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A B S T R A C T

As large point cloud datasets become ubiquitous in the Earth science community, open source libraries and
software dedicated to manipulating these data are valuable tools for geospatial scientists and practitioners.
We highlight an open source library called the Point Data Abstraction Library, more commonly referred to
by its acronym: PDAL. PDAL provides a standalone application for point cloud processing, a C++ library for
development of new point cloud applications, and support for Python, MATLAB, Julia, and Java languages.
Central to PDAL are the concepts of stages, which implement core capabilities for reading, writing, and filtering
point cloud data, and pipelines, which are end-to-end workflows composed of sequential stages for transforming
point clouds. We review the motivation for PDAL’s genesis, describe its general structure and functionality,
detail several options for conveniently accessing PDAL’s functionality, and provide an example that uses PDAL’s
Python extension to estimate earthquake surface deformation from pre- and post-event airborne laser scanning
point cloud data using an iterative closest point algorithm.
1. Introduction

The use of point clouds derived from lidar observations and pho-
togrammetric methods has led to a revolution of fundamental dis-
coveries in the Earth sciences (Glennie et al., 2013; Telling et al.,
2017) in diverse fields such as snow depth estimation (Deems et al.,
2013), active tectonics (Meigs, 2013), and the study of mass and energy
transfer across landscapes (Passalacqua et al., 2015). According to Eitel
et al. (2016), the number of studies included in the ISI Web of Science
Core Collection containing the keywords lidar AND (earth OR ecology)
has doubled since 2007, while the number of papers cited containing
these keywords has increased six-fold. Many of the discoveries in these
studies were based on interpretation and analysis of high-resolution
digital elevation models (DEMs), i.e., 2.5D raster datasets, generated
from the originally observed point cloud data. However, new discov-
eries increasingly benefit from direct analysis of the raw lidar point
cloud observations, e.g., Ekhtari and Glennie (2018) and Scott et al.
(2018), which require specialized tools for extraction, manipulation,
nd analysis of the unordered 3D point data.
Invariably, because of differences in data formats, resolution, classi-

ication schemes, or reference coordinate systems, individual geospatial
oint cloud datasets need a variety of pre-processing tasks applied to
hem before they are suitable for ingestion into point cloud analysis
pplications or custom algorithms. However, the large size of 3D point
loud datasets, typically numbering in millions to billions of points,
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requires the use of specialized, scalable algorithms in order to apply
these initial processing steps in an efficient manner. Although the use
of point cloud observations in the Earth sciences has increased dra-
matically, there remains a paucity of open source tools and algorithms
specifically designed for geospatial point cloud pre-processing, filtering,
and analysis.

Many open source libraries that support the management and pro-
cessing of point cloud data do not incorporate geospatial reference
frame and datum transformations or broad format input/output and
translation capabilities. Instead, their focus is on core processing tasks
often of interest to the computer science field such as feature segmenta-
tion and point clustering, cloud to cloud registration, mesh and raster
creation, or 3D visualization. Examples include Open3D (Zhou et al.,
2018), Cilantro (Zampogiannis et al., 2018), 3DTK (3DTK, 2020), and
PCL (Rusu and Cousins, 2011). A popular point cloud software suite
that does focus on the geospatial community is LAStools (Isenburg,
2020), which allows users to orchestrate point cloud data workflows
through composition of individual command line utilities. However,
LAStools utilizes a hybrid open source licensing scheme with some
components requiring commercial licenses, and it is tuned for working
with the American Society for Photogrammetry and Remote Sensing
(ASPRS) LAS (LASer) data model (ASPRS, 2019).

