

Strength of Bolted Lap Joints in Steel Sheets with Small End Distance

Chu Ding¹, Shahabeddin Torabian², Benjamin W. Schafer³

¹ Graduate Research Assistant, Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, United States

² Adjunct Associate Research Scientist, Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, United States

³ Professor, Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, United States

Abstract

The objective of this work is to investigate the shear capacity of small end distance lap joints in sheet steel fastened with a single bolt. For bolted connections in shear, the current American Iron and Steel Institute (AISI) specification does not differentiate between tilting limit states, where the fastener rotates and thin sheet curls, and non-tilting limit states such as bearing and tearing.

An experimental program consisting of 36 bolted specimens with small end distance, 18 subject to tilting, and 18 not subject to tilting, were conducted to explore this phenomenon. The conducted tests were compared to available predictions in AISI S100-2016 and the literature.

The comparison indicates that tilting needs to be explicitly considered in the tested condition.

Recommendations are provided for design. There is a need for future work to investigate multi-bolt configurations with small end distance and connections with members.

Introduction

The current design of cold-formed steel (CFS) bolted connections recognizes several potential failure modes for connected plates (Fig. 1): bearing, end tear-out, and net section fracture. The end tear-out failure mode, also known as shear rupture in the current AISI Specification (AISI S100 2016) or end pull-out in other specifications (e.g., AS/NZS 4600 2005), usually occurs under relatively small end distances. In a “pure” end tear-out failure, the connection deforms

27 with the bolt tearing through the sheet in the loading direction, leaving two parallel shear paths
28 and piling up steel in front of the bolt. Under this failure mode, the connection resistance is
29 provided by the shearing capacity of the parallel shear paths; the connection fails when fracture
30 forms along the paths. The fracture initiates from the bolt hole and propagates to the end of the
31 sheet.

32 End tear-out was first studied by Winter (1956), in which end tear-out is classified as one of the
33 three failure modes for connected plates of bolted cold-formed steel connections. Based on this
34 work, the design equation of earlier editions of the AISI specification was developed, e.g. up to,
35 AISI S100 (2007). End tear-out has been investigated in other studies including Zadanfarrokh
36 and Bryan (1992) who studied small end distance bolted connections with curling restraint;
37 Rogers and Hancock (1998) who studied end tear-out on bolted connections with high-strength
38 steel and most recently Xing et al. (2020) who investigated small end distance bolted
39 connections with thin cold-reduced sheets and proposed new design equations.

40 End tear-out, as the dominating failure mode under small end distance, is often excluded in
41 previous experimental studies, as in general it is presumed that specifications will limit this
42 failure mode by prescriptive criteria. As a result, bearing and net section fracture are more
43 commonly studied. Teh and Uz (2015) performed a study of end tear-out failure in the context of
44 hot-rolled steel and through a large collection of existing experimental data were able to provide
45 novel design equations that improve the accuracy in predicting connection capacity. Teh and Uz
46 (2015) demonstrated that the use of the gross shear plane area often leads to overestimation of
47 strength while using the net shear plane area can be quite conservative. Accordingly, an alternate
48 equation, based on “active planes”, was proposed and was found to be capable of producing

49 consistently accurate predictions. However, as a study focused on thicker specimens, the effect
50 of tilting, a phenomenon that often coincides with thin steel sheet, is not investigated in Teh and
51 Uz (2015). Titling, as shown in Fig. 2(a), is a unique feature of thin sheet connections which is
52 not observed in thick plate connections, as depicted in Fig. 2(b). The concept of tilting is further
53 detailed subsequent to additional discussion on end tear-out.

54 Rogers and Hancock (1998) conducted a series of bolted connection tests fabricated from low
55 ductility high-strength (G550) cold-formed steel sheets. This study found that the end tear-out
56 design equations in AS/NZS 4600 (2005) and AISI Specification (1996) to be unconservative.
57 They further found that the strength had to be reduced by 0.75 in connection limit states to find
58 good agreement with their tests. This led to the adoption of a reduction factor for low ductility
59 G550 sheet steels in later editions of the AS/NZS 4600 and AISI S100 standards.

60 In the 2012 AISI Specification (AISI S100 2012) as part of a North American harmonization
61 effort, AISI's longstanding empirical end tear-out design equation was abandoned in favor of a
62 more mechanically motivated Canadian expression. In the new expression, based on hot-rolled
63 steel block shear research (Kulak and Grondin 2001) the resistance is predicted based on the
64 shearing strength of two pre-defined shear paths with lengths equal to the net end distance. This
65 series of changes prompted interest in a systematic assessment of currently available design
66 equations for end tear-out failure.

67 Lap shear connections in thin screw-fastened sheets have long been observed to suffer from
68 tilting. Lap shear connections in thin bolted sheets also may suffer from this limit state. As
69 shown in Fig. 2(a), tilting is initiated by the small eccentricity in the connection and the minimal
70 rigidity of the thin plate, and includes fastener rotation and sheet curling. Tilting is much reduced

71 in thicker plates (Fig. 2 (b)), largely due to the fact that the plate bending rigidity increases
72 proportionally to the plate thickness cubed. For thin sheet steel connections tilting has been
73 recorded in the literature (Carril et al. 1994; Chong and Matlock 1975; Fox and Schuster 2006;
74 Rogers and Hancock 2000). The existence of tilting often complicates the pre-defined limit state
75 definitions, particularly when they are borrowed directly from hot-rolled steel, sometimes
76 causing misinterpretation of limit states. For bearing failure, it was found that plate curling/tilting
77 induces additional through-thickness shear stress (Rogers and Hancock 2000). The final fracture
78 limit state induced from tilting is two tearing paths originating from the hole to end of plate,
79 resembling net section failure. This has led to some interpretations of this bearing failure as net
80 section failure. Regarding the influence of tilting on connection strength, related numerical
81 research on bolted stainless steel connections has shown up to a 25% strength reduction
82 connection failure capacity due to tilting in net section or block shear failure (Soo Kim and
83 Kuwamura 2007). In the current literature and CFS specifications, the effect of tilting is not
84 directly addressed for bolted connections and thus needs further study. The study herein attempts
85 to answer these basic bolted connection issues by conducting a limited experimental program
86 consisting of both single-lap and double-lap bolted connection tests.

87 **Available Design Equations**

88 For a lap joint with a single bolt and geometry as shown in Fig. 3, there are a variety of strength
89 design expressions available in national specifications, and in the literature. This section
90 introduces the most prominent design methods in current use. A summary of all the design
91 equations discussed in this section can be found in Table 1.

92 **AISI S100-2007 end tear-out equation**

93 In the 2007 edition of the AISI Specification (AISI S100-2007), the shear rupture design

94 equation (E3.1) is specified as

$$P_n = teF_u \quad (1)$$

95 where t is the plate thickness, e is the end distance from the center of the hole, and F_u is the
96 ultimate strength of the plate. This design equation is based on the relation between bearing
97 stress σ_b and e/d ratio revealed from test data (Yu 1982), where d is the bolt diameter. For small
98 e/d ratio, it is found that $\sigma_b/F_u = e/d$. The equation $P_n = teF_u$ is obtained by substituting $\sigma_b =$
99 P_u/td into the previous relation. This equation was also adopted in Australian/New Zealand code
100 for end tear-out strength (AS/NZS 4600 2005).

101 **AISI S100-2012/2016 end tear-out equation**

102 In the 2012 and 2016 edition of the AISI Specification (AISI S100-2012, 2016), the shear
103 rupture design equation was updated. The new shear rupture design equation also appeared in the
104 2007 edition of the AISI Specification. However, in the 2007 edition, it was only used
105 specifically for beam-end type bolted connection, not for general bolted connections. The shear
106 rupture design equation for a lap joint with a single bolt is provided in 2016 as

$$P_n = 1.2te_{net}F_u \quad (2)$$

107 where e_{net} is the clear distance from the hole to the end. The ultimate shear stress at failure is
108 approximated as $0.6F_u$ and two shear planes exist. The factor of 0.6 is a widely established shear
109 coefficient, and is also supported by the experimental study conducted by Fox and Schuster
110 (2006), in which the factor 0.6 is back-calculated from $\sigma_b/F_u = P_u/2etF_u$. It is worth noting that
111 gross end distance e instead of net end distance e_{net} is used in this calculation. The AISI S100-

112 2012/2016 end tear-out equation is the same as the tear-out equations in the current and past
113 edition of AISC (American Institute of Steel Construction) Specification (AISC 360 2010, 2016),
114 when hole deformation at service load is a concern. When hole deformation is not a concern, the
115 shear coefficient of 0.75 is used in the AISC specification instead. There is a subtle difference
116 between the current and past AISC specifications: the current AISC Specification (AISC 360
117 2016) treats bearing and tear-out as separate limit states, while in the past edition (AISC 360
118 2010) tear-out is treated as a bearing limit state, although the design equations are the same.

