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ABSTRACT

We present principles of leaky-mode photonic lattices explaining key properties enabling potential device applications.
The one-dimensional grating-type canonical model is rich in properties and conceptually transparent encompassing all
essential attributes applicable to two-dimensional metasurfaces and periodic photonic slabs. We address the operative
physical mechanisms grounded in lateral leaky Bloch mode resonance emphasizing the significant influence imparted by
the periodicity and the waveguide characteristics of the lattice. The effects discussed are not explainable in terms of local
Fabry-Perot or Mie resonances. In particular, herein, we summarize the band dynamics of the leaky stopband revealing
principal Bragg diffraction processes responsible for band-gap size and band closure conditions. We review Bloch wave
vector control of spectral characteristics in terms of distinct evanescent diffraction channels driving designated Bloch
modes in the lattice.

Keywords: guided-mode resonance effect, leaky-mode resonance, resonant waveguide gratings, metamaterials, Bloch
modes, wave propagation in periodic media, leaky-band dynamics

1. INTRODUCTION

A photonic lattice is a periodic assembly of arbitrarily shaped particles. These particles can be made of metals, dielectrics,
and semiconductors or their hybrid compositions. The lattice is, in general, three-dimensional (3D) with important variants
in the form of 2D or 1D patterned films. The lattice operates in fundamental ways on incident light with ability to control
and manipulate amplitude, phase, spectral distribution, polarization state, and local mode structure. Thus, nano- and
microstructured films with subwavelength periodicity represent fundamental building blocks for a host of device concepts.
For many real-world applications, attractive features of this device class include compactness, minimal interface count,
high efficiency, potential monolithic fabrication, and attendant survivability under harsh conditions. The fundamental
operational modality is available across the spectrum, from visible wavelengths to the microwave domain, by simple
scaling of wavelength to period and pertinent materials selection.

Here, we address the physical basis behind the resonance effects inherent in the fundamental lattice, discuss the observed
behavior, and mention example applications. The guided-mode resonance (GMR) concept refers to quasi-guided
waveguide modes induced in periodic layers [1-24]. Whereas the canonical physical properties of the resonance are fully
embodied in a one-dimensional (1D) lattice, the final device constructs are often patterned in a two-dimensional (2D) slab
or film in which case we commonly refer to them as photonic crystal slabs or metasurfaces. These surfaces are capable of
supporting lateral modes and localized field signatures with propagative and evanescent diffraction channels critically
controlling the response. Local Fabry-Perot and Mie mode signatures are observable via computations within the structural
geometry. It can be convincingly argued that local modes have no causal effects with lateral Bloch modes generating all
key effects [25]. The subwavelength restriction of periodicity is usually maintained for efficient devices; however, it is
also possible to generate interesting spectral behavior when this is not satisfied leading to unexpected device concepts
[26]. The dominant second, or leaky, stopband exhibits many remarkable physical properties including band-edge
transitions and bound states in the continuum. The Fourier harmonic content of the spatial modulation is key to
understanding the band dynamics of these lattices. Multi-resonance effects are observed when Bloch eigenmodes are
excited with more than one evanescent diffraction channels with the resulting spectral response clearly understood by
invoking this process. We have shown how materially sparse leaky-mode photonic lattices may be nearly completely
invisible to one polarization state while being opaque to the orthogonal polarization state with this property existing over
significantly wide spectral bands [24]. Device concepts with experimental prototypes verifying theoretical predictions

*magnusson@uta.edu; phone 1 817 272-2672; fax 1 817 272-2253; www.leakymoderesonance.com

Integrated Optics: Devices, Materials, and Technologies XXIII, edited by Sonia M. Garcia-Blanco, Pavel Cheben,
Proc. of SPIE Vol. 10921, 109211E - © 2019 SPIE - CCC code: 0277-786X/19/$18 - doi: 10.1117/12.2508984

Proc. of SPIE Vol. 10921 109211E-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



include wideband reflectors [25], nonfocusing spatial filters [26], ultra-sparse reflectors and polarizers [24], single-layer
bandpass filters [27], and multiparametric resonant sensors [28] were demonstrated by our group in the past.

In this paper, we discuss physical principles of resonant leaky-mode lattices. We present the band structure of the
operational leaky stop band including the principles dominating the band dynamics such as band-gap width and band
closure. Analytical and numerical results on the formation of the leaky stop band demonstrate that Bragg processes
generated by spatial Fourier harmonics control the band transition dynamics. We discuss Bloch wave-vector spectral
control and its use to implement doubly-resonant bandpass filters as well as angular robustness in guided-mode resonance
spectra. The doubly-resonant bandpass-filter process, implemented by interference between high-Q and low-Q Bloch
modes, has of late come to be marked as being analogous to electromagnetically-induced transparency (EIT).

