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As aresult of altered chemical composition, multiphase microstructures, and other micromechanical change, ad-
vanced high strength steel (AHSS) has three to five times the strength of conventional mild steels. Developed for
automotive applications, AHSS has high potential for application in cold-formed steel construction. However, the
material properties must be properly understood and quantified for application to structural design with eco-
nomic efficiency. A series of tensile coupon tests were carried out to determine typical AHSS material properties.
Existing stress-strain models, designed for steels with gradual strain hardening, were studied and recalibrated to
the AHSS test data. No existing method provided an accurate fit for all cases. An updated two-stage plus linear
stress-strain model, based on the Ramberg-Osgood expression, was developed. The predictive equations for
the parameters required by the new model were provided based on the statistical analysis of AHSS test data. In
addition, from the discussion of the new model, a novel proof stress was recommended to represent the yield
strength of AHSS. Energy was used to compare the AHSS experimental stress-strain curves with conventional
steel stress-strain models to examine the rationality of the proposed proof stress as the yield strength in design.
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1. Introduction

Thin-walled cold-formed steel (CFS) members formed from coils of
mild steel have been widely used in the structural and construction in-
dustries in the United States and globally since the 1940s. In general, CFS
members have unique advantages, including nestable sections for com-
pact packaging and shipping, lightweight and consequently high
strength-to-weight ratios, and high recyclability [1]. Owing to material
science advances at the microstructural level over the past two decades,
advanced high strength steel (AHSS) has been developed. AHSS are
steels with unique microstructures utilizing complex deformation and
phase transformation processes to achieve unprecedented combina-
tions of strength and ductility. The design and manufacture of AHSS re-
quire circumspect selection of chemical compositions and precisely
controlled heating and cooling processes. Subsequently, AHSS exhibit
a multiphase microstructure containing one or more phases different
from ferrite, pearlite, or cementite. Rather, these phases, for example,
include martensite, bainite, austenite, and/or retained austenite that
are sufficient in quantities to produce unique mechanical properties.
AHSS includes new grades of sheet steel with yield strength up to
1250 MPa, ultimate strength up to 1900 MPa, and tensile elongation
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upwards of 20% to 30%. In addition, different from conventional steels,
the terminology AHSS is classified by its metallurgical designation,
rather than the steel grades. As a result, AHSS can have a wider range
of grades (e.g., with ultimate strength as low as 440 MPa and yield
strength as low as 210 MPa) than the conventional high strength steels,
which require a yield strength higher than 460 MPa [2]. AHSS have been
maturely developed and applied in the automobile industry for its ex-
cellence in stiffness, crash performance and formability [3]. The civil
construction industry requires different design constraints than the au-
tomobile industry, therefore research needs to be carried out on the ap-
plication of AHSS members as load-bearing components in structural
framing for civil construction. For any attempt to characterize the struc-
tural performance of AHSS CFS members, a database of AHSS material
properties is a prerequisite, which is explicitly discussed in this paper.
AHSS includes various families of steel, including Dual Phase
(DP), Complex Phase (CP), Ferritic-Bainitic (FB), Martensitic (MS),
Transformation-Induced Plasticity (TRIP) and more. Different families
of AHSS are made with specifically selected chemical composition and
manufacturing processes, which result in unique material properties.
Among various AHSS families, DP and MS currently have lowest
manufacturing cost and therefore are advised to be firstly studied for
structural engineering applications as they have the lowest cost barrier
to entry. DP steels comprise a ferritic matrix which encompass a
hard martensite second phase and generally a higher percentage
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composition of the hard martensite second phase demonstrates higher
steel strength. DP steels are produced by a controlled cooling process
from the initial two-phase ferrite plus austenite phase to transform
some austenite to ferrite before transforming the remaining austenite
to martensite. DP steels typically have a high degree of ductility and
may have a lower cost and higher availability than other AHSS. MS steels
comprise a martensitic matrix containing ferrite and bainite and gener-
ally have the highest strengths. MS steels are produced from the austen-
ite phase to transform most of the austenite to martensite. The chemical
composition of MS steels also includes carbon, manganese, silicon and/or
other elements to increase steel hardenability and strengths. MS steels
typically have somewhat lowered ultimate elongations at fracture [2].

In this paper, a series of tensile coupon tests on specimens made
from two different families of AHSS (DP and MS) is presented. The
tests were conducted per ASTM E8 [4]; and additional procedures and
techniques recommended by Huang and Young [5] were also adopted.
A numerical model of the stress-strain relationship for AHSS is pro-
posed. Existing models on steels with gradual yielding, including con-
ventional CFS and stainless steel, are discussed. Numerical studies
show that existing models discussed in this paper do not accurately fit
AHSS o0-¢ curves from the tests conducted herein. Therefore, this
paper proposes an updated two-stage plus linear stress-strain model
for AHSS. Excellent fit between the proposed model and the AHSS test
o-¢ curves are achieved. For scenarios when the full 0-¢ curve is unavail-
able, predictive equations for the parameters in the proposed model are
also proposed based on statistical analysis of the AHSS test data. From
the discussion on the proposed model, the possibility of adopting a
new proof stress level to represent yield strength is also raised. A discus-
sion of the proposed proof stress is carried out comparing the energy
dissipation between the AHSS test curves and conventional stress-
strain models.

2. Existing stress-strain models

Accurate modeling of the constitutive relationship for metallic mate-
rials is essential in advanced structural design and numerical analysis.
Different from conventional mild steels with a clear yield point and
yield plateau, the o-¢ relationship for sheet steel are generally more
rounded with an increased yield strength, an increased ultimate
strength and a decreased proportional limit. To depict the non-linear
o-¢ relationship for CFS, various models have been proposed. Among
these models, the Ramberg-Osgood (R-O) model [6] is widely recog-
nized and extensively used, not only for CFS but also other metals
with similar stress-strain behaviors including stainless steel and alumi-
num. The universal form of the R-O model is shown in Eq. (1):

o o\"
g:E+p<o—p> for 0 <o <0y (1)

where o denotes stress and ¢ denotes strain, E is elastic modulus, o, is
the proof stress which corresponds to a plastic strain of p, and n is the
exponential coefficient which determines the degree of curvature for
the stress-strain model.

For p = 0.002, Fig. 1 shows the effect of hardening parameter n on
the o-¢ curve. When n < 1, the 0-¢ curve is concave; when n = 1, the
o-¢ curve is a straight line between the origin and the ultimate point,
which is the end of the model; and when n > 1, the o-¢ curve is convex.
For the convex case (i.e.n > 1), as n increases, the degree of curve con-
vexity becomes less sensitive to the increment of n; and when n ap-
proaches positive infinity, the curve is comprised by two straight lines.
Thus, n = 1 is elastic and n — + « is elastic-perfectly-plastic. The o-¢
curve will pass through the origin and the 0.2% proof stress 0g 5, regard-
less the value of n. The R-O model is only able to depict the constitutive
relationship when it is monotonically increasing. The R-O model is un-
able to depict the strain softening process after the ultimate point.
These two constraints are applicable to all updated models originating
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Fig. 1. Different scenarios of Ramberg-Osgood expression using different n.

from the R-O model. The most commonly used evolution of Eq. (1)
was proposed by Hill [7], where p = 0.002 was used as shown in Eq. (2).

o

e=2 1 0.002<
002

n
E ) for 0<o <0y (2)

Previous studies [8-10] have shown that Eq. (2) is able to provide
accurate approximations of experimental o-¢ curves at relatively
lower stress levels (e.g. up to 0.2% proof stress), and is inaccurate at
higher stress regions for CFS sheets. Therefore, the original one stage
R-0 model is not able to accurately depict the entire 0-¢ behavior of
steel up to ultimate. As such, researchers have made updates to the orig-
inal R-O model. Among all these updates, the central idea is to divide the
curve into several stages and model them separately.

A two-stage model R-O was first proposed by Mirambell and Real
[8]. They conducted a series of tensile coupon tests of cold-formed stain-
less steel Type 304/304L and proposed Eq. (2) for stress up to 0y and a
new Eq. (3) for stress between 0y, and ultimate strength o,:

m

0—0 o—0

£= 02 gpu< 0.2 ) + &y for ogp <020y 3)
Eo Ou—002

where Eg is the tangent modulus at 05, &, is the total plastic strain of
ultimate point, &, is the total strain corresponds to 0y, and m is the ex-
ponential coefficient determining the degree of curvature of the o-¢
curve between the 0.2% offset and the ultimate.

Rasmussen [9] independently proposed an approximate expression
of Eq. (3) for austenitic, duplex, and ferritic stainless steel alloy as
shown in Eq. (4) by neglecting the difference between the ultimate
strain ¢, and the plastic strain of the ultimate point &, (g, = &) be-
cause stainless steels are generally ductile.

m
0—0 0—0
€= 92 4 g, < 02 > +&p for gy 2020y (4)
Eo2 Oy—002

Rasmussen also proposed an expression of Eg, as shown in Eq. (5).
To calculate the slope of the curve at 0y, Eg and m in Eq. (4) are un-
known before they are calculated, therefore instead of Eq. (4), Eq. (2)
is used as the strain expression in Eq. (5).