In addition to open source libraries and command line tools, a
number of open source graphical user interface software are also used
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Fig. 1. General pipeline concept. Each box represents a sequential stage in the pipeline. Note that the ‘‘Merge’’ stage is categorized as a filter.
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within the Earth science community, such as CloudCompare (Cloud-
ompare, 2020) and BCAL (BCAL, 2020). However, these types of
oftware packages exhibit a lack of extensibility and integration con-
enience to allow them to be easily placed in the context of larger
oftware systems. Thus, there remains a significant need for flexible
nd extensible open source tools for use with large, high resolution 3D
oint cloud models in the Earth science fields.
The Point Data Abstraction Library (PDAL) fills this geospatial

oint cloud software niche by providing abstract access, filtering, ex-
loitation, and workflow management capabilities in an open source
ackage. PDAL is a C++ library with a JSON-based processing pipeline
omain-specific language, Python, Java, Julia, and MATLAB support,
nd a convenient command line application. This multi-tiered approach
llows a diverse audience of application developers, data processors,
nd scientists to use the capabilities of the library in familiar and
onvenient environments. In addition to handling over 30 data formats
nd robust geospatial reference frame and datum transformation ca-
abilities, PDAL incorporates a broad array of point cloud processing
ptions from basic ordering and culling to advanced feature generation,
oint clustering, registration, and meshing.
This article reviews the motivation for developing PDAL and its

asic architecture, describes its extensive functionality, highlights con-
enient methods for using PDAL with a focus on PDAL’s Python sup-
ort, and provides a reference implementation of PDAL that measures
he geospatial change that occurred due to the August 2014 Napa,
alifornia earthquake.

. The PDAL library

PDAL evolved from the data management and translation activities
entered around the libLAS library (Butler et al., 2019). The libLAS
ibrary addressed early challenges of using lidar data stored in the LAS
ormat, chief of which was the lack of software packages or libraries
hat provided native LAS reading and writing abilities. Through devel-
pment of libLAS – which is currently in maintenance-only mode – it
ecame clear that a library designed for geospatial point cloud data
rocessing and management was needed that could:

(1) Utilize a declarative directed graph workflow syntax, i.e., a pipeline
syntax, for users to compose read, filter, and write steps into a
single workflow activity.

(2) Accommodate a dynamic data model, where data can be composed
of any user- or format-defined schema rather than fixed data
arrangements.

(3) Allow dynamic plugins, both open source and proprietary, that use
external libraries to extend the library’s built-in read, filter, and
write capabilities.

(4) Provide an abstract C++ API for geospatial point cloud formats
focused on extract, transform, and load (ETL) operations that en-
ables developers to directly integrate the library’s functionality
into their own C++ projects.

The initial 1.0.0 release of PDAL was made in September of 2015,
ut the library was used internally by the U.S. Army Corps of En-
ineers Cold Regions Research and Engineering Laboratory (CRREL)
hroughout its entire development period. The library is released at
oughly semi-annual intervals, and each release brings new capabilities,
dditional documentation, and enhanced performance. Early releases
2

f PDAL focused on data format translation with an emphasis on
eospatial data types and enhanced with additional capabilities to crop,
plit, or transform points into different spatial reference systems. Since
hen, most development activity has focused on adding and enhancing
iltering capabilities, with additional read and write format drivers
dded as needed.
PDAL has been released as open source software (BSD license)

ince its inception. Documentation and source code are available from
he project website (https://pdal.io) with ongoing development coordi-
ated via GitHub (https://github.com/PDAL/PDAL). PDAL binaries are
vailable on all major operating systems via Conda (https://anaconda.
rg/conda-forge/pdal), Docker users can access PDAL via Docker Hub
https://hub.docker.com/r/pdal/pdal), and major Linux distributions
uch as RedHat and Debian include PDAL in their respective geographic
nformation system (GIS) packaging sub-distributions.

.1. Pipelines

PDAL’s distinguishing design choice is to model the processing of
oint cloud data using the concept of a pipeline, or a directed graph.
oint cloud data is read from a set of input sources using format-specific
eaders, the data is passed through various filters that transform data or
reate metadata, and the data is then written to an output stream using
ormat-specific writers. The general concept of a pipeline is illustrated
n Fig. 1. Each of the sequential actions, or processing modules, applied
o a point cloud is referred to as a ‘‘stage’’ and falls into one of three
ategories: reader, filter, or writer.
Fig. 1 emphasizes the sequential nature of pipeline stage execution.