119 ***Teh and Uz (2015) end tear-out equation***

120 A modification of Eq. (2) has been proposed by Teh and Uz (2015). Instead of using the net end
121 distance, the proposed equation adopts a shear path with length, L_{av} , being the average of gross
122 end distance and net end distance, where $L_{av} = e_{net} + d_h/4$, resulting in:

$$P_n = 1.2(e_{net} + d_h/4)tF_u \quad (3)$$

123 ***Xing et al. (2020) end tear-out equation***

124 A end tear-out equation has been recently proposed specifically for cold-reduced thin sheets by
125 Xing et al. (2020). The prediction is modified from Teh and Uz (2015) and adds an additional
126 factor, $(3d/e)^{1/5}$, which is used to account for catenary action of the material strip in the front of
127 bolt hole resulting in the following expression:

$$P_n = 1.2(3d/e)^{1/5}(e_{net} + d_h/4)tF_u \quad (4)$$

128 ***Eurocode ECS (2006) end tear-out equation***

129 Eurocode provides a related but slightly different methodology in EN-1993-1-3: 2006 (ECS
130 2006). Eurocode does not directly consider end tear-out as a separate failure mode; instead, the
131 end tear-out limit state is considered through the bearing design equation. The initial form looks

132 rather different from Eq. (1), but investigation reveals that it is essentially the same. The
133 Eurocode equation for nominal strength is,

$$P_n = 2.5\alpha_b k_t F_u dt \quad (5a)$$

134 where $\alpha_b = \min(1.0, e/3d)$ and $k_t = (0.8t + 1.5)/2.5$ for $0.75 \text{ mm} \leq t \leq 1.25 \text{ mm}$, $k_t = 1.0$
135 for $t > 1.25 \text{ mm}$. The usage of the factor α_b is responsible for transitioning the equation
136 between the basic form used for typical bearing failure, dtF_u , and the one for end tear-out failure,
137 teF_u . For the type of small end distance ratio where end tear-out failure dominates, $\alpha_b = e/3d$.
138 Eq. (5a) can be simplified to,

$$P_n = \begin{cases} (0.8t/3 + 0.5)teF_u & t \leq 1.25 \text{ mm} \\ teF_u/1.2 & t > 1.25 \text{ mm} \end{cases} \quad (5b)$$

139 **AISI S100-2016 screwed connection tilting/bearing equation**
140 A unique characteristic of thin plate cold-formed steel lap shear connections is the existence of
141 tilting. Tilting is only considered in screwed connection design by the AISI specification (AISI
142 S100 2016) – Section J4.3.1 specifies the strength as follows:

$$P_n = 4.2(t_2^3 d)^{1/2} F_{u2} \quad (6)$$

143 where t_2 and F_{u2} correspond, respectively, to the thickness and strength of the plate not in
144 contact with the screw head. It is worth noting that this equation only applies when t_2 is smaller
145 than t_1 , the thickness of the plate in contact with screw head.

146 **AISI S100-2016 bolted connection bearing equation**
147 In AISI S100-2016, there is no explicit equation for bolted connection failure modes involving
148 tilting. Instead, for the bearing design equation, a modification factor m_f is included to implicitly
149 consider tilting. For example, m_f is equal to 1.33 for a non-tilting case (i.e., inside sheet of a

150 double-lap configuration), while m_f is equal to 0.75 for one of the tilting cases (i.e., outside
151 sheet of a double-lap configuration).

$$P_n = Cm_f dt F_u \quad (7)$$

152 where C is bearing factor dependent on d/t ratio.

153 ***Teh and Uz (2017) tilting/bearing equation***

154 Teh and Uz (2017) investigated single-bolted lap joints with large end distance ($e/d > 3$) which
155 failed in a tilting-bearing mode. A tilting-bearing design equation was proposed, which considers
156 a power contribution for sheet thickness and sheet width.

$$P_n = 2.65d^{1/2}t^{4/3}w_{net}^{1/6}F_u \quad (8)$$

157 where w_{net} is the net sheet width, i.e. the sheet width minus the hole diameter.

158 **Testing Program and Test Set-up**

159 A test program on bolted connections in shear has been carried out at Johns Hopkins University
160 in the Thin-Walled Structures Lab. The tests consisted of single-lap and double-lap shear
161 configurations as shown in the uniaxial testing rig, Fig. 4, and in the schematic of Fig. 5. In total,
162 36 bolted connections were tested, including 18 single-lap shear connections and 18 double-lap
163 connections. Each single-lap connection is matched with a double-lap connection of the same
164 nominal geometry.

165 In these tests, beyond connection type, three other parameters were varied: hole diameter, sheet
166 thickness, and the ratio of end distance to hole diameter. Two bolt diameters were selected: 7.9
167 mm (5/16 in) and 11.1 mm (7/16 in). The bolts were placed in oversized holes. Per AISI S100
168 (2016), for bolt diameter equal or smaller than 12.7 mm (1/2 in.), bolt holes 1.6 mm (1/16 in.)

169 larger than the bolt diameter are classified as oversized. Two oversized bolt holes, 9.5 mm (3/8
170 in.) and 12.7 mm (1/2 in.), were used in the tests. In common cold-formed steel industry practice,
171 washers are rarely installed unless uniquely specified by the design engineer; therefore, no
172 washers were installed for the specimens. The majority of the bolts were installed loosely to
173 mitigate friction between the sheets. For eight test specimens in the first phase of testing, bolts
174 were installed snug tight by a wrench to a torque of 16.9 N·m (12.5 lbf·ft). These specimens are
175 12g-1/2-1.75dh-S, 12g-1/2-1.75dh-ID, 12g-3/8-1.50dh-S, 12g-1/2-1.50dh-S, 16g-1/2-1.50dh-ID,
176 12g-3/8-1.25dh-ID, 16g-1/2-1.25dh-S, 16g-1/2-1.25dh-ID. For later discussion, these specimens
177 are labeled with an asterisk for clarity. The bolts used in the testing were all hex-head SAE
178 Grade 8 bolts, with a minimum tensile strength of 1034 MPa (150 ksi), thus excluding the
179 possibility of bolt shear.

180 Since the failure mode of interest is connection end tear-out, it was essential to choose
181 connection configurations which eliminated unwanted failure modes. To eliminate bearing
182 failure, a small ratio of end distance to hole diameter (e/d_h) was selected; specifically: 1.75,
183 1.50 and 1.25. It is worth noting that in this paper end distance ratio is defined as end distance, e ,
184 to hole diameter, d_h . To avoid net section tension failure, the sheet width is set at 38 mm (1.5
185 in.) for the 9.5 mm (3/8 in.) hole diameter as shown in Fig. 6 (a) and 50 mm (2.0 in.) for the 12.7
186 mm (1/2 in.) hole diameter as shown in Fig. 6 (b).

187 The sheet material for the specimens with 0.84 mm (33 mil, 20 ga.) and 1.37 mm (54 mil, 16 ga.)
188 thickness were fabricated from cold-formed steel coils. The specimen with 2.46 mm (97 mil, 12
189 ga.) thickness was cut from the web of commercial cold-formed steel studs. The width of all the
190 specimens were milled to the desired dimension with a tolerance of 0.05 mm (0.002 in) to ensure

191 consistent width and avoid unwanted fracture. Mild steel was used throughout, with mechanical
192 properties as shown in Table 2 found by testing of coupons in accordance with ASTM E8
193 (ASTM 2016). The longitudinal material properties were used in all the calculations.

194 All bolted specimens were tested in a 440 kN (100 kip) MTS two post universal testing machine
195 (Fig. 4) with a 220 kN (50 kip) load cell with an accuracy of +/-20 N (4.5 lbf). The specimens
196 were secured at each end by mechanical grips. For single-lap connections, to overcome the slight
197 eccentricity induced in the testing rig, a 50 mm × 50 mm (2 in. × 2 in.) steel packing plate with
198 the same thickness as the specimen was installed at each end to eliminate eccentricity (Fig. 5).

199 Two-dimensional digital image correlation (DIC) techniques were applied in the testing program
200 to generate the strain field of the specimen under load. Before testing, the specimens were
201 painted with a white coating and a layer of black speckles were created over the white coating.
202 During the experiments, a camera, mounted in front of specimens, took pictures throughout the
203 process. The pictures collected by the camera were fed into Ncorr (Blaber et al. 2015), an open-
204 source DIC software, to perform the strain analysis.

