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This paper provides a unified framework and an efficient algo-
rithm for analyzing high-dimensional survival data under weak mod-
eling assumptions. In particular, it imposes neither parametric dis-
tributional assumption nor linear regression assumption. It only as-
sumes that the survival time T depends on a high-dimensional co-
variate vector X through low-dimensional linear combinations of co-
variates T'7X. The censoring time is allowed to be conditionally inde-
pendent of the survival time given the covariates. This general frame-
work includes many popular parametric and semiparametric survival
regression models as special cases. The proposed algorithm produces
a number of practically useful outputs with theoretical guarantees,
including a consistent estimate of the sufficient dimension reduction
subspace of T'| X, a uniformly consistent Kaplan-Meier type estima-
tor of the conditional distribution function of 7" and a consistent
estimator of the conditional quantile survival time. Our asymptotic
results significantly extend the classical theory of sufficient dimension
reduction for censored data (particularly that of Li et al. 1999) and
the celebrated nonparametric Kaplan-Meier estimator to the setting
where the number of covariates p diverges exponentially fast with the
sample size n. We demonstrate the promising performance of the pro-
posed new estimators through simulations and a real data example.

1. Introduction. Literature on high-dimensional data analysis has
experienced an explosion recently. However, there still exists relatively little
work, particularly with theoretical guarantees, for analyzing high dimen-
sional data with censored responses where new technical challenges arise.
We are interested in studying the relationship between an event time 7" and
a p-dimensional vector of predictors X = (X1,...,X,)T. The event time T
may not be observed due to right censoring, such as patients dropout. Let
Y = min(7, C) be the observed event time where C' denotes the censoring
variable, and let § = I(T < C) be the censoring indicator. The observed
data consist of (X;,Y;,d;), 2 =1,...,n. In this paper, we develop a general
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theory for analyzing such censored data in the setting where the number of
covariates p can be much larger than the sample size n. A distinguishable
feature of our proposal is that we only impose a very general model frame-
work instead of a specific model. In particular, we impose neither parametric
distributional assumption nor linear regression assumption.

The basic modeling assumption we adopt is that T" depends on X only
through a few linear combinations of covariates I'"X, where I' is a p x d
(d < p) matrix with d usually much smaller than p. Alternatively, we write
(1.1) T1X|ITX,
where 1L stands for independence. The matrix I' itself is not identifiable as
for any d x d nonsingular matrix A, ATTTX also satisfies (1.1). Instead,
we aim to estimate the smallest linear space spanned by the columns of
I', denoted by Spix. In the dimension reduction literature, such a space is
referred to as the central subspace, and is known to exist and be unique
under mild conditions (Cook 1998).

Note that (1.1) is equivalent to the statement F(T|X) = F(T|I'"X),
where F(T'|X) and F(T |TTX) are conditional distribution functions of T
given X and I'"X, respectively. To appreciate the flexibility of this gen-
eral formulation, we observe that (1.1) encompasses many popular survival
analysis model assumptions as special cases regarding T'| X.

e Proportional hazards or Cox model: h(t|X) = ho(t) exp(8TX), where
the hazard function h(t|X) = — 4 logQ(¢|X) with Q(t|X) = 1 —
F(t|X) being the conditional survival function. This model is equiv-
alent to F(t|X) =1 — exp{—Ho(t)eﬂTX}, where Hy(t) = fg ho(s)ds.
Hence, (1.1) is satisfied with I' = 3.

o Accelerated failure time (AFT) regression model: log(T) = BTX + ¢,
where ¢ is the random error. Then it is easy to see that (1.1) is satisfied
with I' = 3.

e Various semiparametric variants of Cox or AFT model, for example,
log(T) = BTX + g1(BIX) + g2(BEx)e, where go is a non-negative
function. The vectors 3,, i = 1,...,3, are unknown; and g; and g
are also possibly unknown. For this semiparametric regression model,
(1.1) is satisfied with I" whose columns are 3, 3, and 35.

The purpose of this paper is twofold. First, we will estimate the central
subspace Spx for high-dimensional censored data, an important problem
that has not been explored much in the literature due to technical challenges.
The central subspace is known to be a powerful tool for data reduction and
visualization. However, it does not directly provide prediction, which is often
a main objective for real data analysis. Our second goal is therefore to esti-
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mate the conditional distribution function F(7'| X) in the high-dimensional
setting while accounting for censoring. This would help answer important
practical questions such as what is the probability that a patient can survive
more than six months given his/her clinical conditions and genetic profile.

2. Related work and contribution. There exist a rich literature
on central subspace estimation for dimension reduction, see Li (1991), Ye &
Weiss (2003), Cook & Ni (2005), Zhu et al. (2006), Li & Wang (2007), Li
(2007), Hsing & Ren (2009), Li & Dong (2009), Yin & Li (2011), Ma & Zhu
(2012), Kong & Xia (2014), Chen et al. (2015), Bura et al. (2016), among
many important others. More recently, progress has been made in high-
dimensional setting (p > n) (e.g., Li & Yin 2008, Cook et al. 2012, Yu et al.
2013, Yin & Hilafu 2015, Yu et al. 2016, Lin et al. 2018, Wang et al. 2018,
Tan et al. 2018, Qian et al. 2018). However, these methods were mainly de-
signed for complete data and do not apply to data with censored outcomes.
When the response variable is censored, several authors have made signifi-
cant progresses for the classical setting (fixed p or p diverging but p < n);
see, e.g., Li et al. (1999), Cook (2003), Li & Li (2004), Li (2005), Xia et al.
(2010), Lu & Li (2011), Nadkarni et al. (2011), Lopez (2011), Sun et al.
(2018) and Zhao et al. (2017).

Our first main contribution is to significantly extend the existing theory
on sufficient dimension reduction (SDR) for censored data. Based on our pro-
posed new methodology, we establish both the central subspace estimation
consistency and variable selection consistency in the ultrahigh dimensional
setting without stringent parametric distributional assumptions. Further-
more, these consistency properties are achieved under relatively mild condi-
tions on the censoring mechanism: we assume the conditional independence
condition 7" 1. C'| X, as opposed to the more restrictive complete indepen-
dence condition T I C or the strong marginally conditional independence
condition T' 1L C'| X, for all j, required by many screening methods.

To the best of our knowledge, our proposal is the first to extend SDR
method to the analysis of high-dimensional censored data with theoretical
guarantees, where p is allowed to increase at an exponential rate of n. It is
worth noting that our approach is very different from existing model-based
(mostly based on Cox model) variable selection methods (e.g., Tibshirani
1997, Fan & Li 2002, Zhang & Lu 2007, Johnson 2009, Du et al. 2010, Bradic
et al. 2011, Huang et al. 2013, Fang et al. 2017, Chai et al. 2018). Moreover,
the proposed methods apply to a wide class of survival data models where
the proportional hazards assumption is violated.

We also establish uniform convergence of a local Kaplan-Meier estima-
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tor in the high dimensional setting with assistance of the estimated cen-
tral subspace. The celebrated nonparametric Kaplan-Meier estimator for
the conditional distribution of the event time plays a central role in survival
analysis but requires the strong independent censoring assumption. On the
other hand, important extensions of Kaplan-Meier estimator to covariate-
dependent censoring, such as Beran (1981), only works with a few covariates
in practical data analysis due to the curse of dimensionality. Our result much
extends the practical use of Kaplan-Meier estimator to high-dimensional
censored data while permitting covariate-dependent censoring.

In addition, we equip our method with an efficient algorithm for computa-
tion. It adopts an iterative strategy to solve the objective functions without
inverting any large covariance matrix. Furthermore, we propose a specialized
cross-validation method to achieve automatic tuning parameter and struc-
tural dimension selection. Its practical effectiveness is demonstrated through
extensive numerical and real data evaluations.

The remainder of the paper is organized as follows. Section 3 proposes the
new double-slicing assisted SDR method for studying high dimensional cen-
sored data. Section 4 establishes consistency results in both central subspace
estimation and variable selection under the ultrahigh dimensional setting,
as well as estimation consistency for conditional survival function. Compu-
tational aspects are presented in Section 5. Simulation studies and real data
analysis are given in Sections 6 and 7, and concluding remarks are given
in Section 8. Proofs, related technical details, and additional computational
and numerical results are left to the Supplement.