ote that when a new reader stage is encountered, subsequent filter
tages are applied only to the most recent data source. PDAL pipelines
lso support writing data to multiple output streams, i.e., multiple
riter stages can be included in a pipeline. However, pipeline stages
re always executed sequentially, never in parallel.
Stages can be composed into pipelines using a JSON array repre-

entation, with each stage name prefaced by its category. For example,
simple pipeline that reads a point cloud from a LAS format file

readers.las), applies a spatial filter to keep only those points
nside specified X and Y coordinate ranges (filters.crop), and
rites the cropped point cloud to a text format file (writers.text)
an be expressed in JSON as:

Note that most stages have a number of options, some of which are
required. For example, the readers.las stage requires the file-
name option and the filters.crop stage requires a bounds or

https://pdal.io
https://github.com/PDAL/PDAL
https://anaconda.org/conda-forge/pdal
https://anaconda.org/conda-forge/pdal
https://anaconda.org/conda-forge/pdal
https://hub.docker.com/r/pdal/pdal
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polygon option. Significantly more complex and powerful pipelines
than the example given above can be created (see https://pdal.io/
pipeline.html for additional examples). However, the fundamental con-
cept remains the same: readers provide data elements to the pipeline
by reading one or more point cloud files, optional filters operate on the
ata as inline operations, and writers consume the data provided by the
eaders and write it to one or more data streams.
Pipelines saved in JSON format files can be conveniently executed

sing PDAL’s command line application, pdal, which is reviewed in
ection 4.1. Pipelines can also be executed with PDAL’s Python and
ava bindings, with the ability to apply further custom processing steps
o the resultant point cloud using the facilities of those languages. A
ipeline model provides several advantages over specific applications,
.g., command line tools that perform certain operations such as format
ranslation or data reprojection. These advantages include:

(1) The pipeline serves as a record of the operations applied to the
data.

(2) A skeleton of an operation can be constructed and specific
options (e.g., filenames) substituted.

(3) Complex pipeline operations can be constructed using the JSON
manipulation facilities in a user’s chosen software language.

.2. Data model

In order to be useful, all point cloud formats must contain data
lements that provide some notion of spatial location (e.g., XYZ coor-
inates). Beyond location, however, the data housed in various formats
ay or may not have common data fields. Some formats predefine
he data elements that make up a point, while other formats provide
his information in a header or preamble. PDAL is format-agnostic, and
herefore supplies a large selection of predefined data elements that are
n common use by the formats that it currently supports. These data
lements are referred to as ‘‘dimensions’’ in PDAL, where a dimension
escribes the combination of data type, size, and meaning. For example,
he GpsTime dimension is a double data type, 64 bits in size, and
epresents the GPS time that a laser pulse was emitted by a lidar sensor.
PDAL currently supplies over 70 different dimensions. A complete

isting can be found at https://pdal.io/dimensions.html. In addition to
hese predefined data dimensions, new dimensions with desired names
nd data types can be created by extending PDAL’s C++ API, e.g., to
upport a custom data format reader that contains a data element not
efined in the current set of dimensions. Information and examples on
xtending PDAL’s C++ API are found on the project website (https:
/pdal.io).

.3. Plugins

A plugin is a stage (a reader, writer, or filter) that has dependencies
hich are considered optional to the core PDAL project. Most of the
nown PDAL plugins (others could be proprietary) are packaged with
DAL and can optionally be built alongside PDAL when building the
oftware from source. In most cases this allows the plugins to be tested
ith each PDAL build. Note that since plugins require external libraries,
ome plugins may not be included in the versions of PDAL installed via
onda. In these situations, users must obtain the required libraries and
uild PDAL from source on their local machine.
Three plugins that are openly published, but are external to PDAL,

re: filters.align3d, writers.shr3d, and writers.prc.
he first two were developed by the Johns Hopkins University Applied
hysics Laboratory and can be found at https://github.com/pubgeo/
ubgeo. The filters.align3d plugin is a data registration ap-
roach, while writers.shr3d produces bare earth digital elevation
odels (DEMs). The third external plugin, writers.prc, was created
y PDAL contributors to generate PDF content with an embedded point
loud according to the PRC (Adobe Product Representation Compact)
pecification (ISO, 2014). It has been kept separate from the PDAL
3

