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ABSTRACT. We study properties of generic elements of groups of isometries of hyperbolic spaces.
Under general combinatorial conditions, we prove that loxodromic elements are generic (i.e. they
have full density with respect to counting in balls for the word metric in the Cayley graph) and
translation length grows linearly. We provide applications to a large class of relatively hyperbolic
groups and graph products, including all right-angled Artin groups and right-angled Coxeter groups.

1. INTRODUCTION

Let G be a finitely generated group. One can learn a great deal about the geometric and algebraic
structure of G by studying its actions on various negatively curved spaces. Indeed, Gromov’s
theory of hyperbolic groups [Gro87] provides the clearest illustration of this philosophy. However,
weaker forms of negative curvature, ranging from relative hyperbolicity [Far98, Bow12, Osi06] to
acylindrical hyperbolicity [Osil5, Bow08], apply to much larger classes of groups and still provide
rather strong consequences. In all of these theories, a special role is played by the lozodromic (or
hyperbolic) elements of the action, i.e. those elements which act with sink-source dynamics. In
this paper, we are interested in quantifying the abundance of such isometries for the action of
G on a hyperbolic space X. We emphasize that in all but the simplest situations, the natural
hyperbolic spaces that arise are not locally compact. This includes actions associated to relatively
hyperbolic groups [Far98], cubulated groups [KK14, Hagl4]|, mapping class groups [MM99], and
Out(F,,) [BF14, HM13], to name only a few. Hence, in this paper we make no assumptions of local
finiteness or discreteness of the action.

Suppose that G ~ X is an action by isometries on a hyperbolic space X. We address the
question: How does a typical element of G act on X ?

When G is not amenable, the word “typical” has no well defined meaning, and depends heavily
on the averaging procedure: a family of finitely supported measures exhausting G. Although much
is now known about measures generated from a random walk on G [Mahl1, CM15, MT14, MS14],
very little is known about counting with respect to balls in the word metric. This will be our main
focus.

In more precise terms, fix a finite generating set S for the group G. Let B, be the ball of radius
n about 1 with respect to the word metric d determined by S. Then we call a property P generic

if
#{g € B,, : g has P} .
#Bn

In this language, a refinement of our questions asks when the loxodromic elements of a particular
action G ~ X are generic with respect to a generating set S. It is important to note that genericity
in the counting model depends on the generating set: a priori, sets may be generic with respect to
one word metric, but not with respect to another.

The results of this paper are modeled on our previous work [GTT16], where we studied the
situation where G is itself hyperbolic. Recall that g € G is loxodromic with respect to the action
G ~ X if and only if its translation length 7x(g) = limdx(x,¢"x)/n is strictly positive. In

1 as n — oo.
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[GTT16], we prove that for any isometric action of a hyperbolic group G on a hyperbolic metric
space X, loxodromic elements are generic, and translation length grows linearly. However, the
genericity of loxodromic elements is in general false when the hypothesis that G is hyperbolic is
dropped (see Example 1). In the present paper, we generalize this theorem to a much larger class
of groups. Our general setup is discussed below, but here is a sample:

Theorem 1.1. Suppose that either

(1) G is a finitely generated group which admits a geometrically finite action on a CAT(—1)
space with virtually abelian parabolic subgroups and S an admissible generating set, or

(2) G is a right-angled Artin or Cozxeter group which does not split as a direct product, and S
1s its standard verter generating set.

Then for any nonelementary isometric action G ~ X on a hyperbolic metric space X there is an

L > 0 such that
B, : > L
#DB,

In particular, loxodromic elements are generic.

1.

In fact, our theorem applies to a more general class of relatively hyperbolic groups and graph
products (see Section 2 for precise statements and definitions) and in fact to any group satisfying
certain combinatorial conditions. Before moving to our general framework, we state one more
result which may be of independent interest. It is a direct generalization of a theorem of Gouézel,
Mathéus, and Maucourant [GMM15] who consider the case where G is hyperbolic.

Theorem 1.2. Let the group G and generating set S be as in Theorem 1.1, and suppose that H is
any infinite index subgroup of G. Then

. #(HNBy)
hm S —

That is, the proportion of elements of G of length less than n which lie in H goes to 0 as n — oo.

=0.

1.1. General framework and results. Our general framework is as follows. We define a graph
structure to be a pair (G,I') where G is a countable group and I is a directed, finite graph such
that:

(1) there is a labeled vertex vy, called the initial vertex; for every other vertex v there exists a
directed path from vg to v;

(2) every edge is labeled by a group element such that edges directed out of a fixed vertex have
distinct labels.

By (2), there exists an evaluation map ev: E(I') — G and this map extends to the set of finite
paths in I' by concatenating edge labels on the right. We denote by Qg the set of finite paths
starting at vg, by S, C Qg the set of paths of length n, and by #X the cardinality of X. A graph
structure is a geodesic combing if the evaluation map ev : o — G is bijective, and each path in
Qg evaluates to a geodesic in the associated Cayley graph. See Section 3.1 for details. We introduce
the counting measure P™ on )y as
pr(a) = HE 04
#5n

for A C Qg The graph structure is almost semisimple if the number of paths of length n starting
from vy has pure exponential growth, i.e. there exists ¢ > 0, A > 1 such that

cTINY < HS, < e

for each n. See Section 3.2 for details.
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As a simple example, consider the rank N > 2 free group G = Fy and fix a free basis {a1,...,an}
of Fy. Then one has the usual geodesic combing with underlying graph I' as follows. The graph I
has 2N + 1 vertices, with initial vertex vy and other vertices labelled af with i =1,..., N, e = £1.
For each vertex v = af, there is a directed edge labelled a? to the vertex a;? unless ¢ = j and
€ = —n. Moreover, there is a directed edge from vy to each of the other vertices labeled by its
terminal vertex.

To state our results in fully generality, we first introduce a few dynamical properties of graph
structures.

Definition 1.3. For each vertex v of I', we denote by L, the set of loops based at v, and by
Iy = ev(L,) its image in G. We call T, the loop semigroup associated to v.

Consider an action G ~ X, where X is a hyperbolic metric space. A semigroup L < G is nonele-
mentary if it contains two independent loxodromics. A graph structure (G,T") is nonelementary
for the action G ~ X if for any vertex v of maximal growth (i.e. the growth rate of I, is maximal
among all vertices; see Definition 3.1) the loop semigroup I';, is nonelementary.

We now introduce several criteria on a graph structure that guarantee it is nonelementary: we
call them thickness and quasitightness. Although they may appear slightly technical, each is meant
to capture ‘mixing’ properties of the graph structure. To help with the reader’s intuition, we also
illustrate each property in the case of the free group Fy.

Definition 1.4 (Thickness). A graph structure is thick if for any vertex v of maximal growth
there exists a finite set B C G such that

G = BT, B,

where the notation on the right-hand side means group multiplication between subsets of G. More
generally, a graph structure is thick relative to a subgroup H < G if for every vertex v of maximal
growth there exists a finite set B C G such that

H C BI',B.

For example, the geodesic combing described above for Fiy is thick. Indeed, in this case each I',
is maximal, and if v corresponds to, say, the generator a, then I'; is the set of words that end with
a and do not begin with a=!. From this description, it is easy to see that we may take B in the
definition of thickness to be the set of words of F of length at most 2.

Given a path v in I', we say it c—almost contains an element w € G if v contains a subpath p
such that w = a - ev(p) - b in G, with |a|, |b] < ¢. Here, |a| denotes the word length of a € G with
respect to the generating set given by edge labels. We denote as Y, . the set of paths in I' starting
at the initial vertex which do not c-almost contain w. The following definition is modeled on the
one found in [AL02].

Definition 1.5 (Growth quasitightness). A graph structure (G,T) is called growth quasitight if
there exists ¢ > 0 such that for every w € G the set Y, . has density zero with respect to P"; that
is,

P"(Yye) -0 asn—0.
More generally, given a subgroup H < G we say that (G,T") is growth quasitight relative to H if
there exists a constant ¢ > 0 such that for every w € H the set Y,, . has density zero.

It is also the case that the geodesic combing previously described for Fly is growth quasitight.
(In fact, a similar property holds for all hyperbolic groups [AL02].) In this case, we may take ¢ = 0,
and so Y, o is precisely the set of words that do not contain w as a subword. It is then an exercise
to show that the proportion of elements of F with word length n that lie in Y, ¢ goes to 0 as
n — oo. We will see in Example 1 a case in which growth quasitightness fails.

In the most general form, the main theorem we are going to prove is the following.
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Theorem 1.6. Let G be a countable group of isometries of a 6-hyperbolic metric space X, and let
(G,T) be an almost semisimple graph structure which is either:

(1) nonelementary;
(2) thick relative to a nonelementary subgroup H < G; or
(3) growth quasitight relative to a nonelementary subgroup H < G.

Then there exists L > 0 such that for every ¢ > 0 one has that:

(i) Displacement grows linearly:
#{g€ Sn : dx(gz,x) > (L —e)n}

—1 as n — 00.
#5n
(ii) Translation length grows linearly:
: > (L —
#19 € Sn : x(9) = on} —1 as n — oo.

#5n
(iii) As a consequence, loxodromic elements are generic:
#{g €S, : gis X —loxodromic}
#Sn

If we are interested in counting with respect to balls in the Cayley graph, we get the following
immediate consequence.

—1 as n — 00.

Corollary 1.7. Let G be a group with finite generating set S. Suppose that
(i) there is a geodesic combing for (G,S);
(ii) G has pure exponential growth with respect to S; and
(iii) the combing for (G,S) satisfies at least one of the conditions (1), (2), (3) above.

Then for any nonelementary action G ~ X on a hyperbolic space, the set of loxodromic elements
is generic with respect to S.

Note that, as we will see in detail later in Example 1, the right-angled Artin group G = F» X
F3 with the standard generators has a geodesic combing and has pure exponential growth but
loxodromic elements are not generic, so an additional dynamical condition (such as (1), (2), (3))
must be added. In fact, we will show that for graph products such as RAAGs and RACGs this
condition amounts essentially to the group G not being a product. Moreover, we will prove that
the three conditions are related, namely (3) = (2) = (1).

2. APPLICATIONS

2.1. Hyperbolic groups. By Cannon’s theorem [Can84], a hyperbolic group G admits a geodesic
combing for any generating set. In fact, the language recognized by the graph is defined by choosing
for each g € G the smallest word (in lexicographic order) among all words of minimal length which
represent g. This is called the ShortLex representative. We proved in [GTT16] that this graph
structure is nonelementary, hence we can apply Theorem 1.6. This shows that Theorem 1.6 is a
direct generalization of the main theorem from [GTT16].

2.2. RAAGs, RACGs, and graph products. Let G be a right angled Artin or Coxeter group,
and let S be its standard vertex generating set. A result of Hermiller and Meier [HM95] implies that
(G, S) is ShortLex automatic. In our language, (G, S) admits a geodesic combing. However, the
graph I' parameterizing this language of geodesics does not have the correct dynamical properties
needed to apply Theorem 1.6. In Section 10, we modify their construction to show that when G
is not a direct product, it has a graph structure with respect to the standard generators with the
strongest possible dynamical properties. We then obtain the following:



COUNTING PROBLEMS 5

Theorem 2.1. Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and
does not split as a product, and consider an action of G on a hyperbolic metric space X. Then eq.
(1) holds, and loxodromic elements are generic with respect to the standard generators.

We note that there are many examples of actions of such G on locally infinite hyperbolic graphs.
The most natural of which are the extension graph [KK14] (in the case of a RAAG) and the contact
graph [Hag14] (in the case of a RACG). For both of these actions, the loxodromic isometries are all
rank 1 (or Morse) elements of G [BC12, CS14] and so Theorem 2.1 implies that the rank 1 elements
of these groups are generic.

Actually, Theorem 2.1 applies to all graph products of groups with geodesic combing (Theorem
10.5). We refer the reader to Section 10 for details. Let us point out that RAAGs which are
products give examples of actions where loxodromics are not generic:

Example 1 (Nongenericity in general). Denote the free group of rank n by F,, and fix a free basis
as a generating set. Let G = Fy X F3 and let X denote a Cayley graph for F5. Give G its standard
generating set; that is, the generating set consisting of a basis for F5 and a basis for Fj. Consider
the action G ~ X in which the F5 factor acts by left multiplication and the right factor acts
trivially. If we denote the set of loxodromics for the action by LOX, then

. #(LOXNB,) 2
am T Tg b

Note that in the example above G has pure exponential growth and a geodesic combing, so these
two conditions are not sufficient to yield genericity of loxodromics. Moreover, the complement of
LOX is a subgroup H < G which has infinite index and positive density, showing that conditions
are needed also in Theorem 1.2.

