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As a result of altered chemical composition, multiphase microstructures, and othermicromechanical change, ad-
vanced high strength steel (AHSS) has three to five times the strength of conventional mild steels. Developed for
automotive applications, AHSS has high potential for application in cold-formed steel construction. However, the
material properties must be properly understood and quantified for application to structural design with eco-
nomic efficiency. A series of tensile coupon tests were carried out to determine typical AHSSmaterial properties.
Existing stress-strainmodels, designed for steels with gradual strain hardening, were studied and recalibrated to
the AHSS test data. No existing method provided an accurate fit for all cases. An updated two-stage plus linear
stress-strain model, based on the Ramberg-Osgood expression, was developed. The predictive equations for
the parameters required by the new model were provided based on the statistical analysis of AHSS test data. In
addition, from the discussion of the new model, a novel proof stress was recommended to represent the yield
strength of AHSS. Energy was used to compare the AHSS experimental stress-strain curves with conventional
steel stress-strain models to examine the rationality of the proposed proof stress as the yield strength in design.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled cold-formed steel (CFS) members formed from coils of
mild steel have been widely used in the structural and construction in-
dustries in theUnited States and globally since the1940s. In general, CFS
members have unique advantages, including nestable sections for com-
pact packaging and shipping, lightweight and consequently high
strength-to-weight ratios, and high recyclability [1]. Owing to material
science advances at themicrostructural level over the past two decades,
advanced high strength steel (AHSS) has been developed. AHSS are
steels with unique microstructures utilizing complex deformation and
phase transformation processes to achieve unprecedented combina-
tions of strength and ductility. The design and manufacture of AHSS re-
quire circumspect selection of chemical compositions and precisely
controlled heating and cooling processes. Subsequently, AHSS exhibit
a multiphase microstructure containing one or more phases different
from ferrite, pearlite, or cementite. Rather, these phases, for example,
include martensite, bainite, austenite, and/or retained austenite that
are sufficient in quantities to produce unique mechanical properties.
AHSS includes new grades of sheet steel with yield strength up to
1250 MPa, ultimate strength up to 1900 MPa, and tensile elongation
upwards of 20% to 30%. In addition, different from conventional steels,
the terminology AHSS is classified by its metallurgical designation,
rather than the steel grades. As a result, AHSS can have a wider range
of grades (e.g., with ultimate strength as low as 440 MPa and yield
strength as low as 210MPa) than the conventional high strength steels,
which require a yield strength higher than 460MPa [2]. AHSS have been
maturely developed and applied in the automobile industry for its ex-
cellence in stiffness, crash performance and formability [3]. The civil
construction industry requires different design constraints than the au-
tomobile industry, therefore research needs to be carried out on the ap-
plication of AHSS members as load-bearing components in structural
framing for civil construction. For any attempt to characterize the struc-
tural performance of AHSS CFS members, a database of AHSS material
properties is a prerequisite, which is explicitly discussed in this paper.

AHSS includes various families of steel, including Dual Phase
(DP), Complex Phase (CP), Ferritic-Bainitic (FB), Martensitic (MS),
Transformation-Induced Plasticity (TRIP) and more. Different families
of AHSS are made with specifically selected chemical composition and
manufacturing processes, which result in unique material properties.
Among various AHSS families, DP and MS currently have lowest
manufacturing cost and therefore are advised to be firstly studied for
structural engineering applications as they have the lowest cost barrier
to entry. DP steels comprise a ferritic matrix which encompass a
hard martensite second phase and generally a higher percentage
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Fig. 1. Different scenarios of Ramberg-Osgood expression using different n.
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composition of the hard martensite second phase demonstrates higher
steel strength. DP steels are produced by a controlled cooling process
from the initial two-phase ferrite plus austenite phase to transform
some austenite to ferrite before transforming the remaining austenite
to martensite. DP steels typically have a high degree of ductility and
may have a lower cost and higher availability than other AHSS.MS steels
comprise a martensitic matrix containing ferrite and bainite and gener-
ally have the highest strengths. MS steels are produced from the austen-
ite phase to transformmost of the austenite tomartensite. The chemical
compositionofMS steels also includes carbon,manganese, silicon and/or
other elements to increase steel hardenability and strengths. MS steels
typically have somewhat lowered ultimate elongations at fracture [2].