odebase due to licensing.
.4. C++ API

PDAL provides a C++ API that can be used by programmers for
ntegrating PDAL into their own projects or extending PDAL’s ex-
sting capabilities. Documentation is supplied on PDAL’s website at
ttps://pdal.io/api/cpp/index.html, and the test suite and source code
ontained in PDAL’s GitHub repository are recommended learning re-
ources. In the interests of brevity and relevance to the widest audience,
he C++ API is not detailed here. Rather, several convenient methods
or accessing PDAL’s functionality via PDAL’s command line application
nd Python binding are detailed in Section 4.

3. Functionality

PDAL offers more than 100 reading, writing, and filtering stages.
Rather than an exhaustive listing of the current stages (that would
rapidly become outdated), we group the stages and provide general
remarks about typical stage capabilities within each group. Documen-
tation for all of PDAL’s available stages is found on PDAL’s website.

3.1. Readers and writers

Because of PDAL’s history as an ETL data management tool focused
on geospatial lidar, support for commonly encountered geospatial-
centric formats in that domain is heavily emphasized. These include
complete support for all point type variants of the ASPRS LAS format
and its compressed counterpart, LASzip (Isenburg, 2013). Support for
openly specified data formats such as BPF (NGA, 2005), PLY, PCD (PCD,
2020), TileDB (Papadopoulos et al., 2016) and text/CSV is also pro-
vided. Proprietary format support is provided by a number of binary
software development kits and corresponding plugin implementations.
These include database drivers for Oracle and PostgreSQL and binary
formats such as Terrasolid, MrSID, and Riegl’s RXP and RDB formats.

3.2. Filters

Filters can remove, modify, reorganize, and add points to the data
stream as it is processed. PDAL filters also commonly create new
dimensions or alter existing ones. For example, filters.hag_dem
adds a HeightAboveGround dimension based on the height of a
point above a DEM, and filters.smrf changes each point’s Clas-
sification dimension value according to the determination by a
simple morphological filter (Pingel et al., 2013) of whether a point lies
on a ground or non-ground surface.

PDAL’s broad array of filters can be grouped by their functional
purpose:

• Create: Filters that create or alter dimensions (not points) as de-
scribed above. This is a large category that includes functionality
such as clustering, local covariance features, density computa-
tions, noise filtering, surface normal estimation, planar feature
identification, and ground point classification.

• Order: Filters that change point order, e.g., ascending or descend-
ing order based on a given dimension or Morton ordering.

• Move: Filters that change point coordinates through geometric
transformations, projection from one coordinate system to an-
other, or via registration algorithms.

• Cull: Filters that remove points and return a point cloud smaller
than the original. Examples include cropping points within a
bounding box or polygon and Poisson sampling of a point cloud.

• New: Filters that split the incoming point cloud into subsets. This
includes dividing points into equal sized groups or separating
points based on lidar scan lines, among others.

• Join: A single filter that joins multiple point clouds

(filters.merge) to form a single point cloud.

https://pdal.io/pipeline.html
https://pdal.io/pipeline.html
https://pdal.io/pipeline.html
https://pdal.io/dimensions.html
https://pdal.io
https://pdal.io
https://pdal.io
https://github.com/pubgeo/pubgeo
https://github.com/pubgeo/pubgeo
https://github.com/pubgeo/pubgeo
https://pdal.io/api/cpp/index.html
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• Metadata: Filters that generate information about the point cloud,
such as a point cloud’s boundary or information such as point
density, point count, spatial reference information, or dimension
statistics.

• Mesh: Filters that generate a mesh representation using methods
such as Delaunay triangulation or Poisson surface reconstruction.

• Languages - filters that embed software written in Python, MAT-
LAB, or Julia as a stage in a pipeline.