2. THE BAND STRUCTURE OF THE LEAKY-MODE LATTICE

Nanopatterned surfaces and films with subwavelength periodicity sustain striking resonance effects as input light couples
to leaky Bloch-type waveguide modes [11, 29]. In 1990, we coined the term “guided-mode resonance (GMR)” to clearly
communicate the fundamental physics governing these phenomena [30]. Prior to that, in the earlier literature on the subject,
authors often referred to these effects as being “anomalous.” In recent years, traditional GMR resonance devices are often
called metasurfaces or metamaterials [31-33]. We emphasize that these devices can have 1D or 2D lateral spatial
modulation, or periodicity, as the resonance physics is not dependent on the type of periodicity in any fundamental ways.
The resonance effects of interest here are observed in a slab, or film, geometry as the structure must be capable of
supporting quasi-guided modes propagating laterally in the periodic lattice and hence being Bloch modes in common
terminology. In the past, in the community of diffractive optics that preceded the metamaterials generation, such elements
were sometimes called “waveguide gratings,” a clear and physically-expressive descriptor. It has been well-known for a
long time, on account of inherent design flexibility, that a plethora of differing spectral expressions is available with this
device class thus providing a facile applications platform. Wide parametric design spaces allow control of light amplitude,
phase, polarization, near-field intensity, light distribution, etc., on surfaces and within device volumes. 3D variants of this
device class are possible in which waveguide gratings are interspersed with homogeneous films forming an operational
stack. The second leaky stop band plays crucial roles in device operation; hence we summarize key points on the band
structure here.
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Figure 1. (a) A schematic view of a subwavelength guided-mode resonance lattice element under normal incidence.
A single silicon layer with thickness d, fill factor F, and a two-part period A is treated. When phase matching occurs
between evanescent diffraction orders and a waveguide mode, a reflection resonance takes place. I, R, and T denote
the incident wave, reflectance, and transmittance, respectively. (b) Schematic dispersion diagram of a GMR device
at the second (leaky) stop band. For the symmetric grating profile, a resonance appears at one edge. This picture
applies to both TE (electric field vector normal to the plane of incidence) and TM (magnetic field vector normal to
the plane of incidence) polarization states. K = 2a/A, ko = 27/A, and 3 is the propagation constant of a leaky mode.
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The reflector in Fig. 1(a) works under guided-mode resonance (GMR), which arises when the incident wave couples to a
leaky Bloch waveguide mode by phase matching with the second-order grating [6,7,10,11]. For normal plane-wave
incidence, counter-propagating leaky modes form a standing wave in the grating as indicated in Fig. 1(a). These waveguide
modes interact with the grating and reradiate reflectively [11]. We show a schematic dispersion diagram in Fig. 1(b). The
device works in the second (leaky) stop band corresponding to the second-order grating [13]. A given evanescent
diffraction order can excite not just one but several leaky modes. Thus, in Fig. 1(b), we show the stop bands for the first
two TE modes to emphasize this point. At each stop band, a resonance is generated as denoted in Fig. 1(b) also. The fields
radiated by these leaky modes in a grating with a symmetric profile can be in phase or out of phase at the edges of the
band [1,10]. At one edge, there is a zero phase difference and hence the radiation is enhanced while at the other edge, there
is a m phase difference inhibiting the radiation. In this case, if B = Br + jPi is the complex propagation constant of the leaky
mode, i = 0 at one edge, implying that no leakage is possible at that edge. We remark that the most common variety of
resonance elements possesses two-part periods which can only have symmetric profiles.

The bands in Fig. 1(b) exhibit numerous interesting properties. Depending on the device design, the leaky band edge can
be placed under or above the band gap. Thus, the fundamental properties of the photonic band structure of resonant leaky-
mode metamaterials are of key importance [34,35]. Consistent with the discussion of Fig. 1(b), the band structure admits
a leaky edge and a non-leaky edge for each supported resonant Bloch mode if the lattice is symmetric. The non-leaky edge
is associated with what is now called a bound state in the continuum (BIC), or embedded eigenvalue, currently of
considerable scientific interest [36-39]. It is possible to control the width of the leaky band gap by lattice design. In
particular, as a modal band closes, there results a quasi-degenerate state—this state is remarkable as it is possible to transit
to it by parametric and material choice. The transition to, and across, this point executes a band flip. The physical
mechanisms inducing the band closure and the band flip are of fundamental interest.

