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ABSTRACT 

We present principles of leaky-mode photonic lattices explaining key properties enabling potential device applications. 
The one-dimensional grating-type canonical model is rich in properties and conceptually transparent encompassing all 
essential attributes applicable to two-dimensional metasurfaces and periodic photonic slabs. We address the operative 
physical mechanisms grounded in lateral leaky Bloch mode resonance emphasizing the significant influence imparted by 
the periodicity and the waveguide characteristics of the lattice. The effects discussed are not explainable in terms of local 
Fabry-Perot or Mie resonances. In particular, herein, we summarize the band dynamics of the leaky stopband revealing 
principal Bragg diffraction processes responsible for band-gap size and band closure conditions. We review Bloch wave 
vector control of spectral characteristics in terms of distinct evanescent diffraction channels driving designated Bloch 
modes in the lattice.  
 
Keywords: guided-mode resonance effect, leaky-mode resonance, resonant waveguide gratings, metamaterials, Bloch 

modes, wave propagation in periodic media, leaky-band dynamics 

1. INTRODUCTION 
A photonic lattice is a periodic assembly of arbitrarily shaped particles. These particles can be made of metals, dielectrics, 
and semiconductors or their hybrid compositions. The lattice is, in general, three-dimensional (3D) with important variants 
in the form of 2D or 1D patterned films. The lattice operates in fundamental ways on incident light with ability to control 
and manipulate amplitude, phase, spectral distribution, polarization state, and local mode structure. Thus, nano- and 
microstructured films with subwavelength periodicity represent fundamental building blocks for a host of device concepts. 
For many real-world applications, attractive features of this device class include compactness, minimal interface count, 
high efficiency, potential monolithic fabrication, and attendant survivability under harsh conditions. The fundamental 
operational modality is available across the spectrum, from visible wavelengths to the microwave domain, by simple 
scaling of wavelength to period and pertinent materials selection.  

Here, we address the physical basis behind the resonance effects inherent in the fundamental lattice, discuss the observed 
behavior, and mention example applications. The guided-mode resonance (GMR) concept refers to quasi-guided 
waveguide modes induced in periodic layers [1-24]. Whereas the canonical physical properties of the resonance are fully 
embodied in a one-dimensional (1D) lattice, the final device constructs are often patterned in a two-dimensional (2D) slab 
or film in which case we commonly refer to them as photonic crystal slabs or metasurfaces. These surfaces are capable of 
supporting lateral modes and localized field signatures with propagative and evanescent diffraction channels critically 
controlling the response. Local Fabry-Perot and Mie mode signatures are observable via computations within the structural 
geometry. It can be convincingly argued that local modes have no causal effects with lateral Bloch modes generating all 
key effects [25]. The subwavelength restriction of periodicity is usually maintained for efficient devices; however, it is 
also possible to generate interesting spectral behavior when this is not satisfied leading to unexpected device concepts 
[26]. The dominant second, or leaky, stopband exhibits many remarkable physical properties including band-edge 
transitions and bound states in the continuum. The Fourier harmonic content of the spatial modulation is key to 
understanding the band dynamics of these lattices. Multi-resonance effects are observed when Bloch eigenmodes are 
excited with more than one evanescent diffraction channels with the resulting spectral response clearly understood by 
invoking this process. We have shown how materially sparse leaky-mode photonic lattices may be nearly completely 
invisible to one polarization state while being opaque to the orthogonal polarization state with this property existing over 
significantly wide spectral bands [24]. Device concepts with experimental prototypes verifying theoretical predictions 
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include wideband reflectors [25], nonfocusing spatial filters [26], ultra-sparse reflectors and polarizers [24], single-layer 
bandpass filters [27], and multiparametric resonant sensors [28] were demonstrated by our group in the past.  

