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Abstract:
Advancement in next-generation sequencing, transcriptomics, proteomics and other high-throughput tech-
nologies has enabled simultaneous measurement of multiple types of genomic data for cancer samples. These
data together may reveal new biological insights as compared to analyzing one single genome type data. This
study proposes a novel use of supervised dimension reduction method, called sliced inverse regression, to
multi-omics data analysis to improve prediction over a single data type analysis. The study further proposes
an integrative sliced inverse regression method (integrative SIR) for simultaneous analysis of multiple omics
data types of cancer samples, including MiRNA, MRNA and proteomics, to achieve integrative dimension re-
duction and to further improve prediction performance. Numerical results show that integrative analysis of
multi-omics data is beneficial as compared to single data source analysis, and more importantly, that super-
vised dimension reduction methods possess advantages in integrative data analysis in terms of classification
and prediction as compared to unsupervised dimension reduction methods.
Keywords: Integrative genomic analysis, sliced inverse regression, sufficient dimension reduction
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1 Introduction

With the advent of high-throughput technologies such as micro-arrays for genome wide assays, it has been
possible to measure a broad range of genomic data extensively used in biomedical, in particular cancer studies
(Liu, Shen & Pan, 2016). These genomic data can be of different types such as structural genomics, functional ge-
nomics, epigenomics and metagenomics. Functional genomics focuses on dynamic aspect of gene transcription,
translation and protein-protein interactions.

The functional genomics such as MiRNA, MRNA and proteomic are responsible to play either oncogenic or
tumor suppressive roles present in the cancer samples. The critical changes in these gene expression from the
cancer cells enable tumors to initiate and progress in different tissues or aid in suppressing the different tumors
(Bhattacharjee et al., 2001; Bichsel et al., 2001; Nishizuka et al., 2003; Reis-Filho & Pusztai, 2011; Wei et al., 2014;
Peng & Croce, 2016; Oliveto et al., 2017). These functional genomic studies not only identify significant genes
related to cancer, but can also help in identifying different cancer types. As these gene expression profiles
are informative, revealing the developmental lineage and differentiation state of the tumors, they have high
potential in cancer classification and diagnosis (Lu et al., 2005; Xu et al., 2016).

To reserve and store these genomic data altogether, several repositories such as The Cancer Genome Atlas
(TCGA), NCI-60 and The International Cancer Genome Consortium (ICGC) have profiled thousands of can-
cer genome samples, generating a broad range of genomic expression profiles (Liu et al., 2010; Gholami et al.,
2013) to encourage researchers for integrative analysis. Integrative genomics is based on the idea that any bio-
logical system is made up of many multiple molecular phenomena, and only by understanding the interaction
between different layers of genomic structures, its phenotypic traits can be explored (Kristensen et al. 2014).
As shown from the above instances, while the functional genomics are responsible for playing alternation in
cancer expression, it is important to study the different gene expression simultaneously. Integrative analysis
of these functional genomic data from multiple sources can potentially provide additional biological insights
(Rhodes & Chinnaiyan, 2005; Nie et al., 2007). An integrative-omics approach can identify novel genes, markers,
vital networks and pathways (Iliopoulos et al., 2008; De Cubas et al., 2013). It can also classify disease progres-
sion and different cancer types by analyzing different gene expression profiles simultaneously (Shen, Olshen
& Ladanyi, 2009; Nibbe, Koyutürk & Chance, 2010).
Shanshan Ding is the corresponding author.
©2019 Walter de Gruyter GmbH, Berlin/Boston.
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Although different omics data might have different functional information, they all possess high dimension-
ality features. Such high dimensional data often contain redundant information and bring extraneous variation
to the goal of study. One of the commonly used solutions to handle high dimension data is to extract impor-
tant features from a low dimensional projection, such that the original variables can be transformed into a set
of new variables with lower/much lower dimensions. This is called dimension reduction or dimensionality
reduction (James et al. (2013)). Representative methods include but not limited to principal component analy-
sis (PCA), partial least squares (PLS), sliced inverse regression (SIR), and their extensive extensions. In recent
years, several integrative dimension reduction methods have been developed and demonstrated greater power
than separate analysis of each data type. For example, the integrative PCA related methods such as iCluster
(Shen, Olshen & Ladanyi, 2009; Shen et al., 2012), sparse iCluster (Shen, Wang & Mo, 2013), and irPCA (Liu,
Shen & Pan, 2016), and the integrative PLS related methods including sparse PLS (Lê Cao et al. 2008), inte-
grOmics (Lê Cao, González & Déjean, 2009), sMBPLS (Li et al. 2012), among others. In particular, Shen, Olshen,
and Ladanyi (2009) developed a joint probabilistic PCA model to achieve integrative clustering. Liu, Shen, and
Pan (2016) proposed an integrative and regularized PCA methods using an elastic net penalty to achieve more
efficient computational and numerical performance. Lê Cao et al. (2008) and Li et al. (2012) studied sparse PLS
approaches for integrating two and multiple data types, respectively.