Figure 2 illustrates these ideas schematically. As noted in Fig. 2(a), we employ a single 1D periodic layer with thickness
d with binary dielectric-constant modulation enclosed by a substrate with dielectric constant € and a cover region of &..
The periodic layer acts as a waveguide as well as a phase-matching element because its average dielectric constant gayg =
€1 +p(en - €) 1s larger than & and &, where €, and € represent the high and low dielectric constants, respectively, and p is
the fill factor of the high dielectric constant part. The normally incident light is in the TE polarization state such that the
electric field vector is along the y-direction. As shown in Fig. 2(b) when the values of p and Ae=¢j, - g are small, GMR
(BIC in a red circle) occurs at the lower (upper) side of the second stop band. The band flip refers to the transition of the
GMR (BIC) location from lower (upper) to upper (lower) band edge as p and Ae increase.
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Figure 2. Band flip in a leaky-mode resonant photonic lattice. (a) Schematic of a resonant lattice with a normally-
incident TE-polarized plane wave. (b) Conceptual illustration of the band flip phenomenon. When the values of p
and Ag are small, GMR (BIC in a red circle) occurs at the lower (upper) side of the second stop band. The band flip
denotes the transition of the GMR location from lower to upper band edge as p and Ae increase with the BIC edge
transiting oppositely. Here, p = F =fill factor, Ae = en-e1 is the dielectric contrast in the period, and Q2 denotes
complex frequency. Adapted from reference [35].

It can be shown that the frequency location of the leaky-mode resonance band edge, or the BIC edge, is determined by
superposition of Bragg processes denoted by BRq» where Q indicates the Bragg order and n denotes the Fourier harmonic
of the dielectric constant modulation [35]. Reviewing briefly, as an approximation, we keep only the strongest Bragg
processes which are BR» | operating as a second-order Bragg reflection off the first Fourier harmonic and BR » defining
a first-order Bragg reflection by the second harmonic. The Bragg reflection superposition model is based on the fact that
the size of the second stop band is given by |Re(Q")-Re(Q)=2|h2-Im(h;))/(Khs) using a semi-analytical model, the
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Kazarinov-Henry (KH) model [10], with coupling coefficients h; and h, related to the first and the second Fourier
coefficients, respectively. The band gap will disappear when ho=Im(h;) because the two Bragg reflections BR,; and BRi »
are then balanced destructively [35]. The veracity of this approach is indicated in Fig. 3.
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Figure 3. Computed stop bands for a 1D leaky-mode lattice relative to Fourier harmonic content. The dielectric
functions vary for these examples. (a) e=eoteicos(Kz), (b) e=eotezco0s(2Kz), and (c) e=eotescos(3Kz). In (d)
e=goteicos(Kz)+ezcos(2Kz) is used. Parameters for the FDTD simulations and KH model are d=0.50A, p=0.35,
&=1.00, &5=2.25, Ae=1.00, and €avg=4.00.

To accurately evaluate stop band formation by these Bragg processes, we calculate the band structures of pertinent 1D
lattices by FDTD simulations [35,40]. In Fig. 3(a), for a representative set of lattice parameters provided in the figure
caption, the stop band denoted AQ; is shown for a lattice having only the fundamental harmonic &(z)=goteicos(Kz).
Dispersion curves (blue lines) obtained from the full non-approximated lattice are also plotted for comparison. Clearly,
the FDTD results with the fundamental harmonic only are quite different from those with the full lattice. Figure 3(b) shows
stop band AQ, formed by a first-order scattering process off the second harmonic. The full-lattice band structure is close
to the approximate structure denoting the importance of this partial scattering process. Figure 3(c) shows that the third
order harmonic cannot contribute to the second stop band by itself. Figure 3(d) illustrates that the band AQ;> simulated
with the first and second harmonics simultaneously agrees well with the band AQ simulated with the full non-approximated
lattice. Moreover, there is excellent agreement with the dispersion curves calculated with the KH model as seen in Fig.
3(d). Hence, it is reasonable to conclude that the Bragg-reflection superposition model presented here is valid to describe
the second stop band of weakly to moderately modulated photonic lattices.

3. BLOCH WAVE VECTOR CONTROL OF SPECTRAL CHARACTERISTICS

To illustrate another key aspect of leaky-mode photonic lattices, we provide the results of Fig. 4 showing a device
schematic and diffraction spectra. The example architecture studied is similar to that in Fig. 2. We excite the device with
a TE-polarized plane wave under normal incidence. What fundamental physical processes are at work to generate this
robust single-layer bandpass filter performance including wide low sidebands characteristic of multilayer thin-film filters?