1+ 0.002n U—,’.E|
_ 02
0=00y — E

_E
= 1700021 E
1+0.002n £

1 0g(0)

Eo_z 60

1+0.002n £
— E 0.2 =>E02

|o:ag 2

(5

Gardner and Nethercot [10] studied the material properties of Grade
1.4301 stainless steel and updated Eq. (3) so that the model passes
through the ultimate point. For mathematical consistency, the second
stage expression is updated as shown in Eq. (6).
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Additionally, Gardner further updated the second stage expression by
forcing the expression to pass through oy, and the 1% proof stress oy g as
shown in Eq. (7) to expand the applicability of the model to include com-
pression stress-strain behavior, where o, is generally unavailable.

£= 0—002 + (0‘008— (71.0_(70_2> < O0—002 )m
EO'Z EO.Z O010—002

+&o for 0g <0 <0y (7)

Inspired by the work of Gardner and Nethercot [10], Li and Young
[11] proposed a two-stage stress-strain model (as shown in Eq. (8),
where the subscript T indicates the material property at temperature
T °C) designed for cold-formed high strength steel at both ambient and
elevated temperature, and a series of predictive equations for the pa-
rameters required by the model were provided. The proposed two-
stage model was verified by the accurate fits with experimental
stress-strain curves at both ambient and at elevated temperatures up
to 1000°C of two series of cold-formed high strength steels with nominal
yield strength of 700 MPa and 900 MPa at ambient.

n
o o
—~+0.002 ( ) for 0<0 <001
e J Er oot n
O—00a1 Our—002r\ [ O—0027
2t (Eur—€oar— +&yor for ogor <o <Oy
Eoar Eoar Our—002r1

8)

Besides two-stage models, multiple-stage models were also pro-
posed to further improve curve fit accuracy. Hradil et al. [12] updated
Mirambell's two-stage model [8] and proposed a generalized
multiple-stage stress-strain model which was flexible to accommodate
any amount of measured or recommended parameters. In their paper, a
three-stage model was used as an example of the multiple stage model.
Stress-strain data from the origin to the ultimate was split into three
stages by 0p» and 07 o. The first stage expression is given in Eq. (2),
the second stage expressions is given in Eq. (9), and the third stage ex-
pression is given in Eq. (10). The definitions of some new parameters,
including &9*, €10*, Ny, and ns, are introduced in the original source
[12]. A set of explicit equations as the inversion of Egs. (2), (9), and
(10) were also provided.

_ _ ny
e=Z 00'2+80'2*< 9 U“) +0.002

50_2 010—002
+ % for 0gp <0 <01 9)
0—019 N TR
€= + €19 +0.01
1(:;1.0 Ou—010
+210 for 0y < <Oy (10)

Quach [13] further updated the model for stainless steel from the
works of Olsson [14] and Gardner [15], and came up with a new
three-stage model. The first stage expression is given by Eq. (2). The sec-
ond stage ranges from 0g, to 2.0% proof stress 0, o and the expression is
given by Eq. (11).

O—002 1 1 o—0p2 \"
€= + ( 0.008 + (01,0—00. (———))(7)
Eo2 ( (10=002) E  Ep> O10—002

+ &y for 0gy 2020,

(11)

A similar expression of the second stage was also adopted in [15,16].
The third stage ranges from 0, o to 0. The third stage expression is
based on a linear relationship between true stress o' and engineering
strain €, (0' = a + be) and is given by Eq. (12):
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o—a
E=1—"

b for 0,9<0 <0y

(12)

g

where parameters a and b are calculated by Eqs. (13) and (14) using
material properties including &, o (the strain of 2.0% proof stress), €, (to-
tal strain corresponds to oy), and oy,
a=030(1+&0)—béxo (13)

Ou(1+&y)—020(1 + &20)
Eu—&p

b= (14)

Besides the two-stage and multi-stage models based on the R-O ex-
pression, some updated models as transformations of the R-O expres-
sion or as combinations of the R-O expression and other equations
have been proposed. MacDonald [17] came up with a uniform expres-
sion for modeling the full range o-¢ relationship of cold-formed stain-
less steel as shown in Eq. (15).

k
i+ 5%
g:9+0_002<0i> <°2) for 0o <0y (15)

E 02

The idea of this model is to amplify the value of n in Eq. (2) for the
larger strain region, particularly after 0p,. The numerical coefficients i,
j and k were obtained by error minimization on the test data. These co-
efficients were calculated as numbers between 2.5 and 6.0 and were
found to be related to the steel sheet thickness.

Olsson [14] conducted research with a focus on plasticity models for
stainless steel alloys and proposed a two-stage model depicting the re-
lationship between the true stress o' = o(1 + €) and engineering strain
&.Eq. (2) isused as the first stage expression when 0 < 0'< O¢— 02, Wwhere
O:—o.02 is the stress corresponding to € = 0.02. The second stage is
depicted as a line when 0;—g g, < 0 < 0y,

Abdella [18] proposed an approximate inversion of Eq. (2) and
Eq. (6) for stainless steel alloys as shown in Eq. (16):

Tén
1+ (r—1)el
On = ro2(én—1)

T
1+ (1) (2=))

for 0<g, <1

(16)
for 1<g,<en

where 0y, is the stress normalized by 0y, &, is the strain normalized
by €. All other parameters are clearly defined in [18]. The proposed
explicit expressions were verified by fitting the o-¢ curve database
from [9].

Ma et al. [19] conducted a series of material properties experiments
on cold-formed high strength steel with nominal yield strength up to
1100 MPa and proposed a new constitutive model based on the original
R-0 expression (i.e. Eq. (2)). The strain, as the output of the model, is ex-
plicitly depicted as expressions of plastic strain, &y, as shown in Eq. (17):

o=t (08 ) ™

(17)
where K is determined per arithmetic consistency at the ultimate point
as defined in [19].

Besides the stress-strain model itself, accurate prediction of the pa-
rameters required by the model is also essential. Gardner and Yun
[20] collected o-¢ curves of CFS sheets with nominal yield strengths
ranging from 235 MPa to 1100 MPa from over 700 experiments. They
reviewed the predictive equations for the key parameters of the two-
stage CFS stress-strain model (e.g. model proposed by Mirambell and
Real 8], Egs. (2) and (3)) from existing literature and then developed
a series of equations for these parameters based on the literature review
and the statistical study on the collected experimental database. The
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Table 1
Chemical composition of AHSS.

Journal of Constructional Steel Research 182 (2021) 106687

Table 2
Nominal coupon properties and test matrix.

Steel DP-340 DP-580 DP-700 HSLA-700 MS-1030 MS-1200 Steel t (mm) 0, (MPa) 0, (MPa) Test matrix

C (max %) 0.12 0167 017  0.104 0.16 0.28 DP-340 14 340 590 L:2,T:2,D:1
Si (max %) 0.4 1413 04 0.012 0.4 0.4 DP-580 1.8 580 980 L:5, T:4, D:0
Mn (max %) 16 2 17 2.32 1.8 13 DP-700 14 700 980 L:2,T:2,D:2

P (max %) 0.025 001 0.02 0.013 0.02 0.02 HSLA-700 0.6 700 980 L:5,T:3, D:0

S (max %) 0.01 0.002 001 0.004 0.01 0.01 MS-1030 1.0 1030 1300 L:4,T:2,D:2
Al (%) >0.015 0047 2001  0.031 0.015 0.015 MS-1200 1.0 1200 1500 L:3,T:2,D:2
Nb + Ti (max %) 0.1 0.006  0.15 - 0.1 0.1

Cr + Mo (max %) 1 0043 1 0.606 1 1

V (max %) 0.2 0005 - 0.001 - - 3.2. Test procedures

B (max %) 0.005  0.0003 0.005 0.0001 0.005 0.01

Cu (max % 0.2 0.02 0.2 0.02 0.2 0.2 N . . . .
Ni ((%) ) - 001 - 001 - - A MTS Criterion Model 43 loading system with a maximum capacity
Sn (%) _ 0.008 - 0.002 _ _ of 50 kN was used for the tensile tests. An extensometer with 25.4 mm
N (%) - 0.004 - 0.005 - - gauge length was attached to the coupon center to measure strain. Be-
Cb (%) - 0003 - 0.002 - - fore the test, the measured width b and thickness t of the coupon was
zg E;; _ _ _ g'ggi _ - input into the test control program, so that the real time relationship be-

accuracy of the predictive equations was verified by comparison be-
tween the stress-strain model using parameters predicted by the pro-
posed equations and parameters captured from the experimental
database. Further discussion regarding the suitability of existing predic-
tive parameters with the AHSS database are presented in Section 5.1.