In this paper, we discuss physical principles of resonant leaky-mode lattices. We present the band structure of the 
operational leaky stop band including the principles dominating the band dynamics such as band-gap width and band 
closure. Analytical and numerical results on the formation of the leaky stop band demonstrate that Bragg processes 
generated by spatial Fourier harmonics control the band transition dynamics. We discuss Bloch wave-vector spectral 
control and its use to implement doubly-resonant bandpass filters as well as angular robustness in guided-mode resonance 
spectra. The doubly-resonant bandpass-filter process, implemented by interference between high-Q and low-Q Bloch 
modes, has of late come to be marked as being analogous to electromagnetically-induced transparency (EIT). 

2. THE BAND STRUCTURE OF THE LEAKY-MODE LATTICE  
Nanopatterned surfaces and films with subwavelength periodicity sustain striking resonance effects as input light couples 
to leaky Bloch-type waveguide modes [11, 29]. In 1990, we coined the term “guided-mode resonance (GMR)” to clearly 
communicate the fundamental physics governing these phenomena [30]. Prior to that, in the earlier literature on the subject, 
authors often referred to these effects as being “anomalous.” In recent years, traditional GMR resonance devices are often 
called metasurfaces or metamaterials [31-33]. We emphasize that these devices can have 1D or 2D lateral spatial 
modulation, or periodicity, as the resonance physics is not dependent on the type of periodicity in any fundamental ways. 
The resonance effects of interest here are observed in a slab, or film, geometry as the structure must be capable of 
supporting quasi-guided modes propagating laterally in the periodic lattice and hence being Bloch modes in common 
terminology. In the past, in the community of diffractive optics that preceded the metamaterials generation, such elements 
were sometimes called “waveguide gratings,” a clear and physically-expressive descriptor. It has been well-known for a 
long time, on account of inherent design flexibility, that a plethora of differing spectral expressions is available with this 
device class thus providing a facile applications platform. Wide parametric design spaces allow control of light amplitude, 
phase, polarization, near-field intensity, light distribution, etc., on surfaces and within device volumes. 3D variants of this 
device class are possible in which waveguide gratings are interspersed with homogeneous films forming an operational 
stack. The second leaky stop band plays crucial roles in device operation; hence we summarize key points on the band 
structure here.  

 

 
Figure 1. (a) A schematic view of a subwavelength guided-mode resonance lattice element under normal incidence. 
A single silicon layer with thickness d, fill factor F, and a two-part period Λ is treated. When phase matching occurs 
between evanescent diffraction orders and a waveguide mode, a reflection resonance takes place. I, R, and T denote 
the incident wave, reflectance, and transmittance, respectively. (b) Schematic dispersion diagram of a GMR device 
at the second (leaky) stop band. For the symmetric grating profile, a resonance appears at one edge. This picture 
applies to both TE (electric field vector normal to the plane of incidence) and TM (magnetic field vector normal to 
the plane of incidence) polarization states. K = 2π/Λ, k0 = 2π/λ, and β is the propagation constant of a leaky mode. 
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The reflector in Fig. 1(a) works under guided-mode resonance (GMR), which arises when the incident wave couples to a 
leaky Bloch waveguide mode by phase matching with the second-order grating [6,7,10,11]. For normal plane-wave 
incidence, counter-propagating leaky modes form a standing wave in the grating as indicated in Fig. 1(a). These waveguide 
modes interact with the grating and reradiate reflectively [11]. We show a schematic dispersion diagram in Fig. 1(b). The 
device works in the second (leaky) stop band corresponding to the second-order grating [13]. A given evanescent 
diffraction order can excite not just one but several leaky modes. Thus, in Fig. 1(b), we show the stop bands for the first 
two TE modes to emphasize this point. At each stop band, a resonance is generated as denoted in Fig. 1(b) also. The fields 
radiated by these leaky modes in a grating with a symmetric profile can be in phase or out of phase at the edges of the 
band [1,10]. At one edge, there is a zero phase difference and hence the radiation is enhanced while at the other edge, there 
is a π phase difference inhibiting the radiation. In this case, if β = βR + jβI is the complex propagation constant of the leaky 
mode, βI = 0 at one edge, implying that no leakage is possible at that edge. We remark that the most common variety of 
resonance elements possesses two-part periods which can only have symmetric profiles.  