Despite of the recent development of the integrative dimension reduction techniques, there are data settings
that existing approaches might not well address. For example, the integrative PCA methods are unsupervised,
meaning that dimension reduction is conducted marginally on the predictors X without considering the rela-
tionship with the response variable Y. There is no reason, however, in principle that the marginal reduction can
provide fully useful information about the response (Cox 1968). Thus, these type of methods might not well
serve for regression or prediction problems. Though the integrative PLS methods are supervised and take care
of the response variable when reducing the predictors, they inherit certain limitations from the standard PLS
approach. For example, they only retain useful features for conditional mean function but might lose relevant
information necessary for prediction and full regression problems (Li, Cook & Tsai, 2007). In addition, they
mainly focus on data with continuous responses and is less applied to classification problems.

In this article, we propose to use sufficient dimension reduction (SDR) methods for integrative analysis of
multi-omics data to improve prediction performance over unsupervised dimension reduction methods. We
develop an integrative sufficient dimension reduction approach to achieve simultaneous dimension reduction
of multiple data types with sharing structures while preserving full information for regression or classification.
Sufficient dimension reduction (SDR) (Cook 1994; 1996) is a type of supervised dimension reduction methods
that is important in both theory and practice. It serves to reduce the dimension of the predictors X by replacing
them with a minimal set of linear combinations, without loss of information in modeling the relationship with
Y. The proposed method extends the classical sufficient dimension reduction approach called slice inverse
regression (SIR) (Li 1991) to the multiple source of data and integration setting. We referred to it as integrative
slice inverse regression, or Integrative SIR (ISIR). The new ISIR method resolves the aforementioned issues in
existing integrative procedures and integrates multiple omits data for simultaneous dimension reduction. We
develop new algorithms for ISIR and demonstrate the advantages of sufficient dimension reduction methods
in integrative omics data analysis via numerical studies, which extend the preliminary study in Jain and Ding
(2017).

The rest of the paper is organized as follows. In Section 2, we first briefly review SDR with a focus on SIR, and
then propose the Integrative SIR method and new computational algorithms. Section 3 examines the numerical
performance of SIR and ISIR with both simulation studies and real data analysis and compares them with some
unsupervised dimension reduction methods. It includes data description, prescreening, dimension reduction,
and prediction with different methods. This section also discusses the robustness of Integrative SIR to different
initial values and classification methods. Section 4 concludes the paper.

2 Method

2.1 Brief review of sufficient dimension reduction (SDR)

SDR is a powerful tool for data reduction and visualization. It is a supervised dimension reduction method
that seeks to replace the predictor vector by its projection onto a lower dimensional subspace of the original
predictor space without the loss of information on the response variable (Cook 1994; 1996; 2004). More specif-
ically, consider a p-dimensional predictor vector X and a response variable Y. SDR seeks the projection of the
p-dimensional X onto a d-dimensional subspace that seizes all the information we need to know about the
outcome Y. Here the dimension d is usually much smaller than p and the smallest subspace (smallest d) is of
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interest to achieve maximum reduction. Mathematically speaking, SDR tries to find the smallest subspace δ of
the predictor space ℝp such that

𝑌 ⟂⟂ 𝑋|𝑃𝛿𝑋, (1)

where ⟂⟂ indicates independence, and P(.) stands for the projection operator. The above equation means that Y is
independent of X given the reduction PδX. The smallest subspace δ that satisfies (1) is called the central subspace
(CS) for Y|X (Cook 1994; 1996; 1998a), often denoted by δY|X. Let d = dim(δ) and let Γ = (𝛾1, 𝛾2, … , 𝛾𝑑) ∈ ℝ𝑝×𝑑

be a basis matrix of δ. By (1), the predictors X can be replaced by the linear combinations 𝛾𝑇
1 𝑋, … , 𝛾𝑇

𝑑 𝑋, such
that the d transformed predictors retain full information on modeling Y. In other words, 𝑌 ⟂⟂ 𝑋|𝛾𝑇

1 𝑋, … , 𝛾𝑇
𝑑 𝑋.

The goal of SDR is to find the central subspace, or a basis of the central subspace and then use the basis to form
the reduced predictors (linear combinations). There are a number of methods available to estimate the central
subspace, such as sliced inverse regression (SIR) (Li 1991), sliced average variance estimation (SAVE) (Cook and
Weisberg 1991), partial SIR (Chiaromonte, Cook & Li, 2002), directional regression (DR) (Li and Wang 2007),
among many others. As SIR is one of the most widely used SDR method, we mainly focus on extending SIR to
integration of multiple omics data although the proposed idea can be similarly applied to other scenarios. The
next subsection reviews the SIR method and its algorithm to find the estimation of CS.