3. Tensile coupon testing
3.1. Test specimens

A total of 43 coupons were cut from 6 steel sheets by waterjet at
UW-Madison TEAMLab and H&H Precision Wire in Newport, PA. The
AHSS sheets including dual phase steel (DP) and martensitic steel
(MS) with five different grades were studied. A piece of high-strength
low-alloy steel (HSLA) (a type of conventional high-strength steel)
sheet was also studied in this paper. The chemical composition of the
tested steels is shown in Table 1. Note for DP-340, DP-700, and MS
sheets, the composition is typical only, because exact chemical compo-
sition is proprietary. Nominal yield strengths range from 340 MPa to
1200 MPa and nominal ultimate strength range from 590 MPa to 1500
MPa. Nominal dimensions of the coupon are per ASTM E8 [4] as
shown in Fig. 2. Each steel sheet was labeled by its steel family and nom-
inal yield strength in MPa, i.e.: DP-340, DP-580, DP-700, HSLA-700, MS-
1030, and MS-1200. The coupons were labeled by the steel sheet label,
the cutting direction, and an index number. For example, HSLA-
700L01 stands for coupon #1 cut along the longitudinal (coiling) direc-
tion of sheet HSLA-700. Other direction labels included “T” for transverse
direction and “D” for diagonal (45") direction along the sheet. Table 2
summarizes the nominal properties and test matrix. Actual width b
and thickness t for each coupon was measured before the test using cal-
iper and micrometer as reported in Table 3. HSLA-700 and DP-700 were
coated by galvanized zinc and the actual thicknesses of these coupons
were measured after removal of the coating by 1-M HCl solution, after
which the thickness of the coupons reduced by 0.04 mm on average.
The other steel sheets were uncoated.

Unit: inch [mm)]

8.00 [203.20]
}z,oo [50.80]( ——3.25[82.55] — {200 [solsoﬂ
,,,,,,,,,,,,,,,, +,,,,,,,,,k

70,75 [19.05] ﬁfi?g . 0.50 [12.70]

—

Fig. 2. Nominal dimensional tensile coupon test specimen.

tween engineering stress (applied load divided by the initial cross-
sectional area of the reduced parallel section) and strain (extensometer
reading) was available during the test. A previous study [21] has indi-
cated some loading rate o-¢ sensitivity. During the test, two different
loading rates conforming to ASTM requirements [4] were used: initially,
the loading rate was 0.2 mm/min until the stress achieved the nominal
yield strength; the loading rate was then increased to 0.6 mm/min until

Table 3
Properties of AHSS coupon specimens.

Series t b E g2 Oo2 & oy & of
mm mm GPa % MPa % MPa % MPa

DP-340L01 1382 1276 215 038 378 152 608 221 601
DP-340L02 1373 1274 208 036 338 137 575 174 550
DP-340T01 1378 1274 213 037 357 108 598 119 581
DP-340T02 1381 1274 219 036 360 146 603 221 580
DP-340D01 1390 1275 203 038 365 142 595 164 580
DP-580L01 1819 1310 193 052 622 117 958 13.0 957
DP-580L03 1.818 13.03 197 052 626 11.8 945 200 902
DP-580L04 1816 13.12 188 053 625 11.8 945 198 872
DP-580L13 1.810 1296 191 053 636 91 954 162 907
DP-580L23 1.803 1290 197 052 638 124 970 229 841
DP-580T01 1.817 13.07 198 052 634 102 953 124 940
DP-580T02 1.812 13.02 207 051 643 99 952 113 940
DP-580T03 1.802 13.04 209 051 640 92 962 113 922
DP-580T06 1.794 13.07 207 051 645 97 970 112 947
DP-700LO01 1399 12,63 208 055 725 75 950 164 654
DP-700L02 1394 1273 216 053 717 78 952 147 705
DP-700T01 1422 12,61 223 050 659 6.7 951 137 812
DP-700T02 1422 12,63 217 050 648 6.0 947 138 802
DP-700D01 1410 1272 227 050 681 58 937 94 826
DP-700D02 1416 1273 206 054 696 60 945 158 634
HSLA-700L02 0.620 1225 175 0.62 732 7.8 1037 83 1032
HSLA-700L03 0.629 12,61 176 0.59 677 7.7 993 8.1 986
HSLA-700L04 0.626 12.60 219 0.52 709 51 1022 54 1014
HSLA-700L08 0.630 1253 216 0.52 698 6.6 1004 7.7 980
HSLA-700L16 0.628 12.63 191 057 714 7.8 1072 95 1061
HSLA-700T02 0.619 1260 199 0.54 677 6.8 1009 7.0 1007
HSLA-700T03 0.623 12.60 183 0.56 656 72 982 75 981
HSLA-700T11 0.616 12.63 198 0.55 689 7.8 1045 8.7 1035
MS-1030L01  1.000 1273 225 0.77 1286 3.0 1380 56 978
MS-1030L02  1.006 1273 214 0.77 1223 21 1306 3.1 1284
MS-1030L03  0.999 1274 219 0.75 1199 26 1288 3.3 1252
MS-1030L04  1.002 1273 216 0.76 1206 3.1 1304 34 1288
MsS-1030T01  1.008 1273 215 0.75 1173 26 1316 3.0 1291
MS-1030T02  1.007 1277 226 0.72 1174 22 1326 24 1313
MS-1030D01  1.010 1273 214 0.75 1185 2.1 1317 2.1 1307
Ms-1030D02  1.011 1273 211 076 1175 23 1313 69 844
MS-1200L01  1.008 12.80 205 0.84 1311 29 1490 65 1140
MS-1200L02  0.995 1273 219 080 1322 29 1505 4.6 1462
MS-1200L03  0.997 1276 199 085 1292 3.6 1490 3.9 1455
MS-1200T01  1.008 12.76 234 0.77 1324 34 1519 40 1491
MS-1200T02  1.004 12.78 216 0.79 1280 3.3 1471 39 1433
MS-1200D01  1.003 1281 220 081 1337 3.8 1534 7.0 1230
MS-1200D02  1.008 12.79 215 0.80 1282 24 1460 57 1158
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Fig. 3. (a) Comparison between dynamic and static o-¢ curve; (b) (zoom-in view) conver-
sion from dynamic stress to static stress.

fracture. Similar to the recommendation in [5], a slower loading rate be-
fore achieving the nominal yield strength was utilized to guarantee suf-
ficient data in determining the elastic modulus. Consistent with Huang's
recommendation [5], each test was manually paused twice. When the
test was paused, the stress would decrease until stable and the duration
for each pause was three minutes. For each test, the first pause was at
the nominal yield strength and the second pause was at the nominal ul-
timate strength, as shown in Fig. 3(a). Pausing near the yield strength
(0.2% proof stress) and ultimate strength for 100 s to allow the stress re-
laxation to take place is recommended by [5]. Prior to testing, only the
nominal values of yield and ultimate strengths are known, therefore
the nominal values were utilized for the generation of static drops.
The static drop is used to estimate any stress amplification from loading
rate and to calculate the static stress.

3.3. Test results

For each test, the primary result is the dynamic o-¢ curve. Following
the steps as depicted in Fig. 3, the static stress for each applicable data
point is calculated by subtracting the stress amplification from its dy-
namic stress using the two static drops generated during the test,
where Ady is the stress amplification of location x. When x is between
the proportional limit and the left end of the first static drop, Aoy is cal-
culated by Eq. (18); when x is between the right end of the first static
drop and the left end of the second static drop, Aoy is calculated by
Eq. (19); when x is after the right end of the second static drop, Aoy is
calculated by Eq. (20).

Aoy = &A% (18)
&1
AG, = (A0 —A07) x (Ex—&1) L Aoy (19)
E)—&
A0y = AT, (20)

When the loading is paused to generate the static drops, the strain
increases slightly; when the loading is resumed, the stress rapidly
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Fig. 4. V shape dynamic stress-strain relationship at static drops.

increases from the valley of static drop and continues along the original
dynamic path. These processes generated a V shape dynamic stress-
strain relationship as shown in Fig. 4.

A linear relationship is proposed and recommended to define the
static stress-strain relationship for data within the V shape. First, the
points where static drop begins and ends, as well as the valley of the V
shape static drop are found manually. The linear relationship is assumed
to pass through the valley and its slope is Ey as calculated by Eq. (21):

arctan Ej¢ + arctan Egc

Ey =
1% tan 5

(1)

where E ¢ is the slope at the beginning (left) of the static drop and it is
defined as the slope of linear regression for the ten data points before,
Egcis the slope at the end (right) of the static drop and it is defined as
the slope of linear regression for the ten data points after.