Let us also see that growth quasitightness fails. To construct a geodesic combing for G, let I'; be
a geodesic combing for F3 and let I'y be a geodesic combing for F, as discussed above. To obtain
a geodesic combing for G, take the disjoint union of I'y and I'y, remove the initial vertex for I'y
and introduce arrows from any non-initial vertex of I'; to any (non-initial) vertex of I'y, with the
appropriate labels.

Let us consider the set ) of paths starting at the initial vertex which always stay inside I'y, and
let w e Fy x {1}. We claim that the set Y, . contains {2 whenever |w| > 2¢. Since 2 has positive
density in G, the claim contradicts growth quasitightness. To prove the claim, let v € Q. If v does
not belong to Y, ., then there exists a,b with |a|, |b| < ¢ and such that w = a - ev(p) - b with p a
subpath of . Since p is a subpath of v, then ev(p) lies in H = {1} x F3. Consider the projection
m: Fy X F3 — Fy. If w=a-ev(p)-b, then m(w) = w(a)w(b) hence |w| = |r(w)| < 2¢, which proves
the claim.

Moreover, as a consequence of the geodesic combing that we produce in order to prove the
previous theorem, we also prove the following fine counting statement for the number of elements
in a sphere with respect to the standard generating set. As far as we know, this result is also new,
and it may be of independent interest.

Theorem 2.2. Let G be a right-angled Artin group or Cozeter group which is not virtually cyclic
and does not split as a product. Then there exists A > 1, C > 0 such that
1' #Sn
im

n—oo A"

=C.

We say that a group with a generating set with the previous property has ezxact exponential
growth. This is stronger than pure exponential growth (where one only requires C A" < #8,, <
C\"), and depends very subtly on the choice of generating set. In fact, in Theorem 11.1 we will
establish this result more generally for graph products.
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Note that growth functions for graph products are known by Chiswell [Chi94] and Athreya-
Prasad [AP14]; however, it does not seem obvious how to use them to prove the result above.

2.3. Relatively hyperbolic groups. Our results also apply to a large class of relatively hyperbolic
groups. Just as above, we note that there are many natural action of relatively hyperbolic groups
on locally infinite hyperbolic graphs. The most famous of these is the coned-off Cayley graph
introduced by Farb [Far98|, where the loxodromics of G are exactly the elements not conjugate into
a peripheral subgroup.

To apply our general theorem to relatively hyperbolic groups, we need two hypotheses.

First, recall that a relatively hyperbolic group (G, P) is equipped with a compact metric space
O0G known as its Bowditch boundary, and such a space carries a natural Patterson-Sullivan measure
v, defined with respect to the word metric on Cay(G,S) (see Section 9.2). We call a relatively
hyperbolic group G with a generating set S doubly ergodic if the action of G on 0G x 0G is ergodic
with respect to the measure v x v.

Second, we need a geodesic combing with respect to some generating set S. Let us call a finite
generating set S admissible if G admits a geodesic combing with respect to S. We have the following
general statement:

Theorem 2.3. Let G be a relatively hyperbolic group with an admissible generating set S for which
G is doubly ergodic. Then, for each action of G on a hyperbolic metric space X, there exists L > 0
such that
#{9 € Bn : 7x(9) = Ln}
#Bn,

As a consequence, X -loxodromic elements are generic.

—1 as n — 00.

In fact, by [AC16] and [NS95], many relatively hyperbolic groups admit geodesic combings as
follows. Let us call a finitely generated group G geodesically completable if any finite generating
set S of G can be extended to a finite generating set S’ D S for which there exists a geodesic
biautomatic structure. Antolin and Ciobanu ([AC16], Theorem 1.5) proved that whenever G is
hyperbolic relative to a collection of subgroups P each of which is geodesically completable, then G
is geodesically completable. Moreover, from automata theory ([HRR17], Theorem 5.2.7) one gets
that if G admits a geodesic biautomatic structure for S, then it also admits a geodesic combing for
the same S. This yields:

Proposition 2.4. Let (G,P) be a relatively hyperbolic group such that each parabolic subgroup
P € P is geodesically completable. Then every finite generating set S can be extended to a finite
generating set S’ which admits a geodesic combing.

Let us note that in particular, virtually abelian groups are geodesically completable ([AC16],
Proposition 10.1), hence any group hyperbolic relative to a collection of virtually abelian subgroups
is geodesically completable and admits a geodesic combing. Moreover, we will prove (Proposition
9.17):

Proposition 2.5. If a group G acts geometrically finitely on a CAT(—1) proper metric space, then
G is doubly ergodic with respect to any finite generating set.

In particular, geometrically finite Kleinian groups satisfy both hypotheses of Theorem 2.3, which
establishes Theorem 1.1 (1) as a corollary of Theorem 2.3.

2.4. Actions with strongly contracting elements. Let us now remark that by combining our
work with recent work of W. Yang one can apply our theorem in greater generality. Following
[ACT15] and [Yanl6], we call an element g € G strongly contracting for the action on Cay(G,.S)
if n — ¢" is a quasigeodesic and there exists C, D > 0 such that for any geodesics v in Cay(G,S)
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whose distance from (g) is at least C, the diameter of the image of v under the nearest point
projection to (g) is bounded by D.

Wenyuan Yang [Yanl6] has recently announced that whenever the action G ~ Cay(G, S) has a
strongly contracting element, G is growth quasitight and has pure exponential growth with respect
to S. Combining Theorem 1.7 with Yang’s result we obtain the following:

Corollary 2.6. Let G be a group with finite generating set S. Suppose that the Cayley graph
Cay(G, S) has a strongly contracting element and that (G,S) has a geodesic combing. Then for
any nonelementary action G ~ X on a hyperbolic space, the set of loxodromic elements is generic
with respect to S.

2.5. Genericity with respect to the Markov chain. Our approach is to deduce typical prop-
erties of elements of G from typical long term behavior of paths in the associated graph structure.
As a by-product, we also obtain a general theorem about generic elements for sample paths in a
Markov chain, which may be of independent interest. More precisely, an almost semisimple graph
I' defines a Markov chain on the vertices of I' (see Section 3.3), hence it defines a Markov measure
P on the set )y of infinite paths from the initial vertex. For such Markov chains, we prove the
following:

Theorem 2.7. Let (G,T') be an almost semisimple, nonelementary graph structure for G ~ X,
and let x € X. Then:

(1) For P-almost every sample path (wy,), the sequence (w,x) converges to a point in 0X;

(2) There exist finitely many constants L; > 0 (i = 1,...,r) such that for P-almost every sample

path there exists an index © such that
d
lim d(wnz, ) =L;;
n—o00 n

(3) If we denote L := minj<i<, L;, then for each ¢ > 0 one has
P(rx(wy) >n(L —¢€)) — 1
asn — co. As a consequence,

P(wy,, is loxodromic) — 1 as n — oo.

2.6. Non-backtracking random walks. An illustration of the previous result is given by looking
at non-backtracking random walks. Let G be a group and S = S~! a generating set. The non-
backtracking random walk on G is the process defined by taking g, uniformly at random among
the elements of S\ {(gn_1)"!} and considering the sample path w, = g1g2...g,. We prove the
following, which answers a question of I. Kapovich.

Theorem 2.8. Let G be a nonelementary group of isometries of a hyperbolic metric space X, and
let S be a finite generating set. Consider the non-backtracking random walk

Wn = g1..-Gn
defined as above, and let P be corresponding the measure on the set Qg of sample paths. Then
P (wy, is loxodromic on X) — 1

as n — o0.

Proof. Let us consider F' = F(S) the free group generated by S, with its standard word metric. By
composing the surjection F' — G with the action on X, we can think of F' as a group of isometries
of X. Then F has a standard geodesic combing, whose graph I" has only one non-trivial component,
hence (by Proposition 6.3) the graph structure (F,T") is thick, hence nonelementary. The result
then follows from Theorem 2.7. ]
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2.7. Previous results. Beginning with Gromov’s influential works [Gro87, Gro93, Gro03], there
is a large literature devoted to studying typical behavior in finitely generated groups. More re-
cent developments can be found, for example, in [AO96, Arz98, BMR03, Cha95, KMSS03, KS05,
KRSS07, 01'92].

If one takes the definition of genericity with respect to random walks, instead of using counting
in balls, then genericity of loxodromics has been established in many cases. In particular, the
question of genericity of pseudo-Anosovs in the mapping class group goes back to at least Dunfield-
Thurston [DT06], and for random walks it has been proven independently by Rivin [Riv08] and
Maher [Mahl1]. This relates to our setup, as a mapping class is pseudo-Anosov if and only if it
acts loxodromically on the curve complex. Genericity of loxodromics for random walks on groups
of isometries of hyperbolic spaces has been established with increasing level of generality in [CM15,
Sisll, MT14]. Let us note that in general counting in balls and counting with random walks need
not yield the same result. For instance, in Example 1, loxodromics are not generic with respect to
counting the the Cayley graph despite that fact that they are typical with respect to reasonable
random walks. In fact it is a very important problem to establish whether the harmonic measure
for the random walk can coincide with a Patterson-Sullivan-type measure, given by taking limits
of counting measures over balls. Many results in this area show that the two measures do not
coincide except in particular cases (cf. [GMM15]), while an existence result of a random walk for
which harmonic and PS measure coincide is due for groups of isometries of CAT'(—1) spaces to
Connell-Muchnik [CMOT7].

As for counting in balls, Wiest [Wiel4] recently showed that if a group G satisfies a weak
automaticity condition and the action G ~ X on a hyperbolic space X satisfies a strong geodesic
word hypothesis, then the loxodromics make up a definite proportion of elements of the n ball. This
geodesic word hypothesis essentially requires geodesics in the group G, given by the normal forms,
to project to unparameterized quasigeodesics in the space X under the orbit map. In our work, on
the other hand, we do not assume any nice property of the action except it being by isometries.
Let us note that our theorems answer (when the hypotheses of our two approaches overlap) the
open problems (3) (4) in ([Wiel4], section 2.12).
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gestions and clarifications. The first author is partially supported by NSF grant DMS-1401875
and ERC advanced grant “Moduli” of Prof. Ursula Hamenstadt, the second author is partially
supported by NSF grants DMS-1400498 and DMS-1744551, and the third author is partially sup-
ported by NSERC and the Alfred P. Sloan Foundation. We also thank the referee for corrections
and suggestions that improved the paper.

3. BACKGROUND MATERIAL

Since graph structures play a central role in our work, we begin by discussing some further
details. The reader will notices that much of this is inspired by the theory of regular languages and
automatics groups [EPCT92], but we place a special focus on the graph which parameterizes the
language. Thus our terminology may differ from that in the literature.

3.1. Graph structures. The general framework is as follows. We define a graph structure to
be a pair (G,T") where G is a countable group and I' is a directed, finite graph such that:

(1) there is a labeled vertex vy, called the initial vertez; for every other vertex v there exists a
directed path from vg to v;

(2) every edge is labeled by a group element such that edges directed out of a fixed vertex have
distinct label.

Thus, there exists an evaluation map ev: F(I') — G and this map extends to the set of finite
paths in I' by concatenating edge labels. Here and in what follows, the term path will always
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refer to a directed path. If S = ev(E(I')), we say that (G,I') is a graph structure with respect
to S. We denote by €2y the set of finite paths starting at vy and by ) the set of all finite paths.
When ev(y) = G, we call the graph structure surjective; in this case S = ev(E(T")) generates
G as a semigroup. A surjective graph structure is geodesic if for each path p € 2, the word
length |ev(p)|s is equal to the length of the path. In this case, all paths in I" evaluate naturally to
geodesic paths in the Cayley graph Cay(G,S). Finally, the graph structure is called injective, if
ev: Qo — G is injective. For example, if each path in g labels the ShortLex geodesic representative
of its evaluation (with respect to some ordering on ), then (G,T") is injective. A bijective, geodesic
graph structure (G,T") with respect to S is called a geodesic combing of G with respect to S.

Note the evaluation map, restricted to €2, factors through S*, the set of all words in the alphabet
S. The image in S* of Qq (i.e. all words which can be spelled starting at vg) is called the language
parameterized (or recognized) by I'. This language is prefix closed by construction; an initial
subword of a recognized word is also recognized. We warn the reader that references differ on the
exact meaning on some of these terms. For example, Calegari—Fujiwara use the term “combing” to
refer to the language of a bijective, geodesic graph structure rather than the graph structure itself
[CF10, Call3]. Since we will be most interested in dynamical properties of the graph parameterizing
the language of geodesics, we choose to emphasize the graph structure.