4. Convenient access

PDAL’s functionality can be conveniently accessed via its command
line application and its support for the Python, Java, MATLAB, and
Julia languages. PDAL provides extensions for Python and Java, where
the extensions enable communication with PDAL inside Python or Java
code. For example, the Python extension enables users to execute PDAL
pipelines in Python and access the point cloud data via NumPy arrays.
Support for MATLAB and Julia is limited to embedded stages, which
enable processing algorithms written in these languages to be included
as stages within PDAL pipelines. Embedded stages are also supported
for Python. Additional details, including installation requirements, for
PDAL’s support of each language are provided on PDAL’s website.

In the following, we review the command line application, which
is included in all PDAL installations, and PDAL’s support for Python,
which is widely used in the Earth sciences community. PDAL’s Python
extension is also used in the example application given in Section 5.

4.1. Command line application

PDAL provides a single command line application called pdal.
Operations are run by invoking the pdal application along with a com-
mand name. For example, information about a point cloud contained
in a LAS file residing in the current directory can be displayed with the
following command:

where pdal is the name of the application, info is the command, and
mypointcloud.las is the input to the command.

A number of common functions are available as distinct commands
in the pdal application, such as format translation (translate),
round filtering (ground), and point cloud merging (merge), splitting
split), and sorting (sort) abilities. However, the entire functional-
ty of the PDAL library is available through the pipeline command,
ith the exception of plugins that a user has chosen not to build on
heir local machine. The pipeline command accepts a JSON file
ontaining the desired stages in the format described in Section 2.1:

It is also possible to apply a filters-only pipeline (no reader or writer
tages are specified in the JSON pipeline file, only filter stages) in a call
o pdal translate with the --json switch, e.g.,

This is useful to quickly apply a series of filters to multiple point
loud files without having to repeatedly specify the input and output
iles in the JSON pipeline file. In this case, PDAL infers the appropriate
eader and writer from the passed file types.
Help for the application or an individual command can be retrieved

y appending the --help switch. The --drivers switch will list all
vailable reader, filter, and writer stages, and the --options switch
ollowed by a stage name will provide information about that stage and
ts options, e.g.,
4

4.2. Python

PDAL provides Python support (Python 3.6+) in two ways. First,
it embeds Python to allow a user to write Python programs that
interact with data using the filters.python stage. Second, it ex-
tends Python by providing an extension that Python programmers can
import to leverage PDAL capabilities in their own applications. Both of
these capabilities are provided in the python-pdal Conda package.
Since the Python capabilities require a PDAL installation, installing
the python-pdal Conda package also provides a complete PDAL
installation.

Embedding Python refers to a user inserting Python functions inline
with other stages via filters.python in a PDAL pipeline, enabling
modification of PDAL points through a NumPy array. The Python
function must have two NumPy arrays as arguments: ins and outs.
The ins array represents the points before the filters.python
ilter and the outs array represents the points after filtering. A simple
xample Python function that scales the Z coordinate of each point by
factor of ten is:

Note that the Python function used in filters.python must
lways return True upon success. A corresponding JSON pipeline that
ontains a filters.python stage implementing the multiply_z
ython function could be:

The purpose of the embedded Python language stage is to allow
users to write small programs that implement interesting actions with-
out requiring the full C++ development activity of building a PDAL
stage. A Python filter is an opportunity to interactively and iteratively
prototype a data operation without strong considerations of perfor-
mance or generality. This applies to MATLAB and Julia embedded
stages as well. Once the prototype filter is operating as desired, a user
could optionally formalize the filter in C++ as a custom PDAL stage.