3. Methodology. In this section, we introduce the double-slicing
assisted SDR method in high dimension (abbreviated as DASH) to estimate
the central subspace S x and to simultaneously select important covariates
for T'| X in the ultrahigh dimensional settings. DASH has two main steps.
First, it estimates a cruder augmented central subspace S(7,c)x for the
conditional distribution of (7, C') | X, inspired by the double slicing approach
in Li et al. (1999) for the classical setting p < n. It then provides a refined
estimate of the targeted central subspace Spx adjusting for censoring in the
second step. Based on the central subspace estimation from DASH, we then
obtain a nonparametric estimator of the conditional survival function, which
also yields an estimator for the conditional quantile function as a byproduct.

3.1. The DASH method. To motivate DASH, we provide some basic
intuition for the ideal situation where we fully observe T and there are only
fixed number of covariates. In this case, sliced inverse regression (SIR; Li
1991) is a simple way to estimate the central subspace. Let p = E(X) and
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Y = cov(X) be the mean and covariance matrix of X, respectively. The key
observation behind SIR is that E(X — g | T') is in the space ¥S7x under the
linearity condition in Li (1991), which holds for the elliptical distribution
family and also holds to a good approximation in high dimension (Hall &
Li 1993). SIR reverses the relation between the response variable and the
covariates. Let Z; = [at, at41),t = 1,...,b, be b non-overlapping intervals of a
partition of the range of 7', where 0 = a1 < --- < ap < 00 = apy1. For a given
t,define ¢, = S 'E(X—p|T € Zy) fort =1,...,b. With M = (&,,...,&,) €
RP* and Sy; = Span(M), where Span(M) is the subspace spanned by the
columns of M, we have Syy C Spyx. Furthermore, we assume the coverage
condition Sy 2 Spjx, which is usually reasonable with large enough b. With
d = dim(S)y), the dimension of Sys, Cook & Ni (2005) proposed to estimate
Sy with a d-dimensional subspace that is closest to the columns of M, where
the closeness is measured by a quadratic discrepancy function. This general
approach subsumes SIR as a special case. However, this quadratic distance
approach is not applicable to our setting due to the challenges of random
censoring and high-dimensional covariates.

The DASH method we introduce below corrects the bias due to ran-
dom censoring by employing inverse probability weighting. Such weighting
intrinsically also depends on the high-dimensional covariates. We extend
the double-slicing approach of Li et al. (1999) to obtain estimates of such
weights with theoretical guarantee in high dimension. Furthermore, DASH
incorporates high-dimensional covariates in estimating Spx by extending
the quadratic discrepancy function with appropriate penalization and de-
vising an algorithm that avoids inverting the high-dimensional covariance
matrix.

For censored data, T' may not be completely observed. Instead of slicing
T, we consider H, = [ty,ty+1),y = 1,...,b, which form b non-overlapping
intervals of a partition of the observed survival time Y with 0 = #; <
e <ty < 00 = tppq. Let S(t|x) = P(C > t|X = x) be the conditional
survival function of the censoring time C' given X. Let p, = P(Y € H,) and
py = P(T € H,). It is not hard to verify (see Supplement I.1) that

§(X —p)
SY|X)
Hence, one can correct the censoring bias by inverse probability weighting.
Variations of inverse probability weighting for censored data were also used
in Fan & Gijbels (1994), Cheng et al. (1995), Lu & Li (2011), Nadkarni
et al. (2011), among others, for classical fixed or small p cases. When the
censoring distribution depends on the covariates, the aforementioned litera-

ture either imposed relatively strong assumptions such as complete indepen-

(3.1) E(X—H|Te%y)=§1;E{ ]Yeﬂy}.



6 S. DING, W. QIAN AND L. WANG

dence or employed a nonparametric estimator for S(Y | X) which may suffer
from curse of dimensionality in practice. We instead propose a convenient
double-slicing assisted procedure to first perform SDR for the joint condi-
tional distribution of (7', C)| X and obtain a uniformly consistent estimator
S(t| X) nonparametrically under reduced predictor dimension. Let S(t | X)
denote this estimator of S(¢|X). For now, we assume S(¢|X) has been ob-
tained. The details of estimating S(t|X) will be described in Section 3.3.

Let my = E{6(X — p)/S(Y|X)|Y € Hy},y = 1,...,b. And define
M, = (mjy,...,my) € RP*’. Then (3.1) implies that Sy;, C ¥ Spix- Unless
stated otherwise, we assume throughout the article that Sy, = XS7x. Let
g = (yP1, -+ ,v/m) and Dg = diag(g), where diag(g) denotes the diago-
nal matrix with diagonal components to be the elements of g. Construct a
modified matrix U. = M.Dg. Then we have Sy, = Sy, = XSpx and U, is
called a kernel matrix. Let J, = {1 <i < n:Y; € Hy,} be the index set
corresponding to slice H, and let N, = |J,|, y = 1,...,b, where |- | denotes
the set cardinality. Then the sample estimates of m, and p, can be formu-
lated by m, = N, >ies, 0i(Xi — X)/S(Y;| X;) and p, = N,/n, where X
is the sample mean of X. Correspondmgly, we can obtain sample estimates
M, and g of M, and g, and set U, = MD

Let T'p be a basis matrix of Spx and let Yoj € R? be the jth row of T.
With ||-[|2 being the Ly norm, let Ag = {1 < j <p: [lv¢,ll2 > 0}. Then it is
natural to define X 4, to be the active variables of Spx, where X 4, is the
sub-vector of X corresponding to the index set Ag. To achieve SDR and to
simultaneously identify the active variables, we estimate I'g by considering
the penalized sample objective function

p
(32)  Fu(l,®) = tr{(Ue — 2ul'®) " Qp(U. — SuTD) } + XD wjllvll2,

=1
subject to ®®T = I;, where tr(-) is the trace operator, %, is the sample

covariance matrix of X, €2, denotes a sample estimate of £, and 7, s the
jth row vector of I'. It is important to stress that we avoid ﬁndlng an exphclt
form of O, by setting S0, = I, in the sample objective function in our
algorithm (Section 5). In (3.2), A is a tuning parameter and w;’s are penalty
weights. Note that each column vector in I'g produces a linear combination
of the p covariates, and the above penalty hence encourages sparse linear
combinations of all covariates.

REMARK 3.1. We assume throughout the paper that central subspaces
Stix and S(1,0)x exist and are unique. This assumption has been shown to
hold under mild conditions (when, e.g., the covariates have density with con-
vex support; Cook 1998, Ch. 6; Li 2018, Ch. 2.2). Then, by Proposition A.1
in the Appendix, the set of active (or relevant) variables associated with the
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central subspace is also unique.

REMARK 3.2. The loss function in (3.2) is motivated by the quadratic
discrepancy approach discussed in Cook & Ni (2005) as we can rewrite the
population version of the loss function as
(33)  F(T,®) = (vec(T,) — vec(T®)) W (vec(T,) — vec(I'P)),
where vec(-) denotes the operator that constructs a vector from a matrix by
stacking its columns, ® denotes Kronecker product, U. = 71U, satisfies
Sp. = Srix, and W = I, ® X is positive-definite. See also Proposition A.2
in the Appendix for the motivation. In the population version, (A.1) does
not involve ¥1 after expansion, and we thus avoid inverting a large co-
variance matrix in high dimension. For identifiability, instead of imposing
constraints on basis I' like many SDR methods, we use an alternative con-
straint ®®7 = I; to overcome computational challenges in the ultrahigh
dimensional setting. As discussed in Section 5, the new constraint will lead
to iterative optimization steps that involves singular value decomposition
(SVD) of relatively small matrix, which is efficient to compute.

REMARK 3.3. Here, we take 3, to be the sample covariance matrix of X.
Alternatively, we can use other estimators such as a thresholded covariance
matrix (Bickel & Levina 2008). Unless stated otherwise, we simply assume
sample covariance is used, but we also use the thresholded covariance for
numerical studies in Section 6.

REMARK 3.4. The derivation of the penalty weights w; follows a variant
of the adaptive group lasso (Zou 2006, Yuan & Lin 2006): we first obtain
an initial estimator (T'g, @) of (3.2) by using equal weights w; = --- =
w, = 1 with tuning parameter \; then we set weights by w; = Y0127 to
find the estimator (I'g, ®¢), where Yo; is the jth row of Iy and p is some
pre-specified constant. We can also define w; = +oo if ||qg;]/2 = 0. The
estimator for Spx is then Sfo’ and the estimated set of active variables is
Ao ={1 < j <p:|Ao;ll2 > 0}, where To = (01, ,%0,)"- The detailed
computational algorithm and tuning parameter selection related to (3.2) are
presented in Section 5.