The stress amplification at the beginning of the static drop, Ay, is cal-
culated by Eq. (22), and the stress amplification at the end of the static
drop, Ag, is calculated by Eq. (23):

Ap = 0 c—[Ev(8ic—&v) + OV] (22)
Ag = Ore—[Ev(€rc—&v) + OV] (23)

where ;¢ and 0jc are the strain and stress of static drop beginning, &gc
and Opc are the strain and stress of static drop end, &y and oy are the
strain and stress of static drop valley.

Note that for the first static drop, the loading rate was 0.2 mm/min
until the pause, and changed to 0.6 mm/min when the loading resumed.
Therefore, the difference between A; and Ay of the first static drop
might indicate the difference of stress amplification resulting from dif-
ferent loading rates. A faster loading rate will result in a slightly larger
dynamic stress amplification (and hence slightly larger static drop),
but regardless of the loading rate, the static drop will always reach the
same level.

A summary of a representative static o-¢ curve for each steel is
shown in Fig. 5. To ensure each data point on the 0-¢ curve has the
same weight, the experimental curve was represented by a generalized
curve. Sadowski et al. [22] used a two-stage seventh order polynomial

15001 —=

1000+

stress (MPa)

500 —— DP-340 —— DP-580
—— HSLA-700

—— MS-1200

DP-700
MS-1030

0 0.05 0.1 0.15 0.2 0.25
strain

Fig. 5. Representative static o-¢ curve for each steel.



Y. Xia, C. Ding, Z. Li et al.

1500 .
_ [o RN sh
£ 1000/ )
e T
% I/ — DP-580L01 (mode 1) === DP-580L23 (mode 2)
% 500 — MS-1030D01 (mode 1) === MS-1030D02 (mode 2)|
MS-1200L03 (mode 1) MS-1200L01 (mode 2)
e fracture point
0 ; : . . .
0 0.05 0.1 0.15 0.2 0.25
strain

Fig. 6. Different strain hardening modes for DP-580, MS-1030 and MS-1200.

to represent the experimental curve. However, their polynomial model
used strain as the model input and stress as the model output, which is
the inverse of the R-O expression, and although the coefficient of vari-
ance between the polynomial and the experimental 0-¢ curve was
larger than 0.96, some local differences were significant. To avoid
these two issues, the experimental o-€ curve was constructed by linear
interpolation along the stress axis with a uniform stress increment of
0.1 MPa.

Material properties including elastic modulus E, 0.2% proof stress
02, Strain at 0.2% proof stress &g, ultimate strength o, ultimate strain
&, fracture stress oy, and fracture strain & were extracted from the static
o-¢ curves and are given in Table 3.

For E, the slope of the linear regression of all data points between
stresses of 20% and 45% of the nominal yield strength was used [5].
The 0.2% offset point was determined as the point with a plastic strain
of 0.002. The ultimate point was determined as the point with the larg-
est static stress. The ratio of 0,/0g », which is an indicator of curve non-
linearity, varies from 1.1 to 1.7. AHSS with lower nominal yield strength
tends to have a larger 0,/0¢ . The fracture strain was obtained as the
strain prior to a considerable reduction of engineering stress from the
real-time stress-strain relationship due to fracture of the specimen [5].
In addition, two different fracture modes are observed among the ex-
perimental AHSS o-¢ curves and some examples are shown in Fig. 6.
The first mode (mode 1) has a sudden fracture and the second mode
(mode 2) has a gradual strain softening process. Different fracture
modes affect the fracture point. In addition, there are generally no obvi-
ous effects of cutting directions on the material properties.

4. Updated two-stage plus linear stress-strain model

In this section, existing two-stage and multiple-stage stress-strain
models discussed as in Section 2 were used to fit the AHSS o-¢ curves
from experiments as described in Section 3.3. Although some of the re-
searchers provided predictive equations for essential parameters of
their stress-strain model, the equations were derived from particular
steel databases, which are different from AHSS in types, grades, and
stress-strain behaviors. Therefore, to achieve optimal fit, the predictive
expressions were not adopted in this section; rather, the required pa-
rameters of these models were fit from the AHSS experimental results.
Optimal fit was achieved by maximizing the coefficient of determina-
tion (R?) between the experimental curve and the numerical model,
as shown in Eq. (24):

2 _Ssres_ _Zi(‘si_g(ai))z
ST S =

where 0; and ¢; are the stress and strain of data point i of the experimen-
tal curve; g(0;) is the model strain corresponding to oj; €; is the average
of experimental strains.

Noticeably, for R-O models, the R? is calculated by the difference of
strain, rather than stress. Therefore, for higher strain ranges (e.g. the
third stage of the three-stage model), R? could be small (i.e. poor fit
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between the test curve and the model), even if the difference between
the test curve and the model is not obvious visually.

4.1. Optimal fit between AHSS stress-strain curves and existing models

Optimal fit between experimental and existing models, using
DP-700L02 as an example, are shown in Fig. 7. Models proposed by
Mirambell [8] (Fig. 7(a)) and Rasmussen [9] (Fig. 7(b)) provide accurate
fit for the first stage; while the strain model prediction is lower than ex-
perimental strain at the beginning of the second stage (starting from
0.2% proof stress). Additionally, neither of these two models mathemat-
ically pass through the ultimate point, the difference of the ultimate
strain between the model prediction and the test data is obvious. The
percentage difference for Mirambell's model ranges from 6.5% to
23.7% and for Rasmussen's model ranges from 12.4% to 47.4%. The inac-
curacy of strain prediction on high stress range is large when applying
Rasmussen's model, because the AHSS being studied in particular the
MS, are less ductile than the stainless steel discussed in [9], and the ap-
proximation of using ultimate strain as the plastic strain of the ultimate
point leads to an obvious inaccuracy.

Gardner's works [10,15] provide three formats of the updated sec-
ond stage model (Eq. (6), Eq. (7), and Eq. (11)). As shown in Fig. 7(c),
Eq. (6) mathematically ensures the model passes through the ultimate
point, while similar to the case of Mirambell's model, the strain is
underestimated at the beginning of the second stage. Eq. (7) provides
excellent fit accuracy between 0.2% proof stress and 1.0% proof stress,
while the fit after 1.0% proof stress is less accurate, particularly at high
stress range.

The model proposed by Quach [13] (Fig. 7(d)) gives excellent fit for
the first two stages, while the third stage by using Eq. (12) provides less
accurate fit. Also, Quach's model requires three more parameters (07 o,
0,0 and &) than Mirambell's and Rasmussen's model, which might
limit the feasibility of the model. Hradil's three-stage model [12]
(Fig. 7(e)) provides excellent fit accuracy for MS-1030 and MS-1200
along the full stress range. For DP and HSLA, the first two stages are ex-
cellently fitted, while the fit for the beginning of the third stage
(Eq. (10)) is less accurate, particularly for DP-340. Also, Hradil's model
requires more parameters (07 and an extra exponential coefficient
for the third stage) than others' two-stage models. The accuracy of the
fit can be increased if the number of model stages increases, however
an increased number of extra parameters are also required (at least
two extra parameters for each extra stage).

MacDonald's one-stage model with variable exponential coefficients
[17] (Fig. 7(f)) provides an excellent fit up to 0y 3, while the fit is less ac-
curate for the higher stress range. More importantly, the model is partic-
ularly sensitive to the three parameters i, j, and K and no accurate
predictive equations are available for these parameters. Therefore, the
model is only applicable when the full experimental stress-strain data
is available.

4.2. Updated stress-strain model

Based on the discussion above, the existing models might not be able
to provide accurate fit for the AHSS stress-strain database, particularly
for DP and HSLA steels. Although the existing models are able to accu-
rately fit the AHSS test stress-strain curves up to around 0.2% proof
stress for most cases, different levels of inaccuracies are commonly ob-
served thereafter. Although the post-yield inaccuracies might not result
in significant difference for many structural design and analysis cases,
some other important scenarios can be sensitive to these inaccuracies.
These scenarios include numerical simulations of steel forming, blast
crushing, collapse, etc., where the relationship between local strain
and engineering strain is crucial [23]. Therefore, a new model describing
the stress-strain behavior of AHSS as shown in Fig. 8 is proposed. The
proposed model is updated from Gardner's two-stage model (Eq. (2)
and Eq. (6)), which passes through the origin, 0.2% proof stress, and
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Fig. 7. Examples of fit between AHSS 0-¢ curves and existing models.

ends at the ultimate point. The expressions for the first stage and the
second stage of the proposed stress-strain model are shown in Eq. (25):

g o\"
TP o for 0<o <0,
&=
970, (g—g,— a9\ ([ 9=0p " +g for 0, <0 <0,
Ep eu D Ep Oeu—0, P p SOeu
(25)
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Fig. 8. Schematic diagram for the proposed two-stage plus linear model.

where &, and 0, are the strain and stress of p offset (with a plastic strain of p); E, is
the tangent modulus at 0, as calculated by Eq. (26); &, and 0, are the strain and
stress of the equivalent ultimate point.

o
—E
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Two major updates are made for the newly proposed model. The
first update is to change the demarcation point (referred as offset point
hereinafter) between the first and the second stage from 0.2% proof
stress to a reassigned proof stress p. The second update is to change
the end of the second stage from the ultimate point to the equivalent ul-
timate point.