In this paper, a series of tensile coupon tests on specimens made
from two different families of AHSS (DP and MS) is presented. The
tests were conducted per ASTM E8 [4]; and additional procedures and
techniques recommended by Huang and Young [5] were also adopted.
A numerical model of the stress-strain relationship for AHSS is pro-
posed. Existing models on steels with gradual yielding, including con-
ventional CFS and stainless steel, are discussed. Numerical studies
show that existing models discussed in this paper do not accurately fit
AHSS σ-ε curves from the tests conducted herein. Therefore, this
paper proposes an updated two-stage plus linear stress-strain model
for AHSS. Excellent fit between the proposed model and the AHSS test
σ-ε curves are achieved. For scenarioswhen the fullσ-ε curve is unavail-
able, predictive equations for the parameters in the proposedmodel are
also proposed based on statistical analysis of the AHSS test data. From
the discussion on the proposed model, the possibility of adopting a
newproof stress level to represent yield strength is also raised. A discus-
sion of the proposed proof stress is carried out comparing the energy
dissipation between the AHSS test curves and conventional stress-
strain models.

2. Existing stress-strain models

Accuratemodeling of the constitutive relationship formetallicmate-
rials is essential in advanced structural design and numerical analysis.
Different from conventional mild steels with a clear yield point and
yield plateau, the σ-ε relationship for sheet steel are generally more
rounded with an increased yield strength, an increased ultimate
strength and a decreased proportional limit. To depict the non-linear
σ-ε relationship for CFS, various models have been proposed. Among
these models, the Ramberg-Osgood (R-O) model [6] is widely recog-
nized and extensively used, not only for CFS but also other metals
with similar stress-strain behaviors including stainless steel and alumi-
num. The universal form of the R-O model is shown in Eq. (1):

ε ¼ σ
E
þ p

σ
σp

� �n

for 0 ≤ σ ≤ σu ð1Þ

where σ denotes stress and ε denotes strain, E is elastic modulus, σp is
the proof stress which corresponds to a plastic strain of p, and n is the
exponential coefficient which determines the degree of curvature for
the stress-strain model.

For p = 0.002, Fig. 1 shows the effect of hardening parameter n on
the σ-ε curve. When n < 1, the σ-ε curve is concave; when n = 1, the
σ-ε curve is a straight line between the origin and the ultimate point,
which is the end of themodel; and when n> 1, the σ-ε curve is convex.
For the convex case (i.e. n > 1), as n increases, the degree of curve con-
vexity becomes less sensitive to the increment of n; and when n ap-
proaches positive infinity, the curve is comprised by two straight lines.
Thus, n = 1 is elastic and n → + ∞ is elastic-perfectly-plastic. The σ-ε
curve will pass through the origin and the 0.2% proof stress σ0.2, regard-
less the value of n. The R-Omodel is only able to depict the constitutive
relationship when it is monotonically increasing. The R-O model is un-
able to depict the strain softening process after the ultimate point.
These two constraints are applicable to all updated models originating
2

from the R-O model. The most commonly used evolution of Eq. (1)
was proposed byHill [7], where p=0.002was used as shown in Eq. (2).

ε ¼ σ
E
þ 0:002

σ
σ0:2

� �n

for 0 ≤ σ ≤ σu ð2Þ

Previous studies [8–10] have shown that Eq. (2) is able to provide
accurate approximations of experimental σ-ε curves at relatively
lower stress levels (e.g. up to 0.2% proof stress), and is inaccurate at
higher stress regions for CFS sheets. Therefore, the original one stage
R-O model is not able to accurately depict the entire σ-ε behavior of
steel up to ultimate. As such, researchers havemade updates to the orig-
inal R-Omodel. Among all these updates, the central idea is to divide the
curve into several stages and model them separately.

A two-stage model R-O was first proposed by Mirambell and Real
[8]. They conducted a series of tensile coupon tests of cold-formed stain-
less steel Type 304/304L and proposed Eq. (2) for stress up to σ0.2 and a
new Eq. (3) for stress between σ0.2 and ultimate strength σu:

ε ¼ σ−σ0:2

E0:2
þ εpu

σ−σ0:2

σu−σ0:2

� �m

þ ε0:2 for σ0:2 ≤ σ ≤ σu ð3Þ

where E0.2 is the tangentmodulus at σ0.2, εpu is the total plastic strain of
ultimate point, ε0.2 is the total strain corresponds toσ0.2, andm is the ex-
ponential coefficient determining the degree of curvature of the σ-ε
curve between the 0.2% offset and the ultimate.

Rasmussen [9] independently proposed an approximate expression
of Eq. (3) for austenitic, duplex, and ferritic stainless steel alloy as
shown in Eq. (4) by neglecting the difference between the ultimate
strain εu and the plastic strain of the ultimate point εpu (εpu ≈ εu) be-
cause stainless steels are generally ductile.

ε ¼ σ−σ0:2

E0:2
þ εu

σ−σ0:2

σu−σ0:2

� �m

þ ε0:2 for σ0:2 ≤ σ ≤ σu ð4Þ

Rasmussen also proposed an expression of E0.2 as shown in Eq. (5).
To calculate the slope of the curve at σ0.2, E0.2 and m in Eq. (4) are un-
known before they are calculated, therefore instead of Eq. (4), Eq. (2)
is used as the strain expression in Eq. (5).