3.2. Almost semisimple graphs. Let us summarize some of the fundamental properties about
graphs and Markov chains. Much of this material appears in Calegari-Fujiwara [CF10], and we
refer to that article and [GTT16] for more details and proofs.
Let I" be a finite, directed graph with vertex set V(I') = {vo, v1, ..., vy—1}. The adjacency matriz
of I' is the r x r matrix M = (M;;) defined so that M;; is the number of edges from v; to v;.
Such a graph is almost semisimple of growth \ > 1 if the following hold:

(1) There is an initial vertex, which we denote as vp;

(2) For any other vertex v, there is a (directed) path from vy to v;

(3) The largest modulus of the eigenvalues of M is A, and for any eigenvalue of modulus A, its
geometric multiplicity and algebraic multiplicity coincide.

Note that by Perron-Frobenius theory A is in fact an eigenvalue. We denote by €2 the set of all
finite paths in I', 2, for the set of finite paths starting at v, and Qg = €, the set of finite paths
starting at vg. For a path g € Q, we use [g] to denote its terminal vertex. Similarly, we denote as
2> the set of all infinite paths in ", 27° the set of infinite paths starting at v and Q§° = Q°.

Given two vertices vy, vo of a directed graph, we say that ve is accessible from vy and write
v1 — vg if there is a path from v; to v9, and two vertices are mutually accessible if vi — wvo
and vy — v;. Mutual accessibility is an equivalence relation, and equivalence classes are called
irreducible components of T

For any subset A C Qg, we define the growth \(A) of A as

A(A) := limsup m,

n—oo

where S, C g is the set of all paths starting at vy that have length n.

For each vertex v of I" which lies in an irreducible component C, let P,(C) denote the set of
finite paths in I' based at v which lie entirely in C. Moreover, for any path g from vy to v, we let
Py(C) = g-Py(C) be the set of finite paths in £ which can be written as a concatenation of g with
a path contained entirely in C.

Definition 3.1. An irreducible component C' of T' is called mazimal if for some (equivalently, any)
g € Qo with [g] € C, the growth of Py(C) equals \. A vertex is mazimal if it belong to a component
of maximal growth. Moreover, we say a vertex v; of I' has large growth if there exists a path from
v; to a vertex in a maximal component, and it has small growth otherwise.
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Definition 3.2. For every vertex v of I, the loop semigroup of v is the set L, of loops in the graph
I" which begin and end at v. It is a semigroup with respect to concatenation. A loop in L, is
primitive if it is not the concatenation of two (non-trivial) loops in L.

Let T be an almost semisimple graph of growth A > 1. Then there exist constants ¢ > 0 and
A1 < A such that ([GTT16], Lemma 2.3):

(1) For any vertex v of large growth and any n > 0,

¢ A" < #{paths from v of length n} < c\"
(2) For any vertex v of small growth and any n > 0,

#{paths from v of length n} < A}
(3) If v belongs to the maximal component C, then for any n > 0
¢ IA" < #{paths in P,(C) of length n} < cA"
and also ([GTT16], Lemma 6.5)
¢ I\" < #{paths in L, of length n} < c\"

3.3. Markov chains. Given an almost semisimple graph I" of growth A with edge set F(T'), one
constructs a Markov chain on the vertices of I' as follows. Let us define for each ¢ the quantity

N
1 e (M7,
P dim N 2
n=

I

where 1 is the vector all of whose coordinates equal 1, and w; denotes the i*" coordinate of the

vector w. Note that p; > 0 if and only if v; has large growth. Then if v; has large growth, we set

the probability p(v; — v;) of going from v; to v; as

Mijp;
Api

and if v; has small growth, we set p(v; = vj) = 0 for i # j and p(v; — v;) = 1.

(2) p(vi = vj) =

)

Now, for each vertex v the measure p induces measures P;' on the space (2, of finite paths starting

at v, simply by setting
Po(y) = pler) - plen)

for each path v = e;...e, of length n starting at v, and P}(y) = 0 otherwise. Similarly, we
define a measure [P, on the space 27° of infinite paths starting at v by setting the measure P, of
the (cylinder) set of all infinite paths starting with v equal to P7(y), where n = |y|. The most
important cases for us will be the measures on the set of (finite and infinite, respectively) paths
starting at vg, which we will denote as P"* = P} and P = IP,,,. Each measure P, defines a Markov
chain on the space V(I'), and we consider for each n the random variable

wy 1 O — 0

wp((e1y . y€ny...)) =€1...€p
defined as the concatenation of the first n edges of the infinite path.
In order to compare the n-step distribution for the Markov chain to the counting measure, let us
denote as Q¢ the set of paths from vy ending at a vertex of large growth. Then we note ([GTT16],
Lemma 3.4) that there exists ¢ > 1 such that, for each A C Qy,

(3) PP (A) < PM(AN QL) < c PP(A).

It turns out (see [GTT16], Lemma 3.3) that, with respect to this choice of measure, a vertex v
belongs to a maximal irreducible component of I' if and only if it is recurrent, i.e. :

(1) there is a path from vy to v of positive probability; and
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(2) whenever there is a path from v to another vertex w of positive probability, there is also a
path from w to v of positive probability.

For this reason, maximal components will also be called recurrent components.

It is easy to see that for almost every path of the Markov chain there exists one recurrent
component C such that the path lies completely in C' from some time on, and visits each vertex of
C infinitely many times. Thus, for each recurrent component C', we let ¢ be the set of all infinite
paths from the initial vertex which enter C' and remain inside C' forever, and denote as P¢c the
conditional probability of P on ¢.

Moreover, for each recurrent vertex v the distribution of return times decays exponentially: There
is a ¢ > 1 such that

(4) P, (1,7 =n) < ce /e

v

where 7,5 = min{n > 1 : [w,] = v} denotes the first return time to vertex v.
We will associate to each recurrent vertex of the Markov chain a random walk, and use previous
results on random walks to prove statements about the asymptotic behavior of the Markov chain.

For each sample path w € Q% let us define n(k,v,w) as the k' time the path w lies at the
vertex v. In formulas,

R if k=0
P min (b > n(k—1Lv,w) c jwp] =v) ifk>1

To simplify notation, we will write n(k,v) instead of n(k,v,w) when the sample path w is fixed.

We now define the first return measure u, on the set of primitive loops by setting, for each
primitive loop v =e; ...e, with edges ey, ..., e,

fo(y) = pler) .. pu(en).

Extend pu, to the entire loop semigroup L, by setting u,(y) = 0 if v € L, is not primitive. Note
that almost every path starting at v visits v infinitely many times, so it can be decomposed as the
infinite concatenation of primitive loops; moreover, 1, () equals the probability that the first loop
in this decomposition equals v. Hence, u, is a probability measure.

By equation (4), for every recurrent vertex v, the first return measure p, has finite exponential
moment, i.e. there exists a constant a > 0 such that

5) [ et duuo) < o

3.4. Hyperbolic spaces. In this paper, X will always be a geodesic metric space. Such a space
is called §-hyperbolic for some & > 0 if for every geodesic triangle in X, each side is contained
within the d—mneighborhood of the other two sides. Given z,y,z € X, their Gromov product is
defined as (y, z), := %(d(:ﬁ, y)+d(z,z)—d(y, z)). Each hyperbolic space has a well-defined Gromov
boundary 0X, and we refer the reader to [BH09, Section III.H.3], [GdIH90], or [KB02, Section 2]
for definitions and properties.

If g is an isometry of X, its translation length is defined as

d(g"z, x
7x(g) == lim d(g"z, )
n—o00 n
where the limit does not depend on the choice of x € X. In order to estimate the translation

length, we will use the following well-known lemma; see for example [MT14, Proposition 5.8].

Lemma 3.3. There exists a constant c, which depends only on §, such that for any isometry g of
a 0-hyperbolic space X and any x € X with d(z,gx) > 2(gz, g9~ '), + ¢, the translation length of g
s given by

7x(9) = d(z, gx) — 2(gz, g~ ' x), + O(6).
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An isometry g of X is lozodromic if it has positive translation length; in that case, it has precisely
two fixed points on 0X. We say two loxodromic elements are independent if their fixed point sets
are disjoint. A semigroup (or a group) G < Isom X is nonelementary if it contains two independent
loxodromics. We will use the following criterion.

Proposition 3.4 ([DSU14, Proposition 7.3.1]). Let L be a semigroup of isometries of a hyperbolic
metric space X . If the limit set A, C 0X of L on the boundary of X is nonempty and L does not
have a finite orbit in 0X, then L is nonelementary.

Finally, we turn to the definition and basic properties of shadows in the §-hyperbolic space X.
For z,y € X, the shadow in X around y based at x is

Se(y, R) ={z € X : (y,2) > d(z,y) — R},

where R > 0. The distance parameter of S;(y, R) is by definition the number r = d(x, y) — R, which
up to an additive constant depending only on §, measures the distance from z to S, (y, R). Indeed,
z € Sy(y,R) if and only if any geodesic [z, z] 20—fellow travels any geodesic [z,y] for distance
r 4+ O(0). The following observation is well-known.

Lemma 3.5. For each D > 0, and each x,y in a metric space, we have

3.5. Random walks. A probability measure p on G is said to be nonelementary with respect to
the action G ~ X if the semigroup generated by the support of p is nonelementary.
We will need the fact that a random walk on G whose increments are distributed according to

a nonelementary measure p almost surely converge to the boundary of X and has positive drift in
X.

Theorem 3.6 ([MT14, Theorems 1.1, 1.2]). Let G be a countable group which acts by isometries
on a hyperbolic space X, and let p be a nonelementary probability distribution on G. Fix x € X,

and let (uy) be the sample path of a random walk with independent increments with distribution p.
Then:

(1) almost every sample path (u,x) converges to a point in the boundary of 0X, and the resulting
hitting measure v is nonatomic;

(2) moreover, if u has finite first moment, then there is a constant L > 0 such that for almost
every sample path

tim A8n)
n—oo n

The constant L > 0 in Theorem 3.6 is called the drift of the random walk (u,). Let us remark, as

suggested in [GST17, Remark 4], we do not need to assume that X is separable (see also [MT18,

Lemma 2.6]).

4. BEHAVIOR OF GENERIC SAMPLE PATHS FOR THE MARKOV CHAIN

Let G be a group with a nonelementary action G ~ X on a hyperbolic space X. In this section
we assume that G has a graph structure (G,T") which is almost semisimple and nonelementary.

4.1. Convergence to the boundary of X. Here we show that almost every sample path for the
Markov chain converges to the boundary of X. Since we are assuming that the graph structure is
nonelementary, the exact same proof as in ([GTT16], Theorem 6.8) yields the following.

Theorem 4.1. For P-almost every path (wy) in the Markov chain, the projection (wnx) to the
space converges to a point in the boundary 0X.
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As a consequence, we have for every vertex v of large growth a well-defined harmonic measure
vX, namely the hitting measure for the Markov chain on 0X: for each (Borel) A C 9X we define
vX(A) := Py( lim w,z € A).

n—oo

v

Theorem 4.1 together with the Markov property implies a decomposition result for the harmonic
measures v;X. Indeed, if R is the set of recurrent vertices of I', then we have:

(6) vl =3 > p()ev()ave

WER V:v—w

Here, the sum is over all finite paths from v to w which only meet a recurrent vertex at their
terminal endpoint. Note that if v is recurrent, then Vi( is the harmonic measure for the random
walk on G generated by the first return measure pu,, as defined in Section 3.3 (see also [GTT16],
Lemma 4.2).

Lemma 4.2. For any v of large growth, the measure v;X is non-atomic.

Proof. Since the random walk measures v;x are non-atomic, so are the measures ev(y).v; for
each 7, hence by equation (6) the measure ;X is also non-atomic as it is a linear combination of
non-atomic measures. U

4.2. Positive drift along geodesics. Next we show that almost every sample path has a well-
defined and positive drift in X.

Theorem 4.3. For P-almost every sample path w = (wy,) there exists a recurrent component

C = C(w) for which we have

where Lo > 0 depends only on C.
Since I is finite, this gives at most finitely many potential drifts for the Markov chain.