3.2. Nonparametric estimation of conditional survival function. We
now describe how we can construct a nonparametric estimator of the con-
ditional survival function Q(7 | X) based on the central subspace obtained
in Section 3.1. Estimating the conditional survival function is often of inde-
pendent interest.

The estimated central subspace allows us to estimate Q(t|x) = P(T >
t|IT§X = I'fx) as Iy is a basis matrix of Syx. The dimension of I'fX
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is usually low and we assume it is upper bounded. In addition, as shown
in Proposition A.3 in the Appendix, conditioning on FOTX, the conditional
independence assumption remains to hold. We generalize the local Kaplan-
Meier (KM) estimator (e.g., Beran 1981, Gonzalez-Manteiga & Cadarso-
Suarez 1994, Zeng 2004) to estimate Q(t|x) by

n

iy T {1 L0 < 6.6 = D) Bui(I]x)
(3.4) Q(H ) E {1 ZZ:I I1(Yy > }/Z)Bnk(f‘g}() }’

where Bm-(fOTx) are nonparametric local weights, and f‘o is the estimator
for I'g obtained in Section 3.1 with transformation to be an semi-orthogonal
matrix (e.g., we can simply perform a SVD on [Py to obtain this ma-
trix; this step is only for convenience of technical analysis and, as shown
in Proposition A.4 in Appendix, ensures the existence of a basis I'g € Spx
that is close enough to the transformed estimator). Two popular choices
of weights are the histogram weight and the Nadaraya-Watson weight. To
use the histogram weight, we partition the support Z C R? of f‘gX into
small sub-domains; given z € Z, let M(z) be the sub-domain containing
z and let N,(z) be the number of observations Z; = f‘ng (1 <i<n)
that are contained in M(z). Then Bp;(z) = 1/N,(z) if M(z) = M(Z;),

and B,i(z) = 0 otherwise. To use the Nadaraya-Watson weight, we set
Bpi(z) = K(Z;;L;Z)/ZZZI K(ZI’;;Z), where K(-) is a kernel function and h,,

is the bandwidth. In Section 4, we establish the uniform convergence for
the local KM estimator in (3.4). The proposed estimator much broadens the
practical use of Kaplan-Meier estimator in high dimension.

As one interesting and useful application of the estimated survival func-
tion Q(t|X), we can further estimate the conditional quantile function for
T|X. That is, given 0 < 7 < 1, we directly estimate the 7th conditional
quantile by inverting Q(t | X). In Section 4, we show that this produces a
consistent estimator for Q7 (7|X) = sup{t: Q(t| X) < 1 — 7}. See also the
numerical illustration in Section 6.

3.3. Double-slicing assisted preliminary estimator of S(t|X) in high di-
mension. In Section 3.1, we discussed the need to flexibly estimate S(¢ | X)
for inverse probability weighting in (3.1). In this subsection, we provide the
details on how such a preliminary estimator can be obtained in high dimen-
sion by extending the seminal work of Li et al. (1999), which was developed
for the small p large n setting. The basic idea is to consider a slightly larger
subspace based on the sufficient reduction for (7', C')|X, which also provides
a sufficient reduction for C'| X and can facilitate the estimation of S(¢ | X).
Therefore, we first reduce the dimension of X through the augmented cen-
tral subspace S(pc)x and then estimate S(¢|X) nonparametrically based
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on the dimension reduced predictors.

Specifically, because (Y, 0) is a function of (T',C), we have that Sy,5)x <
Srcoyx (e.g., Theorem 2.3, Li 2018). In addition, Proposition A.5 in the
Appendix shows that the coverage condition Syy.s)x 2 S(r,c)x is equivalent
to Srx € Sy x and Soix € Siys)x; the latter conditions are often
reasonable considering that Syx C Sys)x and P(Y > t[X) = P(T >
t|ToX)P(C > t|I':X) from the conditional independence, where I'g and
I'c are basis of S7x and Sgx, respectively. Then assuming a full coverage,
S(r,0)x can be estimated through S(y,5)x by the sliced inverse regression
method with double slicing on Y and §. This idea eases the central subspace
estimation as both Y and § are observable.

Let Hiy, | = 1,...,b1, be the b; non-overlapping intervals of the dis-
cretized event time Y without censoring (6 = 1), and let Hoy, [ =1,...,bo,
be by non-overlapping intervals of the discretized Y with censoring (6 = 0).
With the double-slicing (DS) practice, similar to our discussion for (3.1), it
can be shown that

my = E(X | Y € ’Hk,l,é = k) — M € ZS(T,C)|X
forany k =0,1,and ! =1,..., b, under the linearity condition. Define M; =
(m171, cee, My, Mg, . ,m07b0) € Rpx(b1+b0), Dkl = P(Y S ’Hk,l,é = k),
and g1 = (/P1,1,- -5 /PLbrs \/PO,1s - - -5 /D0 ) By setting Uy = My Dg, , we
have Sy, = Suy, = XS(7,0)x- Then Uy is a kernel matrix for Sir o) x. Let
dy = dim (S(T,C)‘X). By replacing U, with U; in (A.1), we have the objective
function
(3.5) Fi(T, @) = tr{(U; — EI®)"E7 (U — £T'®) }, subject to @7 = I,
where T' € RP*% and & € R¥*(1+00) are parameters, and its minimizer
I'; € RPX4 of T' forms a basis of S(r,0yx- Likewise, with Ui = 271Uy, this
objective function also forms a quadratic discrepancy function resembling
(3.3).

Define Ji; := {1 < i < n :Y; € Hyyand 6 = k} to be the index
set corresponding to slice Hy, and Ni; = |Ji,|. Let my; = Xk‘,l - X =
ZieJk,l Xi/Niis — X and pr; = Ngy/n, which are used to construct the
sample estimators Ml and g; for M; and gp. Set Ul = Mngl. Under
sparsity, let A; be the index set corresponding to active variables of S(r ¢ x -
Assume ¢ := |A;]| < p. We can then use U1 to formulate a penalized sample
objective function similar to (3.2) to estimate S(r ¢y x and .A; by minimizing

p
(3.6) Fin(T,®) = tr{(U1 — BuT®) 0 (U1 — Zul®) } + M1 Y wjillv; e,
j=1

subject to ®®7 = I, , where \; is tuning parameter with unequal penalty
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weights. Here we perform the same adaptive estimation procedure as de-
scribed for (3.2), and set A1 to be the tuning parameter corresponding to
the initial equal penalty weights. With the estimator (fl, ‘i>1) from (3.6), this
DS procedure generates the estimated central subspace Sy and variable se-
lection set A; = {1 <j<p: [91;]l2 > 0}, where = Fyg,- - A1)

Since I'TX is a sufficient reduction for C' | X, we have S(t|x) = P(C >
t|TTX = I'T'x). Similar to (3.4), we assume d; is upper bounded. Thus,
with the help of low-dimensional estimator fl, the local KM estimation is
applied to estimate S(t|x) as

n

s - T LY < 660 = 0)Bu(TTx)
(37) S(t| ) 21_11: {1 ZZ:l I(Yk > E)Bnk(f{x) }’

where By;(-)’s are the weight functions as described for (3.4).

REMARK 3.5. Since the sufficient reduction for (7, C)|X is also a suf-
ficient reduction for 7| X, the proposed DS method not only achieves di-
mension reduction to facilitate the estimation of S(¢|X), but also provides
reduction for the targeted T'|X. However, as S7,cyx is usually a larger
space than S7x, it might still contain redundant information for the ul-
timate reduction of T'| X. Nevertheless, the DS method can be efficiently
adapted to our high dimensional framework, and is worthy as an initial as-
sisting step for reduction. Since Spix € S(1,0)x, we have Ay C A; and
q1 > ¢. When S ) x = Srx, A1 = Ao, and the DS method itself achieves
simultaneous SDR and variable selection for Syx. In Section 6, we will
evaluate and compare the DS estimator with the DASH estimator under
different simulation scenarios.