In contrast to the embedded stage functionality described above,
PDAL’s Python extension enables users to execute pipelines from within
Python and capture the results as NumPy arrays. This mode of opera-
tion is useful to users interested in having PDAL simply act as a data
format and processing handler. Python extension users are expected to
construct their own PDAL pipeline in text form or by using Python’s
json library or other library of their choice for manipulating JSON.
The JSON pipeline is then fed into the extension and NumPy arrays
are returned. A simple example where the Python extension is used to
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read a LAS format point cloud and sort by the X coordinate, with the
resulting NumPy data exposed to the user, is:

Additional dimensions are accessed in the same way as the XYZ
imensions shown in the example code above. Note that it is necessary
o provide an array index (array = arrays[0] line in the above code
isting) since it is possible that more than one array could be available,
.g., in the presence of multiple reader stages or splitting filters.
By embedding and extending the Python language, PDAL’s point

loud manipulation and processing services are accessible to a broad
ser base in the scientific community. The example application in the
ollowing section further illustrates the use of PDAL’s Python exten-
ion and command line application for a geospatial change detection
nalysis in the Earth sciences field.

. Example application

Within the applications of point clouds in the Earth sciences, an
merging use of the data is for change detection, i.e., the comparison of
emporally spaced 3D models for determination of landscape evolution.
hange detection has been especially present in the field of active
ectonics, where pre- and post-event point clouds are examined to
etermine the amount of surface deformation caused by an earthquake,
ee, for example, Oskin et al. (2012), Nissen et al. (2014), Ekhtari and
lennie (2018) and Scott et al. (2018). The majority of these tectonic
tudies make use of the iterative closest point (ICP) algorithm (Besl and
cKay, 1992) for estimation of the 3D deformation field.
Motivated by the prevalence of the ICP algorithm in Earth science

hange detection, we present a reference implementation using PDAL’s
ilters.icp stage to estimate surface deformation caused by an
arthquake. The example will utilize pre- and post-event airborne lidar
ata of the M6.0 Napa, California earthquake, which occurred on 24
ugust 2014. The pre-event data was collected with a nominal point
ensity of 8 pts/m2 in June 2014 under contract with the city of Napa
or the purpose of updating existing city maps. The post-event data
as collected by Towill Inc. for the USGS in September 2014 with a
lightly higher point density of 11 pts/m2. Additional details on the pre-
nd post-event lidar data can be found in Ekhtari and Glennie (2018),
while details regarding the Napa earthquake are given in Brocher et al.
(2015). The analysis area is shown in Fig. 2.
5

Fig. 2. Overview of fault locations (red lines) in the Brown’s Valley area east of Napa.
The black dashed box indicates the lidar data extent used in the analysis.

5.1. Point cloud preparation

Standard ICP algorithms are best applied to point clouds that
contain only hard surfaces, i.e., when vegetation has been removed
(Ekhtari and Glennie, 2018). Three PDAL pipelines were therefore
applied to the pre- and post-event lidar point clouds to prepare them
for the ICP algorithm:

(1) A ground filtering pipeline.
(2) A pipeline to identify points on building surfaces (primarily

rooftops) by extracting planes from the non-ground points.
(3) A pipeline to crop and merge the identified ground and planar

surface points.

Explanatory comments for each stage of the three pipelines are
given in the following three subsections. The JSON pipelines are avail-
able on GitHub (see Section 7).

.1.1. Ground filter pipeline
(1) readers.las. Open the original point file.
(2) filters.assign. Assign all point classification codes to 0 to

remove their original values.
(3) filters.elm. Apply the extended local minimum (ELM) fil-

ter (Chen et al., 2012) to identify below-ground outliers in
preparation for ground filtering with a simple morphological
filter (Pingel et al., 2013), which is sensitive to low points. The
ELM filter assigns a classification code of 7 to the identified noise
points in accordance with the ASPRS LAS specification.

(4) filters.smrf. Identify ground points with the simple mor-
phological filter. The identified ground points are assigned a
classification code of 2 by the filter, and all previously identified
noise points are explicitly ignored by the filter through use of the
ignore option.

(5) filters.outlier. Apply an outlier filter, tuned with the

multiplier option, to identify spurious in-air points. As with
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the ELM filter, the identified noise points are assigned a classifi-
cation code of 7. This stage could optionally be applied prior
to the SMRF stage or applied at a later location within the
subsequent pipelines.

(6) writers.las. Save all points to file with their updated clas-
sification codes.