Proof. Let v be a recurrent vertex. Since the graph structure is nonelementary, the loop semigroup
I", is nonelementary, hence the random walk given by the return times to v has positive drift. More
precisely, from Theorem 3.6, there exists a constant £, > 0 such that for almost every sample path
which enters v,
. d(wn(k,v)x7 .TJ)
klggo k = -
Morever, as the distribution of return times has finite exponential moment, for almost every sample
path the limit
. n(kv,w)
To:= klglc}o k
exists. These two facts imply
lim d(wn(k,v)xax) _ fi
k—oo  n(k,v) T,
Now, almost every infinite path visits every vertex of some recurrent component infinitely often.
Thus, for each recurrent vertex v; which belongs to a component C', there exists a constant L; > 0
such that for Pc-almost every path (wy,), there is a limit

d ,
L; = lim (wn(k,vl)x7 (L’)
k—oo  n(k,v;)

Let C be a maximal component, and vq,...,vg its vertices. Our goal now is to prove that L, =
Lo = ... Lg. Let us pick a path w € €y such that the limit L; above exists for each i = 1,... k,
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and define A; = {n(k,v;), k € N}, and the equivalence relation i ~ j if L; = L;. Since W (k.vp) a0d
Wy (ko;)+1 differ by one generator, d(wn(kyvi)w, wn(k,vi)ﬂx) is uniformly bounded, hence
d(wn(k,vi)-i-lxa-f) . d(wn(k,w)l‘,$)

i =] TR T
oo n(k,v) +1 ks (kv Z

so the equivalence relation satisfies the hypothesis of (|[GTT16], Lemma 6.9), hence there is a unique
limit Lo = L; so that

d(wpx, x)

lim =Lc.
n—00 n

O

Corollary 4.4. For every vertex v of large growth, and for P,-almost every sample path (wy,) there
exists a recurrent component C accessible from v such that we have

d
lim A@nT) _p
n—00 n
Proof. By Theorem 4.3, for P-almost every path which passes through v, the drift equals Lo for
some recurrent component C. Let gy be a path from vg to v of positive probability. Then for any
w = (wy) € Q5°, the path (w,) = go-w belongs to F°, and moreover Wy, = Wnp+k(go-w) = go-wy(w)

where k = |go|. Hence
d(wnl‘v CC) - d(ﬂf790$) < d(wn-‘rkx, 33) = d(wnl"»gol“) < d(wnx’ 33) + d(l‘, gofU)
and so by Theorem 4.3

lim d(wpx, ) ~ lim d(Wp gz, x)

n—00 n n—r00 n

as required. O

For application in Section 5, we will need the following convergence in measure statement. Let
us denote

(7) L:= min Lc>0

C' recurrent

the smallest drift.

Corollary 4.5. For any € > 0, and for any v of large growth,

m(““%@gL—Q—w.

n

Proof. By the theorem, the sequence of random variables X,, = dlwnz,) converges almost surely to

a function X, with the finitely many values L1, ..., L,.. Moreover, for every n the variable X,, is
bounded above by the Lipschitz constant of the orbit map G — X. Thus, X,, converges to X in
L', yielding the claim. O

4.3. Decay of shadows for P. For any shadow S, we denote its closure in X U0X by S. Since
the harmonic measures v;X for the Markov chain are nonatomic (by Lemma 4.2), we get by the
same proof as in [GTT16] the following decay of shadows results.

Proposition 4.6 ([GTT16], Proposition 6.19). There exists a function p : R — [0, 1] with p(r) — 0
as r — 00, such that for each vertex v and any shadow Sy (gx, R) we have

P, (Eln >0 : wyx € Sx(ga:,R)> < p(r),

where r = d(z, gx) — R is the distance parameter of the shadow.
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5. GENERIC ELEMENTS WITH RESPECT TO THE COUNTING MEASURE

We now use the results about generic paths in the Markov chain to obtain results about generic
paths with respect to the counting measure.

5.1. Genericity of positive drift. The first result is that the drift is positive along generic paths:

Theorem 5.1. Let (G,T') be an almost semisimple, nonelementary graph structure, and L > 0 be
the smallest drift as given by eq. (7). Then for every e > 0 one has

#{g € Sy : d(gz,x) > (L —€) |g|}
7S, —1

The result follows from Corollary 4.5 similarly as in the proof of ([GTT16], Theorem 5.1).

as n — 0.

Proof. Let A denote the set of paths
A ={g€ Qo : d(gz,z) < L|g|}.
We know by Corollary 4.5 that for any L' < L one has
P*"(Ap) — 0 as n — oo.

Let us recall that Q27 denotes the set of paths starting at vy and ending at a vertex of large growth,
and for each path g of length n let us denote as g the prefix of g of length n — |logn]|. Then we
observe that

< #{ge S, : g¢Qa} . #{ge SnNAL_c : §€ Q)
- #5n #5n

and it is easy to see that the first term tends to 0 (see [GTT16, Proposition 2.5]). Now, by writing
g = gh with |h| = |log |g|| we have that d(gz,z) < (L — €)|g| implies

P"(Ar_)

d(gz, ) < d(gx, x) + d(gz, gz) < (L — €)|g| + d(x, hx)
hence, there exists C such that
d(gz,x) < (L - €)|g| + Cllog|g|] < L'[g]

for any L — e < L' < L whenever |g| is sufficiently large. This proves the inclusion

{ge€SnNAL_ : 7€} C{ge S, : g€ A NQra}
and by Lemma 3.2 (1)

#{ge Sy : GE€ AL N} < ABME(S, 1ogn NAL N QLe) <

hence by equation (3) and considering the size of S,,_|15gn

< ¢y ALlognlpn—Llogn) (AL)#Sn—|1ogn] < co NP Llognl (4.
Finally, using that P*~l°e™)(A;,) — 0 we get

SpNAL_« : g€
lim sup #19 € Sn L §€hc} SlimsupchPm_Uog”J(AL/):0

n—00 #Sn n—oo

which proves the claim. 0
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5.2. Decay of shadows for the counting measure. For g € GG, we set
SY(gz, R) = {h € Qo : hx € Sy(gz, R)},

where as usual, S;(gx, R) is the shadow in X around gz centered at the basepoint z € X and
hx = ev(h)z. We will need the following decay property for SL(gz, R) C Q.

Proposition 5.2. There is a function p : R — [0, 1] with p(r) — 0 as 7 — oo such that for every
n>0

P™(SE (g2, R)) < p(d(w, g2) — R).
We start with the following lemma in basic calculus.

Lemma 5.3. Let p: R — [0,1] be a function with p(z) =1 if x <0 and p(z) — 0 as © — co. For
each a > 0 and each C > 0, there exists a function p: R — R such that:
(1) p(z) =1 for z < 0;
p(x) > p(z) for each x € RT;
p(x +mC) > p(x)e”*™ for each x € RY, m € N:
p(x) = 0 as z — oo.

(2
(3
(4

Proof. Begin by setting my = sup{p(z) : « > kC}, for k > 0. For z < 0, define p(z) = p(z) = 1.
Otherwise, x € [Ck,C(k + 1)] for k > 0 an integer, and define

\_/\_/\_/

[

5(x) = . p—alk—i)
p(z) = max {m; - I

Item (1) follows by definition. For (2), we have that for z € [Ck,C(k + 1)], p(z) > my
For (3), we again suppose that z € [Ck,C(k + 1)] so that z + mC € [C(k + m),C(k +
Then

D C) = . p—o(k+m—i)

p(x+mC) oglgfim{ml e }

— L —o(k—i) —am
o ¢ J

- €

> max {m; - e @) . cmomy
0<i<k

= p(x)e ™.

Finally, if the max in the definition of p(z) occurs for i < k/2, then p(z) < moe=*/2. 1f i > k/2,

then p(z) < my, . Hence, p(x) < moe~k/2 +my, o — 0 as * — oo, completing the proof of (4). [

Proof of Proposition 5.2. Pick a path h € Qg of length n in SL (g, R), and let h denote the longest
subpath of A starting at the initial vertex and which ends in a vertex of large growth. Let us write
h = hl where [ is the second part of the path. Note that we have

d(hz, hz) = d(hlz, hz) = d(lz, ) < kC
where k := |l| and C is the Lipschitz constant of the orbit map, hence by Lemma 3.5
he Sh(gz, R + kC)
where R = R+ D and D = O(4). Note that for each element h there are at most cA¥ choices of

the continuation [, hence

#(Sn N S) (g2, R)) < ¢ > M#(Snr N SE (g2, R + kC) N Q) <
k=0
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and by using eq. (3) and Proposition 4.6
< Y MANTFPR(ST (g, R+ kC)) < XY (M /N pld(x, gz) — R — kC)
k=0 k=0
Now, by Lemma 5.3 we can replace p by p, choosing « so that e*\; < A, thus getting

pld(z,9z) — R' = kC) < ¢**p(d(x, gz) — R')

Thus, the previous estimate becomes

P"(Sy (92, R)) < e2 ) ("M /A)* Bld(w, gz) — R) < e5 pld(x, go) — R')
k=0

which proves the lemma if one sets p(r) := min{cs p(r — D), 1}. O

5.3. Genericity of loxodromics. We now use the previous counting results to prove that loxo-
dromic elements are generic with respect to the counting measure.

The strategy is to apply the formula of Lemma 3.3 to show that translation length grows linearly
as function of the length of the path: in order to do so, one needs to show that the distance d(gx, x)
is large (as we did in Theorem 5.1) and, on the other hand, the Gromov product (gx, g~ '), is not
too large. The trick to do this is to split the path g in two subpaths of roughly the same length,
and show that the first and second half of the paths are almost independent.

To define this precisely, for each n let us denote n; = |5 | and ny = n—n;. For each path g € Q,
we define its initial part i(g) to be the subpath given by the first ny edges of g, and its terminal
part t(g) to be the subpath given by the last ny edges of g. With this definition, g = i(g) - t(g) and
li(g)] = n1, |t(g)| = no. Moreover, we define the random variables iy, t,, : Q°° — Q by i, (w) = i(wy,)
and t,(w) = t(wy). Note that by definition i,, = wy, and by the Markov property we have for each
paths g, h €

P(i, = g and t, = h) = P(wy,, = g)Py(wp, = h)
where v = [g]. In the next lemma, we use the notation C'(w) to refer to the recurrent component
to which the sample path w = (w,) eventually belongs, as in Theorem 4.3.

Lemma 5.4. For any € > 0 we have

L
P<hm ‘d(w,tn(w)x) _ Lew
n 2

>e)—>0

n—oo

as n — 00.

Proof. Note that by definition t,(w) = wp, (T™w), where T" : 2°° — °° is the shift in the space of
infinite paths. Note that for every A C 2 by the Markov property we have

P(T™"A) =) P([w,] = v)Py(A)
veV

Let us define the function
d(z, wp(w)x)

Sp(w,w') = -

Note that from Corollary 4.4 for every vertex v of large growth and every € > 0
Py (Sn(w,w) =€) =0

Moreover, for every n, if the path (eq1,...,e,,...) lies entirely in the component C' from some point
on, then the same is true for the shifted path (e,+1,€ent2,...), i.e. C(T"w) = C(w) almost surely,
and so

Sp(w, TFw') = Sp(w,w') for all n, k
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hence
P(Sp, (T w,w) > €) = P(Sp, (T"w, T™w) > €) =
= Z P([wn,] = v])Py(Sn, (w,w) > €) < Z Py (Spy(w,w) > €)
veV veVNQra
and the right-hand side tends to 0 by Corollary 4.4, proving the claim. O

We now show that i(g) and #(g)~! generically do not fellow travel. For the argument, let S, (v)
denote the set of paths in €2 which start at v and have length n.

Lemma 5.5. Let f: R — R be any function such that f(n) — +o0o as n — +00. Then
P'(g€Q : (ilg)atlg) " 0)e = () =0
as n — oo.

Proof. We compute
_ #{9 € Sni, 9] = v,k € Spy(v) = (ga,h™'x)e > f(n)}

P" (g : (i(g)a,t(g)"'2)s > f(n)) s, <
and by fixing v and forgetting the requirement that [g] = v we have
< Z #{g € Sp,,h € Sp,(v) : (gz,h1z), > f(n)} <
#5n
veV
then by fixing a value of h
<y #gn ST #{g€Sn ¢ gre So(h e, d(m,hw) - f(n)} <

veV h€Sn, (v)

hence from decay of shadows (Proposition 5.2) follows that
#5n #5n
vEV heSn, (v)
O

Once we have shown that i(g) and ¢(g)~! are almost independent, we still need to show that also

g and ¢g~! are almost independent. In order to do so, we note that i(g) is the beginning of g while
t(g)~! is the beginning of g~!, and then we use the following trick from hyperbolic geometry. See
e.g. [TT15].

Lemma 5.6 (Fellow traveling is contagious). Let X be a d—hyperbolic space with basepoint x and
let that A > 0. If a,b,c,d are points of X with (a,b)y > A, (¢,d)y > A, and (a,c¢)y < A—36. Then
(b,d), — 26 < (a,¢)z < (b,d), + 26.

In order to apply Lemma 5.6, we need to check that the first half of g (which is i(g)) and the
first half of g=! (which is ¢(¢g)~!) generically do not fellow travel.

Lemma 5.7. For each n > 0, the probability

p" <g e : (tg) o, g7 a), < n(LQ—n)> —0

and

pP" (g € : (i(g)x,g97)r < n(L2_77)> =0

as n — 00.
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Proof. Consider the set By, := {g € Qo : d(z,gx) — d(z,i(g)x) < %} We know by Theorem 4.3
for P-almost every sample path we have

lim = >
n—oo n 2

d(z, wpz) — d(z, wnx) Lo _ L
2

hence for any L' < L one has P"(By/) — 0 as n — oco. Hence, as in the proof of Theorem 5.1 we
get for any € > 0,

(8) pr (d(a:, g2) — d(z,i(g)z) > ”(L2_6)> 1

Finally, by writing out the Gromov product, the triangle inequality and the fact that the action is
isometric we get

(t(9) te, g7 ) > d(z, g ) — d(t(g) 'a, 97 2) = d(x, gx) — d(z,i(g)x)
which combined with (8) proves the first half of the claim.