4. Theoretical results. In this section, we state the main theoret-
ical results of the proposed methods in ultrahigh dimension that allows p
to grow exponentially with n. Under this setting, we first establish consis-
tency properties for the DS method targeting Sip cyx. With these results as
preparation, we then investigate consistency properties for DASH targeting
Stix and the subsequently estimated conditional survival function Q(t | x)
with local KM estimator.

4.1. DS estimator. Let p; = E(Xj), py; = E(X;|Y € H,) and
pri; = E(X;|Y € Higy, 0 =k)for 1 <j<p, 1 <y<b k=0,1and
1 <1 < by. Define b = max(by, bg) and oij = (X)ij. Let Amin(-) denote the
minimum eigenvalues of a square matrix. Let e; be the vector with the ¢th
element to be one and the rest to be zeros. Consider the following regularity
conditions.
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(A1) Let G be a basis matrix of S = S(7,0yx or Spjx. Assume X satisfies
E(X — p|GTX) = AGT(X — ) for some matrix A € RP*dim(S),

(A2) There is a positive constant cg such that P(Y € Hyy, 6 = k) > cyb™!
forall k=0,1and 1 <1 < b.

(A3) For all € > 0, there is a constant ¢; > 0 such that for all 1 < j < p,
P(|X; — pj| > €) < 2exp(—ci€?). In addition, for all e > 0, 1 < j < p,
1<y<b, k=0,1and 1< < bg, there are constants co, ¢ > 0 such
that P(|1X; — py;| > €|Y € Hy) < Erexp(—cae?) and P(|X; — pg ] >
€ ‘ Y € Hk,la 6= k) < éo eXp(—CQGQ).

(A4) Assume that 0;; <& (1 <4,j < p) and Apin(X) > 04, where o;; is the
(i,j)-element of X, and o, and & are some positive constants.

(A5) Assume the nonzero singular values of U; are bounded away from 0.

(A6) Assume minjc 4, e;‘rﬁlf]{fej > cn~ ™ for some 0 < 71 < 1.

Condition (A1) is the linearity condition discussed in Section 3. Condition
(A2) assumes that all slices of the response have reasonably large marginal
probability, which is mild and is often satisfied in practice. The first com-
ponent in (A3) is the commonly used uniformly sub-Gaussian assumption
for the marginal distribution of predictors X; (1 < j < p). The second
component in (A3) further assumes uniformly sub-Gaussian condition for
X; given each slice; if b and b are upper bounded, these two components
are essentially equivalent. Condition (A4) assumes that all elements in X
are uniformly upper bounded with minimum eigenvalue bounded from zero.
Conditions (A5) and (A6) includes mild assumptions on the “kernel” ma-
trix Uy: (A5) holds if the nonzero eigenvalues of Var(E(X|Y)) are bounded
away from zero, where Y is the double-sliced response; (A6) uses a marginal
utility quantity condition (Zhu et al. 2012) to control signal levels. To ob-
tain consistency results, define Ps to be the projection matrix onto a given
subspace S, and let ||| be the Frobenius norm. Define p, = max(p,n).
The following condition allows p to grow exponentially with n.

(A7) Assume b%q;logp = O(n'~%) and ¢? logp, = O(n'~%) for some con-
stant (; with 7 < (7 < 1.

THEOREM 4.1.  Assume Conditions (A1)—(A7) hold. Suppose that A\; =
2ciny/log pp/n, A1 = 21_’)0%201n\/ log pp /0P and p(¢1 — 1) > 1 - (1,
where c1, = (C1b + ng}/2)/2 with C1,Cy being some generic positive con-
stants (given in Theorem 1.2 of Supplement 1./). Then the DS estimator of
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Section 3.3 satisfies

712 =
(A1) Py, = Psureyxlle = 0p (B + i) Varlogpu/n),
(4.2) P(A; =A)) =1 asn— oo

Theorem 4.1 shows that the estimation consistency and the variable se-
lection consistency of S(r ) x can be simultaneously established by our DS
method without imposing stringent conditions. In addition to p, the theorem
allows ¢; and b to diverge with n. If b is upper bounded, the convergence

rate of the central subspace estimation is O, (q“/log Dn/ n); if q1 is upper

bounded, it is O, (b+/log p,/n); with both ¢; and b upper bounded, the result
is simplified to Op(y/log pn/n).

4.2. DASH estimator. The results in Theorem 4.1 target on S(7,cyx,
which can be a larger subspace than our main interest Spjx. We next es-
tablish theoretical properties for the DASH method targeting Syx. Unless
stated otherwise, assume that the Nadaraya-Watson kernel-based KM esti-
mator is applied to obtain S (t | X). For technical brevity, we assume uniform
kernel function K (x) = I(||x||2 < 1) is used, although other popular kernel
choices can apply. Assume data splitting (Cox 1975) is applied so that I'; and
the local KM estimation use different data halves, and S(t|X;) is obtained
via the leave-one-out technique (Hérdle et al. 1993), where the product in
(3.7) omits the ith sample point. Suppose the domain X of X is compact
with || X||2 < K for some constant K > 0. Consider the following regularity
conditions.

(C1) Suppose P(T' > C > t|X) > 71y for any t € [0,Tp] and X € X, where
Tp is some positive constant and Ty is the maximum follow-up time.

(C2) Given a basis I't € Srcyx, m(t|z) := P(T > t|TTX = z) and
m(t|z) == P(C > t|TTX = z), assume that |m(t|z1) — m(t|z2)| <
cllz1 — zz2ll2 and |m(t|z1) — m(t]|z2)| < é&llz1 — z2||2 hold for any
t € [0,Tp], where ¢; and ¢ are some positive constants.

(C3) Given a basis T of S(r,0)x or Styx, the density of I'"X is positive and
bounded from zero on Z, where Z = {I'7X : X € X'}. In addition, the
density of IT'TX satisfies Lipschitz condition for I" on a neighborhood
of T in [|-|| p-norm.

(C4) For every 1 <y < b, there exists a constant ¢; > 0 such that P(Y €
Hy) > cb™ L.

(C5) Assume min;e 4, eJTﬁcﬁcTej > cyen” ™ for some 0 < 15 < 1. The
nonzero singular values of U, are bounded away from zero.
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_ 2 —
(C6) Assume bq(log%)m = O(n=%) and (b*q1+q}+b)bqlog pp, = O(n' =)
for some constant (; with 7 < {5 < 1.

Condition (C1) is commonly assumed in censored data analysis. It im-
plies that for every t € [0,Tp), P(C > t|X) > 19 and P(Y > t|X) > 72.
Condition (C2) indicates that conditional survival functions satisfy Lips-
chitz conditions on 'Y X. Condition (C3) is similar to Assumption C1 in
Wang et al. (2010) and is used to bound the density of I'7' X away from zero.
Condition (C4) is similar to (A2) and is used to allow reasonable sample
size on each slice. Condition (C5) is similar to (A5) and (A6) to regulate
the “kernel” matrix. We also allow p to grow exponentially with n in Condi-
tion (C6). Theorem 4.2 establishes estimation and selection consistency for
DASH in the ultrahigh dimensional setting.

THEOREM 4.2. Assume the conditions in Theorem 4.1 and (C1)—(C6)
_ 1 1 —
hold and take h, = (log%)m. Define &, = b1/2(logﬁn/n)m+(bq%/2 +
q1 + bY/?)(blog p,/n)'/2. Suppose that X = 2co&,, N = 21_”006%271_”2/25“
and p((a —12) > 1 — (2, where ¢g is some generic positive constant (given in
Theorem 1.1 of Appendix 1.3). Then the DASH estimator satisfies

HP‘SfO B PST\XHF
log ppy-L - bqlog Py,
(4.3) =0p((bq)1/2(%) =0+ (bgy? + g + b”%(%)l/z),
(4.4) P(Ay=Ag) > 1 asn— oo.

Compared to the consistency result (4.1) of the initial DS estimator, the
DASH method achieves estimation consistency for Spx with simultaneous
variable selection consistency. From (4.3), when b, b and ¢ are all upper

bounded, the DASH estimator converges at the rate of O,((log p,/ n)ﬁ)
The somewhat slower convergence rate relative to (4.1) is mainly due to the
key inverse probability weighting procedure, but this enables us to target
the true central subspace Sx, instead of the larger S(1,c)x. Interestingly,
under classical fixed p scenarios, if d > d1/2 (that is, dim(Syx) is allowed
to be as small as half of dim(Si7,¢yx)), the rate for DASH matches (up to

1
a logarithmic factor) or exceeds the known convergence rate Op(n~ 20+4)) in
Nadkarni et al. (2011).