In Fig. 4(b), the high-reflection band shown with R¢>99% covers 2.165 um or 20.4%. In this case, the low sidebands are
entirely generated by the high-reflectance band. The total electric field distribution at the T peak wavelength of 10.6 pm
shown in the inset of Fig. 1(b) indicates that the transmission peak arises from a second-order coupling (q=2) to the TEy
mode. As clearly revealed by the totally different response (red dotted curve) of an effective-medium homogeneous film,
the low-transmission band is attributed to the broadband resonance effect rather than homogeneous thin-film interference.
The response is understood by systematically identifying the resonant modes responsible for the flat sidebands by
computing the amplitudes of the coupling orders for various wavelengths [41]. To place this in context, we recall that the
y-component of the TE-polarized electric field in the grating can be expressed as [42]

E,(x,z) = Z Sq(2) exp(—iog 1)
q
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where 6= p — qK with p being the wave vector of the refracted input wave, K is the grating vector with magnitude
K=27/A, and r = (x,z) is the position vector. This is the coupled-wave expression for the internal field where the S is the
amplitude of the g-th space harmonic in the inhomogeneous plane-wave expansion. We find that TE, and TE; types of
modes under first (q=1) and second (q=2) order coupling are involved in the formation of the flat low-transmission
sidebands [41]. Moreover, a TEy, mode under dominant second-order coupling induces the narrow Ty peak in this design.
In Fig. 4(b), the inset shows a clear TE, mode shape (along the z-direction) while the standing wave pattern induced by
the counter-propagating Bloch modes at resonance shows periodicity of A/2 due to the g=2 evanescent diffraction order
excitation. This coupling configuration expresses the detailed modal properties of the doubly resonant bandpass filters
proposed long ago by Ding and Magnusson [43]. There, and in Fig. 4, the sharp transmission channel arises on account of
the resonant interference between a low—Q and high-Q leaky Bloch modes. We note that periodic resonance devices
operating in this manner exhibiting a resonant transmission peak have lately been associated with EIT or called EIT-like.
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Figure 4. (a) Device schematic and (b) spectral performance of a single-layer GMR bandpass filter with period A =
6.91 um, fill factor f=0.42, and grating thickness d = 3.8 um. Refractive indices are nc =1 (air), ns = 1.4 (SiO2),
nu = 4 (Ge), and nL = 2.64 (Se). To and Ro denote the zero-order transmittance and zero-order reflectance,
respectively. The dashed line in (b) represents the optical response for the grating layer replaced with the effective
homogeneous layer. The inset in (b) shows the distribution of the total electric field over 2A at the To-peak
wavelength. The TE polarization state prevails. After reference [41].
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Figure 5. Schematic illustration of 1D subwavelength gratings in classic and fully conic mounts. The grating
parameters are grating period (A), fill factor (F), grating depth (d), and thickness of the homogeneous sublayer (dn).
Here, ng, nn, ns, and no denote the refractive indices of the grating, sublayer, substrate and air. After reference [44].
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As another example of Bloch wave vector control, we recall our work on the properties of wideband resonant reflectors
under fully conical light incidence. Indeed, the wave vectors pertinent to resonant first-order diffraction under fully conical
mounting vary less with incident angle than those for reflectors in classical mounting. Therefore, as the evanescent
diffracted waves drive the leaky Bloch modes along their respective wave vectors, fully-conical mounting imbues
reflectors with larger angular tolerance than their classical counterparts. This can be understood by Fig. 5. In classical
mounting, at normal incidence, the counter-propagating Bloch modes interfere and form a standing wave. As the input
angle varies from zero, these modes become imbalanced until one disappears over a possibly small angular range. In
contrast, in fully-conic mounting, as the angle deviates from normal, the Bloch-mode wave vectors vary slowly in direction
in the lateral plane, neither one vanishing rapidly. This accounts for the angular robustness of wideband reflectors operating
in this mounting [44]. Additionally, this methodology has been applied to realize excellent bandpass filters in the laboratory
[45].

4. CONCLUSIONS

In conclusion, we present major aspects of leaky-mode photonic lattices explaining key properties with strong reference
to flow of lateral Bloch modes. Our lattices are periodic and possess waveguide properties such that quasi-guided modes
with finite lifetimes are sustained. The attendant flexible spectral control enables numerous device applications with new
attributes relative to prior classic technology. We note that the one-dimensional grating-type canonical model is rich in
properties and conceptually transparent encompassing all essential attributes applicable to two-dimensional metasurfaces
and periodic photonic slabs. We explain operative physical mechanisms grounded in lateral leaky Bloch mode resonance
emphasizing the significant influence imparted by the periodicity and the waveguide characteristics of the lattice. The
properties discussed are not explainable in terms of local Fabry-Perot or Mie resonances. Specifically, we summarize the
band dynamics of the leaky stopband revealing principal Bragg diffraction processes responsible for band-gap size and
band closure conditions. We review Bloch wave-vector influence on spectral characteristics in terms of distinct evanescent
diffraction channels driving designated lateral Bloch modes in the lattice. This idea is implemented to configure doubly-
resonant bandpass filters as well as to enhance angular robustness in guided-mode resonance spectra. The doubly-resonant
bandpass-filter process, actualized by interference between high-Q and low-Q lateral Bloch modes, has been connected
with EIT processes in metamaterials in recent literature.
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