205 **Test Results and Observations**

206 ***Failure observation***

207 All specimens failed by fracture initiating from the front of the bolt holes. The failures discussed
208 in this section refer to the complete and final fracture of the specimens. This occurs when a
209 specimen completely loses its load-bearing capacity. The failure modes of the single-lap and
210 double-lap connections share the same basic characteristics in that noticeable shear planes are
211 observed at both sides of the bolt hole. However, sheets in the double-lap connection remain in-

212 plane, Fig. 7 (a), while in the single-lap connections the sheets experience significant tilting as
213 shown in Fig. 7 (b).

214 For double-lap connections, the connection plate remained in-plane until the final fracture. Two
215 shear planes develop from each side of the deformed bolt hole. The shear planes develop at a
216 slight angle to the longitudinal direction (Fig. 7 (a)). Additionally, the shear planes do not initiate
217 at the net end distance, e_{net} , nor whole end distance, e . Instead, consistent with the observations
218 by Teh and Uz (2015), the beginning of the shear path is located between the hole end distance,
219 e , and net end distance, e_{net} .

220 In the case of single-lap connections, the eventual fracture is a mixture of end tear-out and tilting.
221 Tilting is observed to initiate shortly after testing begins and the degree of tilting consistently
222 increases until the final fracture. At final fracture, significant fastener rotation and sheet curling
223 are observed as shown for a typical failure in Fig. 7(b). The out-of-plane deformation induces
224 additional through-thickness tearing, as opposed to exclusively in-plane tearing as seen in the
225 double-lap connections. Also, unlike the double-lap connections whose shear planes are almost
226 parallel to each other, the shear planes in the single-lap connections are oriented at a larger angle
227 to one another. In addition, the single-lap connections do not display the behavior of sheet piling
228 in the front of the bolt holes, which is typical in double-lap connections.

229 ***Strength Reduction Due to Tilting***

230 The ultimate capacity of each connection specimen is provided in Table 3. The single-lap and
231 double-lap connections experience distinct limit states, with the double-lap failing in the classic
232 end tear-out mode while the single-lap fails in a mixture of end tear-out and tilting. In terms of
233 classical modes of fracture, it can be observed that the double-lap connections are driven by in-

234 plane shear (mode II), while the single-lap connections, due to the tilting, are a combination of
235 in-plane shear (mode II) and out-of-plane shear (mode III). Comparing the ultimate load of the
236 single and double-lap condition, as provided in Table 3, gives a measure of the impact of the
237 tilting on the strength.

238 Per Table 3 the single-lap connection strength is lower than its double-lap counterpart; except for
239 thicker sheet (12 or 16 gauge) with small end distance ($1.25d_h$). These results indicate that a
240 tilting-induced strength reduction for bolted connections should be considered. Based on the
241 observation of Table 3, the extent of the tilting-induced strength reduction is stronger for
242 specimens with thinner sheets or larger end distances. This result is reasonable, since the
243 connections with thinner sheets are more susceptible to tilting, and the connections with larger
244 end distance are less susceptible to end tear-out. Detailed examination of observed failure modes
245 and the participation of the possible deformations are explored in the next section via the
246 connection strain distribution determined from DIC analysis.

247 ***Load-deformation history and strain distribution***

248 The load-deformation history of the tested connections is provided in Fig. 8. Deformation in Fig.
249 8 is the actuator displacement and thus includes unwanted contributions from sheet elongation as
250 well as grip slippage, but since strength is the primary focus of this work, the data was found to
251 be sufficient for globally studying the limit states.

252 In comparison to the double-lap connections, the single-lap connections experience more
253 deformation at the ultimate capacity and eventual fracture. The larger deformation is attributed to
254 the tilting.

255 DIC is applied to this testing program as a tool to explore the behavior of the bolted connections.
256 Through analysis of the collected images, the von Mises strain evolution in the bolted
257 connections until the conclusion of testing can be obtained. As provided in Fig. 9, the von Mises
258 strain contours of the lower connected sheets at various stages of loading are shown. These
259 stages include 50% of the ultimate load, 100% of the ultimate load, and 20% of strength
260 degradation. With the aid of the pin hole loaded stress concentration chart (Schijve 2009) and
261 assumption of elastic material, the maximum strain at the front of the bolt hole can be estimated
262 at 25% of the ultimate load and 50% of the ultimate load. At the 25% of the ultimate load, the
263 estimated maximum strain is 0.0014 while the DIC strain is 0.0020. At the 50% of the ultimate
264 load, the estimated maximum strain is 0.0029 while the DIC strain is 0.0032. At both these load
265 levels, the DIC strains are in reasonable agreement with expectation providing confidence in the
266 observed DIC strain distribution.

267 Focusing on peak strength, the single-lap von Mises strain distributions for the tested specimens
268 as developed from DIC are provided in Fig. 11 (a) and (b). The spatial distributions of the von
269 Mises strain are similar among all the tested single-lap connections. The high-strain region
270 originates from the end of the hole in bearing with the bolt shaft and expands towards the end of
271 the connected plate. Transversely, the strain quickly dissipates once beyond the hole. One
272 interesting finding is the existence of a small low-strain area right in front of the hole. Most,
273 though not all the specimens, exhibit this strain feature at peak load. The existence of the small
274 low-strain area leaves the remaining high-strain area shaped as two shear planes, confirming the
275 tearing failure mode in the DIC observations.

276 The strain distributions from DIC provide an opportunity to examine the participation of end
277 tear-out and tilting in the combined failure mode. The perspective that single-lap connection
278 failure mode is a combined mode of end tear-out and tilting can be supported by the strain
279 distribution obtained from DIC. In Fig. 11 (a), a comparison of the strain distributions at a
280 section cut near the bolt hole is made between three specimens with the same geometry but
281 varying in thickness. Each strain distribution is normalized to the maximum strain of the
282 specimen. As shown in Fig. 11(a), the two thinnest specimens (which fail in tilting) are similar
283 and characteristically different from the thickest specimen, which fails without significant tilting.
284 A similar comparison of the strain distribution is provided as end distance is varied among the
285 thinnest (20 g) specimens in Fig. 11 (b). As shown in Fig. 11(b), at the smallest end distance the
286 observed strain at peak is influenced by end tear-out but less by the tilting observed in the larger
287 end distance tests. Overall, the failure form of the single-lap connections is a combined response
288 composed of (a) local response – end tear-out, and (b) global response – tilting, and the degree of
289 participation depends on specimen geometry.

290 **Comparison of Design Strength Predictions**

291 **General**

292 In this section, the ultimate loads of the tested specimens are compared against predictions by the
293 design equations previously summarized in Table 1. Comparison is conducted for each specimen
294 and summarized in Table 4 (see Table A-1 in Appendix A for the test-to-predicted ratio of
295 individual specimens). The design equations intended for tilting: AISI S100 J4.3.1 (2016) (Eq.
296 (6)), AISI S100 J.3.1 (2016) (Eq. (7)) and Teh and Uz (2017) (Eq. (8)) are applied only to the
297 single-lap specimens.

298 The summary statistics and reliability factors are summarized in Table 4. For the double-lap
299 connections, test results from other researchers (He and Wang 2011; Xing et al. 2020) are also
300 included in the data pool for analysis. The summary of the test-to-predicted ratios of each dataset
301 is shown in Table 5. It is worth noting that the specimens in this paper are made from mild steel
302 sheets with similar longitudinal and transverse properties (see Table 2), while the specimens by
303 Xing et al. (2020) are cold-reduced sheets with important differences in material properties
304 between longitudinal and transverse directions which must be considered.

305 For application to all specimens (single-lap and double-lap), there are two design equations that
306 maintain overall average conservatism: the 2016 AISI end tear-out equation, and the Eurocode
307 equation. Though underestimating strength for both single-lap and double-lap specimens, the
308 2016 AISI end tear-out equation is more conservative for double-lap (1.339) than single-lap
309 (1.118). The Eurocode equation also underestimates the strength of both the single-lap (1.098)
310 and the double-lap specimens (1.295). The 2007 AISI end tear-out equation along with Teh and
311 Uz (2015) equation are found to be unconservative for single-lap specimen, with the test-to-
312 predicted ratio of 0.877 and 0.883 respectively, although these two equations' prediction for
313 double-lap specimen are in good agreement with test data (1.071 and 1.067 respectively). The
314 newly proposed Xing et al. (2020) equation's predictions agree well with the double-lap
315 connections but overestimate the strength of the single-lap connections. Overall, for double-lap
316 connections, the 2007 AISI end tear-out equation, Teh and Uz (2015) equation and Xing et al.
317 (2020) equation all agree with test data with reasonable accuracy. These three design equations
318 share similar equation form and their differences in prediction are nonsignificant which are
319 dependent on equation parameter tuning. Therefore, the 2007 AISI end tear-out equation, Teh

320 and Uz (2015) equation and Xing et al. (2020) equation are all recommended for application to
321 double-lap connections.