REMARK 4.1. In the discussion above, we assume that Sy x is truly
sparse in the sense that the number of active variables (that is, |A1]) is
much smaller than p. Interestingly, our results can be extended to a weaker
condition to allow an “approximately” sparse scenario where a large number
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of variables are active for Si7 o) x. Specifically, recall that I'y denotes a
basis of S7,cx that gives a minimizer of (3.5). Given any index set A C
{1,---,p}, let I'; 4 be the |A] x d; matrix consisting of the rows of I'y
corresponding to A. Then rather than requiring that only a small subset of

variables are active, we assume that there exists an index set 4; c {1,--- ,p}
with ¢1 = |A1] < p and a (small) parameter 6 > 0 such that
(4.5) 1Ty e llza <0,

where ||-||2,1 is the 21 norm (that is, HFLAgH?,l = Zjejlgn')’le? and 7i; is
the jth row of I'1). By Proposition A.6 in the Appendix, given the objective
(3.5), the assumption of (4.5) is well-defined as ||T'1 4||2,1 is unique.

Under the weaker condition of (4.5), on the one hand, S(7,¢)x is not
strictly sparse according to the definition of active variables in Section 3;
on the other hand, as the magnitude of I'; in Af is relatively small, it is
still possible to approximate the (non-sparse) S(7,cyx by a sparse model.
Therefore, the extended setting here, to some extent, shares the flavor of
both the abundant variable settings in SDR (e.g., Cook et al. 2012) and
the approximately sparse conditions in linear models (e.g., Zhang & Huang
2008). With the weaker form of sparsity, we have the following theorem.

THEOREM 4.3. Assume Conditions (A1)—(A5) and (A7) hold. Suppose
that 6 = o(1) and A1 = 3cip/log pp/n with equal weights wj =1 for1 < j <
D, where ciy, is defined as in Theorem 4.1. Then the DS estimator satisfies

T 1)2 —
(4.6) Hngl — PsroyxllF = Op (max{(b—i— ql/ )V q1log pn/n, 9})
In addition, suppose that 8 = O(b\/q1logpn/n) and 0 = O(qi+\/logpn/n))

and further assume that the additional conditions of Theorem 4.2 hold. Then
the DASH estimator satisfies the consistency properties of (4.3) and (4.4).

In particular, if @ = 0, (4.5) reduces back to the strict sparsity conditions
for Sizcyx in Section 3.3, and the convergence result of (4.6) becomes
the same as (4.1) in Theorem 4.1. If # is positive but converges to 0, by
approximating S(7,c)x with a parsimonious model from the DS method, we
also note that the final DASH estimator may still be consistent for estimation
of S7ix, at some possible cost of the convergence rate.

4.3. Local KM estimator. As discussed in Section 3.2, with T avail-
able, we can subsequently apply popular nonparametric estimation meth-
ods to estimate Q(t|x). In the following, suppose the local KM estimator
(3.4) with Nadaraya-Watson kernel weighting scheme is applied. Similar to
S (t]x), we assume same techniques with uniform kernel are used, but we
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can generalize the results to other kernel function choices. The following
theorem provides a uniform estimation consistency result for Q(¢|x).

THEOREM 4.4. Suppose the conditions of Theorem 4.2 are satisfied.
Then given any xg € X, the local KM estimator satisfies

sup [Q(t]x0) — Q¢ | x0)|

tE[O,To)

logpny-L_ - bqlog Py,
(7) =0y ()2 (EE) T 4 (g + gy + 012 (HLEER) 2,

By employing the Nadaraya-Watson based local KM estimator, the con-
sistency rate upper bound obtained in Theorem 4.4 is the same as that of
(4.3). Likewise, when b, b and ¢; are all upper bounded, the local KM es-

timator can converge at the rate of Op((logﬁn/n)ﬁ). It is worth noting
that other nonparametric methods may also be applied to estimate Q(t|x).
For example, histogram-based local KM method may be used and we can
provide a similar uniform estimation error bound for Q(¢|x), which is left
in Supplement 1.5.

COROLLARY 4.1. Suppose the conditions of Theorem 4.2 are satisfied.
Then given any xo € X and 0 < 7 < 1, the Tth conditional quantile esti-
mator Qr(T|xo) = sup{t : Q(t|x0) < 1 — 7} is a consistent estimator for

Qr(T|x0).

With the estimated survival function, we naturally obtain a consistent es-
timator for conditional quantiles of the survival time as described in Corol-
lary 4.1. Beyond all these consistency results, post selection inference on
SDR (with censored data) may need to directly involve the set of selected
variables besides central subspace estimation error; it is an interesting yet
challenging problem in its own right, which is left for future studies.

5. Computation. As we described in Section 3, the algorithm for
the DASH method involves a DS estimation step followed by an IPCW based
step. We summarize the procedures for DASH in Algorithm 1.

It remains to consider two practically important issues: 1) how to find
proper values for tuning parameters and structural dimensions (dj, 5\1, A1),
hn, and (d,\,\); 2) how to solve optimization problems for the objective
functions (3.2) in Step 2(c) and (3.6) in Step 1(b). Accordingly, we propose
the procedures of tuning parameters and structural dimension determination
in Section 5.1. Section 5.2 explains the algorithm used to solve (3.2), which
is also applicable to solving Step 1(b).
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Algorithm 1 DASH method for censored data.

1. An initial DS estimation step

(a) Construct the kernel matrix Ul and covariance estimation fln
(b) Given di, A and Ay, find minimizer (I'1, 1) of (3.6).
2. An IPCW-based estimation step

(a) Given hy, apply the local KM estimation method with the DS estimator to
find S(t|X;) by (3.7).

(b) Construct the kernel matrix U..
(¢) Given d, A and A, find minimizer (I'o, ®o) of (3.2).

3. Apply a nonparametric method discussed in Section 3.2 to estimate Q(¢|X).

5.1. Tuning parameter and structural dimension selection. We pro-
pose to use cross-validation (CV) procedures to determine (dj, AL AL, A
and similarly (d, A\, \) in their respective steps. As discussed in Yang (2007),
CV is often considered as a natural approach for complicated nonparamet-
ric procedure/model comparison purposes. As will be seen, the main chal-
lenge of applying CV is that the true survival time is not always observable.
We propose a new sequential data-driven approach that integrates inverse
weighting ideas for prediction error measurements (Gerds & Schumacher
2007) into the parameter/dimension determination. Since (d, AL, A1) can be
chosen by procedures similar to that of (d, A, A), for brevity, we next assume
(dy, 5\1, A1) has been chosen, and only describe in detail how to find h,, and
(d, A, A) sequentially. Suppose the data is partitioned into K folds, and de-
note the non-overlapping index set of each fold by Zy,--- ,Zxg C {1,--- ,n}.
Let Zj, be the validation set in the kth fold and Z_j, be the estimation set
excluding the kth fold.

5.1.1. Determining h,,. We intend to find h,, used in Step 2(a). Given
a specified time point 7, (e.g., 7, = median(Y;)), define 6* = I(C > 7,,).
For each candidate h,, we estimate E(6*|X) = S(7,,|X) by the local
KM estimation using the estimation set Z(_), and denote this estima-
tor by 5’(,,{) (Tm | X, hy). Then we define the prediction mean square error
MSE(h,,) := E[0* — S(—k) (7 | X, hy)]?. With the censored data, §* is not
always observed. As a solution, MSE(h,) can be equivalently written as
E[6* —S’(,k) (7 | X, b)) |2W, where W [Y>r) 4 1<) (20) g g weight-

: i . ~ Q[ X) T T QIVX)
ing variable. Consequently, given a set ¢ of candidates h,’s, we can now
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determine the parameter h,, = hopt by

(5.1)
— 1 K A A 2
hopt = arg min MSE(h) = argmin >~ > Wi (87 = Sy (7 | Xis 1)
k=11i€Z;
1. — 1:(Yi>7'm) I(Ying)(l—ai) A : : :
where W; S X0 + ARS) and Q(t|X) is a local KM estimation

of Q(t|X) using the reduction I'7X. Since our computation is all based on
dimension reduced predictors, selection for h,, is computationally fast.