The second claim follows analogously. Namely, from Theorem 4.3 and Lemma 5.4, we have for
any € > 0

P (d(:p,wn(w)x) —d(z, ta(w)z) < W) —0

which then implies as before

and to conclude we use that
(i(9)z,gz)z > d(x, gx) — d(i(g)x, gr) = d(, gr) — d(x,t(g)T).
O

We now use Lemma 5.6 (fellow traveling is contagious) to show that the Gromov products
(gz, g_lx)x do not grow too fast with respect to our counting measures.

Proposition 5.8. Let f: N — R be a function such that f(n) — +oo as n — co. Then

P”((gw,g_lx)x < f(n)) —1

as n — o0.

Proof. Define
fi(n) = min {f(n) — 26, ”(LQ_”) - 35}

It is easy to see that fi(n) — oo as n — co. By Lemma 5.6, if we know that:

(1) (i(g)z, 97)e = n(L —n)/2,

(2) (t(9) e, 97" @)e > n(L —n)/2, and

(3) (i(g)z,t(g) " x)s < fi(n) < n(L —n)/2 — 34,
then

(92,9~ x)s < (i(g)a,t(9) " @)z +20 < fi(n) + 20.

Using Lemmas 5.5 and 5.7, the probability that conditions (1),(2), (3) hold tends to 1, hence we
have

P*((gz,97'w)s < f(n)) = 1
as n — 0o. ]

Finally, we put together the previous estimates and use Lemma 3.3 to prove that translation
length grows linearly and loxodromic elements are generic.
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Theorem 5.9 (Linear growth of translation length). Let (G,T") be an almost semisimple, nonele-
mentary graph structure, and L the smallest drift given by eq. (7). Then for any € > 0 we have

#{9 € Sn : 7x(9) > n(L — )}
#5n

— 1,

asn — 00. As a consequence,

#{g €S, : gis X — loxodromic} o
#5n ’

as n — 0.

Proof. If we set f(n) = nn with n > 0, then by Proposition 5.8 and Theorem 5.1 the events

(92,9 'x), < nn and d(x, gz) > n(L —n) occur with probability (P™) which tends to 1, hence by

Lemma 3.3
P (rx(g) = n(L = 3n)) = P"(d(w,g2) ~ 2ge.9”"2)s + O(0) = n(L — 3n))

which approaches 1 as n — oo. This implies the statement if we choose ¢ > 31n. The second
statements follows immediately since elements with positive translation length are loxodromic. [

5.4. Genericity of loxodromics for the Markov chain. We now remark that a very similar
proof yields that loxodromics are generic for P-almost every sample path of the Markov chain. More
precisely, we have the following (which is a reformulation of Theorem 2.7):

Theorem 5.10. Let (G,T') be an almost semisimple, nonelementary graph structure, and let L be
the smallest drift. Then for every e > 0, one has

P(Tx(wn) > n(L - e)) S,
as n — O0. AS a Consequence,

P(wn is loxodromic on X ) —1
as n — 0o.

Proof. The proof is very similar to the proof of Theorem 5.9, so we will just sketch it. First, by
using the Markov property we establish that

nh_}rglo P((inx,tglx)x >g(n)) =0

for any choice of function ¢g : N — R such that lim,,_, 1~ g(n) = +00. Then, by using positivity of
the drift as in the proof of Lemma 5.7 we prove that for each ¢ > 0, we have

lim P((w, 'z, ¢, 2), <n(L—¢€)/2) =0

n—oo
and
nh_)nolo P((inz, wnz)s < n(L —€)/2) =0

From the previous three facts, using Lemma 5.6 one proves:

lim P((wnx,wglx)x > f(n)) =0

n—oo

for any f : N — R such that lim, ;o f(n) = 4+00. The theorem then follows immediately from
this fact and Corollary 4.5, applying the formula of Lemma 3.3. 0
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6. THICK GRAPH STRUCTURES
We begin by recalling the definition of a thick graph structure.

Definition 6.1. A graph structure (G,I") is thick if for every vertex v of maximal growth there
exists a finite set B C G such that

(9) G = BI',B

where I, is the loop semigroup of v.
In greater generality, if H < G is a subgroup, we say that the graph structure (G,T") is thick
relative to H if for any vertex v of maximal growth there exists a finite set B C G such that

(10) H C BT,B.

6.1. The case of only one non-trivial component. We say that a component C' is non-trivial
if there is at least one closed path of positive length entirely contained in C.

Proposition 6.2. If a graph structure (G,T") has only one non-trivial component, then it is thick.

Proof. Let C be the unique maximal component of I". Every finite path + in the graph can be
written as v = highs, where hy is a path from the initial vertex to C, g is a path entirely in C, and
h1 is a path going out of C'. By assumption, the lengths of hy and hy are uniformly bounded. Fix
some vertex v of C' and let s be a shortest path from v to the last vertex of h. Further, let ¢ be a
shortest path from the last vertex of g to v. Then one can write

v = highy = hys *(sgt)t 1ho
where h1s~! and t~'hy vary in a finite set, and sgt € T',. Hence G = BT, B with B a finite set. [
6.2. Thick implies nonelementary.

Proposition 6.3. Fiz an action G ~ X of G on a hyperbolic metric space X. Let (G,T') be an
almost semisimple graph structure, and H < G a nonelementary subgroup. If (G,T) is thick relative
to H, then it is nonelementary. That is, for any mazimal vertex v the action of the loop semigroup
Iy on X is nonelementary.

Proof. Since the action of H is nonelementary, there exists a free subgroup F' C H of rank 2
which quasi-isometrically embeds in X. Hence, the orbit map F' — X extends to an embedding
OF — 0X, and we identify OF with its image. Thickness implies F' C BT', B, and taking limit sets
in X we see that
oF c | Jb-Ar, C X,

beB
from which we conclude that Ar, is infinite. To complete the proof that I', is nonelementary, it
suffices to show that I';, does not have a fixed point on X (Proposition 3.4). Suppose toward a
contradiction that p € X is such a fixed point.

Let us write F' = (f, g) where f, g are free generators of F', and consider the sequence of elements
hij = figj in F. For each i, j there are a;,c; j; € B such that h; ; = a; ;l; jc; ; for some [; ; in I'y,.
Since B is finite, we may pass to a subsequence and assume that a; ; = a and ¢; ; = ¢ for all 4, j.
Then [; ; = ailh@jc*l fixes the point p for all 7 and so

hij(c™!(p)) = a(p)

for all 4,j. Hence h; 1j0hi,j = g 0 fim0gl is a sequence of elements of F which fix the point

q=c'(p) € OF C 0X. Since F is a free group, this implies that g=% fi=%gJ/ agree up to powers
for infinitely many i, j, a clear contradiction. O

From Proposition 6.3 and Theorem 5.9 we get:
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Theorem 6.4. Let G ~ X be a nonelementary action of a countable group on a hyperbolic metric
space. Suppose that G has an almost semisimple graph structure I' which is thick with respect to a
nonelementary subgroup H. Then loxodromic elements are generic:

. #{g€S, : gisloxodromic on X}
lim =

In fact, the translation length generically grows linearly: there exists L > 0 such that

. #{geSy : tx(g) > Ln}
A 45, =1

1

7. RELATIVE GROWTH QUASITIGHTNESS

Fix a graph structure (G,T"). In practice, we will often show that the graph structure is thick
by establishing the property of growth quasitightness. This property was introduced in [AL02]
and and further studied in [Yan16]. Our notion of quasitightness depends on the particular graph
structure.

Given a path v in I', we say it c-almost contains an element w € G if v contains a subpath p
such that w = a - ev(p) - b in G, with |al,|b] < c. We denote as Y,, . the set of paths in I' starting
at the initial vertex which do not c-almost contain w.

Definition 7.1. A graph structure (G, T") is called growth quasitight if there exists ¢ > 0 such that
for every w € G the set Y, . has density zero with respect to P"; that is,

P"(Yye) -0 asn—0.

More generally, given a subgroup H < G we say that (G,I") is growth quasitight relative to H if
there exists a constant ¢ > 0 such that for every w € H the set Y,, . has density zero.

7.1. Growth quasitight implies thick.

Proposition 7.2. Let (G,T') be an almost semisimple graph structure, and H < G a subgroup. If
(G,T) is growth quasitight relative to H, then it is thick relative to H.

Proof. Let C' be a component of maximal growth, let v a vertex in C, and let v be some path
from the initial vertex to v. Denote the length of v by d. Let w € H. By growth quasitightness
plus maximal growth, there is a path of the form ~~;, which c—almost contains w and where ~y; is
entirely contained in C'. Since « has length d, the path 71 (¢ + d)—almost contains w; that is,

71 = P1P2P3

where ev(ps) = awb for |al,|b| < ¢+ d. Let ¢; be a shortest path from v to the initial vertex of py
and g9 be a shortest path from the terminal vertex of py to v. Then

w=(a"ev(q)™") - ev(qip2ge) - (ev(ge) o7,

where (e 'ev(q1)™!) and (ev(g2)~'b~!) vary in a finite set B. Since ev(qi1p2q2) € Iy, this completes
the proof. O

Combining Proposition 7.2 with Theorem 6.4 we get:

Theorem 7.3. Let (G,T') be an almost semisimple graph structure which is growth quasitight with
respect to a nonelementary subgroup H. Then loxodromic elements are generic.

This completes the proof of Theorem 1.6.
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8. INFINITE INDEX SUBGROUPS HAVE ZERO DENSITY

In this section, we prove that in our general setup a subgroup H < G of infinite index has zero
density with respect to counting. Combined with what we are going to prove in Section 9 and
10, this immediately implies Theorem 1.2 in the introduction. Recall that ev : Qg — G is the
evaluation map for paths starting at vg.

Theorem 8.1. Let (G,T') be an injective, almost semisimple, thick graph structure. Let H < G be
an infinite index subgroup. Then

P"({peQo:ev(p) € H}) — 0,

as n — oo. That s, the proportion of paths starting at vg and spelling elements of H goes to 0 as
the length of the path goes to oc.

The proof is an adaptation of ([GMM15], Theorem 4.3) to the non-hyperbolic case. We will
consider an extension 'y of I' = (V| F) defined as follows. The vertex set of 'y is V x H \ G. For
any edge o : z — y in I there is an edge in 'y from (z, Hg) to (y, Hgg') where ¢’ = ev(o).

Lemma 8.2. Let C be a component of mazimal growth of I'. For any v1 € C and g1 € G there are
infinitely many Hg € H \ G such that (v1, Hg) can be reached from (vi, Hg1) by a path contained
inCx H\G.

Proof. Suppose not, so that the only points of H \ G that can be reached in this manner are
{Hz : z € T} where T is a set of size D. Consider w € G. By thickness, there exists a finite set
B C G and some path v lying in C, starting and ending at v; such that

ev(y) = gawgs
where g, g3 lie in B. Then ~ lifts to a path in I'y from (vi, Hg1) to (v1, Hgiev(vy)). By assumption,
this implies Hgjev(y) = Hz for some z € T. Thus, there is an h € H with gowgs = ev(y) = gflhz
and hence w € B~'g7'HTB~'. Thus there is a finite subset T = B~'¢g; 'UTB~! with G = THY,
so by Neumann’s theorem [Neu54] H must be of finite index, giving a contradiction. O

The following general result about Markov chains is Lemma 4.4 of [GMM15].

Lemma 8.3. Let X, be a Markov chain on a countable set V', and m a stationary measure. Let
V' be the set of points x € V such that Zy:x_)y m(y) = oo where x — y means there is a positive

probability path from x toy. Then for allx € V and 2’ € V we have P.(X,=2")—0.
Combining Lemmas 8.3 and 8.2 we obtain:

Corollary 8.4. For any z1,x9 € I' lying in a maximal component C' and g1,g2 € G, the number
of paths of length n in Uy from (x1, Hg1) to (z2, Hg2) is o(A").

