (K,L)-admissible tree. As shown by Hermiller-
Meier, this graph G gives a bijective, geodesic graph structure for C(Λ) [HM95, Section 5 and
Proposition 3.3]. In fact, they show that G recognizes the geodesic language of normal forms with
respect to the ordering of the vertices of Λ, but we will not need this stronger fact.

Let C be the subgraph of G obtained by removing all vertices in the header graph and the initial
vertex. That is, C is the subgraph induced on the vertices on all (I, J)–admissible trees, excluding
the initial vertex of the tree (which is labeled I). The next lemma is key to our modification.

Lemma 10.2. If Λ is anticonnected, then the graph C is irreducible, i.e. there is one directed path
from each vertex to any other vertex. Hence, G has a unique nontrivial recurrent component C and
this component is terminal.

Proof. We will show that C is indeed irreducible. This will suffice since the header graph has no
directed loops (it only has directed edges which increase in the ordering) and there are no edges
leaving C by construction.

Since the (unique) type J vertex in the (I, J)–admissible tree has a directed path to each of its
vertices and each vertex is in some (I, J)–admissible tree, it suffices to show that from any vertex
of C we can reach the type J vertex of any (I, J)–admissible tree. Hence, fix some vertex v of G
and I, J , which are vertices of Λ.

Here is a main point: Any type I vertex of any admissible tree is joined to the type J vertex of
the (I, J)–admissible tree. Hence, it suffices to get from v to any type I vertex of any admissible
tree. To do this let X be the type of v.

Fix a path X = X0, X1, . . . Xn = I in the complement graph of Λ. (Here we use that Λ is
anticonnected.) That is, Xi and Xi+1 are not adjacent in Λ. We have to get from v to any type
I vertex. We do this inductively as follows: We have either X < X1 or X > X1. In the first
case, there is a type X1 vertex v1 in the admissible tree containing v along with a directed path
v → v1. (Since no consecutive pair in our fixed path are adjacent in Λ, condition (2) above holds
automatically.) In the second case, there is an edge from v to the unique X1 vertex of the (X,X1)–
admissible tree, call this vertex v1. In either case we get a directed path v → v1, were v1 is a type
X1 vertex.

We now repeat this argument to produce a path from v1 → v2, where v2 is a type X2 vertex.
Continuing in this manner, we produce v → v1 → . . . → vn, were vn has type I. Since vn then
has a directed edge to the type J vertex of the (I, J)–admissible tree (as discussed above), this
completes the proof, �

We now know that the union of the admissible trees (excluding the initial vertices) is an ir-
reducible graph. However, the header graph by construction is not irreducible. However, in the
following lemma we observe that all words we can spell in the header graph can also be spelled in
one of the admissible trees. Hence, we can modify G (essentially, by removing the header graph)
in order to get a recurrent graph Gr which recognizes the same language as G.

Lemma 10.3. If Λ is anticonnected, there exists a recurrent graph Gr which recognizes the same
language as G.
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Proof. Assume that Λ is anticonnected and that its vertices are ordered so that the first two vertices
A,B do not commute (i.e. they are not adjacent). We modify G so that the resulting graph Gr

still recognizes the same language as G, and it is recurrent.
The modification is simple and requires only one observation: we note that any strictly increasing

sequence X1 . . . Xr can be spelled in the (B,A)–admissible tree, starting from some vertex. In fact,
if X1 = A then BX1 . . . Xr is (B,A)-admissible, since the only required condition is that whenever
Xi ≤ B the vertex Xi is not adjacent to some Xl with l < i. However, the only two letters not
greater than B are A,B, and A and B are not adjacent by construction. Similarly, if X1 6= A then
BAX1 . . . Xr is (B,A)-admissible.

Thus, the new graph Gr is given by removing the header graph and joining the initial vertex
v0 to each vertex of the (B,A)-admissible tree. Any word which is recognized by G is made of an
increasing word followed by a word spelled in the union of the admissible trees. In Gr, such a word
is spelled by spelling the increasing sequence in the (B,A)-admissible tree, and the second part as
before. This proves the claim. �

The graph Gr is a recurrent graph which by Lemma 10.3 gives a bijective, geodesic graph
structure for the right-angled Coxeter group C(Λ). We now modify the construction to produce a
geodesic combing for each graph product G(Λ).

Let ΓI be the graph structure of the vertex group GI , let v0,I be the initial vertex of GI , let
s1,I , . . . , sk,I be the labels of the edges going out of v0,I , and let v1,I , . . . , vI,k be the targets of these
edges, respectively. Moreover, let Γ′I be the subgraph of ΓI given by removing the initial vertex.

To construct the graph structure for G(Λ), let us consider the disjoint union of a vertex ṽ0, which
will serve as initial vertex, and a copy of Γ′I for each vertex v of type I in Gr. Moreover, for any
edge in Gr of type I → J let us connect each vertex of the corresponding Γ′I with the vertices
v1,J , . . . , vk,J of the corresponding Γ′J with edges labeled, respectively, s1,J , . . . , sk,J . Finally, for
each edge from v0 in Gr to some other vertex of type I, let us connect the new initial vertex ṽ0

with vertices v1,J , . . . , vk,J of Γ′J with edges labeled, respectively, s1,J , . . . , sk,J .
This new graph ΓG gives a bijective, geodesic structure for G(Λ) with respect to the standard

generators. This follows since, by construction, ΓG parameterizes the same language of geodesic
normal forms for G(Λ) given in [HM95]. Moreover, since ΓG is modeled on the recurrent graph Gr

one easily sees that ΓG is itself recurrent. This completes the proof of Proposition 10.1.