The equivalent ultimate point is defined as the point with a stress
equals to 99% of the ultimate strength at strain hardening stage. The
first stage of the proposed model is adopted from the origin to the offset
point and the second stage is adopted from the offset point to the equiv-
alent ultimate point. The o0-¢ relationship from the equivalent ultimate
point to the ultimate point is described as a line.

For the first update, from the discussion in Section 4.1, the existing
two-stage models are not able to provide accurate fit at the beginning
of the second stage. The inaccuracy is caused by the inaccurate calcula-
tion of tangent modulus Eq, at the 0y, and Eq> is required in the
second-stage expression (e.g. Eq. (6)). Eg is calculated by using the
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first stage expression (Eq. (2)) because the second stage equation
(Eq. (6)) is unknown before the determination of Eq . This compromise
is only accurate when the transition between the first and the second
stage is smooth. From the experimental o-¢ relationship (e.g. Fig. 5),
DP and HSLA steels curves are highly non-linear when the plastic strain
is smaller than 0.005; MS steels curves are largely non-linear when the
plastic strain is smaller than 0.002, while the nonlinearity tends to be
small and stable when the plastic strain approaches 0.005. Therefore,
to provide an accurate tangent modulus at the offset point, a larger plas-
tic strain p is needed, particularly for the DP and HSLA steels. The proof
stress offset p from 0.002 to 0.020 at an increment of 0.001 were iterated
for each experimental o-¢ curve to find the optimal fit with the optimal
p by using the error minimization method. From the result shown in
Fig. 9, it is found that the optimal p for DP and HSLA steels is larger
than 0.005, while for MS steels it is less than 0.005. In addition, for
each experimental o-¢ curve, the optimal p has a positive correlation
with increasing 0,/0g . A predictive equation is proposed for the opti-
mal p as shown in Eq. (27) (the black dashed line in Fig. 9), so that p
can be predicted for AHSS of different grades when 0,/0q > is known.

4 (oy _
p7ﬁ<002 ]> @7

While the data presented in Fig. 9 shows a clear trend between the
optimal proof stress offset p and the /0y ratio, there is a visible scat-
ter in the data. For each steel, a total of five to nine coupons were tested.
Due to inherent variability in the samples, the optimal p found using
error minimization might not be the only feasible value of the proof
stress offset. Therefore, a range of p values within the scatter for each
material was considered and tested for fit accuracy by determining
the R? for all specimens. The range of p values for each material which
fit all specimens with an R? greater or equal to 0.995 was determined
and is shown as the error bars in Fig. 9. The recommended values of
the proof stress offset p for each material was chosen to reflect the
trend of decreasing proof stress offset with increasing nominal strength
from the range of applicable offset values and is given in Table 4.

The second update is inspired by the characteristic of the AHSS o-¢
curve. Compared with other steels with rounded o-¢ curve, AHSS o-¢
curves have a long strain hardening process with almost no stress in-
crease before the ultimate point. For example, from o, to oy, the aver-
age strain increases are 46% for DP-340, 70% for DP-580, 91% for DP-700,
54% for HSLA-700, 68% for MS-1030, and 47% for MS-1200. For existing
two stage models as discussed in Section 2, the slope change rate for the
second stage model is determined by the second derivative of the o-¢
relationship as shown in Eq. (28), where all parameters are material
properties except for m.

e(o) <8u—80.2—0“§"“>m(m—1)

0.2 m—2
= (0—00‘2) (28)
do? (Ou—002)"
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Fig. 9. The relationship between 0,/09> and the optimal p.
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Table 4
Offset point, equivalent ultimate point and exponential coefficients for AHSS and HSLA
steel.

Sheet DP-340 DP-580 DP-700  HSLA-700 MS-1030  MS-1200
p (%) 2.0 15 1.0 1.0 0.2 0.2

& (%) 22 19 14 1.5 0.8 0.8

o, (MPa) 493.6 853.7 882.4 914.7 1202.6 1307.0
0u/0p 1.2 1.1 1.1 1.1 1.1 1.1

Eeu (%) 9.4 6.3 35 4.6 1.5 2.2

Oy (MPa) 5899 946.9 937.4 1010.2 1305.4 1480.5

n 6.2 7.0 7.6 6.2 8.7 15.0

m 4.2 32 2.6 32 3.2 3.2

From the discussion on Fig. 1, for test curves with a long horizontal
tail portion before the ultimate point (e.g. case n = 1000), m will be dra-
matically increased for Fig. 1 to fit this tail. As a result, the increment of
m will lower the model strain output and thus sacrifice the model fit ac-
curacy at the beginning of the second stage. Therefore, to further im-
prove the model accuracy, the long strain hardening tail portion with
minimal stress increase before the ultimate point is excluded from the
second stage model. The long horizontal tail portion is modeled with ad-
equate accuracy and simplicity as a linear relationship between the
equivalent ultimate point and the ultimate point.

Representative examples of the optimal fit with test data using the
proposed two stage plus linear model for each steel are shown in
Fig. 10. A summary of the average values of strain and stress at the offset
point and the equivalent ultimate point as well as n and m determining
the optimal fit for each material is shown in Table 4.

5. Predictive equations for model parameters

The o-¢ relationship for the updated model requires seven material
property parameters (E, Op, &, Ocu Eeus Ou and &,) and two non-
property parameters (n and m). By definition, &, and 0, can be calcu-
lated by expressions &, = 0p/E + p and 0g, = 0.990,. Therefore,
seven parameters are needed to build the proposed model. Some of
the the required parameters are not always provided in design code or
from a steel manufacturer, and some are not always available from ex-
periments for some cases. To enable the usability of the proposed
model for these cases, the recommendations for these key parameters
are provided.

5.1. Predictive equations for model parameters from literature

Among the unknown parameters, some are commonly required by
existing stress-strain models, which include elastic modulus, ultimate
strength, and ultimate strain. Therefore, predictive equations of these
parameters were used to fit the test results of AHSS and HSLA steel.
Gardner and Yun [20] adopted the Mirambell and Real model [8] and
developed predictive equations and numerical values for required
model parameters after conducting a statistical study on CFS database.
Fig. 11 shows two examples of different situations (cases 1, 2, and 3
from [20]) for the Mirambell and Real model [8] built by parameters
from test results and the predictive equations developed in [20]. The
first example on conventional CFS, shown in Fig. 11(a), is from a tensile
test on 3.0 mm thick G450 specimen [24]. When using all parameters
from the test (case 1), the 2-stage model [8] is able to provide accurate
fit with the experimental curve. When using E, 0y 2, and oy, from the test,
while using the rest parameters predicted by the proposed equations
(case 2) to build the 2-stage model, the fit is generally accurate except
at the high stress range approaching o,. When only 0g is available
from the test and all other required parameters are calculated by the
proposed equations (case 3) to build the the 2-stage model, the model
fit is inaccurate after passing through o0p,. The second example
(Fig. 11(b)) shows an experimental o-¢ curve from the AHSS database
(DP580-L01). For case 1, as discussed in Section 4.1, the 2-stage model
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Fig. 10. Representative examples of the optimal fit with the experimental o-¢ curves using the proposed two-stage plus linear model for (a) DP-340; (b) DP-580; (c) DP-700; (d) HSLA-

700; (e) MS-1030; (f) MS-1200.

built by parameters from the test can fit well for the first stage, while the
beginning of the second stage is not accurately fitted. For case 2 and
case 3, the first stage is well fitted, while the fit for the second stage is
inaccurate. Similar to this example, the situations of different cases for
DP-340, DP-580, DP-700, and HSLA-700 are similar. For MS steels,

6001
500+ zoom-in of region from 0.2% to 1.2% strain range
—~
<
< 400
=S
~ 300
]
I
A7 200 test data
case 1: 2-stage model using E, a,, g, &,, 1, and m from test
100 ~—— case 2: 2-stage model using E, ¢, ,, and o, from test
case 3: 2-stage model using o, from test
0 L 1 L L
0 0.005 0.01 0.015 0.02 0.025

<
Ay
S
v
7]
£
b7 ——— test data
——— case 1: 2-stage model using E, 05, 6,, &,, 1, and m from test
2000 case 2: 2-stage model using E, o, ,, and g, from test
—— case 3: 2-stage model using o, from test
0 L " L
0 0.05 . 0.15
strain
(®)

Fig. 11. Examples of comparisons between stress-strain model [8] constructed by
parameters from test and predicted parameters [20] for (a) conventional CFS (G450
steel from [24]) and (b) AHSS (DP-580L01).

although the fits for case 2 and case 3 are still not accurate, the inaccu-
racy is slightly smaller than that of DP or HSLA steel.