5.1.2. Determining (d, X\, \). In Step 2(c), to find (d, A, A), we again ap-
ply specialized sequential CV and the aforementioned weighting techniques
to naturally handle performance evaluation. Specifically, we perform the fol-
lowing steps.

(i) Given a candidate d and a sequence of candidate N’s, using data L)
(k=1,---,K)withw; =1(j=1,---,p), compute the solution path
of (3.2) and denote the estimators by (f(,k), @(,k)).

(ii) With Z_y, and f’(_k), compute the local KM estimator Q’(:k) (t]X) for
Q(t| X) based on the reduction f‘?_ X The bandwidth for Q’(*_ 0 (t1X)
is automatically determined by a CV within Z(_;) using similar pro-
cedures as in Section 5.1.1 by switching the roles of T" and C.

(iii) With each candidate (d, \) and their corresponding Q?_k)’s, evaluate
the out-of-sample prediction performance by computing

K
v Y 1 Trx( ox Ak 2
(52)  NSE(d ) = - S ST W5~ Q] X))
k=14ieTy,
where 0 = I(T > 7,,,) and WZ-* = [>rm) | IXisrm)d;

i S(rm | Xi) T S(Yi| Xi)

(iv) With (d, A) chosen by minimal (5.2), compute (3.2) with the whole
data to find T'g. Then set w; = |90;ll2” and repeat Steps (i)-(iv) with
the previously selected d to determine A.

The determination of (di, A1, A1) is obtained similarly. But the detailed
procedures are slightly different and simpler because DS does not involve
the delicate survival function estimation issues. Accordingly, in Step (ii),
rather than using the local KM estimator, we apply the tree classification
(Breiman et al. 1984) with pruning to predict the response slice; in Step
(iii), rather than using @Q(d, \), we compute slice classification errors to
evaluate prediction performance.

Since (dq, A1, A1), b and (d, X, A) are determined sequentially instead of
combinatorially and nonparametric estimation method like local KM estima-
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tion and tree classifications are all performed on dimension reduced covari-
ates, these important tuning parameters are thus automatically determined
in our algorithm in a computationally efficient way.

5.2. Objective function optimization. To solve (3.2) in Algorithm 1,
we employ an iterative algorithm, where a Stiefel manifold optimization is
directly embedded into a parallelizable coordinate descent to update I'" and
& iteratively until convergence. This optimization algorithm is motivated
by Qian et al. (2018) for SDR optimization problems with complete data,
and is computationally efficient without inverting any large covariance. For
presentation brevity, we leave the detailed algorithm and rationales in Sup-
plement II.1.

6. Simulation studies. In this section, we evaluate the numerical
performance of DASH along with the DS procedure for censored data in
high dimension.

6.1. Performance with different covariance estimation. Unless stated
otherwise, we use the following candidate parameters in our simulation and
real data experiments: For M A and Aq, we use a sequence of 50 values
between 0.01 and 1 that are evenly spaced in the logarithmic scale. Similarly,
for h,, we use a sequence of 20 values between 0.1 and 1 that are evenly
spaced in the logarithmic scale. The candidates for d; and d are {1,2,3}. In
addition, we simply set by = b =5, by = 2, 7, = median(Y;) and p = 0.5.
Gaussian kernel was used for the estimation of S(¢|X) and Q(¢ | X).

In the following, we set n = 200 and p = 1000. The covariate vec-
tor X was generated from a multivariate normal distribution with mean
zero and covariance matrix > that has an exponential decay structure,
such that [X];; = 5777 4,j = 1,...,p. The survival time T was gener-
ated from the linear transformation model T' = exp(—2.5 + B8TX + 0.25¢),
where 8 = (1,1,1,1,1,0,...,0)”, and the error ¢ follows the standard ex-
treme value distribution ¢ = log[—log(1 — U)] with uniformly distributed
U on [0,1]. This corresponds to both an AFT and proportional hazards
model. The censoring time C' was generated in two scenarios: Case 1: C' =
exp(—2 4+ BTX +0.5¢;); Case 2: C = exp(—1 + BT X 4 0.5¢1), where 3, =
(0,...,0,1,1,1,1,1), and &7 takes the extreme value distribution and is in-
dependent of e. The censoring rates are on average about 27% for Case 1 and
40% for Case 2. It can be seen that in Case 1, Spyx = S(1,0)x = Span(8),
and thus DS can be directly applied to estimate the target Spx, while in
Case 2, Spix = Span(/3) is a proper subspace of S(7¢yx = Span(3, 3,) and
DASH is required to estimate the true central subspace.
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TABLE 1
Comparison of different estimations based on 100 runs.

Cases Method Averaged Frequency (%) c, 1IC,

Frobenius-norm loss d=1 d=2 d=3

Case 1 Oracle - 100 0 0 5 0
SC-DS 0.265 (0.010) 100 0 0 5.00 1.00
SC-DASH 0.323 (0.012) 100 0 0 4.99 0.31
TC-DS 0.191 (0.010) 100 0 0 5.00 0.42
TC-DASH 0.220 (0.011) 100 0 0 5.00 0.33

Case 2 Oracle - 100 0 0 5 0
SC-DS 0.735 (0.051) 5 94 1 4.99 1397
SC-DASH 0.384 (0.035) 85 15 0 4.94  1.80
TC-DS 0.672 (0.050) 13 87 0 5.00 7.68
TC-DASH 0.278 (0.030) 86 14 0 4.99 1.10

We examined both DS and DASH in the high dimensional setting with
covariance matrix ¥ estimated by sample covariance (SC) and thresholded
covariance (TC), respectively. We denote them by SC-DS, SC-DASH, TC-DS
and TC-DASH. The thresholded covariance is obtained by a univariate lasso-
type thresholding rule in Rothman et al. (2009) designed for (approximately)
sparse covariance matrix estimation. We recorded the estimated structural
dimension d, and used Frobenius norm loss of projection matrix ||P Srx

PST‘XH F to evaluate the estimation accuracy of the central subspace. To
quantify variable selection performance, we used C, to denote the number
of correctly identified active variables, and IC, to denote the number of
incorrectly identified active variables. The procedure above was repeated
100 times for each model and the results are summarized in Table 1.

The empirical results showed that when Spix = S(7,¢)x (Case 1), both
methods successfully identified relevant variables with relatively low IC,
rates, and correctly selected the structural dimension. As expected from the
equivalence of S7x and S(7c)x in this example, DS resulted in central
subspace estimation similar to or slightly better than that of DASH. How-
ever, in Case 2 when S7x C S(1,0)x, DS tends to estimate the larger space
S(1,0)x and thus predominantly suggested larger structural dimensions than
the truth of targeted Spx. Therefore, DS resulted in much higher estimation
error in central subspace estimation and selected larger number of irrelevant
variables than that of DASH. In practice, since the relationship between
Stix and (7 c)x is unknown, we suggest using the DASH method rather
than simply stopping at double slicing: if the selected dimension of DASH is
the same as that of DS, one may adopt results of DS for central subspace es-
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timation and variable selection; on the other hand, if the selected dimension
of DASH is smaller, we adopt final results from DASH. The thresholding co-
variance methods TC-DS and TC-DASH gave better estimation results than
their sample covariance counterparts, suggesting potential gain by imposing
the extra covariance thresholding step if covariance matrix is sparse.

6.2. Conditional quantile estimation. Since the proposed methods
have the potential to facilitate nonparametric estimation of conditional sur-
vival functions and consequently conditional quantile functions, we further
evaluated the numerical performance in estimating conditional quantile func-
tions under nonlinear and heteroscedastic scenarios. Due to space constraint,
we leave detailed numerical results in Supplement I1.2.1.