2.2 Sliced inverse regression

Introduced by Li (1991), sliced inverse regression (SIR) is a classical and popular non-parametric method for
sufficient dimension reduction (SDR). It utilizes the inverse conditional mean E(X|Y) to estimate the central
subspace δY|X. To facilitate the description, let Σ = 𝑐𝑜𝑣(𝑋) be the covariance matrix of X and Z = Σ−1/2(X − E(X))
be the standardized predictor vector. Under a linearity condition proposed in Li (1991), it can be shown that
the Z-scale inverse conditional mean E(Z|Y) is contained in δY|Z, the central subspace for Y|Z. Hence one can
use the sample version of the conditional mean under different outcomes (or slices) of Y to cover and estimate
δY|Z. For more details, see Li (1991). Once δY|Z is estimated, by the invariant property in Cook (1998b), we have
𝛿𝑌|𝑍 = Σ1/2𝛿𝑌|𝑋. The estimator of δY|X can thus be easily obtained by estimating Σ with its sample covariance
matrix.

Let 𝛽 = (𝛽1, … , 𝛽𝑑) ∈ ℝ𝑝×𝑑 be a semi-orthogonal basis of the central subspace δY|Z. Cook (2004) proposed
a least square framework for formulating SIR. In particular, for each value y of Y, since 𝐸(𝑍|𝑌) ∈ 𝛿𝑌|𝑍, there
exists a coordinate vector 𝐶𝑦 ∈ ℝ𝑑 such that

𝐸(𝑍|𝑌 = 𝑦) = 𝛽𝐶𝑦.

This relationship can also be formulated into an inverse regression model:

𝑍𝑦 = 𝛽𝐶𝑦 + 𝜀, (2)

where Zy represents Z|Y = y and ε is a random error and is independent of Y. Therefore, for an i.i.d. random
sample (Yi, Xi), i = 1, … , n, the estimation of β and Cy can be achieved by minimizing the least squares loss
function

𝐿𝑑(𝛽, 𝐶𝑦) =
ℎ

∑
𝑦=1

∥ 𝑍̂𝑦 − 𝛽𝐶𝑦 ∥2 (3)

subject to 𝛽𝑇𝛽 = 𝐼𝑑, where Id is the d by d identity matrix, h is the number of classes of Y if Y is categorical, and is
the number of slices that partition the range of Y into intervals (slices) if Y is continuous, 𝑍̂𝑦 = 𝐸̂(𝑍|𝑌 = 𝑦) is the
sample conditional mean (or sample slice mean), and ∥ ⋅ ∥ stands for the Euclidian norm. When Y is continuous,
slicing here ensures enough observations for a good estimate 𝑍̂𝑦. In this case, the symbol y in 𝑍̂𝑦 represents a
particular slice but not a particular value. For simplicity, we keep the same notation.

The following algorithm shows how to estimate β and the target central subspace δY|X for the SIR method.

Algorithm 1 The SIR Algorithm
Input: an n × p standardized data matrix (𝑍1, … , 𝑍𝑛)𝑇 with responses Y1, … , Yn, where Zi is the standardized

Xi, i = 1, …, n.
Output: p × d estimated basis matrix ̂𝛽 for δY|Z and p × d estimated basis matrix for δY|X through the

following steps.
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1. Assuming β is fixed, estimating Cy by minimizing the objective function (3) with ̂𝐶𝑦 = 𝛽𝑇𝑍̂𝑦.

2. Plug the estimate of Cy back to (3). Let ̂𝛽1, … , ̂𝛽𝑑 be the leading d eigenvectors of

𝑀̂ = 1
𝑛

ℎ
∑
𝑦=1

𝑛𝑦𝑍̂𝑦𝑍̂𝑇
𝑦 , (4)

the sample covariance matrix of 𝐸(𝑍|𝑌), where ny is the sample size for each category or slice of Y. Then
̂𝛽 = ( ̂𝛽1, … , ̂𝛽𝑑).

3. Consequently, Σ̂−1/2 ̂𝛽 is an estimated basis for δY|X, where Σ̂ is an estimate of Σ, e.g. sample covariance
matrix of X.

The SIR algorithm provides a closed form solution for the sufficient reduction. There is no iteration needed
to find the estimated basis for δY|Z or δY|X.

To apply SIR in multiple omics data analysis, one way is to simply apply SIR to each omics data type sepa-
rately, and then integrate/combine all the reduction results from multiple data sources together for prediction
or classification. As shown in Section 3, using such sufficient dimension reduction methods over unsupervised
dimension reduction methods as well as using integrative analysis over a single data type analysis can greatly
improve prediction performance. Although it is beneficial to apply SIR to integrative analysis, the above strat-
egy might not borrow information among different data types and might not capture sharing features across
data types. Therefore, it is desirable to develop an integrative SIR method and to perform SIR on multiple data
types simultaneously while taking care of sharing features among data sources and preserving full information
for regression and prediction. The proposed method called Integrative SIR (ISIR) is discussed in the following
subsection.