322 As for design equations only applied to single-lap specimens, it is interesting to find that the
323 AISI bearing equation is significantly unconservative (0.791), further indicating that single-lap
324 specimen failure is different from the classic bearing failure. Both the AISI screw titling/bearing
325 equation and Teh and Uz (2017) equation are unconservative with respect to the test results. This
326 shows that the AISI screw titling/bearing equation cannot be directly applied to bolted
327 connection. Also, it is worth noting that Teh and Uz (2017) equation was initially developed
328 from connection tests with large end distances instead of small end distances discussed in this
329 paper.

330 ***Recommended design equations***

331 Based on the study in the previous sections, it is found that the current 2016 AISI end tear-out
332 equation does not fit the available data well for specific configurations, either being
333 unconservative or overly conservative, while the 2007 AISI end tear-out equation and the AISI
334 tilting/bearing equation each have its advantage in their most applicable conditions. Therefore, it
335 is recommended to simply take the minimum between the 2007 AISI end tear-out and the AISI
336 tilting/bearing equation (i.e., Eq. (1) and (5)):

$$P_n = \min(4.2(t_2^3 d)^{1/2} F_{u2}, 1.2 t e_{net} F_u) \quad (9)$$

337 As Teh and Uz (2015) has slightly superior performance over the 2007 AISI end tear-out
338 equation, it is also recommended that the minimum may be taken between Teh and Uz (2015)
339 equation and the AISI tilting/bearing equation (i.e., Eq. (3) and (5)).

$$P_n = \min(4.2(t_2^3 d)^{1/2} F_{u2}, 1.2(e_{net} + d_h/4)t F_u) \quad (10)$$

340 As shown in Table 4, both of the recommend equations provide reliable strength prediction, with
341 the mean test-to-predict ratio equal to 0.994 and 1.002 respectively.

342 ***Sheet thickness***

343 This section explores the design equations under different sheet thickness configurations for the
344 single-lap connections. As shown in Fig. 12, the design equations ignoring tilting, e.g., Eq. (1),
345 (2), (3), (4), (5), are less conservative at smaller sheet thickness. On the other hand, the design
346 equations considering tilting are more conservative for thinner sheets but less conservative for
347 thicker sheets, e.g., Eq. (6), (7), (8). The recommended procedures: Eq. (9) and (10), take
348 advantage of the two opposing trends to provide better strength prediction.

349 ***End distance***

350 This section explores the design equations under different end distance ratios for single-lap
351 connections. The design equations can be divided into two groups, those developed for end tear-
352 out - Eq. (1), (2), (3), (4), (5), (9), (10), and those for bearing - Eq. (6), (7), (8). As shown in Fig.
353 13, the design equations focusing on end tear-out are found to be more conservative at smaller
354 end distance ratios and less conservative at larger end distance ratios, which is the opposite for
355 the design equations developed for bearing. Similarly, taking advantage of these two opposing
356 trends, the recommended equations can achieve a more accurate strength prediction.

357 **Reliability of Recommended Equation**

358 Reliability of the recommended equations is studied in this section so that the resistance factor ϕ
359 and safety factor Ω can be calibrated. The basic procedure in Section K2.1 of AISI S100-2016 is
360 followed. According to the reliability procedure employed in AISI S100-2016, the resistance
361 factor ϕ for LRFD design may be calculated as follows:

$$\phi = C_\phi (M_m F_m P_m) e^{-\beta_0 \sqrt{V_M^2 + V_F^2 + V_P^2 + V_Q^2}} \quad (11)$$

362 In Eq. (11), the calibration efficient C_ϕ is equal to 1.52 and V_Q is equal to 0.21 for LRFD
 363 (Meimand and Schafer 2014). The target reliability index β_0 is taken as 3.5 for connections per
 364 AISI S100 (2016). As for the other statistical parameters, the values of P_m and V_P for the
 365 recommended method 1 and 2 have been determined in the previous section respectively as
 366 (0.994, 0.108) and (1.002, 0.119) for single-lap specimen. The remaining statistical parameters
 367 from AISI S100-2016 include $M_m = 1.10$, $V_M = 0.08$, $F_m = 1.00$, and $V_F = 0.05$.
 368 The results are provided in Table 4 and the resistance factor ϕ is determined to be 0.683 for
 369 recommend method 1 and 0.676 for recommend method 2. Both of the ϕ factors are rounded to
 370 0.68 as reported in Table 4. Accordingly, the ASD safety factor is 2.34 for recommended method
 371 1 and 2.37 for recommended method 2. Per editorial practice in AISI S100 ϕ may be rounded up
 372 to the nearest 0.05, i.e. 0.70, or perhaps for simplicity left the same as shear rupture, which is
 373 equal to 0.65.

374 **Discussion**

375 The single-lap connection differs from the double-lap connection due to the existence of tilting.
 376 The difference is reflected in observed limit states, ultimate load, and strain fields. The tilting
 377 introduces through-thickness tearing in the out-of-plane direction, perpendicular to the sheet
 378 plane. The additional shear is resisted by the sheet thickness. Different from in-plane tearing, the
 379 out-of-plane tearing is concentrated at the region of sheet separation, specifically the intercept of
 380 the sheet already torn and the remaining sheet to be torn. The authors hypothesize that the out-of-
 381 plane tearing is weaker than the in-plane tearing in both stiffness and strength. It would be

382 worthwhile to investigate if such a difference exists. Meanwhile, the degree of in-plane bending
383 may also affect behaviors. Conceptually, as the tilting angle increases, the out-of-plane tearing
384 direction becomes more aligned with the thickness direction as opposed to being skewed, which
385 should lead to lower tearing resistance. Knowledge of titling angle influence can improve
386 understanding of the strength reduction by tilting. It is also worth noting that the degree of tilting
387 decreases in multi-bolt configurations, in connections to sections, and potentially with other
388 details such as large washers. Additional study on these configurations and greater clarity on
389 under exactly what circumstances the tilting condition must be considered in design is needed.

390 In Table 3, the single-lap specimens at 1.25 end distance ratio with medium or high thickness are
391 shown to achieve strength equal to or slightly higher than their double-lap counterparts. The
392 tilting/curling effect in single-lap tests is reduced in specimens with small end distance and high
393 thickness configurations, Thus, the strength in single-lap specimens is similar to double-lap
394 specimens for those conditions. In addition, the authors hypothesize that the presence of the bolt
395 head and nut bearing during tilting modestly widens the edge tear out failure path potentially
396 leading to greater strength than in the double-lap condition where this does not occur. As shown
397 in Fig. 8, the load-deformation curves of single-lap specimens are occasionally accompanied
398 with sudden drops in load, e.g. 12g-3/8-1.50dh-S. The author hypothesizes that this phenomenon
399 is caused by bolt thread slipping over the hole edge as bolt rotates.

400 **Conclusion**

401 Tests on small end distance bolted lap joints have shown that tilting reduces the shear capacity of
402 the joints, indicating a need to explicitly incorporate the effect of tilting in current design
403 equations for bolted cold-formed steel connections. This paper recommends using the minimum

404 of two existing design equations: one for tilting/bearing and one for end tear-out, and shows that
405 this provides reliable strength prediction against the conducted testing. For double-lap
406 connections, this paper finds that several design equations provide acceptable reliability
407 including the end tear-out equation in AISI S100 (2007), as well as expressions developed by
408 Teh and Uz (2015), and Xing et al. (2020). Given that current industry practice often employs
409 minimal end distance in connection design, it is important to ensure accuracy of the equations so
410 that safety is assured as economy is pursued. The tests also highlight the uniqueness of cold-
411 formed steel design in which local sheet bending can influence connection strength, as opposed
412 to hot-rolled steel for which such effects are safely ignored. This paper does not address tilting
413 from a fundamental mechanics standpoint. However, establishing the fundamental means that
414 tilting alters lap-joint behavior is worth pursuing as future study, as are practical methods to limit
415 tilting in bolted connections.

416 **Data Availability Statement**

417 Some or all data, models, or code that support the findings of this study are available from the
418 corresponding author upon reasonable request, which include raw data points of tensile coupon
419 tests, raw data points of connection tests and all images used for DIC analysis.

420 **Acknowledgments**

421 This paper is based on the work supported by American Institute of Steel and Iron (AISI) Small
422 Fellowship Program - 1208430017. The authors are also grateful for the discussion with Prof.
423 Lip Teh (University of Wollongong Australia) about the connection tests during his visit at Johns
424 Hopkins University.

425 **References**

426 AISC 360. 2010. *Specification for Structural Steel Buildings*. AISC 360-10, American Institute
427 of Steel Construction, Chicago, Illinois.

428 AISC 360. 2016. *Specification for Structural Steel Buildings*. AISC 360-16, American Institute
429 of Steel Construction, Chicago, Illinois.