Proof. The Markov chain p on I' restricts to a Markov chain puc on C, which in turn lifts to a
Markov chain pc g on the induced graph Cp on the vertex set C' x H \ G of I'y (obtained by
assigning to an edge the transition probability of its projection to C'). A pc g stationary measure
m on Cp is given by taking the product of the stationary measure m on C' and the counting measure
on H\T. Any vertex v € C has positive m measure and all lifts of v in Cy have equal positive
m measure. Thus, Lemma 8.2 implies Zy:x Sy m(y) = oo. The corollary now follows by applying
Lemma 8.3 to the chain uc p. [l

Note, paths of length n in I'gy from (21, Hg1) to (z2, Hg2) are in bijection with paths of length
n in I" beginning at 1, ending at x2, and evaluating to elements of g, ' Hg,. Thus, we obtain:

Corollary 8.5. For any z1,z9 € I' lying in a maximal component C' and g1,g92 € G, the number
of paths of length n in I' beginning at x1, ending at x2, and evaluating to elements of glegQ 18

o(A™).
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We now complete the proof of Theorem 8.1. Given k > 0, let P, ;, (resp. Qp 1) be the set of paths
p € Qo of length n which spend time at most & (resp. more than k) in non-maximal components.

Note that there is a n < X with |Qp x| < n*A"=* for all n and k. Now, consider a path v in
P, N ev 'H. We can decompose it as v = ;7273 where +; and 3 have length adding up to at
most k and 77 is contained in a maximal component C. Since a path in P, ; spends at most time
k in nonmaximal components, there are only DF possibilities for v; and 3, where D depends only
on the graph. Now, given a path v in ev"'H, once 7; and ~3 are fixed, by Corollary 8.5 there are
at most fi(n) possibilities for 75, where for each fixed k fr(n)/A\" — 0 as n — oo. Thus, for all
k < n we have |P, ; Nev ! H| < DFf(n) and so

P"(ev ' H) < C"A™™(| Pk Nev ™ H| + |Quul) < C"DA™" f(n) + C"(n/A)".

Fixing k we see that
lim sup P"(ev 'H) < C"(n/\)*.
n— oo

As this is true for arbitrary k, we get lim,, oo P"(ev 'H) = 0, as claimed.

9. APPLICATION TO RELATIVELY HYPERBOLIC GROUPS

In this section, we show how our main theorem applies to a large class of relatively hyperbolic
groups.

Let G be a finitely generated group, and P be a collection of subgroups. Following [Bow12], let
us recall that G is hyperbolic relative to P if there is a compactum M on which G acts geometri-
cally finitely, and the maximal parabolic subgroups are the conjugates of elements of P. Such a
compactum M is then unique up to G-equivariant homeomorphisms, and it is called the Bowditch
boundary of G. We will denote it as 0G.

More precisely, let G act by homeomorphisms on a compact, perfect, metrizable space M. Then
a point ¢ € M is called conical if there is a sequence (g,) and distinct points «, § € M such that
gnC — aand g,n — B foralln € M\{C}. A point ¢ € M is called bounded parabolic if the stabilizer
of ¢ in G is infinite, and acts cocompactly and properly discontinuously on M\ {(}. We say that the
action of G on M is a convergence action if G acts properly discontinuously on triples of elements of
M, and the action is geometrically finite if it is a convergence action and every point of M is either a
conical limit point or a bounded parabolic point. Note that there are only countably many parabolic
points. Finally, the mazimal parabolic subgroups are the stabilizers of bounded parabolic points.
An action of a group G on a proper d-hyperbolic space X is geometrically finite if the induced
action on the limit set is geometrically finite. We refer the reader to [Far98, Bow12, Osi06, GMO0S|
for the relevant background material.

Fix a relatively hyperbolic group (G, P), a generating set S of G, and let dg denote distance
in G with respect to S. Let G be the vertices of Cay(G, S U P) with the induced metric, which
we denote by d or dg. Here Cay(G,S UP) is the corresponding electrified Cayley graph, that is
the Cayley graph of G with respect to the generating set S U |JP. We remind the reader that
Cay(G, SUP) is hyperbolic and that dCay(G, S UP) naturally includes as a subspace into 9G, the
complement of which is the collection of parabolic fixed points.

Let b be the exponent of convergence for Cay(G, S). That is,
1
h:= lim —log|B,|,
n—oo n
where B,, denotes the ball of radius n in G with respect to dg. For ( € G and g,h € G let
Bc(g, h) = limsup (d(g, ) — d(h, 2))

z—(

be the Busemann function for the word metric on G.
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Following [Yan13], the Bowditch boundary OG is equipped with a nonatomic measure v, which
is given by the Patterson-Sullivan construction by taking average on balls for the word metric on
(. Such a measure v is supported on conical points and is h-quasiconformal, in the sense that there
is a D > 0 such that:

(11) Dl Meloe) < —dg*y(C) < DeBc(a)
v

for all g € G and ¢ € 0G.

Definition 9.1. We define a relatively hyperbolic group G to be doubly ergodic if its action on
0G x G with the measure v X v is ergodic.

We will also see (Proposition 9.17) that a relatively hyperbolic group is doubly ergodic if it admits
a geometrically finitely action on a C' AT (—1) proper metric space. For instance, geometrically finite
Kleinian groups satisfy this hypothesis. Note that, once G admits such an action, Theorem 9.2
works for isometric actions of G on any hyperbolic, metric space X.

In this section, we will prove the following result.

Theorem 9.2. Let G be a doubly ergodic, relatively hyperbolic group, and let (G,T') be a geodesic
combing. Then for any nonelementary action of G on a hyperbolic metric space X, the graph
structure (G,TI") is nonelementary.

Combining this result with Theorem 1.6, the discussion in Section 2.3, and the fact that relatively
hyperbolic groups have pure exponential growth for any generating set ([Yanl3], Theorem 1.9)
Theorem 9.2 establishes Theorem 2.3 in the introduction.

In fact, using very recent work of W. Yang [Yan16], the theorem may be extended to all nontrivial
relatively hyperbolic groups, as relatively hyperbolic groups contain strongly contracting elements
by [ACT15] and [Yanl16] (see Corollary 2.6 in the introduction). However, we give a self-contained
argument here.

9.1. Fellow traveling in the Cayley graph and coned-off space. We first remind the reader
that a K—quasigeodesic v in a metric space X is a map v: I — X from a subinterval I C R such

that for all s,t € I

1
=l = K < d0y(s).9(0) < K[t = 5| + K.

We will need the following proposition, which is certainly known to experts. We provide a proof
for completeness.

Proposition 9.3. For K,C > 0, there are D,L > 0 such that the following holds. Suppose that
v = la,b] is a geodesic in Cay(G,S) with length at least L which projects to a K—quasigeodesic in
Cay(G,SUP). Let ' be any other geodesic in Cay(G,S) whose endpoints have distance no more
than C from a,b in Cay(G,S UP). Then there are o',/ € v/ such that

dg(a,a’) <D and dg(bb') < D.
We will use the following theorem of Osin:

Theorem 9.4 ([Osi06], Theorem 3.26). There is an v > 0 such that if p,q,r are sides of a geodesic
triangle in Cay(G,S UP), then for any vertex v on p there exists a vertex u on either q or r such
that

da(v,u) < wv.

Proof of Proposition 9.3. Suppose that dg(a,b) > K(2C + 4v + K) so that d(a,b) > 2C + 4v, for
v as in Theorem 9.4.

Let ¢, ¢’ be geodesics in Cay(G, S U P) joining the endpoints of 7, respectively. Note that by
assumption the initial and terminal endpoints of these geodesics are at d-distance less than C from
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one another. Pick vertices cq, ¢, on ¢ (ordered a,cq,cp,b) so that dp(a,ca) = dpa(b, ) = C + 2v.
(This is possible since dg(a,b) > 2C + 4v.) Consider a geodesic quadrilateral with opposite sides
¢,c’. Applying Theorem 9.4 twice, we may find vertices ¢, ¢, € ¢ such that dg(cq,c,) < 2v and
da(cp, ¢) < 2v.

Now using, for example, ([Hrul0], Lemma 8.8), we can find vertices 7,7 € v and 7,7, € v/
which have dg-distance at most L from cq, ¢, ¢, ¢, respectively, where L > 0 depends only on
(G,P) and S. Note that dg(va,7,) < 2(L 4+ v) and dg(vp,7;) < 2(L + v). Moreover,

dé(aa’)/a) < dé(aa Ca) + d@(ca77a) <C+2v+1L,

and so dg(a,v,) < K(C +2v + L + 1) since both a and v, occur along . Similarly, dg(b,;) <
K(C+2v+L+1).

Putting everything together, after setting a’ = 4/, and ¥’ = 7}, we see that each of dg(a,a’) and
dc(b,b') are less than 2(L + v) + K(C + 2v + L + 1) and this completes the proof. O

9.2. Patterson-Sullivan measures and sphere averages. Continuing with the notation from
the previous section, let h be the exponent of convergence for Cay(G, S).

Definition 9.5. For g € G, we define the large shadow I1,(g) at g to be the set of € OG such that
there exists some geodesic in Cay(G, S) from 1 converging to ¢ intersecting B,(g). Similarly, the
small shadow ,(g) is the set of ( € G such that every geodesic in Cay(G,S) from 1 converging
to ¢ intersects B, (g).

In Theorem 1.7 and Proposition A4 of [Yanl3] Yang constructs an h-quasiconformal ergodic
density v without atoms for the word metric on the Bowditch boundary dG. In Lemma 4.3 of
[Yan13] he shows that this satisfies the shadow lemma: for large enough r:

(12) v(m(9)) = v(Il.(g)) ~ e~ hda(l.g)
(up to a uniform multiplicative constant). In particular, v has full support on dG. In what follows,

Sy, denotes the set of elements g € G with dg(1,g) = n.

Lemma 9.6. There is a C > 0 such that for any Borel set A C GUIG one has
ANS, —
lim sup A0 S < Cr(4),
n—oo |Sn|
where A denote the closure of A in G U 0G.
Proof. Let A C G U OG be a Borel set. Since the number of elements in a ball of radius r in

Cay(G, S) is universally bounded, a point of G lies in at most D small shadows 7,.(g),g € S,
where D depends only on r. Thus,

Y vim@)<ov| UJ 9

geESnNA geESLNA
Moreover, if we denote A, := A\ B,_1 then A, 1 C A, and
m U mr(g) C A.
neNgeA,
Indeed, if ¢ € (,,ey Uyea, 7 (9), then there are g, € A with |g,| > n such that some (any) geodesic

from the identity to ¢ meets B,(g,). Hence, g, — ¢ and so ¢ € A.
Thus, since S, N A C A,, we have for large enough n

v U m)|<v| U | <@

geESLNA geEAn
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so by exponential growth and the shadow lemma (12)

Sundl . _
|‘S":e mS, A~ S w(mlg)) < 20w (A).

geESRNA
]

9.3. Growth quasitightness for relatively hyperbolic groups. We will now establish a form
of relative growth quasitightness for a relatively hyperbolic group G.

Let w be an element of G. A w-path is an infinite path of the form I, = ;¢ w'y,, in the Cayley
graph Cay(G, S), where v, = [1,w] is a geodesic segment joining the identity and w. Of course
there may be finitely many choices of [,, for each w.

Definition 9.7. The element w is called K—bounded if some w-path [, (with the arc length
parameterization) in the Cayley graph Cay(G,S) projects to a K-quasigeodesic in the electrified
graph Cay(G,S UP).

The following lemma is well-known. See for example [DMS10, ADT].

Lemma 9.8. For each K, there is a function f: N — N such that if w is K—bounded, then every
w-path Ly, is an f-stable quasigeodesic in the Cayley graph Cay(G,S).

Recall that [, being f—stable means that any K—quasigeodesic with endpoints on [,, has Hausdorff
distance at most f(K) from the subpath of [, its endpoints span.

Given w € G and ¢ > 0, we say that a (finite or infinite) geodesic v c-almost contains w if there
exists g € G such that dg(g,7) < ¢ and dg(gw,vy) < c. Let X, . be the set of h € G such that
there exists a geodesic v from identity to A which does not c-almost contain w. That is, for every
g € N.(7), v does NOT pass within distance ¢ of gw.

Proposition 9.9. For each K > 1, there is ¢ > 0 such that for every K-bounded w € G we have
S0 N Xuel o

ehn
as n — oo.

We remark that, for fixed ¢, it suffices to prove the proposition for sufficiently long w, that is,
where |w|g is sufficiently large. We will prove this proposition by using the ergodicity of the double
boundary (Proposition 9.17). To do this, we will apply Proposition 9.3 several times, for K the
boundedness constant. Hence, we fix K once and for all, and consider the constant D produced by
that proposition as a function of C' alone and write D = D(C).

Let Z, . be the set of pairs (o, ) in 0G x OG such that for every bi-infinite geodesic v in
Cay(G, S) joining a and [ there exist infinitely many = € N.(vy) such that + passes within ¢ of zw.
Let Z,, . be the set of pairs (a, 8) in G x JG such that for every bi-infinite geodesic 7 joining
and [ there are at least n elements z € N.(v) such that v passes within ¢ of xw. By definition,
Zwe = (pen Zip.- Moreover, for each n,w,c, the sets Z,, . and Z} . are G-invariant subsets of
0G x 0G.