2.3 Integrative SIR

The idea of Integrative SIR is motivated by the unsupervised integrative dimension reduction method “iClus-
ter” (Shen, Olshen & Ladanyi, 2009). Shen, Olshen, and Ladanyi (2009) pointed out that in a latent model such
as (2), the coordinate part Cy’s can actually indicate a latent clustering structure among the different classes (or
slices) of Y. For example, if the response variable represents tumor types, then Cy, y = 1, …, h, can represent
latent clustering structure among the different tumor types. Suppose there are totally s omics data types. Let
𝑋(𝑗) ∈ ℝ𝑝(𝑗)

, j = 1, …, s, denote the p(j)-dimensional predictor vector in jth omics data source. For each subject,
we observe the response variable Y and the predictor information 𝑋(1), … , 𝑋(𝑠). To integrate multiple sources
of data information, the goal of Integrative SIR is to take into account all the multi-omics data information
simultaneously while finding a sufficient reduction for each data type by sharing common latent clustering
information. It is useful for handling multiple sources of data with similarities (Jain and Ding 2017).

Let 𝛽(𝑗) ∈ ℝ𝑝(𝑗)×𝑑(𝑗)
be a basis for the central subspace of Y|Z(j), where Z(j) is the standardized X(j). We require

that 𝑌 ⟂⟂ 𝑍(𝑗)|𝛽(𝑗)𝑇 𝑍(𝑗), the marginal conditional independence of the outcome with each Z(j) (or X(j)). Then the
basic idea of Integrative SIR is to estimate β(j), j = 1, …, s, and the latent coordinate Cy simultaneously across
multi-omics data sources. Once β(j) are estimated, by the invariant property, the basis of the central subspace for
Y|X(j) is obtainable. Under a similar linearity condition as used in conventional SIR (Li 1991), the mathematical
form of the Integrative SIR model can be given by

𝑍(1)
𝑦 = 𝛽(1)𝐶𝑦 + 𝜀(1),

𝑍(2)
𝑦 = 𝛽(2)𝐶𝑦 + 𝜀(2),

⋮
𝑍(𝑠)

𝑦 = 𝛽(𝑠)𝐶𝑦 + 𝜀(𝑠)

(5)

subject to 𝛽(𝑗)𝑇 𝛽(𝑗) = 𝐼𝑑(𝑗) , j = 1, …, s, where 𝑍(𝑗)
𝑦 , j = 1, …, s, represent Z(j)|Y = y, and ε(j) are i.i.d. random errors

and independent of Y. By accommodating the latent sharing clustering structure across data types, we assume
that the structural dimension d(j) = d to be the same for all omics data types, which is satisfied, for example, when
every individual data type has a single index model structure for modeling Y. Similar to the rationale in Shen,
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Olshen, and Ladanyi (2009), the latent term Cy connects the multiple data sources and reveals dependencies
across data types.

Let (𝑌𝑖, 𝑋(1)
𝑖 , … , 𝑋(𝑠)

𝑖 ), i = 1, …, n, be an i.i.d. random sample, and let 𝑋̄(𝑗) be the sample mean and Σ̂(𝑗) be an
estimate of the covariance matrix of X(j). To estimate the ISIR parameters, we first standardize the predictors for
each data type as 𝑍̂(𝑗)

𝑖 = Σ̂(𝑗)−1/2(𝑋(𝑗)
𝑖 − 𝑋̄(𝑗)), for i = 1, …, n, j = 1, …, s. To obtain the estimated covariance matrix

Σ̂(𝑗), we apply a shrinkage covariance method given by Schäfer and Strimmer (2005). The shrinkage method
provides analytic calculation of optimal shrinkage intensity. It can well handle high dimensional genomic data
when p(j) > n. It guarantees to return a positive definite and well-conditioned covariance matrix estimator.

Next let 𝑍̂(𝑗)
𝑦 = 𝐸̂(𝑍(𝑗)|𝑌 = 𝑦) be the sample conditional mean (or sample slice mean) for the jth type of data.

Then the Integrative SIR parameters can be estimated by minimizing an integrative square loss function:

𝐿𝑑(𝛽(1), … , 𝛽(𝑠), 𝐶𝑦) =
𝑠

∑
𝑗=1

ℎ
∑
𝑦=1

∥ 𝑍̂(𝑗)
𝑦 − 𝛽(𝑗)𝐶𝑦 ∥2 (6)

subject to 𝛽(𝑗)𝑇 𝛽(𝑗) = 𝐼𝑑, where similar to SIR, h is the number of classes for categorical Y, or is the number
of slices for continuous Y. Due to the common latent term Cy, the objective function (6) has no closed form
solution. We develop a fast iterative algorithm to minimize (6) and to obtain the estimates of β(j) and Cy.

Algorithm 2 The Integrative SIR Algorithm
Input: an 𝑛 × (𝑝(1) + ... + 𝑝(𝑠)) standardized predictor matrix and n responses.
Output: 𝑝(𝑗) × 𝑑 estimated basis matrices ̂𝛽(𝑗) for 𝛿𝑌|𝑍(𝑗) and 𝑝(𝑗) × 𝑑 estimated basis matrices for 𝛿𝑌|𝑋(𝑗) , j = 1,

…, s, through the following steps.