The bands in Fig. 1(b) exhibit numerous interesting properties. Depending on the device design, the leaky band edge can 
be placed under or above the band gap. Thus, the fundamental properties of the photonic band structure of resonant leaky-
mode metamaterials are of key importance [34,35]. Consistent with the discussion of Fig. 1(b), the band structure admits 
a leaky edge and a non-leaky edge for each supported resonant Bloch mode if the lattice is symmetric. The non-leaky edge 
is associated with what is now called a bound state in the continuum (BIC), or embedded eigenvalue, currently of 
considerable scientific interest [36-39]. It is possible to control the width of the leaky band gap by lattice design. In 
particular, as a modal band closes, there results a quasi-degenerate state—this state is remarkable as it is possible to transit 
to it by parametric and material choice. The transition to, and across, this point executes a band flip. The physical 
mechanisms inducing the band closure and the band flip are of fundamental interest.  

Figure 2 illustrates these ideas schematically. As noted in Fig. 2(a), we employ a single 1D periodic layer with thickness 
d with binary dielectric-constant modulation enclosed by a substrate with dielectric constant εs and a cover region of εc. 
The periodic layer acts as a waveguide as well as a phase-matching element because its average dielectric constant εavg = 
εl +ρ(εh - εl) is larger than εs and εc, where εh and εl represent the high and low dielectric constants, respectively, and ρ is 
the fill factor of the high dielectric constant part. The normally incident light is in the TE polarization state such that the 
electric field vector is along the y-direction. As shown in Fig. 2(b) when the values of ρ and Δε=εh - εl are small, GMR 
(BIC in a red circle) occurs at the lower (upper) side of the second stop band. The band flip refers to the transition of the 
GMR (BIC) location from lower (upper) to upper (lower) band edge as ρ and Δε increase. 

 

 
Figure 2. Band flip in a leaky-mode resonant photonic lattice. (a) Schematic of a resonant lattice with a normally-
incident TE-polarized plane wave. (b) Conceptual illustration of the band flip phenomenon. When the values of  
and  are small, GMR (BIC in a red circle) occurs at the lower (upper) side of the second stop band. The band flip 
denotes the transition of the GMR location from lower to upper band edge as  and  increase with the BIC edge 
transiting oppositely. Here,  = F =fill factor,  = h-l is the dielectric contrast in the period, and  denotes 
complex frequency. Adapted from reference [35]. 

 
It can be shown that the frequency location of the leaky-mode resonance band edge, or the BIC edge, is determined by 
superposition of Bragg processes denoted by BRQ,n where Q indicates the Bragg order and n denotes the Fourier harmonic 
of the dielectric constant modulation [35]. Reviewing briefly, as an approximation, we keep only the strongest Bragg 
processes which are BR2,1 operating as a second-order Bragg reflection off the first Fourier harmonic and BR1,2 defining 
a first-order Bragg reflection by the second harmonic. The Bragg reflection superposition model is based on the fact that 
the size of the second stop band is given by |Re(Ω+)-Re(Ω-)|=2|h2-Im(h1)|/(Kh3) using a semi-analytical model, the 
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Kazarinov-Henry (KH) model [10], with coupling coefficients h1 and h2 related to the first and the second Fourier 
coefficients, respectively. The band gap will disappear when h2=Im(h1) because the two Bragg reflections BR2,1 and BR1,2 
are then balanced destructively [35]. The veracity of this approach is indicated in Fig. 3. 