Corollary 10.4. Let G(Λ) be a graph product of admissible groups, which does not decompose as
a direct product. Then there exists a thick graph structure for its standard generating set.

Proof. From Proposition 6.2, the graph structure given by the above proposition is thick since ΓG
is recurrent. �

As a consequence of thickness, we are ready to establish the following counting result for loxo-
dromics.

Theorem 10.5. Let G be a graph product of admissible groups which is not a nontrivial direct
product, and let S be its set of standard (vertex) generators. Then for any nonelementary action
Gy X on a hyperbolic space X, the set of loxodromics for the action is generic with respect to S,
i.e.

#{g ∈ G : |g|S ≤ n and g is X − loxodromic}
#{g ∈ G : |g|S ≤ n}

−→ 1,

as n→∞.

Proof. The pair (G,S) admits a thick graph structure by Corollary 10.4, hence the claim follows
from Theorem 6.4. �
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11. Exact exponential growth for RAAGs and RACGs

We conclude by proving a fine estimate on the number of elements in a ball for RAAGs and
RACGs.

Theorem 11.1. Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and
does not decompose as a nontrivial direct product, and let us consider S its standard generating set.
Then there exists constants λ > 1, c > 0 such that the following limit exists:

(15) lim
n→∞

#{g ∈ G : |g|S = n}
λn

= c.

We say that a group which satisfies (15) has exact exponential growth. Let us remark that such a
property is not invariant with respect to quasi-isometries of the metric, and hence it depends very
carefully on the generating set. Moreover, the proof shows that λ is a Perron number, which is one
of properties conjectured by [KP11] for cocompact Coxeter groups acting on Hn.

In fact, Theorem 11.1 will follow immediately from the following theorem for general graph
products.

Theorem 11.2. Let G(Λ) be a graph product of admissible groups, and assume that Λ is anticon-
nected (so that the group does not split trivially as a product) and has at least 3 vertices. Then
G(Λ) has exact exponential growth.

Note that it makes sense to assume that the number of vertices is at least 3. In fact, if n = 1
then G(Λ) can be any group with a geodesic combing, while if n = 2 then G(Λ) can be the free
product of any two admissible groups. In particular, if it is a RAAG then it must be the free group
on 2 generators, which has exact exponential growth, and if it is a RACG it must be Z/2Z ?Z/2Z,
which is virtually cyclic.

Let us remark that the growth function for graph products has been worked out by Chiswell
[Chi94] (see also [AP14]); however, it does not seem obvious how to prove exact exponential growth
by this method.

Let us consider the recurrent graph Gr defined in the previous section, and denote as Gr
0 =

Gr \ {v0}. By the previous section, we know that Gr
0 is irreducible. The final step in the proof of

Theorem 11.2 is the following lemma.

Lemma 11.3. If Λ is anticonnected and has at least 3 vertices, then the graph Gr
0 is aperiodic.

Proof. Let us assume, consistently with the previous section, that the vertices of Λ are ordered.
Let us call A,B the two smallest vertices, with A < B, and assume that A, B are not adjacent.
Moreover, let C be the largest vertex in the ordering. Then let us observe that the sequences
BAC and BABC are (B,A) admissible, hence in the (B,A)-admissible tree there is a Y -shaped
subtree with five vertices: one labeled A, two labeled B (let us denote them B1, B2) and two
labeled C (let us denote them C1, C2) so that the paths in this subtree are B1 → A → C1 and
B1 → A→ B2 → C2. Now, since the graph is irreducible, there exists a path from C1 to A; let us
denote its vertices as C1 → v1 → v2 · · · → vk → A. Then by definition, the type of v1 is smaller
than C, and is not adjacent to C. Thus, by construction, there is also an edge from C2 to v1; hence,
in the graph there are two loops: one loop is given by A → C1 → v1 → · · · → vk → A and the
other is A→ B → C2 → v1 → · · · → vk → A. Since the lengths of these two closed paths differ by
one, the greatest common divisor of the lengths of all paths is 1, hence Gr

0 is aperiodic. �

Note that the statement is false if the number of vertices is 2: indeed, then there is only one loop
of length 2, hence the period is 2.

Now, let us consider a general graph product G(Λ). By the previous section, by replacing vertices
of Gr with graphs which recognize the geodesic combings of vertex group, we get a new graph ΓG
which gives a geodesic combing for G(Λ). By the previous lemma we get:
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Corollary 11.4. If Λ is anticonnected and has at least three vertices, then the graph Γ′G = ΓG\{v0}
is irreducible and aperiodic.

Proof of Theorem 11.2. Since the graph Γ′G is irreducible and aperiodic, then by the Perron-
Frobenius theorem its adjacency matrix A has a unique eigenvalue λ > 1 of maximum modulus,
and that eigenvalue is real, positive, and simple. Moreover, the coordinates of the corresponding
eigenvector are all positive. Finally, the sequence An

λn converges to the projection to the eigenspace.
In particular, none of the basis vectors is orthogonal to the eigenvector, hence for any i, j there
exists cij > 0 such that

lim
n→∞

(An)ij
λn

= cij .

Now, each path of length n from the initial vertex starts with an edge to the irreducible graph,
hence

#Sn
λn

=
∑
v0→vi

#Sn−1(vi)

λn
→

∑
v0→vi

∑
j

(An−1)ij
λn

→
∑
v0→vi

∑
j

cij
λ

= c > 0

which establishes exact exponential growth. �
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[DMS10] Cornelia Druţu, Shahar Mozes, and Mark Sapir, Divergence in lattices in semisimple Lie groups and graphs
of groups, Transactions of the American Mathematical Society 362 (2010), no. 5, 2451–2505.
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