430 AISI. 1996. *North American Specification for the Design of Cold-Formed Steel Structural
431 Members*. AISI, American Iron and Steel Institute, Washington, DC.

432 AISI S100. 2007. *North American Specification for the Design of Cold-Formed Steel Structural
433 Members*. AISI S100-07, American Iron and Steel Institute, Washington, DC.

434 AISI S100. 2012. *North American Specification for the Design of Cold-Formed Steel Structural
435 Members*. AISI S100-12, American Iron and Steel Institute, Washington, DC.

436 AISI S100. 2016. *North American Specification for the Design of Cold-Formed Steel Structural
437 Members*. AISI S100-16, American Iron and Steel Institute, Washington, DC.

438 AS/NZS 4600. 2005. *Cold-formed steel structures*. Standards Australia ; Standards New
439 Zealand, Sydney, N.S.W.; Wellington [N.Z.]

440 ASTM E8/E8M. 2016. *Test Methods for Tension Testing of Metallic Materials*. ASTM
441 International. https://doi.org/10.1520/E0008_E0008M-16A.

442 Blaber, J., Adair, B., and Antoniou, A. 2015. “Ncorr: Open-Source 2D Digital Image Correlation
443 Matlab Software.” *Experimental Mechanics*, 55 (6), 1105–1122.
444 <https://doi.org/10.1007/s11340-015-0009-1>.

445 Carril, J. L., LaBoube, R. A., and Yu, W. 1994. *Tensile and bearing capacities of bolted
446 connections*. First Summary Report, Civil Engineering Study 94-1, University of
447 Missouri-Rolla, Rolla, Missouri, 185.

448 Chong, K. P., and Matlock, R. B. 1975. "Light-gage steel bolted connections without washers."

449 *Journal of the Structural Division*, 101 (7) : 1381–1391.

450 ECS. 2006. *Eurocode 3. Design of steel structures, Part 1.3 General rules - Supplementary rules*
451 *for cold formed thin gauge members and sheeting*. EN-1993-1-3: 2006, European
452 Committee for Standardisation, Brussels, Belgium.

453 Fox, D. M., and Schuster, R. M. 2006. "Single Bolted Tension Member Design - a New
454 Approach." *Proceedings of the Eighteenth International Specialty Conference on Cold-*
455 *Formed Steel Structures*, University of Missouri, Rolla, MO, 21.

456 He, Y. C., and Wang, Y. C. 2011. "Load–deflection behaviour of thin-walled plates with a single
457 bolt in shearing." *Thin-Walled Structures*, 49 (10), 1261–1276.
458 <https://doi.org/10.1016/j.tws.2011.05.008>.

459 Kulak, G. L., and Grondin, G. Y. 2001. "AISC LRFD rules for block shear in bolted
460 connections- A review." *Engineering Journal*, 38 (4), 199–203.

461 Meimand, V. Z., and Schafer, B. W. 2014. "Impact of load combinations on structural reliability
462 determined from testing cold-formed steel components." *Structural Safety*, 48, 25–32.
463 <https://doi.org/10.1016/j.strusafe.2013.10.006>.

464 Rogers, C. A., and Hancock, G. J. 1998. "Bolted connection tests of thin G550 and G300 sheet
465 steels." *Journal of Structural Engineering*, 124 (7) : 798–808.
466 [https://doi.org/10.1061/\(ASCE\)0733-9445\(1998\)124:7\(798\)](https://doi.org/10.1061/(ASCE)0733-9445(1998)124:7(798)).

467 Rogers, C. A., and Hancock, G. J. 2000. "Failure Modes of Bolted-Sheet-Steel Connections
468 Loaded in Shear." *Journal of Structural Engineering*, 126 (3) : 288–296.
469 [https://doi.org/10.1061/\(ASCE\)0733-9445\(2000\)126:3\(288\)](https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(288)).

470 Schijve, J. 2009. *Fatigue of structures and materials*. Springer, Dordrecht.

471 Soo Kim, T., and Kuwamura, H. 2007. "Finite element modeling of bolted connections in thin-
472 walled stainless steel plates under static shear." *Thin-Walled Structures*, 45 (4), 407–421.
473 <https://doi.org/10.1016/j.tws.2007.03.006>.

474 Teh, L. H., and Uz, M. E. 2015. "Ultimate Shear-Out Capacities of Structural-Steel Bolted
475 Connections." *Journal of Structural Engineering*, 141 (6) : 04014152.
476 [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0001105](https://doi.org/10.1061/(ASCE)ST.1943-541X.0001105).

477 Teh, L. H., and Uz, M. E. 2017. "Ultimate Tilt-Bearing Capacity of Bolted Connections in Cold-
478 Reduced Steel Sheets." *Journal of Structural Engineering*, 143 (4) : 04016206.
479 [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0001702](https://doi.org/10.1061/(ASCE)ST.1943-541X.0001702).

480 Winter, G. 1956. *Light gage steel connections with high-strength, high-torqued bolts*. Center for
481 Cold-Formed Steel Structures Library, 513–528.

482 Xing, H., Teh, L. H., Jiang, Z., and Ahmed, A. 2020. "Shear-Out Capacity of Bolted
483 Connections in Cold-Reduced Steel Sheets." *Journal of Structural Engineering*, 146 (4) :
484 04020018. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0002565](https://doi.org/10.1061/(ASCE)ST.1943-541X.0002565).

485 Yu, W. 1982. "AISI Design Criteria for Bolted Connections." *Proceedings of the Sixth
486 International Specialty Conference on Cold-Formed Steel Structures*, University of
487 Missouri, Rolla, MO, 675–698.

488 Zadanfarrokh, F., and Bryan, E. R. 1992. "Testing and Design of Bolted Connections in Cold
489 Formed Steel Sections." *Proceedings of the Eleventh International Specialty Conference
490 on Cold-Formed Steel Structures*, University of Missouri, Rolla, MO, 625–666.

491

492 **Appendix A**

493 This appendix lists the design equation comparison each test specimen in Table A-1. The design
494 equations considering tilting are only applied to single-lap connections.

495 **Notation**

A_{nv}	=	Area of shear plane (mm ²) [in ²]
C	=	Bearing factor
C_c	=	Correlation coefficient
C_P	=	Correction factor
C_ϕ	=	Calibration coefficient
d	=	Bolt diameter (mm) [in]
d_h	=	Bolt hole diameter (mm) [in]
e	=	End distance (mm) [in]
e_{net}	=	Net end distance (mm) [in]
F_m	=	Mean value of fabrication factor
F_u	=	Ultimate stress (MPa) [ksi]
F_{u2}	=	Ultimate stress of the sheet not in contact of screw head (MPa) [ksi]
F_y	=	Yield stress (MPa) [ksi]
k_t	=	Eurocode thickness modification factor
L_{av}	=	Active shear plane length (mm) [in]
M_m	=	Mean value of material factor
m_f	=	Connection type modification factor
P_m	=	Mean value of professional factor
P_n	=	Nominal strength (kN) [kip]
P_u	=	Ultimate load (kN) [kip]
$P_{u,s}$	=	Ultimate load of single-lap joint (kN) [kip]
$P_{u,d}$	=	Ultimate load of double lap joint (kN) [kip]
t	=	Sheet thickness (mm) [in]
t_2	=	Thickness of the sheet not in contact of screw head (mm) [in]
V_M	=	Coefficient of variation of material factor
V_F	=	Coefficient of variation of fabrication factor
V_P	=	Coefficient of variation of test results
V_Q	=	Coefficient of variation of load effect
W_{net}	=	Sheet net width (mm) [in]
ϕ	=	Resistance factor (LRFD)
Ω	=	Safety factor (ASD)
α_b	=	Eurocode bearing/tearing modification factor
β_0	=	Target reliability index
ϵ_u	=	Strain at the ultimate tensile stress (MPa) [ksi]
σ_b	=	Bearing stress (MPa) [ksi]

496

1 **Table 1.** Summary of design equations for comparison

Equation number	Source	Format
Eq. (1)	AISI S100 E4.3.2 (2007)	$P_n = teF_u$
Eq. (2)	AISI S100 J6.1 (2016)	$P_n = 1.2te_{net}F_u$
Eq. (3)	Teh and Uz (2015)	$P_n = 1.2(e_{net} + d_h/4)teF_u$
Eq. (4)	Xing et al. (2020)	$P_n = 1.2(3d/e)^{1/5}(e_{net} + d_h/4)teF_u$
Eq. (5)	EN 1993-1-3 (2006)	$P_n = \begin{cases} (0.8t/3 + 0.5)teF_u & t \leq 1.25 \text{ mm} \\ teF_u/1.2 & t > 1.25 \text{ mm} \end{cases}$
Eq. (6)	AISI S100 J4.3.1 (2016)	$P_n = 4.2(t_2^3 d)^{1/2} F_{u2}$
Eq. (7)	AISI S100 J3.3.1 (2016)	$P_n = Cm_f dt F_u$
Eq. (8)	Teh and Uz (2017)	$P_n = 2.65d^{1/2} t^{4/3} w_{net}^{1/6} F_u$