Furthermore we have

Lemma 9.10. For each K > 0 there is a constant ¢y = co(K) such that for all ¢ > ¢y, Zy,
contains a pair of conical points for every K—bounded w € G.

Proof. Let f be the function given by Lemma 9.8. By definition, the w-path [, projects to a K-
quasigeodesic in Cay(G, S UP), hence it has two distinct limit points (w™°°,w*) in the Bowditch
boundary dG. Then, by connecting further and further points on l,, by a geodesic in the Cay(G, S),
using f-stability and the Ascoli-Arzeld theorem, one constructs a geodesic in Cay(G,S) which
connects w> to w~> and c-fellow travels l,,, once ¢ > 2f(1). Hence, (w™>°, w™) € Z, . O
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Lemma 9.11. For each K, there is a ¢y = ¢1(K) and Ly = L1(K) such that for ¢ > ¢1 and for any
K-bounded w € G with |w| > L1, the set Zj, . has nonempty interior. More precisely, the interior
of Z} . contains every pair of conical points in Z], . where cy is as in Lemma 9.10.

w,co
Proof. Suppose that («, 3) € Zu o 18 @ pair of conical points, and pick a geodesic 7 joining a and
8. Then by definition there are segments [mj,:v;.} C [a,B] for 1 < j < n and points z; such that
da(j, 2), dg(2), zjw) < co (for 1 < j <m).

Now, let oy, 5; € OG such that a; — « and 3; — . In particular, for some uniform R, the
projections of the geodesics [«y, ;] to Cay(G, S U P) R-fellow travel the projection of [, (] for
longer and longer intervals. Hence, there is an N > 0 so that for i« > N, each [«y, ;] passes with
d-distance R from [zj,25] C [ev, B].

Since w is K-bounded, the geodesic segment z; - [1, w]| = [z;, zjw] projects to a K-quasigeodesic,
so we may apply Proposition 9.3 (with C' = R + ¢) to find constants D, L such that if |w| > L
there exist points y;,y; € [, Bi] such that dg(y;, 25), da (v}, zjw) < D.

Setting ¢; = D, L1 = L we see that for sufficiently large i > 0, (ay, ;) € Z;, ., and this completes
the proof. O

,C

Since G is doubly ergodic, the action of G on G x 0G is ergodic, hence Lemma 9.11 implies

Lemma 9.12. For ¢ > ¢1(K) and for any K-bounded w € G with |w| > Li(K), the set Z3y . has
full v x v measure. Hence, under the same hypotheses the set Z,, . has full v x v measure.

Proof. For each n, the set Zj; . is G-invariant, hence by ergodicity its measure is either 0 or 1. Since
it has nonempty interior and the measure v x v has full support, then it must have full measure.
The second claim follows since Z, . = My c- ]

Let Ay C OG be the set of conical points o € dG such that for every geodesic ray v from
the identity converging to « there are infinitely many points g € N.(vy) such that v passes within
distance ¢ of gw. Using Proposition 9.3 just as in Lemma 9.11 we have:

Lemma 9.13. For each K > 0 there is a co = co(K) and Lo = Lo(K) such that for ¢ > co, and
for any K-bounded w € G with |w| > Lo, if (o, 5) € Zy,c,, then either a or 5 is in Ay, c.

This, together with the fact that conical limit points have full v-measure, implies

Corollary 9.14. For each ¢ > ¢ and for any K-bounded w € G with |w| > La, the set Ay has
full v measure.

Lemma 9.15. For each K > 0 there is a c3 = c3(K) and L3 = L3(K) such that for each ¢ > c3
and for any K-bounded w € G with |w| > Ls, the closure of Xy, . is contained in OG \ Ay c, .

Proof. If this were false, then for all large ¢ > 0 there would be a sequence (y;) C Xy, . converging
ton € Aye,. Since 7 is not a parabolic fixed point, then one can view 1 as belonging to the
boundary of Cay(G,S UP). Then the projections to Cay(G, S U P) of any geodesics v; = [1, y;]
must R—fellow travel the projection to Cay(G,SUP) of [1, 7] for longer and longer intervals, where
R is independent of w. If  were in A, c,, then just as in the proof of Lemma 9.11, we would obtain
by applying Proposition 9.3 (with C' = ¢z + R) two constants Lg, cs such that for |w| > L and
for large 4, the geodesic 7; cs—almost contains w. Hence, for ¢ > ¢3 we obtain a contradiction to
yi € X, for all ¢. This completes the proof. ]

We are now in position to prove Proposition 9.9.

Proof of Proposition 9.9. By Lemma 9.15 and Corollary 9.14, for ¢ > c3
V(Xuwe) SV(O0G\ Aye,) =0
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Hence, applying Lemma 9.6, for large enough ¢ > 0 we have

limsup e S, N Xye| < Cv(Xye) = 0.
]

9.4. The loop semigroup is nonelementary. We will now assume that (G,P) is a doubly
ergodic relatively hyperbolic group which admits a geodesic combing for the generating set S.

Recall that a finitely generated group G is geodesically completable if any finite generating set S
of G can be extended to a finite generating set S’ O S for which there exists a geodesic biautomatic
structure. Moreover, by work of Antolin-Ciobanu [AC16], if the parabolic subgroups are geodesically
completable, then every generating set for G can be extended to a generating set for which G has
a geodesic combing. From here on, we will use such a generating set .S.

Then for each w € G and constant ¢, let us recall that Y, . is the set of paths « in the directing
graph from the initial vertex which do not c-almost contain w, i.e. such that one cannot write
ev(y) = aqwag in G, with |a;| < ¢ for i = 1,2. By identifying paths from the identity with group
elements, it is immediate from the definition that Y, . € X, .. Hence, by Proposition 9.9, also Y, .
has zero density if w is K—bounded.

Proposition 9.16. Let (G,T') be a geodesic combing for a doubly ergodic, relatively hyperbolic
group. Then (G,T") is nonelementary.

Proof. We are going to prove that the graph structure is thick relative to a nonelementary, free
subgroup F' < G, which yields the claim by Proposition 6.3. Let v be a vertex of maximal growth
and w be any K—bounded word. Let d = diam I'. Let ¢ be the constant from Proposition 9.9. Let
h1 be a group element representing a path from the initial vertex to v, and consider the set

E:{hlhg : hQGFU}

Since v has maximal growth and Y,, . has zero density, the set ¥ contains a path h which does not
belong to Yy, .. Then there is a path h = hqhs such that hy has length < d, hs is entirely contained
in the component C,, containing v, and hs contains a subpath of the form w’ = awb where a and b
have length less than ¢+ d. Let s be a path from v to the start of w’ and ¢ be a path from the end
of w’ to v, each of length at most D. Then sw't is in I', and w = as~!(swt)t~'b C BI', B where B
is a finite set.

To complete the proof, it suffices to show that BI', B contains a nonelementary subgroup (Propo-
sition 6.3). Using a standard ping-pong argument, construct a free subgroup H = (f, g) < G which
K—quasi-isometrically embeds in Cay(G, S U P) and which K—quasi-isometrically embeds into X
for some K > 0. (Indeed, by [TT15], a random 2-generator subgroup of G will have this property.)
For this K, let B be the finite subset produced above enlarged to contain f*,¢*. Then for any
w € H, at least one of w, wf, or wg is cyclically reduced in H and hence K—bounded in G. Hence
w € BI'yB and so H < BI', B, as required. ]

9.5. Double Ergodicity. We conclude this section by proving that a group G which admits a
geometrically finite action on a CAT(—1) space is doubly ergodic.

Let us assume that G acts geometrically finitely on a CAT(—1) space Y. Recall that an orbit
map G — Y induces an embedding 0G — 9Y [Bow12, Theorem 9.4]. We continue to denote the
pushforward of the measure v to 9Y by v.

Proposition 9.17. Suppose G acts geometrically finitely on a CAT(—1) space Y. Then the action
of G on 0Y x 0Y is ergodic with respect to v X v.

We remind the reader that v is quasiconformal with respect to the word metric rather than the
metric on Y.
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Proof. Assume G acts geometrically finitely on a CAT(—1) space Y, with elements of P being the
parabolic subgroups. As above, the Bowditch boundary OG is identified with a closed subspace
of the Gromov boundary of Y. Let d = dg still denote the word metric on G. For ( € G and
g,h € G let B¢(g,h) be the Busemann function for the word metric on G. By W. Yang’s Lemma
2.20 in [Yanl13] there is a C' > 0 such that for every conical ( € 9G we have
(13) |limsup[d(g, z) — d(h, z)] — lim inf [d(g, z) — d(h,2)]| < C

z—( z—=(
Recall that the Patterson-Sullivan measure v (for the word metric) gives full measure to conical
points and is h-quasiconformal, i.e. there is a D > 0 such that:

(14) D lehBcloe) < d‘gi*y(o < DeMBc(g:e)

v
for all g € G and ( € 0G. We claim there is a G-invariant measure in the measure class of v x v.
Indeed, let

pe(C,€) = lim  sup

z2—=Cy—E

d(€7 y) + d(ea Z) — d(y7 Z)
5 .
Define a locally finite measure m’ on (G x G) \ Diag by

dm'((,€) = €279 du(C) du(€)

The measure m' is G quasi-invariant with a uniformly bounded derivative. Indeed, we can compute
20:(97 ¢, 971E) = 2pe(,€) =
= limsup [d(e,g"y) +d(e,g"2) —d(g~ 'y, 97" 2)] — limsup [d(e, y) + d(e, z) — d(y, 2)] =

z—Cy—E z—(y—E€
= lim S?p [d(g,y) — d(e,y)] + lim s?p [d(g,2) —d(e, 2)] + O(1) = Be(g,e) + Bc(g,e) + O(1)
y— 2=

(where we could distribute the limsup since the limsup and liminf are within bounded difference as
in (13)). Hence, combining this with (14) one gets that the Radon-Nykodym cocycle is uniformly
bounded, i.e.

dgsm’ - oy _ 2hpela 1 e)~20pe () D95V oy DIV o o
B (G6) = 97 (¢) B gy =1

Hence, by a general fact in ergodic theory the Radon-Nykodym cocycle is also a coboundary (see
[Fur02], Proposition 1). Thus, there exists a G-invariant measure m on (0G x 0G) \ Diag in the
same measure class as m/, hence also in the same measure class as v x v. By [Yan13], the Patterson-
Sullivan measure is supported on conical limit points. Thus, m is also supported on pairs of conical
limit points. By Theorem 2.6 of [Kai94|, any quasi-product G-invariant Radon measure on the
double boundary of a CAT(—1) space which gives full measure to pairs of conical limit points of G
is ergodic. Thus, v X v is ergodic. O

10. RAAGs, RACGS AND GRAPH PRODUCTS

Let A be a finite simplicial (undirected) graph. Recall that the corresponding right-angled Artin
group (RAAG) A(A) is the group given by the presentation
AAN) =we V(A : [v,uw] =1 <= (v,w) € E(A)).

The corresponding right-angled Coxeter group (RACG) C(A) is the group obtained from A(A) by
adding the relators v? = 1 for each v € V/(A). In each case, S = {v™! : v € V(A)} is called the set
of standard (or vertex) generators of the group.
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In greater generality, let A be a finite simplicial graph, and for each vertex v of A let us pick a
finitely generated group G,, which we call vertex group. Then we define the graph product from
the relative presentation

GA):={(geGy : [g,h]=1 <= g€ Gy,h € Gy and (v,w) € E(A))

as the group generated by the vertex groups G, with the relation that two vertex groups commute
if and only if the corresponding vertices are joined by an edge. Clearly, RAAGs are special cases of
graph products when G, = Z for all z, and RACGs are graph products with G, = Z/2Z. Graph
products were first introduced by Green [Gre90] and have received much attention, see for example
[BHP93, Chi94, Gre90, Hag08, HM95, HW 199, Mei96, Mei95, Rad03].

In this section, we are going to apply our counting techniques to graph products.

10.1. Geodesic combing for graph products. Let us call a group admissible if it has a geodesic
combing with respect to some finite generating set (i.e., in the language of the previous sections,
if it has an admissible generating set). Recall that a recurrent component of a directed graph I'
is nontrivial if it contains at least one closed path. A component is terminal if there is no path
exiting it. Finally, a graph structure (G,I") is recurrent if every vertex admits a directed path to
every vertex other than the initial one.

Recall that, given a graph A, the opposite graph is the graph AP’ with the same vertex set as A
and such that (v, w) € E(A°P) if and only if (v,w) ¢ E(A). We will assume that A is anticonnected,
i.e. that the opposite graph A is connected. This implies that G(A) is not a direct product of
graph products associated to subgraphs of A. As an example, if A is a square, then the opposite
graph is the disjoint union of two segments, hence A is not anticonnected, while if A is a pentagon,
then its opposite graph is also a pentagon, hence A is anticonnected.