6.3. Simulation examples with possible model misspecification. It is
well-known that the Cox proportional hazard model requires the relative
effect of covariates to be unchanged over time. Next we provide exam-
ple case studies where this assumption does not hold. Specifically, with
p = 1000, consider the following two hazard functions for T: (Case A)
h(t]|X) = exp(—287 X+|87X|t) and (Case B) h(t | X) = exp(— (2482 X)2+
(BYX)%t), where 8 = (1,1,1,1,1,0,...,0)7, By = (1,1,1,0,...,0,1)7, and
X = (X1, -, Xp)T consists of i.i.d. standard normal variables. Unless stated
otherwise, our simulation sample size is set at n = 200. For both cases, we
have dim(ST‘X) = 1, but the proportional hazard assumption is not satis-
fied. Indeed, for each case, its survival functions Q(¢|x) at three different
covariate values (denoted by xj,x2 and x3) are given in Figure 1, where
X1,x9 and x3 correspond to the first quartile, median and third quantile
of BTX (or BEX) from a simulated data set. We observed the “crossing”
pattern in both cases.
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Fig 1: True survival functions Q(t|x) for some different covariate values x.
Left panel: Case A; Right panel: Case B

In the following, we consider various censoring time and covariate generat-
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ing scenarios under possible model misspecification settings in Sections 6.3.1-
6.3.2. Due to space constraint, additional scenarios and related numerical
results are left to Supplements 11.2.2-11.2.6.

6.3.1. Large structural dimension di. First, for Case A, let C' =
exp(2 + BIX + ¢), where B3 = (1,1,1,1,0,--- ,0)” and ¢ is the random
error; for Case B, let C = exp(3 + 8,X +¢), where 8, = (0,---,0,1,1,1)7.
We consider two different choices of the random error (Lu & Li 2011): (PH)
the extreme value distribution ¢ = log[—log(1 — U)] and (PO) the logistic
distribution e = log[U/(1 — U)], where U is uniform distribution on [0, 1].
Both cases have d; = dim(S(7,¢)x) = 2, and we denote these censoring
time scenarios by Case Ay and Case By respectively. In contrast, It is also
possible to encounter scenarios with relatively large dy. For example, for
Case A, consider C' = exp(2 + 81X + 0.5X, X5 + 0.1XZ + ¢); for Case B,
consider C' = exp(3 + 81X + 0.5X4X5 + 0.1XZ + ). Then both cases have
d; = 5, and we denote them by Case A; and Case By, respectively.

When true d; is relatively large, as local KM method is involved in our
estimation for conditional survival function of censoring time, by the curse
of dimensionality and Theorem 4.2, it is expected that the use of a smaller
(or underestimated) d; can often lead to better empirical results. Similar
practice has been adopted in classical work of SDR survival models: for
example, Xia et al. (2010) introduced a “working dimension” to find reduced
space to apply kernel estimation for survival function of Y; Lu & Li (2011)
applied a proportional hazard model to implement the estimation of survival
function of C.

Accordingly, to illustrate the performance with possibly under-estimated
dy1, we simply set d; = 2 for the DS step, which is correct for Cases Ag and Bg
but is under-estimated for Cases A and By. Sample covariance estimation is
used for both DS and DASH. The averaged simulation results over 100 runs
summarized in Table 2 show that, like in Cases Ay and By, DASH remains
to perform reasonably well in both estimation and variable selection for
Cases A1 and B; despite our use of under-estimated d;. In practice, a user
may adopt the CV procedure of Section 5.1.2 to determine d; (DASH gives
similar results and the details are thus omitted). On the other hand, the
benchmark Coxnet method (Simon et al. 2011) does not give satisfactory
results in these case studies.

In addition, we considered two other case examples (Case 5 and Case
6) with misspecified (under-estimated) di, which also showed reasonable
numerical performance by DASH. We leave the detailed results including
bootstrap confidence intervals in Supplement I1.2.5 and Table I1.3.
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TABLE 2
Averaged simulation results with relatively large structural dimension d;.

Case Method PH PO

Frobenius-norm loss 61, TU Frobenius-norm loss 61, ﬁv

Aoy Oracle - 5 0 - 5 0
(di =2) Coxnet 1.31 (0.01) 1.02 5.44 1.30 (0.01) 1.1 6.45
DS 1.21 (0.01) 4.77  29.90 1.24 (0.01) 4.87 38.88
DASH 0.63 (0.02) 476  8.88 0.65 (0.02) 4.83 11.35

Bo Oracle - 4 0 - 4 0
(di =2) Coxnet 1.33 (0.01) 0.53 3.81 1.35 (0.01) 0.45 3.68
DS 1.15 (0.01) 3.94 14.74 1.18 (0.01) 3.84 16.27

DASH 0.52 (0.02) 3.88  3.53 0.47 (0.02) 3.84  3.47

A, Oracle - 5 0 - 5 0
(di =5) Coxnet 1.32 (0.01) 0.78 5.05 1.29 (0.01) 1.00 4.84
DS 1.18 (0.01) 4.78  24.55 1.22 (0.01) 4.82 32.33
DASH 0.59 (0.02) 477 835 0.65 (0.02) 4.82  10.25

B: Oracle - 4 0 - 4 0
(di =5) Coxnet 1.34 (0.01) 0.39 3.62 1.38 (0.01) 0.34 2.99
DS 1.20 (0.01) 3.80 18.39 1.19 (0.01) 3.88 18.19
DASH 0.55 (0.02) 3.78 3.71 0.47 (0.02) 3.85 3.48

6.3.2. Approximately sparse central subspace. As seen from above,
different from the penalized Cox model (Coxnet) or other partial likelihood
related methods, our proposal does not assume the proportional hazard or
require a specific model form, and is therefore intended to be robust to model
misspecification in this perspective (which is different from the Coxnet’s ro-
bustness to model misspecification; e.g., Lu et al. 2012). In addition, as is
pointed out in Remark 4.1, although we require sparsity in the central sub-
space, our proposal can be extended to an “approximately” sparse scenarios
where a large number of variables are active for Si7 o) x but Si7,c)x can
be approximated by a more sparse structure. In the following, we provide
numerical illustration on the “approximately” sparse scenarios.

Modifying the settings in Section 6.3.1, under Case A of T, assume C =
exp(2 + ng + ¢), where B3 = (B3 + ﬁ(SA, and 64 € RP has its first
100 elements being 1 and the other elements being 0; denote this cen-
soring time scenario by Case Aj. Similarly, under Case B of T, assume
C =exp(3+ BZX + ¢), where ,54 =p06,+ ﬁdg, and dp € RP has its first
and last 50 elements being 1 and the other elements being 0; denote this
censoring time scenario by Case By. Set m = 20,100 or 500. Clearly, larger
m indicates better approximation and smaller deviation of S(7 c)x in Case
Ay (or By) from the original sparsity structure in Case Ag (or Bg). We kept
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other simulation settings the same as that of Section 6.3.1, and summarized
the results in Table 3.

Compared to Coxnet, the DASH method can still provide reasonable re-
sults in both estimation and variable selection even though some relevant
variables got missed in estimation of the censoring time probability. Mean-
while, as the DASH estimation is partially influenced by the central subspace
estimation errors in the first DS step, in alignment with Theorem 4.3, the
DASH estimation errors tend to decrease as we decreased the relatively weak
signals by increasing m from 20 to 500. We expect similar phenomenon ap-
plies to approximately sparse scenarios for the survival time probability as
well. To some extent, these numerical results provide some evidence that
the DASH method may often be applicable when the central subspace vio-
lates the strict sparsity assumption and some relevant variables (with weak
signals) are missed.

TABLE 3
Averaged simulation results with approximately sparse central space.