 
 

Figure 3. Computed stop bands for a 1D leaky-mode lattice relative to Fourier harmonic content. The dielectric 
functions vary for these examples. (a) ε=ε0+ε1cos(Kz), (b) ε=ε0+ε2cos(2Kz), and (c) ε=ε0+ε3cos(3Kz). In (d) 
ε=ε0+ε1cos(Kz)+ε2cos(2Kz) is used. Parameters for the FDTD simulations and KH model are d=0.50Λ, ρ=0.35, 
εc=1.00, εs=2.25, Δε=1.00, and εavg=4.00.  

 
To accurately evaluate stop band formation by these Bragg processes, we calculate the band structures of pertinent 1D 
lattices by FDTD simulations [35,40]. In Fig. 3(a), for a representative set of lattice parameters provided in the figure 
caption, the stop band denoted 1 is shown for a lattice having only the fundamental harmonic ε(z)=ε0+ε1cos(Kz). 
Dispersion curves (blue lines) obtained from the full non-approximated lattice are also plotted for comparison. Clearly, 
the FDTD results with the fundamental harmonic only are quite different from those with the full lattice. Figure 3(b) shows 
stop band2 formed by a first-order scattering process off the second harmonic. The full-lattice band structure is close 
to the approximate structure denoting the importance of this partial scattering process. Figure 3(c) shows that the third 
order harmonic cannot contribute to the second stop band by itself. Figure 3(d) illustrates that the band12 simulated 
with the first and second harmonics simultaneously agrees well with the band simulated with the full non-approximated 
lattice. Moreover, there is excellent agreement with the dispersion curves calculated with the KH model as seen in Fig. 
3(d). Hence, it is reasonable to conclude that the Bragg-reflection superposition model presented here is valid to describe 
the second stop band of weakly to moderately modulated photonic lattices. 

3. BLOCH WAVE VECTOR CONTROL OF SPECTRAL CHARACTERISTICS 
To illustrate another key aspect of leaky-mode photonic lattices, we provide the results of Fig. 4 showing a device 
schematic and diffraction spectra. The example architecture studied is similar to that in Fig. 2. We excite the device with 
a TE-polarized plane wave under normal incidence. What fundamental physical processes are at work to generate this 
robust single-layer bandpass filter performance including wide low sidebands characteristic of multilayer thin-film filters?  
 
In Fig. 4(b), the high-reflection band shown with R0>99% covers 2.165 μm or 20.4%. In this case, the low sidebands are 
entirely generated by the high-reflectance band. The total electric field distribution at the T0 peak wavelength of 10.6 μm 
shown in the inset of Fig. 1(b) indicates that the transmission peak arises from a second-order coupling (q=2) to the TE0 
mode. As clearly revealed by the totally different response (red dotted curve) of an effective-medium homogeneous film, 
the low-transmission band is attributed to the broadband resonance effect rather than homogeneous thin-film interference. 
The response is understood by systematically identifying the resonant modes responsible for the flat sidebands by 
computing the amplitudes of the coupling orders for various wavelengths [41]. To place this in context, we recall that the 
y-component of the TE-polarized electric field in the grating can be expressed as [42] 
 

𝐸𝑦(𝑥, 𝑧) = ∑𝑆𝑞(𝑧)

𝑞

exp(−𝑖𝝈𝒒 ∙ 𝒓) 
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where q =  – qK with  being the wave vector of the refracted input wave, K is the grating vector with magnitude 
K=2/, and r = (x,z) is the position vector. This is the coupled-wave expression for the internal field where the Sq is the 
amplitude of the q-th space harmonic in the inhomogeneous plane-wave expansion. We find that TE2 and TE1 types of 
modes under first (q=1) and second (q=2) order coupling are involved in the formation of the flat low-transmission 
sidebands [41]. Moreover, a TE0 mode under dominant second-order coupling induces the narrow T0 peak in this design. 
In Fig. 4(b), the inset shows a clear TE0 mode shape (along the z-direction) while the standing wave pattern induced by 
the counter-propagating Bloch modes at resonance shows periodicity of /2 due to the q=2 evanescent diffraction order 
excitation. This coupling configuration expresses the detailed modal properties of the doubly resonant bandpass filters 
proposed long ago by Ding and Magnusson [43]. There, and in Fig. 4, the sharp transmission channel arises on account of 
the resonant interference between a low–Q and high-Q leaky Bloch modes. We note that periodic resonance devices 
operating in this manner exhibiting a resonant transmission peak have lately been associated with EIT or called EIT-like. 