1. Initialize ̂𝛽(𝑗), 𝑗 = 1, … , 𝑠, with random values.

2. Given ̂𝛽(𝑗), 𝑗 = 1, … , 𝑠, estimate Cy by minimizing the objective function (6) with

̂𝐶𝑦 = 1
𝑠

𝑠
∑
𝑗=1

̂𝛽(𝑗)𝑇𝑍̂(𝑗)
𝑦 . (7)

Plug Ĉy back to (6) and apply standard singular value decomposition (SVD) to ∑ℎ
𝑦=1

̂𝐶𝑦𝑍(𝑗)𝑇
𝑦 that gives

𝑈(𝑗)𝐷(𝑗)𝑉(𝑗)𝑇 for each data type j.

3. Estimate β(j) as ̂𝛽(𝑗) = 𝑉(𝑗)𝑈(𝑗)𝑇 for the jth data type.

4. Iterate Steps 2 and 3 until the objective function (6) converges. Then the final updated ̂𝛽(𝑗) is an estimated
basis for 𝛿𝑌|𝑍(𝑗) , j = 1, …, s. Consequently, Σ̂(𝑗)−1/2 ̂𝛽(𝑗) gives an estimated basis matrix for 𝛿𝑌|𝑋(𝑗) , j = 1, …, s.

The algorithm takes random initialization for β(j) for each data type. For example, in application, one can
choose the initial values of the elements of β(j) to be random numbers generated from Uniform (0,1). As shown
in Section 3, the proposed algorithm is robust to different choices of initial values. In terms of computational
speed, since each step of the iterative algorithm has a closed form solution, the algorithm converges fast to the
optimal solution.

To select the structural dimension d, we used leave-one-out cross validation to choose the best d from d = 0
to d = h − 1 that gives the overall minimum prediction error.

3 Numerical analysis and results

3.1 Simulation studies

In this section, we demonstrate the advantages of sufficient dimension reduction methods in integrative anal-
ysis over unsupervised dimension reduction methods and compare integrative SIR with existing methods. We
simulated several cases of n = 50,100 and 200 samples and in each case simulated predictor vectors from three
different data types with p(j) = 500, j = 1, 2, 3. Each 𝑛 × 𝑝(𝑗) data type was generated from the inverse regression
model with the formula, 𝑋(𝑗) = 𝛽(𝑗)𝐶𝑦 + 𝜀(𝑗), j = 1, …, s, where the parameters β(j), Cy and the covariance matrix
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of ε were obtained from the real data estimation as discussed in the following subsection with d = 2. For exam-
ple, the estimated β(j), j = 1, …, s, from each data type in the real data example were chosen to be the true β(j) in
the simulation study. The Cy, y = 1,2,3, were the coordinates of each outcome having same latent structure for
all the data types. The random errors ε(j), j = 1, …, s, were generated from multivariate normal distribution.

We performed both SIR and ISIR estimation and evaluated the estimation accuracy by ∥ 𝑃𝛽(𝑗) − 𝑃 ̂𝛽(𝑗) ∥𝐹, the
Frobenious norm of the differences between 𝑃𝛽(𝑗) and 𝑃 ̂𝛽(𝑗) , where 𝑃𝛽(𝑗) and 𝑃 ̂𝛽(𝑗) are the projection matrices onto
the subspaces spanned by β(j) and ̂𝛽(𝑗), respectively, j = 1, …, s, for both methods. Table 1 shows the comparison
results on the Frobenious norms for SIR and ISIR. It can be seen that ISIR provides more accurate estimation at
different sample sizes.

Table 1: Averaged Frobenious norm for the difference between 𝑃𝛽(𝑗) and 𝑃 ̂𝛽(𝑗) for SIR and Integrative SIR over 50 simula-
tions.

n 𝑝1, 𝑝2, 𝑝3𝑝1, 𝑝2, 𝑝3𝑝1, 𝑝2, 𝑝3 Method Data type 1 Data type 2 Data type 3

50 500 SIR 1.086 1.084 1.081
ISIR 0.974 0.973 0.971

100 500 SIR 0.867 0.865 0.870
ISIR 0.773 0.773 0.775

200 500 SIR 0.660 0.659 0.665
ISIR 0.594 0.595 0.595

We also intended to find classification errors based on the results obtained from SIR and Integrative SIR
and compare the prediction performance of the sufficient dimension reduction approaches with unsupervised
dimension reduction methods such as PCA and irPCA for comparison. The PCA is the classical principle com-
ponent analysis, and the irPCA is the integrated and regularized PCA method proposed in Liu, Shen, and Pan
(2016). We used leave-one-out cross validation to select tuning parameters and to obtain prediction results for
all the methods. Each classification error represents the misclassification rate that was calculated by applying
random forest classifier to dimension reduced data in test sets. We then evaluated the prediction performance
for each method based on individual data and combined data. For example, for SIR or ISIR, we used the reduc-
tion 𝛽(𝑗)𝑇 𝑋 of the single data type j, j = 1, …, 3, to predict Y separately, and also used the combined data 𝛽(1)𝑇 𝑋,
𝛽(2)𝑇 𝑋, and 𝛽(3)𝑇 𝑋 to predict Y integrally.