1
E0:2

¼ ∂ε σð Þ
∂σ σ¼σ0:2 ¼

1þ 0:002n
σ

σn
0:2
E

E

�����
�����
σ¼σ0:2

¼ 1þ 0:002n E
σ0:2

E
⇒E0:2

¼ E
1þ 0:002n E

σ0:2

ð5Þ

Gardner and Nethercot [10] studied thematerial properties of Grade
1.4301 stainless steel and updated Eq. (3) so that the model passes
through the ultimate point. For mathematical consistency, the second
stage expression is updated as shown in Eq. (6).
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ε ¼ σ−σ0:2

E0:2
þ εu−ε0:2−

σu−σ0:2

E0:2

� �
σ−σ0:2

σu−σ0:2

� �m

þ ε0:2 for σ0:2 ≤ σ ≤ σu ð6Þ

Additionally, Gardner further updated the second stage expression by
forcing the expression to pass through σ0.2 and the 1% proof stressσ1.0 as
shown in Eq. (7) to expand the applicability of themodel to include com-
pression stress-strain behavior, where σu is generally unavailable.

ε ¼ σ−σ0:2

E0:2
þ 0:008−

σ1:0−σ0:2

E0:2

� �
σ−σ0:2

σ1:0−σ0:2

� �m

þ ε0:2 for σ0:2 ≤ σ ≤ σu ð7Þ

Inspired by the work of Gardner and Nethercot [10], Li and Young
[11] proposed a two-stage stress-strain model (as shown in Eq. (8),
where the subscript T indicates the material property at temperature
T ∘C) designed for cold-formed high strength steel at both ambient and
elevated temperature, and a series of predictive equations for the pa-
rameters required by the model were provided. The proposed two-
stage model was verified by the accurate fits with experimental
stress-strain curves at both ambient and at elevated temperatures up
to 1000∘C of two series of cold-formedhigh strength steelswith nominal
yield strength of 700 MPa and 900 MPa at ambient.

ε¼
σ
ET

þ0:002
σ

σ0:2T

� �n

for 0 ≤ σ ≤ σ0:2T

σ−σ0:2T

E0:2T
þ εuT−ε0:2T−

σuT−σ0:2T

E0:2T

� �
σ−σ0:2T

σuT−σ0:2T

� �m

þε0:2T for σ0:2T < σ ≤ σuT

8>><
>>:

ð8Þ

Besides two-stage models, multiple-stage models were also pro-
posed to further improve curve fit accuracy. Hradil et al. [12] updated
Mirambell's two-stage model [8] and proposed a generalized
multiple-stage stress-strain model which was flexible to accommodate
any amount of measured or recommended parameters. In their paper, a
three-stagemodel was used as an example of themultiple stage model.
Stress-strain data from the origin to the ultimate was split into three
stages by σ0.2 and σ1.0. The first stage expression is given in Eq. (2),
the second stage expressions is given in Eq. (9), and the third stage ex-
pression is given in Eq. (10). The definitions of some new parameters,
including ε0:2⋆, ε1:0⋆, n2, and n3, are introduced in the original source
[12]. A set of explicit equations as the inversion of Eqs. (2), (9), and
(10) were also provided.

ε ¼ σ−σ0:2

E0:2
þ ε0:2⋆

σ−σ0:2

σ1:0−σ0:2

� �n2
þ 0:002

þ σ0:2

E
for σ0:2 ≤ σ ≤ σ1:0 ð9Þ

ε ¼ σ−σ1:0

E1:0
þ ε1:0⋆

σ−σ1:0

σu−σ1:0

� �n3
þ 0:01

þ σ1:0

E
for σ1:0 < σ ≤ σu ð10Þ

Quach [13] further updated the model for stainless steel from the
works of Olsson [14] and Gardner [15], and came up with a new
three-stagemodel. Thefirst stage expression is given by Eq. (2). The sec-
ond stage ranges fromσ0.2 to 2.0% proof stress σ2.0 and the expression is
given by Eq. (11).