2
3**Table 2.** Average material properties

Thickness, t mm (mil, ga.)	Longitudinal				Transverse			
	Mean F_y MPa (ksi)	Mean F_u MPa (ksi)	Mean ε_u	Quantity	Mean F_y MPa (ksi)	Mean F_u MPa (ksi)	Mean ε_u	Quantity
0.84 (33, 20)	328 (47.6)	397 (57.6)	0.223	3	370 (53.7)	390 (56.6)	0.168	2
1.37 (54, 16)	401 (58.1)	483 (70.1)	0.166	2	412 (59.8)	482 (69.9)	0.139	6
2.46 (97, 12)	353 (51.2)	472 (68.5)	0.176	3	350 (50.8)	485 (70.4)	0.141	2

4

5 **Table 3.** Comparison of ultimate load between single-lap (titling) and double-lap (non-tilting)
6 connections

Specimen	Single-lap		Double-lap		Single/Double
	$P_{u,s}$, kN (kip)	$P_{u,d}$, kN (kip)	$P_{u,s}/P_{u,d}$		
20g-3/8-1.75dh	4.98	(1.12)	5.27	(1.19)	0.944
16g-3/8-1.75dh	10.03	(2.26)	10.78	(2.42)	0.931
12g-3/8-1.75dh	17.46	(3.93)	21.84	(4.91)	0.800
20g-1/2-1.75dh	4.62	(1.04)	7.14	(1.60)	0.647
16g-1/2-1.75dh	10.41	(2.34)	14.31	(3.22)	0.728
12g-1/2-1.75dh	24.68*	(5.55)*	27.93*	(6.28)*	0.884
Mean					0.822
C.o.V.					0.145
20g-3/8-1.50dh	4.21	(0.95)	5.15	(1.16)	0.817
16g-3/8-1.50dh	9.12	(2.05)	9.08	(2.04)	1.003
12g-3/8-1.50dh	18.11*	(4.07)*	18.32	(4.12)	0.989
20g-1/2-1.50dh	4.91	(1.10)	6.38	(1.43)	0.770
16g-1/2-1.50dh	10.77	(2.42)	12.53*	(2.82)*	0.859
12g-1/2-1.50dh	22.91*	(5.15)*	25.42	(5.71)	0.901
Mean					0.890
C.o.V.					0.105
20g-3/8-1.25dh	3.70	(0.83)	4.13	(0.93)	0.896
16g-3/8-1.25dh	9.04	(2.03)	7.57	(1.70)	1.194
12g-3/8-1.25dh	15.56	(3.50)	15.24*	(3.43)*	1.021
20g-1/2-1.25dh	4.99	(1.12)	5.16	(1.16)	0.967
16g-1/2-1.25dh	11.39*	(2.56)*	10.13*	(2.28)*	1.125
12g-1/2-1.25dh	21.41	(4.81)	19.58	(4.40)	1.094
Mean					1.049
C.o.V.					0.104
Mean (all)					0.920
C.o.V. (all)					0.153

7 * Snug-tight bolt installation at the torque of 16.9 N·m (12.5 lbf·ft)
8

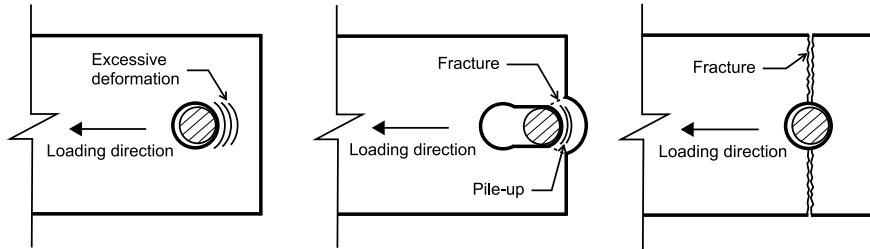
9 **Table 4.** Comparison of test-to-predicted ratios between design equations

Number	Design equation	Single-lap			Double-lap		
		P_u/P_n	ϕ	Ω	P_u/P_n	ϕ	Ω
Eq. (1)	AISI S100 E4.3.2 (2007)		0.55	2.93		0.77	2.08
		Mean	0.877		1.071		
		C.o.V.	0.163		0.072		
Eq. (2)	AISI S100 J6.1 (2016)		0.61	2.60		0.86	1.86
		Mean	1.118		1.339		
		C.o.V.	0.219		0.148		
Eq. (3)	Teh and Uz (2015)		0.53	3.04		0.75	2.12
		Mean	0.883		1.067		
		C.o.V.	0.184		0.087		
Eq. (4)	Xing et al. (2020)		0.49	3.26		0.69	2.32
		Mean	0.790		0.961		
		C.o.V.	0.165		0.071		
Eq. (5)	EN 1993-1-3 Table 8.4 (2006)		0.71	2.26		0.94	1.70
		Mean	1.090		1.295		
		C.o.V.	0.141		0.063		
Eq. (6)	AISI S100 J4.3.1 (2016)		0.55	2.90		n/a	n/a
		Mean	0.913		n/a		
		C.o.V.	0.177		-		
Eq. (7)	AISI S100 J3.3.1 (2016)		0.55	2.90		n/a	n/a
		Mean	0.791		n/a		
		C.o.V.	0.098		-		
Eq. (8)	Teh and Uz (2017)		0.57	2.80		n/a	n/a
		Mean	0.864		n/a		
		C.o.V.	0.131		-		
Eq. (9)	Recommended method (1) min(Eq. (1) and (5))		0.68	2.34		n/a	n/a
		Mean	0.994		n/a		
		C.o.V.	0.108		-		
Eq. (10)	Recommended method (2) min(Eq. (3) and (5))		0.68	2.37		n/a	n/a
		Mean	1.002		n/a		
		C.o.V.	0.119		-		

10 Note. Measured thickness, geometry, and material properties used in P_n predictions.11 **Table 5.** Summary of test-to-predicted ratios of different datasets

	Quantity	Eq. (1)	Eq. (2)	Eq. (3)	Eq. (4)	Eq. (5)
This paper	18	0.96	1.21	0.96	0.86	1.20
Xing et al. (2020)	60	1.10	1.36	1.09	0.98	1.32
He and Wang (2011)	4	1.17	1.55	1.19	1.06	1.41