From Gardner and Yun's paper [20], the fit range for exponential co-
efficients n and m are different from the range of the proposed model.
For the conventional 2-stage model, n determines the curvature from
the origin to 0y, and m determines the curvature from oy to . For
the proposed 2-stage plus linear model, n determines the curvature
from the origin to 0p,, and m determines the curvature from 0}, to Oey.
Therefore, the predictive equations for n and m of existing two-stage
models are not applicable for n and m of the proposed model. The aver-
age E of the tested AHSS sheets, as discussed in Section 3.3, is 208.0 GPa
with a coefficient of variance of 0.065. Gardner and Yun's paper [20] and
the AISI-S100 standard for cold-formed steel [25] recommends 203 GPa
for E, which is only 2% lower than the test results. Therefore, E = 203
GPa is recommended for AHSS in this paper when the test result is un-
available. A linear relationship between &, and 0y /0, is proposed for
both hot-rolled steel and CFS sheets, and its fit with AHSS results is
shown in Fig. 12 [20]. From the figure, the predicted ¢, is 34% to 261%
higher than the results from the tests.
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Fig. 12. Comparison of &, between prediction [20] and AHSS test data.
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Fig. 13. Comparison of 0,/0y between prediction [20,26,27] and AHSS test data.

For oy, the relationship between 0,/0y > and 0y > with three different
expressions proposed by Fukumoto [26] (Eq. (29)), Langenberg [27]
(Eq. (30)), and Gardner [20] (Eq. (31)) were compared.

0u/002 = 0.83 +203.8/002 2
0u/002 = [1—0.72370.0027%2}71 o
0u/002 =1+ (130/092)" )

The fit with AHSS and HSLA steel curves is shown in Fig. 13. It was
found the predicted 0,/0q; is largely conservative compared with
tests results. Predicted oy, can be calculated by the product of 0,/0
and 0y ,. The ultimate strength o, calculated by Eq. (29) and Eq. (30)
is up to 26% less than the test results, while 28% less when using
Eq. (31).

From the discussion above, the predictive equations from literature
might not able to reasonably predict ¢, and o, of the AHSS database.
Therefore, predictive equations for key parameters, excluding E, re-
quired by the proposed two-stage plus linear model need to be
provided.

5.2. Expressions for material-property parameters

The predictive equations for material-property parameters required
by the proposed two-stage plus linear model are provided based on a
known 0.2% proof stress 0y », which is typically available from a low
strain level test or directly provided by the steel manufacturer. The rela-
tionship between 0, and 0y, is plotted in Fig. 14. Test data for different
steels are plotted as circles with different colors; additionally, the aver-
age of each steel is plotted as a square with the corresponding color. The
plot suggests a strong linear relationship between 0, and 0y, and there-
fore a linear expression in MPa as shown in Eq. (32) is fitted to describe
the relationship.

1.23 x 09, +60  for DP and HSLA

op = 32
P {(70_2 for MS (32)
10000 @ DP-340 -

E @ DP-580
2 gl © DP-700 X2
& L
600r
|z O average
400
300 400 500 600 700 800
0o.2 (MPa)

Fig. 14. Predictive expression for selected proof stress o, for AHSS when measured 0.2%
proof stress 0y is available.
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Fig. 15. Predictive expression for ultimate strength 0.

Two trendlines with 4-5% variance is added to the plot and most of
the test data is between the trendlines, which indicates a good accuracy
of the expression. The maximum error between the predictive o, by
Eq. (32) and the test data is 6.1%. It is recommended to use p = 0.002
for MS steels, therefore 0, = 0g.

The relationship between o, and 0}, extracted from test data is plot-
ted in Fig. 15. The plot indicates a strong linear relationship between the
two parameters and a linear expression in MPa is fitted to the test data
as shown in Eq. (33).

0y =1.09 x 0, + 24 (33)

Most test data is within the two trendlines with 4-5% variance for
Eq. (33). For the case that 0, is not available directly, o, is calculated
by Eq. (32) firstly and then oy, is calculated by Eq. (33). In this case,
the difference of o, between predicted value and experimental data is
less than 5% except DP-700; the difference for DP-700 is less than 10%.

The relationship between ¢, and 0,/E is plotted in Fig. 16. As
discussed in Section 3.3 and Section 4, even for the same type of steel
with same cutting direction, &, may vary significantly because of the
stress plateau near the ultimate point. Therefore, the relationship be-
tween &, and 0,/E is not as clear as the two aforementioned stress ex-
pressions, while still sufficiently visible. For the four steels with
nominal yield strength less than 1000 MPa, the ultimate strain de-
creases when o,/E increases; for MS-1030 and MS-1200, the ultimate
strain is generally stable. Therefore, a two-part predictive expression
as shown in Eq. (34) is fitted to the data.

130 o0;
&y = 3 E

0.03

161

600 for DP and HSLA

for MS

(34)

To include the relatively large variance of the ultimate strain, two
trendlines with £ 40% variance is plotted and most test data is between
these two trendlines. This large difference tolerance is also commonly
used for the predictive expression for ultimate strain of stainless steel

0.15) o9 e @ DP-340
o NS @ DP-580
Do @ DP-700
01k ®. @ HSLA-700
400/0 ™
005 ® MS-1030 ~ & N
@ MS-1200
O average =~ T mTmomooes
0 . . . .
0.002  0.003  0.004  0.005  0.006
o,/E

Fig. 16. Predictive expression for ultimate strain &,.
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Fig. 17. Predictive expression for strain of the equivalent ultimate point &.

[9] and conventional CFS [20,28]. The difference between the predictive
expression and the average of the test data is less than 20%.

The relationship between &, and (0e, — 0,)/E, is plotted in Fig. 17.
E, is the tangent modulus at 0, and it is calculated by Eq. (26). A linear
relationship is found and the line of best fit is closely approximated by
Eq. (35).

Oeu—0p

Eey =3.54 X E,

+0.014 (35)

Two trendlines with + 30% variance with Eq. (35) is added to the
plot in Fig. 17 and most of the test data lies between the trendlines. Sim-
ilar to the case of ultimate strain, the difference between the predictive
expression and the corresponding average value of strains of equivalent
ultimate points from the experiment for each steel is less than 20%.

5.3. Recommendation for exponential coefficients n and m

As discussed in Section 2 (Fig. 1), the non-material property expo-
nential coefficients n and m determine the degree of curvature for the
first and second stage of the model, respectively, as described by
Eq. (25). The values for n and m shown in Table 4 are determined by
error minimization. A summary of n for each test is shown in Fig. 18.
Based on the observation of o-¢ curves for different type of steels (e.g.
Fig. 5), the degree of curvature for the first stage, n, generally increases
when the yield strength of steel increases. For example, the curve tran-
sition from the end of linear elastic region to the selected offset point for
DP-340 is relatively gradual, while for the two MS steels is relatively
sharp. This observation is supported by the error minimization fitting
of n shown in Fig. 18 which indicates an overall trend that n increases
as the steel strength increases. Due to the obvious scatter in the plot, in-
stead of a continuous expression, a tabular recommendation of n for

23 '

20+ M recommended 7

Zoom-in

Fig. 18. Recommendation for first stage exponential coefficient n based on statistics study
of experiment results.
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Fig. 19. Predictive equation for second stage exponential coefficient m.

each steel is proposed as shown by the black solid squares in Fig. 18 as
the average approximation of the test data.

Similarly, m depicts the degree of the curvature for the second stage
of the model from o, to o, Therefore, a relationship exists between m
and 0p/0,, as plotted in Fig. 19. A linear relationship is observed and a
linear expression given in Eq. (36) is fitted to the test data.

m=—12.55x 22 1 14.43 (36)
Oy

Most m data is within + 20% variance trendlines of Eq. (36); while
the difference between Eq. (36) and the average of the test data given
in Table 4 is less than 10%.

6. Yield strength determination

In conventional CFS numerical modeling, the 0.2% proof stress 0p, is
widely considered as yield strength and used as the offset point for
existing stress-strain models as described in Section 2. From the discus-
sion in Section 4, using 0y as the offset point is not able to accurately fit
the AHSS experimental stress-strain database. Instead, using the recom-
mended p proof stress as the offset point is proposed for its excellent fit
with the database. Additionally, as shown in Table 4, the ratio between
oy and 0, is 1.1 for almost all AHSS and HSLA steel; the only exception is
DP-340 where its ratio is 1.2. The value of this ratio is close to the ratio of
0,/09 for most conventional CFS [20]. Therefore, the applicability of
using the recommended p proof stress to represent the yield strength
is investigated.