ε ¼ σ−σ0:2

E0:2
þ 0:008þ σ1:0−σ0:2ð Þ 1

E
−

1
E0:2

� �� �
σ−σ0:2

σ1:0−σ0:2

� �m

þ ε0:2 for σ0:2 ≤ σ ≤ σ2:0 ð11Þ

A similar expression of the second stage was also adopted in [15,16].
The third stage ranges from σ2.0 to σu. The third stage expression is
based on a linear relationship between true stress σt and engineering
strain ε, (σt = a + bε) and is given by Eq. (12):
3

ε ¼ σ−a
b−σ

for σ2:0 < σ ≤ σu ð12Þ

where parameters a and b are calculated by Eqs. (13) and (14) using
material properties including ε2.0 (the strain of 2.0% proof stress), εu (to-
tal strain corresponds to σu), and σu.

a ¼ σ2:0 1þ ε2:0ð Þ−bε2:0 ð13Þ

b ¼ σu 1þ εuð Þ−σ2:0 1þ ε2:0ð Þ
εu−ε2:0

ð14Þ

Besides the two-stage and multi-stage models based on the R-O ex-
pression, some updated models as transformations of the R-O expres-
sion or as combinations of the R-O expression and other equations
have been proposed. MacDonald [17] came up with a uniform expres-
sion for modeling the full range σ-ε relationship of cold-formed stain-
less steel as shown in Eq. (15).

ε ¼ σ
E
þ 0:002

σ
σ0:2

� �iþj σ
σ0:2

� �k

for 0 ≤ σ ≤ σu ð15Þ

The idea of this model is to amplify the value of n in Eq. (2) for the
larger strain region, particularly after σ0.2. The numerical coefficients i,
j and kwere obtained by error minimization on the test data. These co-
efficients were calculated as numbers between 2.5 and 6.0 and were
found to be related to the steel sheet thickness.

Olsson [14] conducted research with a focus on plasticitymodels for
stainless steel alloys and proposed a two-stage model depicting the re-
lationship between the true stressσt=σ(1+ ε) and engineering strain
ε. Eq. (2) is used as thefirst stage expressionwhen0 ≤σ ≤σε=0.02,where
σε=0.02 is the stress corresponding to ε = 0.02. The second stage is
depicted as a line when σε=0.02 < σ ≤ σu.

Abdella [18] proposed an approximate inversion of Eq. (2) and
Eq. (6) for stainless steel alloys as shown in Eq. (16):

σn ¼

rεn
1þ r−1ð Þεpn

for 0 ≤ εn < 1

1þ r0:2 εn−1ð Þ
1þ r⋆−1ð Þ εn−1

εnu−1

� �p⋆ for 1< εn ≤ εnu

8>>>><
>>>>:

ð16Þ

where σn is the stress normalized by σ0.2, εn is the strain normalized
by ε0.2. All other parameters are clearly defined in [18]. The proposed
explicit expressions were verified by fitting the σ-ε curve database
from [9].

Ma et al. [19] conducted a series of material properties experiments
on cold-formed high strength steel with nominal yield strength up to
1100MPa and proposed a new constitutive model based on the original
R-O expression (i.e. Eq. (2)). The strain, as the output of themodel, is ex-
plicitly depicted as expressions of plastic strain, εpl, as shown in Eq. (17):

ε ¼ εp þ σ
E
¼ εp þ σ0:2

E

� � εp
0:002

� � 1
n0þKεmp

� �
ð17Þ

where K is determined per arithmetic consistency at the ultimate point
as defined in [19].

Besides the stress-strain model itself, accurate prediction of the pa-
rameters required by the model is also essential. Gardner and Yun
[20] collected σ-ε curves of CFS sheets with nominal yield strengths
ranging from 235 MPa to 1100 MPa from over 700 experiments. They
reviewed the predictive equations for the key parameters of the two-
stage CFS stress-strain model (e.g. model proposed by Mirambell and
Real [8], Eqs. (2) and (3)) from existing literature and then developed
a series of equations for these parameters based on the literature review
and the statistical study on the collected experimental database. The



Table 1
Chemical composition of AHSS.

Steel DP-340 DP-580 DP-700 HSLA-700 MS-1030 MS-1200

C (max %) 0.12 0.167 0.17 0.104 0.16 0.28
Si (max %) 0.4 1.413 0.4 0.012 0.4 0.4
Mn (max %) 1.6 2 1.7 2.32 1.8 1.3
P (max %) 0.025 0.01 0.02 0.013 0.02 0.02
S (max %) 0.01 0.002 0.01 0.004 0.01 0.01
Al (%) ≥0.015 0.047 ≥0.01 0.031 0.015 0.015
Nb + Ti (max %) 0.1 0.006 0.15 – 0.1 0.1
Cr + Mo (max %) 1 0.043 1 0.606 1 1
V (max %) 0.2 0.005 – 0.001 – –
B (max %) 0.005 0.0003 0.005 0.0001 0.005 0.01
Cu (max %) 0.2 0.02 0.2 0.02 0.2 0.2
Ni (%) – 0.01 – 0.01 – –
Sn (%) – 0.008 – 0.002 – –
N (%) – 0.004 – 0.005 – –
Cb (%) – 0.003 – 0.002 – –
Sb (%) – – – 0.001 – –
Ca (%) – – – 0.001 – –

Table 2
Nominal coupon properties and test matrix.