12

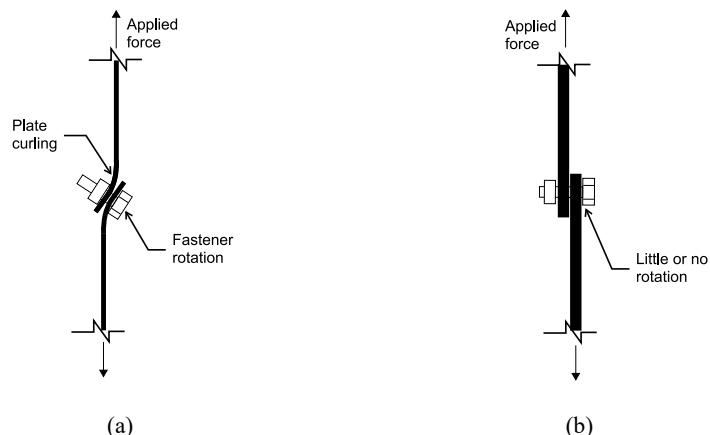

13

14

Table A-1. List of test-to-predicted ratio for all specimens

Specimen	Test-to-predicted ratio P_u/P_n									
	Eq. (1)	Eq. (2)	Eq. (3)	Eq. (4)	Eq. (5)	Eq. (6)	Eq. (7)	Eq. (8)	Eq. (9)	Eq. (10)
20g-3/8-1.75dh-S	0.824	0.957	0.799	0.746	1.105	1.221	0.951	1.102	1.221	1.221
16g-3/8-1.75dh-S	0.887	1.029	0.861	0.804	1.065	1.076	0.900	1.042	1.076	1.076
12g-3/8-1.75dh-S	0.832	0.982	0.813	0.753	0.998	0.698	0.809	0.749	0.832	0.813
20g-1/2-1.75dh-S	0.575	0.667	0.558	0.516	0.774	0.971	0.777	0.827	0.971	0.971
16g-1/2-1.75dh-S	0.655	0.764	0.637	0.588	0.786	0.855	0.653	0.791	0.855	0.855
12g-1/2-1.75dh-S	0.872	1.020	0.849	0.782	1.047	0.849	0.827	0.863	0.872	0.849
20g-3/8-1.50dh-S	0.813	1.014	0.812	0.734	1.089	1.026	0.799	0.927	1.026	1.026
16g-3/8-1.50dh-S	0.958	1.197	0.958	0.865	1.150	0.985	0.822	0.952	0.985	0.985
12g-3/8-1.50dh-S	0.935	1.161	0.933	0.844	1.122	0.688	0.811	0.743	0.935	0.933
20g-1/2-1.50dh-S	0.742	0.920	0.740	0.663	1.011	1.096	0.877	0.927	1.096	1.096
16g-1/2-1.50dh-S	0.806	1.001	0.804	0.720	0.967	0.925	0.710	0.851	0.925	0.925
12g-1/2-1.50dh-S	0.933	1.165	0.932	0.834	1.119	0.780	0.762	0.793	0.933	0.932
20g-3/8-1.25dh-S	0.826	1.133	0.856	0.748	1.098	0.871	0.676	0.789	0.871	0.871
16g-3/8-1.25dh-S	1.169	1.621	1.217	1.060	1.403	1.018	0.837	0.980	1.169	1.217
12g-3/8-1.25dh-S	1.004	1.385	1.043	0.910	1.205	0.628	0.725	0.672	1.004	1.043
20g-1/2-1.25dh-S	0.868	1.201	0.903	0.779	1.165	1.033	0.826	0.881	1.033	1.033
16g-1/2-1.25dh-S	1.043	1.449	1.087	0.937	1.252	0.989	0.760	0.909	1.043	1.087
12g-1/2-1.25dh-S	1.052	1.460	1.095	0.944	1.262	0.734	0.716	0.746	1.052	1.095
20g-3/8-1.75dh-ID	0.890	1.038	0.865	0.806	1.200	n/a	n/a	n/a	n/a	n/a
16g-3/8-1.75dh-ID	0.948	1.100	0.919	0.858	1.137	-	-	-	-	-
12g-3/8-1.75dh-ID	1.034	1.204	1.005	0.936	1.241	-	-	-	-	-
20g-1/2-1.75dh-ID	0.935	1.086	0.908	0.839	1.278	-	-	-	-	-
16g-1/2-1.75dh-ID	0.942	1.107	0.919	0.844	1.131	-	-	-	-	-
12g-1/2-1.75dh-ID	0.988	1.155	0.962	0.886	1.186	-	-	-	-	-
20g-3/8-1.50dh-ID	1.044	1.308	1.045	0.943	1.416	-	-	-	-	-
16g-3/8-1.50dh-ID	0.988	1.247	0.992	0.893	1.186	-	-	-	-	-
12g-3/8-1.50dh-ID	0.989	1.227	0.986	0.893	1.187	-	-	-	-	-
20g-1/2-1.50dh-ID	0.893	1.111	0.891	0.798	1.184	-	-	-	-	-
16g-1/2-1.50dh-ID	0.905	1.131	0.905	0.810	1.087	-	-	-	-	-
12g-1/2-1.50dh-ID	1.041	1.297	1.040	0.931	1.249	-	-	-	-	-
20g-3/8-1.25dh-ID	0.959	1.309	0.993	0.869	1.296	-	-	-	-	-
16g-3/8-1.25dh-ID	0.917	1.250	0.949	0.831	1.101	-	-	-	-	-
12g-3/8-1.25dh-ID	0.993	1.357	1.028	0.899	1.191	-	-	-	-	-
20g-1/2-1.25dh-ID	0.854	1.173	0.886	0.766	1.130	-	-	-	-	-
16g-1/2-1.25dh-ID	0.958	1.365	1.007	0.862	1.149	-	-	-	-	-
12g-1/2-1.25dh-ID	0.968	1.344	1.008	0.869	1.162	-	-	-	-	-

1

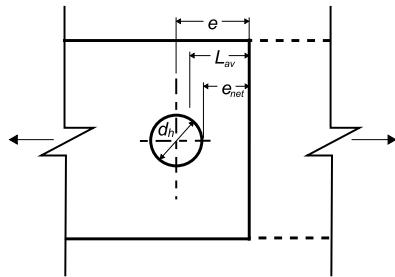

(a)

(b)

(c)

Fig. 1. Failure modes of connected plates (a) bearing failure (b) end tear-out failure (c) net section fracture failure

2


(a)

(b)

Fig. 2. Schematic deformation of thin-plate and thick-plate single-lap shear connections with single bolt (a) tilting in thin plates (b) and little to no tilting in thick plates

3

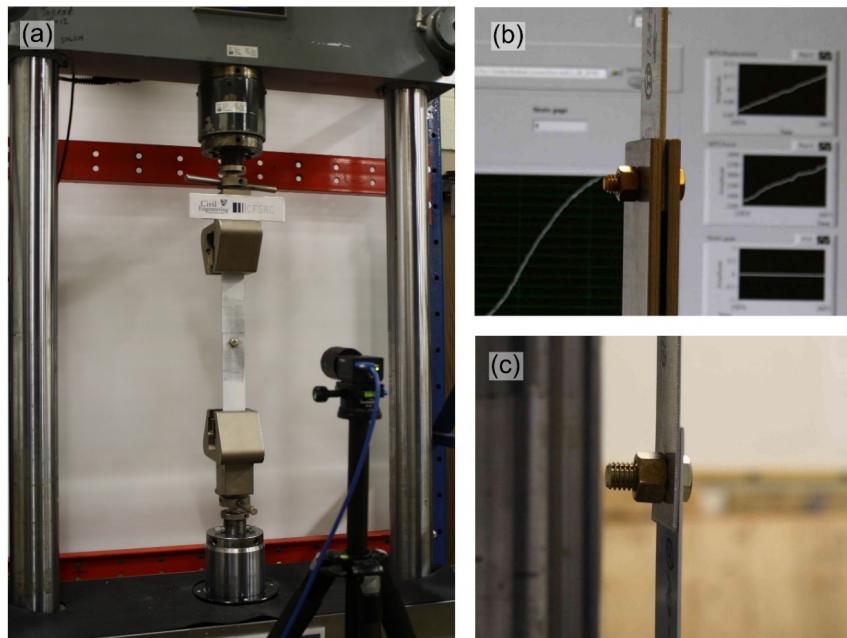
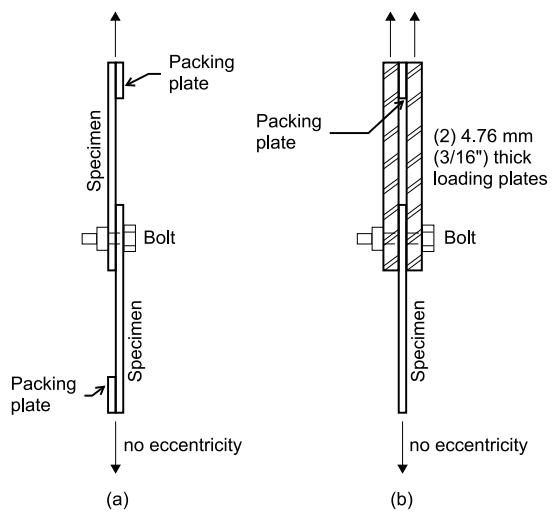