In this section, the energy method was used to verify the rationality
of defining the yield strength using the recommended p proof stress.
The area under the load-displacement curve from the origin to the frac-
ture point is the dissipated energy during the whole loading process.
From the definition of engineering strain and engineering stress, the
area under the engineering 0-¢ curve is proportional to the dissipated
energy, hence it will be called equivalent energy dissipation. If the
areas under any two 0-¢ curves are equal, the energy dissipation of
these two loading processes are equal. The equivalent energy dissipa-
tion for each experimental o-¢ curve was calculated by the area under
the curve. The equivalent energy dissipation for conventional steel
stress-strain models was set equal to that of the experiment, and then
the corresponding yield strength oy, for these models was calculated.
The calculated yield strength of each conventional model was compared
with the conventional 0.2% proof stress 0y, and recommended p proof
stress 0, from Table 4. Additionally, when adopting 0}, = 0j, in the con-
ventional models, the differences of the equivalent energy dissipation
between conventional models and experimental o-¢ curves were
discussed.

The area Sp under the experimental o-¢ curve from the origin to the
fracture point for each specimen is calculated by trapezoidal numerical
integration. Two conventional steel stress-strain models, the elastic
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Fig. 20. The schematic diagram for (a) the EPP model and (b) the AEP model (bottom).

perfect plastic model (referred as EPP model hereinafter) and the artifi-
cial elastic plastic model with strain hardening and softening (referred
as AEP model hereinafter) [29], are used in this section. Schematic dia-
grams of the EPP and AEP models are shown in Fig. 20. Most required
parameters are determined from the experimental o-¢ curves, including
elastic modulus E, ultimate strain &,, ultimate strength o, fracture strain
g, and fracture stress oy The yield strength o, and the yield strain &, of
both EPP and AEP model are the unknown material-property parame-
ters to be determined.
The area S; under the EPP model is calculated by Eq. (37).

& 1 oy
S _/0 o(g)ds_ixT
o
o) <o
By assuming an equal energy dissipation between the experimental

curve and the EPP model, 0y, is calculated by solving S; = Sq as shown in
Eq. (38).

X Oy + Oy x (sf—%)
(37)

0y = Egr—1/ (Eer)” —2ESp (38)

The calculated oy, is located on the experimental 0-¢ curve, and its
corresponding offset pgpp = &, — 0y/E is calculated. The pgpp values are
averaged across each steel and are given in Table 5. The calculated pgpp
value is significantly larger than the traditional 0.2% and greater than
the recommended offset p given in Table 4. The average percentage dif-
ference Aoy 2gep between the calculated 0, and 0, from the test as well
as the average percentage difference Aoy,gep between the calculated oy,
and the recommended proof stress 0, from the test as determined in
Section 4.2 are calculated and shown in Table 5. Overall, o, from the
EPP model is closer to 0, than 0 for DP and HSLA steels, while 0g is
adopted as o, for MS steels. This shows that the recommended offset
proof stress 0, determined in Section 4.2 is a better fit to represent
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Table 5

Comparison among AHSS test curves, EPP model, and AEP model.
Steel DP-340 DP-580 DP-700 HSLA-700 MS-1030 MS-1200
pepp (%) 4.8 33 1.5 1.9 0.5 0.8
A0peep (%)  —35.8 —30.9 —244 —284 —5.0 —9.0
AOpepp (%) —-11.9 —-7.0 —-29 —5.7 —5.0 —-9.0
ASgpp (%) —-11.8 —6.9 —29 —55 —4.5 —8.4
Daep (%) 1.8 1.5 13 0.8 0.2 0.6
A0p2aep (%) —23.0 —259 —26.4 —-22.0 —-1.0 —3.7
AOpagp (%) 2.5 —0.2 —-29 2.7 —-1.0 —-3.7
ASuep (%) 1.5 —0.0 —1.6 0.9 —0.5 —-1.2
A 6 6 4 4 2 2

the yield strength for the DP and HSLA steels than the traditional 0.2%
proof stress.

For the AEP model, at the position where the yield plateau ends and
the nonlinear strain hardening starts, &, is not clearly defined quantita-
tively. In this paper, &, was initially determined by the statistical result
of A = &g/g, for CFS specimens with a similar o-¢ curve shape as the AEP
model from previous studies. From Rogers's report [30], three speci-
mens, 060-G300-SCDR3, 060-G300-SCL2, and 060-G300-SCT3 are ap-
plicable and their A values are 6.70, 6.98 and 9.40 respectively. From
Abdel's paper [31], specimens A-9 and B-4 are applicable and their A
values are 3.68 and 7.40 respectively. From Huang's paper [5], speci-
mens AF-R1 and GF-R1 are applicable and their A values are 2.50 and
4.20 respectively. The average value of A is 5.84. Based on this data, A
in the AEP model is initially assumed as 6, an approximation of this
average.

No mathematical model is specified in literature for the strain hard-
ening and strain softening regions. In this study, a quadratic model o{(¢)
=ag® + be+ cforggp<es gris used. The values of &, 0y, & and oy from
the experimental o-¢ curves are used to build the AEP model, and oy, is
the only unknown parameter to be determined. The coefficients a, b,
and ¢ were solved by Eq. (39), Eq. (40), and Eq. (41) which are expres-
sions of 0.

g = En(9r=0u) + &u(0y—0y) + & (0u—0y)

39
(gsh_gf)(gu_gsh)(sf_gu) ( )
o &2 (op—0y) + €2 (0y—0y) + 8f2 (ou—0y) (40)
(Ssh _gf) (Su _gsh) (Sf_gu)
__ EnEuOf(8u—8m) + EnEOu (Esh—&f) + EuEFOy (E—Eu) (1)

(85’1 _Sf) (Eu—&sh) (sf_gu)

Noticeably, by combining 0, = a&, + beg, + ¢, 0, = agh + be, + ¢,
and 0y = agf + ber+ c, three constraints are generated and they are suf-
ficient to solve a, b, and c as a set of unique solutions. By definition, o, is
the peak of the strain hardening process, and likewise should be the
peak of the quadratic model. Therefore, the percentage difference be-
tween the peak of the quadratic model and the ultimate strength,
Opeals 1S calculated, and if it is less than 1%, then the solution is consid-
ered valid. After the calculation of a, b, and c as expressions of 0, the
area S, under the AEP model is calculated as an expression of 0, as
shown in Eq. (42).

5, [Towde - (n- 1) %
o= [ o= (r=3) F+

The yield strength o0y, is then calculated by solving S = S, using the
generalized reduced gradient nonlinear algorithm in Excel Solver and
Speak 1S then checked if it is within the 1% tolerance. Applying the initial
A for DP-340 and DP-580 gives very small &peqi. For DP-700, HSLA-700,
MS-1030, and MS-1200, &peqx is larger than 10%. The major cause is, for
these cases, a is significantly larger than that of DP-340 and DP-580. The

&
/ "ag? 4 be + cde (42)
&,

sh
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Fig. 21. EPP and AEP model based on test curve (DP-700D01).

references [5,30,31] used to calculate the initial A only covered conven-
tional grade steels, instead of high-strength steels. Good fits were
achieved by varying A and it was determined to use A = 6 for DP-340
and DP-580, A = 4 for DP-700 and HSLA-700, and A = 2 for MS-1030
and MS-1200. The adjusted A for each steel is inversely correlated to
its nominal yield strength.

By using the adjusted A for the AEP model, 0y, is calculated and then
located on the experimental 0-¢ curve, and its corresponding offset pagp
= ¢, — 0y/E is calculated. The pgp values are averaged across each steel
and are shown in Table 5. For DP and HSLA steels, pagp is significantly
larger than 0.2%, while it is close to the recommended p given in
Table 4, and for MS steels, p4gp is slightly larger than the recommended
0.2%. The average percentage difference Aog »4p between the calculated
oy and 0y, as well as the average percentage difference A0papp between
the calculated 0y, and o, (from Table 4) are calculated and shown in
Table 5. The large differences between the 0, and 0y, indicate the irra-
tionality of using 0y as yield strength for DP and HSLA steels, while the
small difference between o, and 0, shows the potential of using 0}, as
the yield strength for AHSS. An example of EPP and AEP models deter-
mined from an experimental o-¢ curve (DP-700D01) is shown in Fig. 21.

In addition, the percentage difference of energy dissipation ASgpp be-
tween the experimental o-¢ curve and the EPP model when adopting oy,
= Opis calculated and the averages are shown in Table 5. It is found that
the energy dissipation of the EPP model is smaller than the actual exper-
iment for all steels, and ranges from —1.0% to —13.3%. Similarly, the
percentage difference of energy dissipation AS,gp between the experi-
ments and the AEP model when adopting 0, = 0}, is calculated and
the averages are shown in Table 5. The average difference for each
steel is less than 2%, which supports using o, as the yield strength in
the AEP model. As expected, the AEP model gives a better fit to the
data than the EPP model, but both models illustrate the necessity for
using the recommended offset as given in Table 4 to represent the
yield strength in conventional material models.