Steel t (mm) σy (MPa) σu (MPa) Test matrix

DP-340 1.4 340 590 L:2, T:2, D:1
DP-580 1.8 580 980 L:5, T:4, D:0
DP-700 1.4 700 980 L:2, T:2, D:2
HSLA-700 0.6 700 980 L:5, T:3, D:0
MS-1030 1.0 1030 1300 L:4, T:2, D:2
MS-1200 1.0 1200 1500 L:3, T:2, D:2

Table 3
Properties of AHSS coupon specimens.

Series t b E ε0.2 σ0.2 εu σu εf σf

mm mm GPa % MPa % MPa % MPa

DP-340L01 1.382 12.76 215 0.38 378 15.2 608 22.1 601
DP-340L02 1.373 12.74 208 0.36 338 13.7 575 17.4 550
DP-340T01 1.378 12.74 213 0.37 357 10.8 598 11.9 581
DP-340T02 1.381 12.74 219 0.36 360 14.6 603 22.1 580
DP-340D01 1.390 12.75 203 0.38 365 14.2 595 16.4 580
DP-580L01 1.819 13.10 193 0.52 622 11.7 958 13.0 957
DP-580L03 1.818 13.03 197 0.52 626 11.8 945 20.0 902
DP-580L04 1.816 13.12 188 0.53 625 11.8 945 19.8 872
DP-580L13 1.810 12.96 191 0.53 636 9.1 954 16.2 907
DP-580L23 1.803 12.90 197 0.52 638 12.4 970 22.9 841
DP-580T01 1.817 13.07 198 0.52 634 10.2 953 12.4 940
DP-580T02 1.812 13.02 207 0.51 643 9.9 952 11.3 940
DP-580T03 1.802 13.04 209 0.51 640 9.2 962 11.3 922
DP-580T06 1.794 13.07 207 0.51 645 9.7 970 11.2 947
DP-700L01 1.399 12.63 208 0.55 725 7.5 950 16.4 654
DP-700L02 1.394 12.73 216 0.53 717 7.8 952 14.7 705
DP-700T01 1.422 12.61 223 0.50 659 6.7 951 13.7 812
DP-700T02 1.422 12.63 217 0.50 648 6.0 947 13.8 802
DP-700D01 1.410 12.72 227 0.50 681 5.8 937 9.4 826
DP-700D02 1.416 12.73 206 0.54 696 6.0 945 15.8 634
HSLA-700L02 0.620 12.25 175 0.62 732 7.8 1037 8.3 1032
HSLA-700L03 0.629 12.61 176 0.59 677 7.7 993 8.1 986
HSLA-700L04 0.626 12.60 219 0.52 709 5.1 1022 5.4 1014
HSLA-700L08 0.630 12.53 216 0.52 698 6.6 1004 7.7 980
HSLA-700L16 0.628 12.63 191 0.57 714 7.8 1072 9.5 1061
HSLA-700T02 0.619 12.60 199 0.54 677 6.8 1009 7.0 1007
HSLA-700T03 0.623 12.60 183 0.56 656 7.2 982 7.5 981
HSLA-700T11 0.616 12.63 198 0.55 689 7.8 1045 8.7 1035
MS-1030L01 1.000 12.73 225 0.77 1286 3.0 1380 5.6 978
MS-1030L02 1.006 12.73 214 0.77 1223 2.1 1306 3.1 1284
MS-1030L03 0.999 12.74 219 0.75 1199 2.6 1288 3.3 1252
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accuracy of the predictive equations was verified by comparison be-
tween the stress-strain model using parameters predicted by the pro-
posed equations and parameters captured from the experimental
database. Further discussion regarding the suitability of existing predic-
tive parameters with the AHSS database are presented in Section 5.1.

3. Tensile coupon testing

3.1. Test specimens

A total of 43 coupons were cut from 6 steel sheets by waterjet at
UW-Madison TEAMLab and H&H Precision Wire in Newport, PA. The
AHSS sheets including dual phase steel (DP) and martensitic steel
(MS) with five different grades were studied. A piece of high-strength
low-alloy steel (HSLA) (a type of conventional high-strength steel)
sheet was also studied in this paper. The chemical composition of the
tested steels is shown in Table 1. Note for DP-340, DP-700, and MS
sheets, the composition is typical only, because exact chemical compo-
sition is proprietary. Nominal yield strengths range from 340 MPa to
1200 MPa and nominal ultimate strength range from 590 MPa to 1500
MPa. Nominal dimensions of the coupon are per ASTM E8 [4] as
shown in Fig. 2. Each steel sheetwas labeled by its steel family and nom-
inal yield strength inMPa, i.e.: DP-340, DP-580, DP-700, HSLA-700, MS-
1030, and MS-1200. The coupons were labeled by the steel sheet label,
the cutting direction, and an index number. For example, HSLA-
700L01 stands for coupon #1 cut along the longitudinal (coiling) direc-
tion of sheet HSLA-700. Other direction labels included “T” for transverse
direction and “D” for diagonal (45∘) direction along the sheet. Table 2
summarizes the nominal properties and test matrix. Actual width b
and thickness t for each couponwasmeasured before the test using cal-
iper andmicrometer as reported in Table 3. HSLA-700 and DP-700were
coated by galvanized zinc and the actual thicknesses of these coupons
were measured after removal of the coating by 1-M HCl solution, after
which the thickness of the coupons reduced by 0.04 mm on average.
The other steel sheets were uncoated.
Fig. 2. Nominal dimensional tensile coupon test specimen.