Proposition 10.1. Let A be anticonnected, and choose for each vertex x a group G, with a geodesic
combing (G, T'z) for the generating set S,. Then the graph product G(A) with the generating set
S = U, S, admits a geodesic combing which is recurrent.

We call the generating set S in Proposition 10.1, the standard generating set for G(A). Note
that this agrees with the standard vertex generators for the special case of right-angled Artin and
Coxeter groups.

The proof of Proposition 10.1 will be an explicit construction of a recurrent graph structure for
G(A) with the standard generators. First, Hermiller-Meier [HM95] produce a geodesic combing for
G(A) which is not recurrent. In the next few lemmas, we will show that if A is anticonnected we
can modify their construction in order to produce a new graph structure which is reccurent. Of
course it is necessary to assume that A is anticonnected, as the counting theorems fail for RAAGs
which decompose as direct products (Example 1).

We begin by reviewing the construction of [HM95]. First introduce a total ordering on the
vertices of A such that the first two vertices in the ordering are not adjacent in A. Each vertex of
A will be labeled by a capital letter A, B, ....

Then for each pair of vertices (I,J) such that I and J are not adjacent in A and with I > J
one constructs the (I, J)-admissible tree in the following way. An (I, J)-admissible word is a finite
sequence IJK1K; ... K, (with » > 0) such that:

(1)
J<Ki<Ky<- - <K,
and
(2) if K; < I for some i < r, then K; is not adjacent to at least one vertex among I, J, K1, ..., K;_1.

Given (I,J), the (I,J)-admissible tree is the finite directed tree, whose vertices are labeled by
letters and whose paths spell exactly the (I,.J)-admissible words. In particular, such a tree will
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have I as a root and there is only one edge coming out of this vertex, with endpoint .J. Here, and
in what follows, a directed edge always has the same label as its terminal vertex.

Moreover, [HM95] define the header graph (the terminology is ours) as the graph with one vertex
for each letter, and an edge A — B if and only if A < B.

Finally, they construct the graph structure for C'(A) (the corresponding RACG) as follows.
Consider the union of an initial vertex wvg, the header graph and all (I, J)-admissible trees. First,
one identifies the vertex I of the header graph with the root of the (I, .J)-admissible tree for each
possible J. Then, one adds one edge from vy to each vertex of the header graph, and if K > L
and K, L are not adjacent in A, one joins by a directed edge each vertex labeled K in the union of
the (I, J)-admissible trees with the L vertex in the (K, L)-admissible tree. As shown by Hermiller-
Meier, this graph & gives a bijective, geodesic graph structure for C(A) [HM95, Section 5 and
Proposition 3.3]. In fact, they show that & recognizes the geodesic language of normal forms with
respect to the ordering of the vertices of A, but we will not need this stronger fact.

Let C be the subgraph of & obtained by removing all vertices in the header graph and the initial
vertex. That is, C' is the subgraph induced on the vertices on all (I, J)—admissible trees, excluding
the initial vertex of the tree (which is labeled I'). The next lemma is key to our modification.

Lemma 10.2. If A is anticonnected, then the graph C' is irreducible, i.e. there is one directed path
from each vertex to any other vertex. Hence, & has a unique nontrivial recurrent component C' and
this component is terminal.

Proof. We will show that C' is indeed irreducible. This will suffice since the header graph has no
directed loops (it only has directed edges which increase in the ordering) and there are no edges
leaving C' by construction.

Since the (unique) type J vertex in the (I, J)-admissible tree has a directed path to each of its
vertices and each vertex is in some (I, .J)-admissible tree, it suffices to show that from any vertex
of C' we can reach the type J vertex of any (I, .J)-admissible tree. Hence, fix some vertex v of &
and I, J, which are vertices of A.

Here is a main point: Any type I vertex of any admissible tree is joined to the type J vertex of
the (I, J)—admissible tree. Hence, it suffices to get from v to any type I vertex of any admissible
tree. To do this let X be the type of v.

Fix a path X = Xy, X1,...X,, = I in the complement graph of A. (Here we use that A is
anticonnected.) That is, X; and X;y; are not adjacent in A. We have to get from v to any type
I vertex. We do this inductively as follows: We have either X < X; or X > X;. In the first
case, there is a type X; vertex v; in the admissible tree containing v along with a directed path
v — v1. (Since no consecutive pair in our fixed path are adjacent in A, condition (2) above holds
automatically.) In the second case, there is an edge from v to the unique X; vertex of the (X, X;)—
admissible tree, call this vertex v;. In either case we get a directed path v — vy, were v; is a type
X, vertex.

We now repeat this argument to produce a path from v; — vs, where vy is a type Xs vertex.

Continuing in this manner, we produce v — v — ... — v,, were v, has type I. Since v, then
has a directed edge to the type J vertex of the (I,.J)-admissible tree (as discussed above), this
completes the proof, O

We now know that the union of the admissible trees (excluding the initial vertices) is an ir-
reducible graph. However, the header graph by construction is not irreducible. However, in the
following lemma we observe that all words we can spell in the header graph can also be spelled in
one of the admissible trees. Hence, we can modify & (essentially, by removing the header graph)
in order to get a recurrent graph &” which recognizes the same language as &.

Lemma 10.3. If A is anticonnected, there exists a recurrent graph &" which recognizes the same
language as &.
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Proof. Assume that A is anticonnected and that its vertices are ordered so that the first two vertices
A, B do not commute (i.e. they are not adjacent). We modify & so that the resulting graph &”"
still recognizes the same language as &, and it is recurrent.

The modification is simple and requires only one observation: we note that any strictly increasing
sequence X7 ... X, can be spelled in the (B, A)-admissible tree, starting from some vertex. In fact,
if X1 = A then BX; ... X, is (B, A)-admissible, since the only required condition is that whenever
X; < B the vertex X; is not adjacent to some X; with | < ¢. However, the only two letters not
greater than B are A, B, and A and B are not adjacent by construction. Similarly, if X; # A then
BAX; ... X, is (B, A)-admissible.

Thus, the new graph &" is given by removing the header graph and joining the initial vertex
vp to each vertex of the (B, A)-admissible tree. Any word which is recognized by & is made of an
increasing word followed by a word spelled in the union of the admissible trees. In &”, such a word
is spelled by spelling the increasing sequence in the (B, A)-admissible tree, and the second part as
before. This proves the claim. O

The graph &" is a recurrent graph which by Lemma 10.3 gives a bijective, geodesic graph
structure for the right-angled Coxeter group C(A). We now modify the construction to produce a
geodesic combing for each graph product G(A).

Let I'r be the graph structure of the vertex group Gy, let vg; be the initial vertex of Gy, let
S1,1,---,5k1 be the labels of the edges going out of vg 7, and let vy 7,..., v be the targets of these
edges, respectively. Moreover, let I} be the subgraph of I'; given by removing the initial vertex.

To construct the graph structure for G(A), let us consider the disjoint union of a vertex vy, which
will serve as initial vertex, and a copy of I'} for each vertex v of type I in &". Moreover, for any
edge in &" of type I — J let us connect each vertex of the corresponding I, with the vertices

V1,7, .-,k of the corresponding I"; with edges labeled, respectively, si s,..., sk s. Finally, for
each edge from vg in B" to some other vertex of type I, let us connect the new initial vertex vy
with vertices vy g, ..., vy s of I, with edges labeled, respectively, s 7. .., sk 7.

This new graph I'¢ gives a bijective, geodesic structure for G(A) with respect to the standard
generators. This follows since, by construction, I'¢ parameterizes the same language of geodesic
normal forms for G(A) given in [HM95]. Moreover, since I'g is modeled on the recurrent graph &”
one easily sees that I'g is itself recurrent. This completes the proof of Proposition 10.1.

Corollary 10.4. Let G(A) be a graph product of admissible groups, which does not decompose as
a direct product. Then there exists a thick graph structure for its standard generating set.

Proof. From Proposition 6.2, the graph structure given by the above proposition is thick since I'g
is recurrent. I

As a consequence of thickness, we are ready to establish the following counting result for loxo-
dromics.

Theorem 10.5. Let G be a graph product of admissible groups which is not a nontrivial direct
product, and let S be its set of standard (vertex) generators. Then for any nonelementary action
G ~ X on a hyperbolic space X, the set of loxodromics for the action is generic with respect to S,
1.€.
#{g€G:|gls <n and g is X — loxodromic}
#{g€ G :lgls <n}

— 1,
as n — o0.

Proof. The pair (G, S) admits a thick graph structure by Corollary 10.4, hence the claim follows
from Theorem 6.4. O
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11. EXACT EXPONENTIAL GROWTH FOR RAAGS AND RACGS

We conclude by proving a fine estimate on the number of elements in a ball for RAAGs and
RACGs.

Theorem 11.1. Let G be a right-angled Artin or Cozeter group which is not virtually cyclic and
does not decompose as a nontrivial direct product, and let us consider S its standard generating set.
Then there exists constants A > 1, ¢ > 0 such that the following limit exists:

eqG : =
(15) A lgls =n} _

n—oo AT

We say that a group which satisfies (15) has ezact ezponential growth. Let us remark that such a
property is not invariant with respect to quasi-isometries of the metric, and hence it depends very
carefully on the generating set. Moreover, the proof shows that A is a Perron number, which is one
of properties conjectured by [KP11] for cocompact Coxeter groups acting on H"™.

In fact, Theorem 11.1 will follow immediately from the following theorem for general graph
products.

Theorem 11.2. Let G(A) be a graph product of admissible groups, and assume that A is anticon-
nected (so that the group does mot split trivially as a product) and has at least 3 vertices. Then
G(A) has exact exponential growth.

Note that it makes sense to assume that the number of vertices is at least 3. In fact, if n =1
then G(A) can be any group with a geodesic combing, while if n = 2 then G(A) can be the free
product of any two admissible groups. In particular, if it is a RAAG then it must be the free group
on 2 generators, which has exact exponential growth, and if it is a RACG it must be Z/2Z x Z/27Z,
which is virtually cyclic.

Let us remark that the growth function for graph products has been worked out by Chiswell
[Chi94] (see also [AP14]); however, it does not seem obvious how to prove exact exponential growth
by this method.

Let us consider the recurrent graph &" defined in the previous section, and denote as & =
&" \ {vo}. By the previous section, we know that & is irreducible. The final step in the proof of
Theorem 11.2 is the following lemma.

Lemma 11.3. If A is anticonnected and has at least 3 vertices, then the graph &g is aperiodic.

Proof. Let us assume, consistently with the previous section, that the vertices of A are ordered.
Let us call A, B the two smallest vertices, with A < B, and assume that A, B are not adjacent.
Moreover, let C' be the largest vertex in the ordering. Then let us observe that the sequences
BAC and BABC are (B, A) admissible, hence in the (B, A)-admissible tree there is a Y-shaped
subtree with five vertices: one labeled A, two labeled B (let us denote them Bj, Bs) and two
labeled C' (let us denote them Cj, C2) so that the paths in this subtree are By — A — C; and
By - A — By — (5. Now, since the graph is irreducible, there exists a path from Cy to A; let us
denote its vertices as Cy — v; — vy -+ — v — A. Then by definition, the type of v; is smaller
than C, and is not adjacent to C'. Thus, by construction, there is also an edge from C5 to v1; hence,
in the graph there are two loops: one loop is given by A —- C; — v; — -+ — v — A and the
otheris A - B — Cy — v — -+ = v — A. Since the lengths of these two closed paths differ by
one, the greatest common divisor of the lengths of all paths is 1, hence & is aperiodic. g

Note that the statement is false if the number of vertices is 2: indeed, then there is only one loop
of length 2, hence the period is 2.

Now, let us consider a general graph product G(A). By the previous section, by replacing vertices
of &" with graphs which recognize the geodesic combings of vertex group, we get a new graph '
which gives a geodesic combing for G(A). By the previous lemma we get:
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Corollary 11.4. If A is anticonnected and has at least three vertices, then the graph I', = T\ {vo}
18 irreducible and aperiodic.

Proof of Theorem 11.2. Since the graph I'j, is irreducible and aperiodic, then by the Perron-
Frobenius theorem its adjacency matrix A has a unique eigenvalue A > 1 of maximum modulus,
and that eigenvalue is real, positive, and simple. Moreover, the coordinates of the corresponding
eigenvector are all positive. Finally, the sequence f\‘n converges to the projection to the eigenspace.
In particular, none of the basis vectors is orthogonal to the eigenvector, hence for any 4,j there
exists ¢;; > 0 such that
. (A")
Jim, S =
Now, each path of length n from the initial vertex starts with an edge to the irreducible graph,

hence A
S, v n-l c
- TR S T Y e
Vo—V; vVo—V; g Vo—V; g
which establishes exact exponential growth. O
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