 

 
 

Figure 4. (a) Device schematic and (b) spectral performance of a single-layer GMR bandpass filter with period Λ = 
6.91 µm, fill factor f = 0.42, and grating thickness d = 3.8 μm. Refractive indices are nC = 1 (air), nS = 1.4 (SiO2), 
nH = 4 (Ge), and nL = 2.64 (Se). T0 and R0 denote the zero-order transmittance and zero-order reflectance, 
respectively. The dashed line in (b) represents the optical response for the grating layer replaced with the effective 
homogeneous layer. The inset in (b) shows the distribution of the total electric field over 2 at the T0-peak 
wavelength. The TE polarization state prevails. After reference [41]. 
 

 
 
Figure 5. Schematic illustration of 1D subwavelength gratings in classic and fully conic mounts. The grating 
parameters are grating period (), fill factor (F), grating depth (dg), and thickness of the homogeneous sublayer (dh). 
Here, ng, nh, ns, and n0 denote the refractive indices of the grating, sublayer, substrate and air. After reference [44]. 
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As another example of Bloch wave vector control, we recall our work on the properties of wideband resonant reflectors 
under fully conical light incidence. Indeed, the wave vectors pertinent to resonant first-order diffraction under fully conical 
mounting vary less with incident angle than those for reflectors in classical mounting. Therefore, as the evanescent 
diffracted waves drive the leaky Bloch modes along their respective wave vectors, fully-conical mounting imbues 
reflectors with larger angular tolerance than their classical counterparts. This can be understood by Fig. 5. In classical 
mounting, at normal incidence, the counter-propagating Bloch modes interfere and form a standing wave. As the input 
angle varies from zero, these modes become imbalanced until one disappears over a possibly small angular range. In 
contrast, in fully-conic mounting, as the angle deviates from normal, the Bloch-mode wave vectors vary slowly in direction 
in the lateral plane, neither one vanishing rapidly. This accounts for the angular robustness of wideband reflectors operating 
in this mounting [44]. Additionally, this methodology has been applied to realize excellent bandpass filters in the laboratory 
[45]. 

4. CONCLUSIONS 
In conclusion, we present major aspects of leaky-mode photonic lattices explaining key properties with strong reference 
to flow of lateral Bloch modes. Our lattices are periodic and possess waveguide properties such that quasi-guided modes 
with finite lifetimes are sustained. The attendant flexible spectral control enables numerous device applications with new 
attributes relative to prior classic technology. We note that the one-dimensional grating-type canonical model is rich in 
properties and conceptually transparent encompassing all essential attributes applicable to two-dimensional metasurfaces 
and periodic photonic slabs. We explain operative physical mechanisms grounded in lateral leaky Bloch mode resonance 
emphasizing the significant influence imparted by the periodicity and the waveguide characteristics of the lattice. The 
properties discussed are not explainable in terms of local Fabry-Perot or Mie resonances. Specifically, we summarize the 
band dynamics of the leaky stopband revealing principal Bragg diffraction processes responsible for band-gap size and 
band closure conditions. We review Bloch wave-vector influence on spectral characteristics in terms of distinct evanescent 
diffraction channels driving designated lateral Bloch modes in the lattice. This idea is implemented to configure doubly-
resonant bandpass filters as well as to enhance angular robustness in guided-mode resonance spectra. The doubly-resonant 
bandpass-filter process, actualized by interference between high-Q and low-Q lateral Bloch modes, has been connected 
with EIT processes in metamaterials in recent literature. 
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