4

3.2. Test procedures

AMTS CriterionModel 43 loading systemwith a maximum capacity
of 50 kN was used for the tensile tests. An extensometer with 25.4 mm
gauge length was attached to the coupon center to measure strain. Be-
fore the test, the measured width b and thickness t of the coupon was
input into the test control program, so that the real time relationship be-
tween engineering stress (applied load divided by the initial cross-
sectional area of the reduced parallel section) and strain (extensometer
reading) was available during the test. A previous study [21] has indi-
cated some loading rate σ-ε sensitivity. During the test, two different
loading rates conforming to ASTM requirements [4] were used: initially,
the loading rate was 0.2 mm/min until the stress achieved the nominal
yield strength; the loading rate was then increased to 0.6mm/min until
MS-1030L04 1.002 12.73 216 0.76 1206 3.1 1304 3.4 1288
MS-1030T01 1.008 12.73 215 0.75 1173 2.6 1316 3.0 1291
MS-1030T02 1.007 12.77 226 0.72 1174 2.2 1326 2.4 1313
MS-1030D01 1.010 12.73 214 0.75 1185 2.1 1317 2.1 1307
MS-1030D02 1.011 12.73 211 0.76 1175 2.3 1313 6.9 844
MS-1200L01 1.008 12.80 205 0.84 1311 2.9 1490 6.5 1140
MS-1200L02 0.995 12.73 219 0.80 1322 2.9 1505 4.6 1462
MS-1200L03 0.997 12.76 199 0.85 1292 3.6 1490 3.9 1455
MS-1200T01 1.008 12.76 234 0.77 1324 3.4 1519 4.0 1491
MS-1200T02 1.004 12.78 216 0.79 1280 3.3 1471 3.9 1433
MS-1200D01 1.003 12.81 220 0.81 1337 3.8 1534 7.0 1230
MS-1200D02 1.008 12.79 215 0.80 1282 2.4 1460 5.7 1158



Fig. 3. (a) Comparison between dynamic and staticσ-ε curve; (b) (zoom-in view) conver-
sion from dynamic stress to static stress.

Fig. 4. V shape dynamic stress-strain relationship at static drops.

Fig. 5. Representative static σ-ε curve for each steel.
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fracture. Similar to the recommendation in [5], a slower loading rate be-
fore achieving the nominal yield strength was utilized to guarantee suf-
ficient data in determining the elasticmodulus. ConsistentwithHuang's
recommendation [5], each test was manually paused twice. When the
test was paused, the stress would decrease until stable and the duration
for each pause was three minutes. For each test, the first pause was at
the nominal yield strength and the second pause was at the nominal ul-
timate strength, as shown in Fig. 3(a). Pausing near the yield strength
(0.2% proof stress) and ultimate strength for 100 s to allow the stress re-
laxation to take place is recommended by [5]. Prior to testing, only the
nominal values of yield and ultimate strengths are known, therefore
the nominal values were utilized for the generation of static drops.
The static drop is used to estimate any stress amplification from loading
rate and to calculate the static stress.

3.3. Test results

For each test, the primary result is the dynamic σ-ε curve. Following
the steps as depicted in Fig. 3, the static stress for each applicable data
point is calculated by subtracting the stress amplification from its dy-
namic stress using the two static drops generated during the test,
where Δσx is the stress amplification of location x. When x is between
the proportional limit and the left end of the first static drop, Δσx is cal-
culated by Eq. (18); when x is between the right end of the first static
drop and the left end of the second static drop, Δσx is calculated by
Eq. (19); when x is after the right end of the second static drop, Δσx is
calculated by Eq. (20).

Δσx ¼ εxΔσ1

ε1
ð18Þ

Δσx ¼ Δσ2−Δσ1ð Þ � εx−ε1ð Þ
ε2−ε1

þ Δσ1 ð19Þ

Δσx ¼ Δσ2 ð20Þ

When the loading is paused to generate the static drops, the strain
increases slightly; when the loading is resumed, the stress rapidly
5

increases from the valley of static drop and continues along the original
dynamic path. These processes generated a V shape dynamic stress-
strain relationship as shown in Fig. 4.