5.1.2. Plane filter pipeline
(1) readers.las. Open the ground filtered point file generated

by the prior pipeline.
(2) filters.sample. Remove lidar scanning patterns and ap-

proximately match the pre- and post-event point densities by
sampling the point cloud with a minimum point to point radius
(radius option).

(3) filters.hag_nn. Estimate the height above ground (HAG)
of each point using the nearest classified ground point as refer-
ence. The stage stores the HAG values in a new dimension named
HeightAboveGround.

(4) filters.range. Retain only those points with HAG values
where rooftops are reasonably expected, 2–20 m above ground
in this case.

(5) filters.approximatecoplanar. Identify points in lo-
cally planar areas based on eigenvalues computed from the local
neighborhood of points. The stage stores a value of 0 (non-
coplanar) or 1 (coplanar) for each point in a new dimension
named Coplanar. Note that
filters.covariancefeatures provides several local ge-
ometry descriptors, one of which is a planarity feature that could
be used here as well.

(6) filters.range. Retain only those points identified as copla-
nar.

e note here that the remaining coplanar points are heavily pop-
lated with vegetation points that randomly happen to lie within
6

plane. Most of these vegetation points could be removed by in-
reasing the number of neighboring points (knn option) and modi-
ying the eigenvalue ratios (thresh1 and thresh2 options) in the
ilters.approximatecoplanar stage. However, making these
hanges also reduces the number of rooftop points identified as copla-
ar. Instead, we take advantage of the relatively sparse locations of the
emaining vegetation points in the following stage.

(7) filters.cluster. Assign unique IDs to point clusters de-
fined by a maximum point to point distance (tolerance op-
tion) and a minimum population (min_points option). The
stage stores the cluster IDs in a new dimension named Clus-
terID.

(8) filters.range. Retain only those points having a non-zero
cluster ID. This eliminates the sparse vegetation points, which
are not identified as clustered.

(9) filters.assign. Assign the remaining points a classifica-
tion code of 6 in accordance with the ASPRS LAS specification
for building points.

(10) writers.las. Save the planar points to file.

5.1.3. Merge pipeline
(1) readers.las. Open the point file generated by the ground

filter pipeline.
(2) filters.range. Retain only those points classified as

ground.
(3) filters.sample. As with the prior pipeline, remove lidar

scanning patterns and match the pre- and post-event point den-
sities by sampling the retained ground points with a minimum
point to point radius (radius option).

(4) filters.crop. Crop point cloud to area common to both the
pre- and post-event data.

(5) readers.las. Open the point cloud containing the coplanar

points that we would like to merge with the ground points.
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Fig. 4. ICP displacement vectors overlaid on a DEM generated from the filtered ground points of the post-event point cloud. The omitted displacement vectors in the southeast
corner coincide with a void in the pre-event lidar point cloud. Fault traces shown in red. Coordinates are Universal Transverse Mercator, Zone 11.
(6) filters.crop. Crop point cloud to area common to both the
pre- and post-event data.

(7) filters.merge. Merge the ground and coplanar point
clouds.

(8) writers.las. Save the merged point cloud to file.

Note that once the second readers.las stage (stage #5) is ex-
ecuted, the subsequent filters.crop stage is only applied to this
second set of data (see Fig. 1 for a conceptual outline of a pipeline
that illustrates this characteristic). The prepared post-event data is
visualized in Fig. 3 along with the fault lines.

5.2. Point cloud indexing

In order to capture the non-rigid deformation caused by the earth-
quake, we follow the approach in Ekhtari and Glennie (2018) and
repeatedly apply ICP to the filtered pre- and post-event points falling
within a sliding window. This requires a mechanism for repeatedly
querying the pre- and post-event points clouds for data contained
within the moving (sliding) window. Although PDAL’s
filters.crop stage could be used for this, it requires the pre- and
post-event point clouds to be loaded into memory for each instance
of the filters.crop stage, which is required for each window
location. This repetitive file loading slows the process, and a more
efficient alternative is desirable.