Case m  Method PH PO

Frobenius-norm loss C, IC, Frobenius-norm loss ~ Cly IC,

Ay Oracle - 5 0 - 5 0
20 Coxnet 1.38 (0.01) 0.41  3.52 1.37 (0.01) 0.51 4.38
DS 1.33 (0.01) 4.81 68.54 1.26 (0.01) 4.84 47.85
DASH 0.83 (0.02) 4.64 13.77 0.76 (0.02) 4.77 13.09
100  Coxnet 1.35 (0.01) 0.50 3.21 1.35 (0.01) 0.68 4.52
DS 1.23 (0.01) 4.79  40.27 1.22 (0.01) 4.81 3249

DASH 0.70 (0.02) 4.77 11.00 0.66 (0.02) 4.79 8.92
500 Coxnet 1.34 (0.01) 0.44  2.65 1.30 (0.01) 1.09 6.17
DS 1.21 (0.01) 4.77 35.61 1.20 (0.01) 4.82  27.58

DASH 0.67 (0.02) 4.76 11.50 0.62 (0.02) 4.80 9.11

Bo Oracle - 4 0 - 4 0
20 Coxnet 1.37 (0.01) 0.19 2.02 1.39 (0.01) 0.19 2.60
DS 1.34 (0.02) 3.49 43.80 1.33 (0.02) 3.65  39.82
DASH 1.02 (0.03) 3.00 10.46 0.83 (0.03) 3.28 6.68
100  Coxnet 1.35 (0.01) 0.25 240 1.38 (0.01) 0.32 3.80
DS 1.22 (0.01) 3.84  20.77 1.24 (0.02) 3.80  22.83

DASH 0.64 (0.03) 3.76  4.55 0.55 (0.03) 3.75  3.68
500 Coxnet 1.36 (0.01) 0.33 4.11 1.36 (0.01) 0.24 2.73
DS 1.19 (0.01) 3.86 18.33 1.18 (0.01) 3.83 1781
DASH 0.58 (0.03) 3.83 4.65 0.45 (0.02) 3.83 2.95
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7. A real data example. In this section, we describe our analysis on
the kidney renal clear cell carcinoma (KIRC) data, which was downloaded
directly from the National Cancer Institute’s GDC Data Portal platform
(https://portal.gdc.cancer.gov/) under project ID TCGA-KIRC. The
KIRC data contains 530 patients with clinical information (including sur-
vival time and censoring time) as well as their gene expressions based on
57,251 genes from the next-generation sequencing technique known as RNA-
Seq. Considering that RNA-Seq contains count data with unique structures
including high skewness with many zeros, widely different sequencing depth
and over-dispersion, we performed data pre-processing steps, the description
of which is left in Supplement I1.3. The cleaned data after pre-processing
has p = 2962 genes and sample size n = 265 in both training and testing
sets.

We then applied the proposed DASH method along with the DS procedure
to the cleaned training set to obtain the estimated basis Iy and f’l, respec-
tively. We also applied the Coxnet method as a benchmark, which implicitly
assumes d = 1 under the parametric Cox model. Both DS and DASH meth-
ods chose structural dimension d = 2, and the number of selected genes
(#Var) are given in Table 4, with DASH having the smallest model size
among the three. In particular, we plot loadings of the two directions (de-
noted by DR1 and DR2) of I’y by a heatmap in Figure 2, with names of the
selected genes marked under the corresponding cells. Interestingly, we found
that multiple selected genes such as ENSG00000131778 (CHDI1L, Cheng
et al. 2013) and ENSG00000181449 (SOX2, Santini et al. 2014), among oth-

ers, have been recently reported as useful prognostic biomarkers.

DR1

DR2

Fig 2: Loadings of regression directions for DASH. Column labels are the
gene names. The solid lines represent relative magnitude and sign of the
loading values, and the dashed lines represent 0.

In the following, we show that the basis estimators of DS and DASH
methods indeed performed well in predicting KIRC patient’s cancer prog-
nosis. Specifically, with DS and DASH estimators given above, the sufficient
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predictors had dimension d = 2, and we used the training data to build
a gradient boosting machine (GBM; Friedman 2001), where a proportional
hazard model h(t | X) = ho(t) exp(R(Z1, Z2)) is assumed with (Z1, Z3) being
the sufficient predictors, R(Z1,Z3) is the general (nonlinear) link function
that can be viewed as a patient’s risk score, and ho(t) is a base hazard
function. The DASH link function surface in Figure 3 exhibited nonlinear
patterns of the two sufficient predictors, as opposed to the linear assumption
of Coxnet (the DS showed similar nonlinear patterns and is thus omitted).

'z‘;“,\(\\
7!'[‘0‘\\\‘ Table 4: Model fitting results on

\\}i':':-,f::.-
%;ii. 7 KIRC data.

3 o
5 0 . 2 Method d #Var Log-rank test AUC
‘ p—value
o
Coxnet - 60 3.3x 1077 0.709
DS 2 59 23 %1077 0.756
DASH 2 28 1.4x107%  0.711

Fig 3: Link function R(Zl, Z3) from
GBM using DASH predictors.

Using the models built above, we then computed the risk scores for all
patients in the testing set and assigned them into the “high-risk” and “low-
risk” groups using the median of the training-set risk scores as the cutoff.
In Figure 4(a) and Figure 4(b), we plotted the testing-set KM estimator
curves and their confidence interval curves of the two groups generated from
DASH and DS methods, respectively. We also performed log-rank tests to
compare survival functions of the two groups and showed p-values in Table 4.
Both the KM curves and p-values obtained from our methods confirmed that
the high-risk and low-risk groups segmented by the risk scores indeed had
significantly different prognostic patterns.

Furthermore, we evaluated the risk scores computed above by the time-
dependent receiver operating characteristic (ROC) curve analysis (Heagerty
et al. 2000). Using median(Y’) of the training set as the cutoff time point,
we considered sensitivity-specificity curves constructed using the testing set,
and the corresponding areas under curve (AUC) are listed in Table 4. Sat-
isfactorily, DS and DASH performed very competitively compared to the
benchmark. It is not surprising that DS can perform well in this example
given that it selected the same structural dimension as DASH. In addition,
our evaluations on prediction performance showed similar patterns and ad-
vantages, the details of which are left in Supplement I1.3.
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Fig 4: The testing set Kaplan-Meier curves of segmented patient groups.
(a) DS method; (b) DASH method. In both panels, the thin lines represent
“high-risk” group and the thick lines represent “low-risk” group. The dashed
lines are the confidence interval curves.

8. Concluding remarks. We propose a promising model-free double-
slicing assisted SDR method for high dimensional censored data, which is a
flexible alternative to existing model-based approaches, such as high dimen-
sional Cox models. The new development achieves simultaneous dimension
reduction and variable selection while preserving full information for the dis-
tribution of T'| X. With new technical tools to handle censored response, we
establish both estimation consistency and variable selection consistency that
allow p to grow exponentially with n, and obtain uniform convergence for
the nonparametric survival function estimation. As evidenced by numerical
studies, our model-free proposal can greatly facilitate the practical appli-
cation of robust nonparametric approaches in the estimation of conditional
survival functions with high dimensional covariates.

APPENDIX A: PROPOSITIONS

PROPOSITION A.1.  Suppose the central subspace Stix exists and is unique.
Then the set of active variables Ao for Spix is also unique.

PROPOSITION A.2.  Given the objective function
(A1) F(T,®)=tr{(U,— XT®)'S"HU, — £T'®)}, subject to @@” = I,
where T' € RP*4 and & € R¥*Y are parameters. Let (Tg, ®g) be any minimizer

of (A.1). Then Ty € RP*? forms a basis matriz of Stix and ®q is the
corresponding coordinate matriz.
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PROPOSITION A.3.  Let Ag be the set of active variables for Spix and let
Lo be a basis matriz of Spyx. Then conditional on X 4, or I‘gX, T and C
are independent.

PROPOSITION A.4. Let E = Do®g. Suppose To1 € RP*4 s the semi-
orthogonal matriz consisting of left-singular vectors of = with the nonzero
singular values. If |Z — Ue||p — 0 as n — 0 and Condition (C5) holds, then
for large enough n, there exists a basis 'y of Syyx such that

(A.2) ITo1 — Tollr < vV2|lsin ©(Sz, Srx) || < callE — Uell

where ¢, > 0 is some constant, and ©(Sz, Spx) is d x d diagonal matriz in
which the jth diagonal entry is the jth principle angle between Sz and Sp|x .-

PROPOSITION A.5.  The coverage Siy,5)x 2 S(t,cyx holds if and only if
Stix € Sys)x and Soix € Siye)x-

PROPOSITION A.6. Let I'y be any minimizer of T in (3.5). Given any
index set A C {1,--- ,p}, let 'y 4 be the | A| x di sub-matriz of 'y consisting
of the rows corresponding to A. Then given objective function (3.5) and an
index set A, we have that |T'1 4|21 is unique.

SUPPLEMENTARY MATERIALS

Supplement to “Double-Slicing Assisted Sufficient Dimension
Reduction for High Dimensional Censored Data”: The supplemen-
tal file (Ding et al. 2019) contains proofs, technical details, and numerical
results. Supplement 1.1 gives proofs of the propositions; Supplement 1.2 as-
sembles some useful lemmas; Supplements 1.3-1.5 provide proofs for the
main theorems; Supplement II contains additional results on computation,
simulation and data analysis.
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