1

Fig. 3. Example dimensions of a single-lap shear bolted connection


4

Formatted: Font: Not Bold

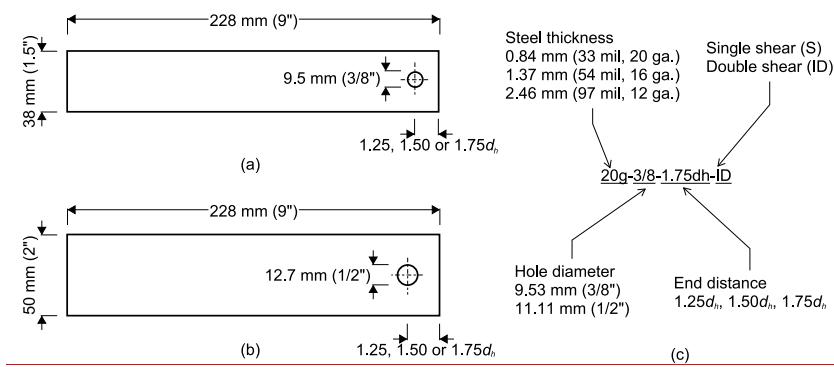
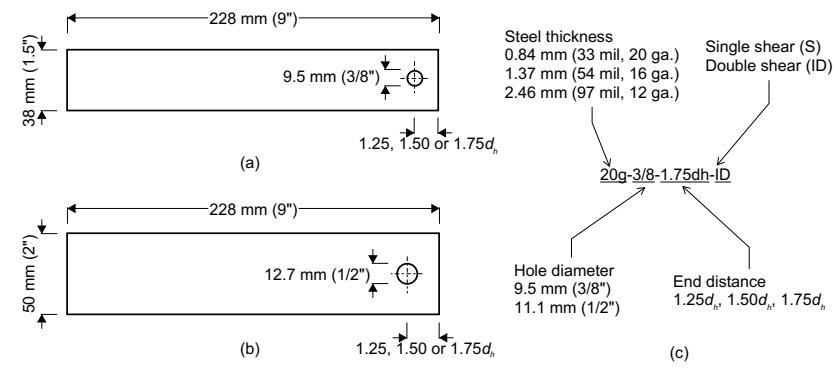
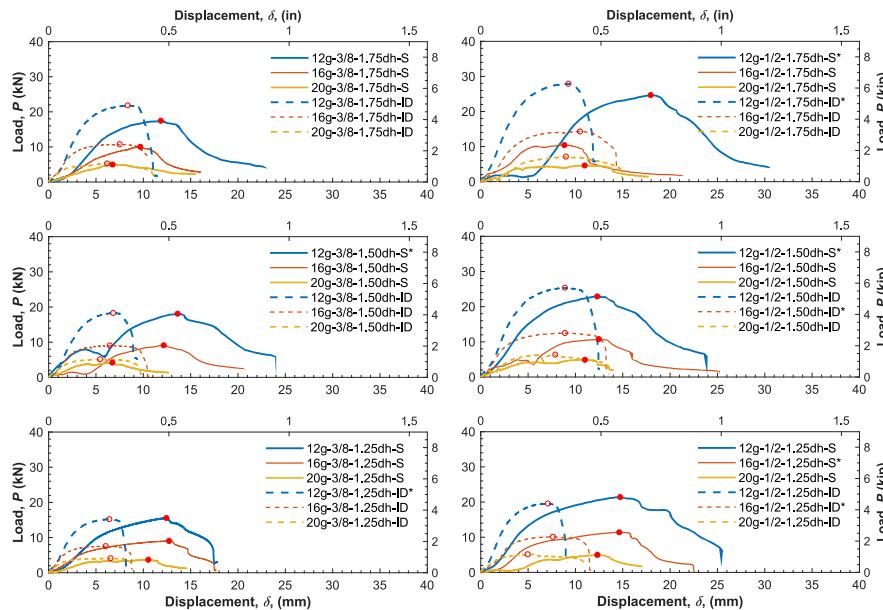



Fig. 4. Test set-up (a) MTS loading machine (b) double-lap connection (c) single-lap connection

5

Fig. 5. Schematic view of testing (a) single-lap connection (b) double-lap connection

Fig. 6. Schematic view of specimen (a) specimen for 9.5 mm (3/8 in.) hole diameter (b) specimen for 12.7 mm (1/2 in.) hole diameter (c) specimen designation


(a)

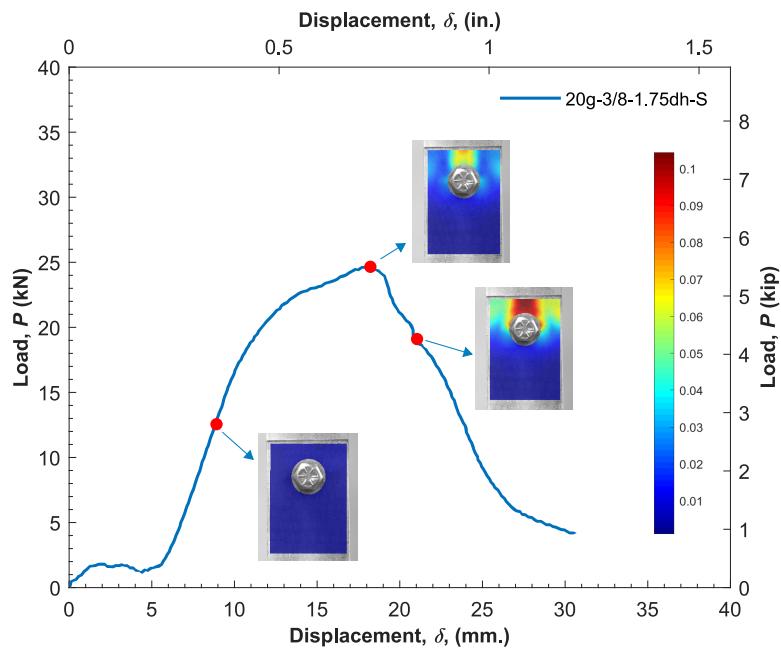
(b)

Fig. 7. Failure forms (a) double-lap (b) single-lap

8

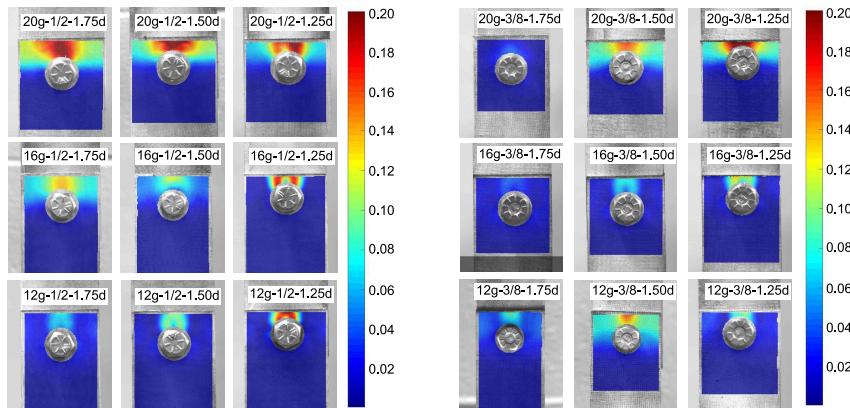
* Snug-tight bolt installation at the torque of 16.9 N·m (12.5 lbf·ft)

* Snug-tight bolt installation at the torque of 16.9 N·m (12.5 lbf·ft)


Fig. 8. Load deformation curves of single-lap and double-lap connections

9

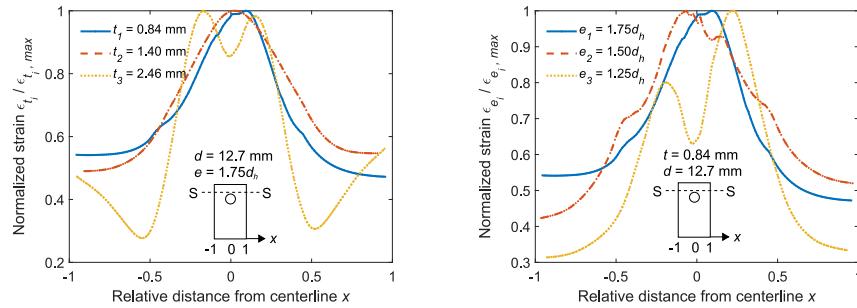
Formatted: Font: (Default) Times New Roman


Formatted: Font: (Default) Times New Roman, 11 pt

Formatted: Font: (Default) Times New Roman

Fig. 9. Connection equivalent von Mises strain evolution over the load-deformation history

10



(a)

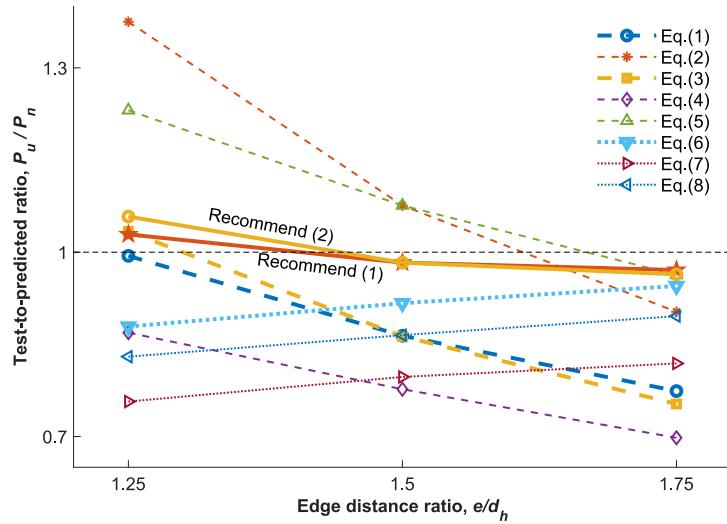
Fig. 10. Connection responses at peak load (a) DIC strain contours of 1/2 in. hole diameter series specimens (b) DIC strain contours of 3/8 in. hole diameter series specimens

11

(b)

(a)

Fig. 11. Strain distributions near bolt hole (a) varying thickness (b) varying end distance


12

(b)

Fig. 12. Test-to-predicted ratio versus sheet thickness for single-lap connections

13

Fig. 13. Test-to-predicted ratio versus end distance ratio for single-lap connections