Table 2 demonstrates the comparison results among different dimension reduction methods at different
sample sizes for both single data prediction and combined data prediction. We see that integrative analysis
is beneficial compared to single data source prediction as integrating multiple sources of omics data can po-
tentially reduce classification errors. In addition, the supervised dimension reduction methods improve over
unsupervised dimension reduction methods in terms of prediction performance. For example, at sample size
50, SIR reduces the prediction error for the integrative analysis from 0.197 to 0.021 as compared to PCA, and
ISIR reduces the error from 0.050 to 0.014 as compared to irPCA. The sufficient dimension reduction meth-
ods lead to significant improvement. The results also signal that Integrative SIR is competitive to SIR and can
potentially improve over SIR by capturing common information across data types.

Table 2: Averaged classification errors for different dimension reduction methods over 50 simulations.

n 𝑝1, 𝑝2, 𝑝3𝑝1, 𝑝2, 𝑝3𝑝1, 𝑝2, 𝑝3 Method Combined Data type 1 Data type 2 Data type 3

50 500
PCA 0.197 0.362 0.244 0.270
irPCA 0.050 0.140 0.132 0.122
SIR 0.021 0.071 0.068 0.076
ISIR 0.014 0.092 0.015 0.077

100 500
PCA 0.167 0.363 0.233 0.230
irPCA 0.020 0.085 0.086 0.087
SIR 0.019 0.069 0.069 0.062
ISIR 0.011 0.050 0.040 0.037

200 500
PCA 0.146 0.419 0.238 0.243
irPCA 0.013 0.072 0.074 0.072
SIR 0.007 0.057 0.058 0.056
ISIR 0.005 0.049 0.047 0.051
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3.2 Real data analysis

To demonstrate the integration of multiple types of data sets, SIR and Integrative SIR were applied to analyze
MRNA, MiRNA and proteomics expression profile of a subset of a melanoma, leukemia and CNS cell lines
from the NCI-60 panel. The data is taken from Meng et al. (2016).

The NCI-60 Human Tumor Cell Lines Screen (Shoemaker 2006) has been a part of the global cancer research
community for more than 20 years. The NCI-60 subset data set have 21 observations each having MiRNA ex-
pressed for 537 genes, MRNA expression for 12895 genes and proteomics expression for 7016 genes with known
outcome for each observation. There are three outcome tumor type namely CNS, leukemia and melanoma. As
most of the gene expression overlaps and not all the genes have significant information, selecting a handful of
genes would be a crucial step.

Gene selection

There are a number of ways to perform a gene selection to get the most informative genes from the entire
sample. Most gene selection approaches in class prediction problems combine ranking genes with different
test models (Lee et al., 2005; Yeung, Bumgarner & Raftery, 2005). Another approach is applying same classifier
progressively on smaller sets of genes until a satisfactory solution is achieved (Van’t Veer et al., 2002; Roepman
et al., 2005). Frequently an arbitrary decision as to the number of genes to retain is made (for example, keep the
500 top ranked genes) according to different statistical measures like fold-change, variance, etc. (Li, Zhang &
Ogihara, 2004). There are also several other methods which can take care of multi-class prediction problems in
different samples (Pavlidis, 2003; Chen et al., 2005; Díaz-Uriarte & De Andres, 2006).

In this study, two different gene selection approaches were used to select those genes which are important
to be included in this study. The first approach used to select the genes of interest is by calculating p-values
of each gene using ANOVA test. Analysis of variance is a statistical method to find the variability in the gene
expression partitioned into various sources (Pavlidis 2003). ANOVA examines whether this variability due to
a particular factor, or a combination of factors, is statistically significant compared to the measured variability
due to multiple sources. Therefore, ANOVA can be used to examine differences between classes.

ANOVA test was carried out to each gene to find out the p-values. As the p-values were calculated, ad-
justed p-values were computed using false discovery rate (FDR). This step was done because as the gene being
statistically tested independently, the risk of false negative increases. To prevent these errors, false discovery
rate method can be used to conceptualize the type I error (Benjamini and Hochberg 1995). There are several
control procedures such as Benjamini–Hochberg procedure, Benjamini–Hochberg–Yekutieli procedure, and
others. Out of all, Benjamini–Hochberg procedure or BH procedure is used in this analysis to control the FDR.

We also used variance as a criterion of choosing the top ranked genes for the whole sample. It means that
the more the variances across tumor types, the more likely the genes to be selected. For both criteria, the top
500 ranked genes were selected from each data type for the analysis.

Sufficient dimension reduction

The conventional SIR was firstly applied to the top 500 genes selected by the above two criteria (variance and
ANOVA test), respectively. The optimal dimension d was selected to be 2 by cross validation. After performing
SIR, the estimated β(j)s were used to get the reduced predictors from the original data. The data dimension was
thus reduced from 21 × 500 to 21 × 2 for each data type. The two variables received after dimension reduction
thus can be used to visualize how well they classify the outcomes. Figure 1 and Figure 2 show the separation
of the three tumor types namely CNS, leukemia and melanoma, by the dimension reduced predictors for each
data type.