7. Conclusion

Advanced high strength steels have different material properties
compared with conventional steels. A series of tensile coupon tests on
DP, HSLA, and MS steels with nominal yield strength from 340 MPa to
1200 MPa were carried out. Essential material properties including elas-
tic modulus, 0.2% proof stress, ultimate strength and fracture elongation
were determined. Coupons were cut from different directions along the
sheet rolling direction and no obvious differences on material properties
due to cutting directions was observed. Existing stress-strain models for
conventional CFS and for stainless steels were discussed but they were
not found to provide accurate fit with the AHSS database, especially
around the yield region. An updated two-stage plus linear stress-
strain model was therefore developed based on the Ramberg-Osgood
model. Excellent fit was achieved between the proposed model and
the AHSS database. For the required parameters of the proposed
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model, a series of predictive equations were proposed to model the gen-
eral stress-strain relationships of AHSS. A discussion on determination
of yield strength was carried out by comparing the energy dissipation
between experimental stress-strain curves and conventional stress-
strain models, including the EPP model and the AEP model. The calcu-
lated yield strength of the conventional models showed poor fit with
conventional 0.2% proof stress for DP and HSLA steels, but excellent
consistency when the yield strength was represented by a novel recom-
mended proof stress in the proposed stress-strain model. The stress-
strain model and predictive equations presented herein could be uti-
lized to model the constitutive relationship of AHSS in future work in-
cluding analytical simulations.

Data availability statement

The data that supports the findings of this study are available from
the corresponding author upon reasonable request.

Funding statement

The first author was supported by the Wisconsin Alumni Research
Foundation through an OVCRGEAward MSN237434.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

The authors would like to thank US Steel for donating the test mate-
rial. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessar-
ily reflect the views of the sponsors or other participants.

References

[1] W.Yu, RA. LaBoube, H. Chen, Cold-Formed Steel Design, 5th ed. John Wiley & Sons,
Inc, 2019.
[2] S.Keeler, M. Kimchi, P. Mooney, Advanced High-Strength Steels Application Guide-
lines, 6.0 ed. WorldAutoSteel, Brussels, Belgium, 2017.
[3] R.Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive in-
dustry, Arch. Civ. Mech. Eng. 8 (2008) 103-117.
[4] ASTM, E8, Standard Test Methods for Tension Testing of Metallic Materials, 2016.
[5] Y.Huang, B. Young, The art of coupon tests, J. Constr. Steel Res. 96 (2014) 159-175.
[6] W. Ramberg, W.R. Osgood, Description of stress-strain curves by three parameters,
National Advisory Committee For Aeronautics, 1943 , Technical Note No. 902.
H.N. Hill, Determination of stress-strain relations from the offset yield strength
values, Technical Note No. 927, Technical Report No. 927, National Advisory Com-
mittee for Aeronautics, Washington, D.C,, USA, 1944,
E. Mirambell, E. Real, On the calculation of deflections in structural stainless steel
beams: an experimental and numerical investigation, J. Constr. Steel Res. 54
(2000) 109-133.
KJ. Rasmussen, Full-range stress-strain curves for stainless steel alloys, J. Constr.
Steel Res. 59 (2003) 47-61.
L. Gardner, D.A. Nethercot, Experiments on stainless steel hollow sections-part 1:
material and cross-sectional behaviour, J. Constr. Steel Res. 60 (2004) 1291-1318.
H.-T. Li, B. Young, Cold-formed high strength steel shs and rhs beams at elevated
temperatures, ]. Constr. Steel Res. 158 (2019) 475-485.
[12] P.Hradil, A. Talja, E. Real, E. Mirambell, B. Rossi, Generalized multistage mechanical
model for nonlinear metallic materials, Thin-Walled Struct. 63 (2013) 63-69.
[13] W.M. Quach, ].G. Teng, K.F. Chung, Three-stage full-range stress-strain model for
stainless steels, J. Struct. Eng. 134 (2008) 1518-1527.
[14] A. Olsson, Stainless Steel Plasticity: Material Modelling and Structural Applications,
Ph.D. thesis Lulea tekniska universitet, 2001.
[15] L. Gardner, M. Ashraf, Structural design for non-linear metallic materials, Eng. Struct.
28 (2006) 926-934.
[16] W.M. Quach, Residual Stresses in Cold-Formed Steel Sections and their Effect on Col-
umn Behaviour, Ph.D. thesis Hong Kong Polytechnic University, 2005.
[17] M. MacDonald, J. Rhodes, G. Taylor, Mechanical properties of stainless steel lipped
channels, Int. Special. Conf. Cold-Form. Steel Struct. (2000).

(7

8

9

(10]

(11]


http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0005
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0005
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0010
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0010
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0015
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0015
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0020
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0025
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0030
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0030
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0035
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0035
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0035
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0040
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0040
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0040
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0045
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0045
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0050
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0050
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0055
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0055
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0060
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0060
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0065
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0065
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0070
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0070
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0075
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0075
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0080
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0080
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0085
http://refhub.elsevier.com/S0143-974X(21)00169-3/rf0085

Y. Xia, C. Ding, Z. Li et al.

[18] K. Abdella, Inversion of a full-range stress-strain relation for stainless steel alloys,
Int. J. Non-Linear Mech. 41 (2006) 456-463.

[19] J.L. Ma, T.M. Chan, B. Young, Material properties and residual stresses of cold-formed

high strength steel hollow sections, ]. Constr. Steel Res. 109 (2015) 152-165.

L. Gardner, X. Yun, Description of stress-strain curves for cold-formed steels, Constr.

Build. Mater. 189 (2018) 527-538.

Y. Huang, B. Young, Material properties of cold-formed lean duplex stainless steel

sections, Thin-Walled Struct. 54 (2012) 72-81.

AlJ. Sadowski, ].M. Rotter, T. Reinke, T. Ummenhofer, Statistical analysis of the mate-

rial properties of selected structural carbon steels, Struct. Saf. 53 (2015) 26-35.

C.Ding, Z. Li, H. Blum, Y. Xia, B.W. Schafer, Ductility demands on CFS structural con-

nections of advanced high strength steel, Proceedings of the Cold-Formed Steel Re-

search Consortium Colloquium, 2020 , URL: http://jhir.library.jhu.edu/handle/

1774.2/63168.

H.B. Blum, K.J. Rasmussen, Experimental investigation of long-span cold-formed

steel double channel portal frames, J. Constr. Steel Res. 155 (2019) 316-330.

AISI, S100-16, North American Specification for the Design of Cold-Formed Steel

Structural Members, AISI, Washington, DC, US.A., 2016

Y. Fukumoto, New constructional steels and structural stability, Eng. Struct. 18

(1996) 786-791.

P. Langenberg, Relation between design safety and y/t ratio in application of welded

high strength structural steels, Proceedings of International Symposium on Applica-

tions of High Strength Steels in Modern Constructions and Bridge-Relationship of

Design specifications, Safety and Y/T ratio. Beijing 2008, pp. 28-46.

W.M. Quach, J.F. Huang, Stress-strain models for light gauge steels, Proc. Eng. 14

(2011) 288-296.

C. Salmon, ]. Johnson, F. Malhas, Steel Structures: Design and Behavior, 5 ed. Pearson,

2009.

C.A. Rogers, G.J. Hancock, Ductility of G550 Sheet Steels in Tension - Elongation Mea-

surements and Perforated Tests, Technical Report, The University of Sydney, Sydney,

December 1996 1996.

N. Abdel-Rahman, K. Sivakumaran, Material properties models for analysis of cold-

formed steel members, J. Struct. Eng. 123 (1997) 1135-1143.

[20]
[21]
[22]

[23]

[24]
[25]
[26]

[27]

[28]
[29]

[30]

[31]

14

Journal of Constructional Steel Research 182 (2021) 106687

Glossary

E: elastic modulus

Ep: tangent modulus at p proof stress

Eo»: tangent modulus at 0.2% proof stress; E, when p = 0.002

o total stress

oy stress of fracture point

op: proof stress with a plastic strain of p defined by the offset of elastic modulus; stress of p
offset point

o,: ultimate tensile strength

0y: yield strength

0p2: 0.2% proof stress; 0, when p = 0.002

Opy: stress of the equivalent ultimate point

&: total strain

& total strain of fracture point

&, total strain corresponds to 0p; total strain of p offset point

&, ultimate strain; total strain corresponds to oy,

&,: total yield strain; total strain corresponds to o,

£9.2: total strain corresponds to 0p; €, when p = 0.002

&ey- Strain of the equivalent ultimate point; total strain corresponds to 0,

m: strain-hardening exponent of the second stage model (for two-stage or multi-stage
Ramberg-Osgood model)

n: strain-hardening exponent of the whole model (for one-stage Ramberg-Osgood model)
or of the first stage model (for two-stage or multi-stage Ramberg-Osgood model)

p: offset of elastic modulus to define the proof stress

Acronyms

AEP model: artificial elastic plastic model with nonlinear strain hardening and softening
AHSS: advanced high strength steels

DP steels: dual phase steel

EPP model: elastic perfect plastic model

HSLA steels: high-strength low-alloy steel

MS steels: martensitic steel
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