A linear relationship is proposed and recommended to define the
static stress-strain relationship for data within the V shape. First, the
points where static drop begins and ends, as well as the valley of the V
shape static drop are foundmanually. The linear relationship is assumed
to pass through the valley and its slope is EV as calculated by Eq. (21):

EV ¼ tan
arctanELC þ arctanERC

2
ð21Þ

where ELC is the slope at the beginning (left) of the static drop and it is
defined as the slope of linear regression for the ten data points before,
ERC is the slope at the end (right) of the static drop and it is defined as
the slope of linear regression for the ten data points after.

The stress amplification at the beginning of the static drop,ΔL, is cal-
culated by Eq. (22), and the stress amplification at the end of the static
drop, ΔR, is calculated by Eq. (23):

ΔL ¼ σLC− EV εLC−εVð Þ þ σV½ � ð22Þ

ΔR ¼ σRC− EV εRC−εVð Þ þ σV½ � ð23Þ

where εLC and σLC are the strain and stress of static drop beginning, εRC
and σRC are the strain and stress of static drop end, εV and σV are the
strain and stress of static drop valley.

Note that for the first static drop, the loading rate was 0.2 mm/min
until the pause, and changed to 0.6mm/minwhen the loading resumed.
Therefore, the difference between ΔL and ΔR of the first static drop
might indicate the difference of stress amplification resulting from dif-
ferent loading rates. A faster loading rate will result in a slightly larger
dynamic stress amplification (and hence slightly larger static drop),
but regardless of the loading rate, the static drop will always reach the
same level.

A summary of a representative static σ-ε curve for each steel is
shown in Fig. 5. To ensure each data point on the σ-ε curve has the
same weight, the experimental curve was represented by a generalized
curve. Sadowski et al. [22] used a two-stage seventh order polynomial



Fig. 6. Different strain hardening modes for DP-580, MS-1030 and MS-1200.
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to represent the experimental curve. However, their polynomial model
used strain as the model input and stress as the model output, which is
the inverse of the R-O expression, and although the coefficient of vari-
ance between the polynomial and the experimental σ-ε curve was
larger than 0.96, some local differences were significant. To avoid
these two issues, the experimental σ-ε curve was constructed by linear
interpolation along the stress axis with a uniform stress increment of
0.1 MPa.

Material properties including elastic modulus E, 0.2% proof stress
σ0.2, strain at 0.2% proof stress ε0.2, ultimate strength σu, ultimate strain
εu, fracture stress σf, and fracture strain εfwere extracted from the static
σ-ε curves and are given in Table 3.

For E, the slope of the linear regression of all data points between
stresses of 20% and 45% of the nominal yield strength was used [5].
The 0.2% offset point was determined as the point with a plastic strain
of 0.002. The ultimate point was determined as the point with the larg-
est static stress. The ratio of σu/σ0.2, which is an indicator of curve non-
linearity, varies from 1.1 to 1.7. AHSSwith lower nominal yield strength
tends to have a larger σu/σ0.2. The fracture strain was obtained as the
strain prior to a considerable reduction of engineering stress from the
real-time stress-strain relationship due to fracture of the specimen [5].
In addition, two different fracture modes are observed among the ex-
perimental AHSS σ-ε curves and some examples are shown in Fig. 6.
The first mode (mode 1) has a sudden fracture and the second mode
(mode 2) has a gradual strain softening process. Different fracture
modes affect the fracture point. In addition, there are generally no obvi-
ous effects of cutting directions on the material properties.

4. Updated two-stage plus linear stress-strain model

In this section, existing two-stage and multiple-stage stress-strain
models discussed as in Section 2 were used to fit the AHSS σ-ε curves
from experiments as described in Section 3.3. Although some of the re-
searchers provided predictive equations for essential parameters of
their stress-strain model, the equations were derived from particular
steel databases, which are different from AHSS in types, grades, and
stress-strain behaviors. Therefore, to achieve optimal fit, the predictive
expressions were not adopted in this section; rather, the required pa-
rameters of these models were fit from the AHSS experimental results.
Optimal fit was achieved by maximizing the coefficient of determina-
tion (R2) between the experimental curve and the numerical model,
as shown in Eq. (24):

R2 ¼ 1−
SSres
SStot

¼ 1−
∑i εi−ε σ ið Þð Þ2
∑i εi−εið Þ2

ð24Þ

whereσi and εi are the stress and strain of data point i of the experimen-
tal curve; ε(σi) is themodel strain corresponding to σi; εi is the average
of experimental strains.