We also applied Integrative SIR to the analysis of the multi-omics data and to achieve sufficient dimension
reduction simultaneously. After performing Integrative SIR with genes prescreened from the aforementioned
two criteria, the data were reduced from 21 × 500 to 21 × 2 for each data type. Here the optimal dimension d
was selected to be 2 by cross validation. Again, the two variables obtained after dimension reduction for each
data type can be plotted against each other to visualize how well these variables separate the outcomes. Figure
3 and Figure 4 show the separation results.
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Figure 1: Conventional SIR applied to genes selected by the variance criterion: 2D plots with estimated sufficient pre-
dictors obtained by conventional SIR. The red circles represent CNS, the green circles represent Leukemia and the black
circles represent Melanoma tumor types.

Figure 2: Conventional SIR applied to genes selected using ANOVA test: 2D plots with estimated sufficient predictors
obtained by conventional SIR . The red circles represent CNS, the green circles represent Leukemia and the black circles
represent Melanoma tumor types.

Figure 3: Integrative SIR applied to top 500 genes selected by the variance criterion: 2D plots with estimated sufficient
predictors obtained by integrated SIR. The red circles represent CNS, the green circles represent Leukemia and the black
circles represent Melanoma tumor types.

Figure 4: Integrative SIR applied to genes selected using ANOVA test: 2D plots with estimated sufficient predictors ob-
tained by Integrative SIR. The red circles represent CNS, the green circles represent leukemia and the black circles repre-
sent melanoma tumor types.
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As shown in Figure 1, for MiRNA data type, the cluster of leukemia and melanoma are overlapping with
each other, indicating that SIR might not successfully classify the two outcomes. Exploring further at the other
two data types, MRNA and proteomics, all the three clusters are reasonably close to each other. In comparison,
Figure 3 shows better separation of the different outcomes by the ISIR method.

Similarly, Figure 2 and Figure 4 show how the reduced variables from SIR and ISIR separate outcomes with
genes prescreened by ANOVA test. In Figure 2 the clusters for MiRNA and MRNA are overlapping with each
other and in Figure 4 the clusters for data type MiRNA is overlapping, while the clusters for other data types are
well separated and the points within clusters are compact. These two figures also demonstrate that Integrative
SIR gives relatively better separation of the outcomes as compared to SIR.

Classification and prediction

In this section, we evaluate the prediction performance of SIR and Integrative SIR and compare them with
unsupervised dimension reduction methods. Similar to the simulation study, to find classification errors for
each method, random forest classifier was performed on the dimension reduced data with leave-one-out cross-
validation.

Figure 5 and Figure 6 show the three plots of classification errors using random forest method to single
data types after applying SIR and Integrative SIR, respectively. Leave-one-out cross-validation was conducted
to evaluate the prediction performance as the data had only 21 observations. Each plot in the two figures reveals
the classification results for all 21 observations.

Figure 5: SIR applied to top 500 genes selected by the variance criterion: Classification results of SIR for each data type. 1
represents the correct classification and 0 represents the incorrect classification.

Figure 6: Integrative SIR applied to top 500 genes selected by the variance criterion: Classification results of Integrative
SIR for each data type. 1 represents the correct classification and 0 represents the incorrect classification.

Similarly, classification errors were produced when SIR and Integrative SIR were applied to the set of genes
selected using ANOVA test. These errors were also generated using random forest classification with leave-one-
out cross validation. The results were similarly plotted in Figure 7 and Figure 8. Figure 5–Figure 6 show that
ISIR provides more accurate prediction results than SIR does in the real example.

Figure 7: SIR applied to genes selected by ANOVA test: Classification results of SIR for each data type. 1 represents the
correct classification and 0 represents the incorrect classification.
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Figure 8: Integrative SIR applied to genes selected by ANOVA test: Classification results of Integrative SIR for each data
type. 1 represents the correct classification and 0 represents the incorrect classification.

Table 3 further compares the classification errors for supervised and unsupervised dimension reduction
methods including PCA, irPCA, SIR and Integrative SIR. Similar to the simulation studies, we compared the
classification errors in terms of single data prediction as well as in terms of integrative prediction. In addition,
we considered two cases: In the first case, we used top 500 genes selected by ANOVA test for each data type. In
the second case, we kept all 537 genes for the MiRNA data, and chose top 1000 genes for MRNA and proteomics,
respectively, by ANOVA test. For both cases, the optimal dimensions selected for SIR and ISIR are 2, the optimal
dimensions selected for PCA and irPCA are 3 and 4, respectively, all by leave-one-out cross validation.