Indexing a point cloud into Entwine (see https://entwine.io/) Point
Tiles (EPT) enables greater efficiency when repetitively querying a
point cloud for data within a spatial boundary or for reduced resolution
sampling. Once an EPT point cloud index has been created, PDAL’s
readers.ept stage can be used to extract point cloud data lying
within spatial bounds designated by the user. Similar to PDAL, the
Entwine library can be installed via Conda, and building an EPT index
7

is a one line command in a terminal. For example, the command:
generates an EPT index from MyPointCloud.laz and stores it in the
MyIndex directory. For this example application, unique EPT indices
are created for the prepared pre- and post-event point clouds.

Note that methods faster than using EPT indices exist for accessing
full resolution point data withing a spatial boundary, e.g., indexed
tiles of full resolution point data. We have used EPT indices here for
implementation simplicity (a single command creates an index that can
be read by PDAL) while still gaining faster access to the windowed point
data.

5.3. ICP with PDAL’s Python extension

The ICP algorithm is applied to each window location using a
pipeline consisting of a readers.ept stage for the post-event point
cloud index, a readers.ept stage for the pre-event point cloud
index, and a filters.icp stage. Since the bounds options of the
readers.ept stages must be redefined for each sliding window
location and a convenient mechanism for storing the computed dis-
placement information is desirable, the ICP algorithm is implemented
in a Python script using PDAL’s Python extension. A nested loop
structure is used to slide a square window through the analysis area
in the X and Y directions. A number of items are implemented within
the loop: the pipeline JSON text is created with the current window
location defined in the bounds options of the readers.ept stages,
the pipeline is executed, and the solved ICP translation components
are extracted from the metadata returned by PDAL and stored for later
export and plotting. For this example, a 200 m square window was used
with a 100 m step between successive window locations. The complete
Python script used to generate the ICP vectors is available on GitHub

).
(see Section 7

https://entwine.io/
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The horizontal components of the displacement vectors generated
by the Python script are shown in Fig. 4. Note that, according to field
observations, only the westernmost fault line ruptured during the Napa
Valley earthquake, with a right lateral strike slip of approximately 30 to
40 cm (Brocher et al., 2015). The relative motion along the west fault
line is readily apparent in the pattern of vectors in Fig. 4, and agrees
both in magnitude and orientation to the field observations of dis-
placement and the independent ICP displacement estimates presented
in Ekhtari and Glennie (2018).

6. Conclusions

The open-source Point Data Abstraction Library has been briefly
presented in this manuscript, including the motivation for its genesis,
methods of use and access, and its extensive functionality. The library
supports the needs of the Earth science community for a free and open-
source solution for processing large point cloud datasets that is format
agnostic and focused on geospatial translation and transformation. In
addition to these core abilities, PDAL provides advanced processing
algorithms for feature extraction, ground filtering, registration, mesh-
ing, and more. The library is extensible by software developers via its
C++ API, and its functionality is easily accessed by a broad spectrum
of users via its command line application and support for the Python,
Java, MATLAB, and Julia languages. This access was illustrated with
an example application that measured earthquake ground motion by
way of several point cloud processing pipelines executed with PDAL’s
command line application, followed by application of PDAL’s ICP filter
using the Python extension.

PDAL continues to be actively developed, with future effort focusing
on performance and efficiency enhancements for baseline operations,
improved mesh and triangulation format support, and alternative high-
level C++ APIs. Future releases will also include new feature extraction
filters that will augment PDAL’s existing filter suite to support ma-
chine learning applications that operate on 3D point cloud data. Going
forward, PDAL will continue to support open-source integration with
other toolkits and PDAL API consumers, e.g., the recent initiative to
integrate point cloud visualization into QGIS, a popular open-source
GIS software.

7. Computer code availability

PDAL is released under the BSD license. Source code is available
at https://github.com/PDAL/PDAL. PDAL binaries are available on all
major operating systems via Conda at https://anaconda.org/conda-
forge/pdal. Docker users can access PDAL via Docker Hub at https:
//hub.docker.com/r/pdal/pdal.

Pipelines and Python script for the example application were writ-
ten by Preston Hartzell and are available at: https://github.com/pjhar
tzell/pdal-icp-example.
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