Table 3: Classification error for each data type for different methods.

n 𝑝1, 𝑝2, 𝑝3𝑝1, 𝑝2, 𝑝3𝑝1, 𝑝2, 𝑝3 Method Combined Data type 1 Data type 2 Data type 3

21 500,500,500
PCA 0.095 0.190 0.095 0.190
irPCA 0.000 0.143 0.048 0.095
SIR 0.000 0.048 0.000 0.048
ISIR 0.000 0.000 0.000 0.000

21 537,1000,1000
PCA 0.095 0.238 0.095 0.095
irPCA 0.095 0.095 0.095 0.095
SIR 0.000 0.190 0.000 0.095
ISIR 0.000 0.048 0.095 0.000

Comparing all the dimension reduction methods listed in Table 3, the supervised dimension reduction
methods SIR and ISIR outperform the unsupervised PCA type of methods in terms of prediction performance
and the improvement is significant. In addition, predicting using combined data overall does better than pre-
dicting using single data source, especially for the supervised dimension reduction (SDR) methods. This makes
sense as adding more data sources, one can gain additional information that has been identified to be useful by
SDR for modeling and predicting the outcome variable. Therefore, integrative analysis of multi-omics data can
be beneficial as compared to single data type analysis. The proposed integrative SIR method can potentially
further improve over SIR.

3.3 Robustness analysis

In this section, we conduct robustness analysis to show the stability of the propose algorithm and the prediction
results.

Using different initial values ofβs

In the beginning of Integrative SIR method algorithm, the initial values of βs were randomly chosen from the
uniform distribution between 0 and 1. To show that the Integrative SIR method is robust to the initial values, we
simply change the random seed number initialized in the start of the program. Table 4 shows the classification
error for each method with different seed numbers when top 500 genes were prescreened for each data type
by ANOVA test. The results obtained from Integrative SIR with different initial values are identical. We also
performed massive numerical work to estimate the central subspaces with many other initial values including
those obtained from other dimension reduction methods such as standard SIR, the algorithm performed quite
stably. The results similarly hold when more genes were prescreened. Though the numerical work shows robust
performance, in application, to avoid possible local minimizers, one might use preliminary estimates from SIR,
PCA or factor analysis as initial values to potentially improve convergence.

Table 4: Classification error (in %) for each data type for different methods with different initial values.

Seed number Methods Data type 1 Data type 2 Data type 3′
1 SIR 0.048 0.000 0.048

ISIR 0.000 0.000 0.000
34 SIR 0.048 0.000 0.048
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ISIR 0.000 0.000 0.000
1234 SIR 0.048 0.000 0.048

ISIR 0.000 0.000 0.000

Using different classifiers

Different classifier may give different results. For the simulation and real data analysis, we have utilized the
random forest classifier to predict the different classes of the outcome variable. We next used another popular
classifier called support vector machine (SVM) to evaluate the methods. Support vector machines are super-
vised learning models with associated learning algorithms that analyze data for classification and regression.

Figure 9: Support vector machine classification with conventional SIR, 1 represents the correct classification and 0 repre-
sents the incorrect classification.

Figure 10: Support vector machine classification with Integrative SIR, 1 represents the correct classification and 0 repre-
sents the incorrect classification.

SVM classifier was applied with leave-one-out cross validation. Figure 9 and Figure 10 show the classifica-
tion error plots for SIR and Integrative SIR. Similar to the results in the previous section, Integrative SIR showed
competitive classification performance as compared to SIR.

4 Conclusion

We propose a novel use of sufficient dimension reduction methods in integrative multi-omics data analysis and
demonstrate the improvement over unsupervised dimension reduction methods. In particular, we introduced
sliced inverse regression (SIR) and proposed an Integrative SIR method for multi-omics data analysis. The pro-
posed method reduces the dimensions of multiple omics data simultaneously while taking into account latent
sharing information across data types without loss of information in regression and prediction. By capturing
the relationship between response and predictors while performing dimension reduction, the sufficient dimen-
sion reduction methods possess advantages in terms of classification and prediction as compared to PCA types
of methods. In addition, by considering common information across data sources, the Integrative SIR method
can potentially improve over SIR. The performance of the proposed method is robust to the choice of initial
values in the algorithm and to the classifiers used to evaluate the classification errors.

As genomic data have become increasingly affordable, it is important to study and perform integrative anal-
ysis of multi-omics data for comprehensive understanding of underlying data structures. Future directions can
be thought of extending integrative settings to sparse SDR methods (Qian, Ding & Cook, 2018) to explore new
biological insights, prediction and accuracy of the model. The proposed framework can also be extended to
likelihood-based dimension reduction methods such as principal fitted components analysis (Cook & Forzani,
2008; Ding & Cook, 2014). Moreover, by simultaneous sufficient dimension reduction and statistical model-
ing, applying envelope models (Cook, Li & Chiaromonte, 2010; Su & Cook, 2011; Cook, Helland & Su, 2013;
Cook & Zhang, 2015; Su et al., 2016; Ding & Cook, 2018) to integrative data analysis might potentially gain
further efficiency in comparison to classical SDR methods. Furthermore, integrative SDR can be extended to
matrix or tensor frameworks (Li, Kim & Altman, 2010; Ding & Cook 2015a; 2015b) with temporal information
incorporated. These directions are worthy of future investigation.
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