Noticeably, for R-O models, the R2 is calculated by the difference of
strain, rather than stress. Therefore, for higher strain ranges (e.g. the
third stage of the three-stage model), R2 could be small (i.e. poor fit
6

between the test curve and the model), even if the difference between
the test curve and the model is not obvious visually.

4.1. Optimal fit between AHSS stress-strain curves and existing models

Optimal fit between experimental and existing models, using
DP-700L02 as an example, are shown in Fig. 7. Models proposed by
Mirambell [8] (Fig. 7(a)) and Rasmussen [9] (Fig. 7(b)) provide accurate
fit for the first stage; while the strainmodel prediction is lower than ex-
perimental strain at the beginning of the second stage (starting from
0.2% proof stress). Additionally, neither of these twomodelsmathemat-
ically pass through the ultimate point, the difference of the ultimate
strain between the model prediction and the test data is obvious. The
percentage difference for Mirambell's model ranges from 6.5% to
23.7% and for Rasmussen's model ranges from 12.4% to 47.4%. The inac-
curacy of strain prediction on high stress range is large when applying
Rasmussen's model, because the AHSS being studied in particular the
MS, are less ductile than the stainless steel discussed in [9], and the ap-
proximation of using ultimate strain as the plastic strain of the ultimate
point leads to an obvious inaccuracy.

Gardner's works [10,15] provide three formats of the updated sec-
ond stage model (Eq. (6), Eq. (7), and Eq. (11)). As shown in Fig. 7(c),
Eq. (6) mathematically ensures the model passes through the ultimate
point, while similar to the case of Mirambell's model, the strain is
underestimated at the beginning of the second stage. Eq. (7) provides
excellent fit accuracy between 0.2% proof stress and 1.0% proof stress,
while the fit after 1.0% proof stress is less accurate, particularly at high
stress range.

The model proposed by Quach [13] (Fig. 7(d)) gives excellent fit for
the first two stages, while the third stage by using Eq. (12) provides less
accurate fit. Also, Quach's model requires three more parameters (σ1.0,
σ2.0 and ε2.0) than Mirambell's and Rasmussen's model, which might
limit the feasibility of the model. Hradil's three-stage model [12]
(Fig. 7(e)) provides excellent fit accuracy for MS-1030 and MS-1200
along the full stress range. For DP and HSLA, the first two stages are ex-
cellently fitted, while the fit for the beginning of the third stage
(Eq. (10)) is less accurate, particularly for DP-340. Also, Hradil's model
requires more parameters (σ1.0 and an extra exponential coefficient
for the third stage) than others' two-stage models. The accuracy of the
fit can be increased if the number of model stages increases, however
an increased number of extra parameters are also required (at least
two extra parameters for each extra stage).

MacDonald's one-stagemodel with variable exponential coefficients
[17] (Fig. 7(f)) provides an excellent fit up toσ0.2, while the fit is less ac-
curate for thehigher stress range.More importantly, themodel is partic-
ularly sensitive to the three parameters i, j, and K and no accurate
predictive equations are available for these parameters. Therefore, the
model is only applicable when the full experimental stress-strain data
is available.

4.2. Updated stress-strain model

Based on the discussion above, the existingmodelsmight not be able
to provide accurate fit for the AHSS stress-strain database, particularly
for DP and HSLA steels. Although the existing models are able to accu-
rately fit the AHSS test stress-strain curves up to around 0.2% proof
stress for most cases, different levels of inaccuracies are commonly ob-
served thereafter. Although the post-yield inaccuracies might not result
in significant difference for many structural design and analysis cases,
some other important scenarios can be sensitive to these inaccuracies.
These scenarios include numerical simulations of steel forming, blast
crushing, collapse, etc., where the relationship between local strain
and engineering strain is crucial [23]. Therefore, a newmodel describing
the stress-strain behavior of AHSS as shown in Fig. 8 is proposed. The
proposed model is updated from Gardner's two-stage model (Eq. (2)
and Eq. (6)), which passes through the origin, 0.2% proof stress, and



Fig. 7. Examples of fit between AHSS σ-ε curves and existing models.
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ends at the ultimate point. The expressions for the first stage and the
second stage of the proposed stress-strain model are shown in Eq. (25):

ε ¼
σ
E
þ p

σ
σp

� �n

for 0 ≤ σ ≤ σp

σ−σp

Ep
þ εeu−εp−

σ eu−σp

Ep

� �
σ−σp

σeu−σp

� �m

þ εp for σp < σ ≤ σeu

8>>><
>>>:

ð25Þ
Fig. 8. Schematic diagram for the proposed two-stage plus linear model.
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where εp and σp are the strain and stress of p offset (with a plastic strain of p); Ep is
the tangent modulus at σp as calculated by Eq. (26); εeu and σeu are the strain and
stress of the equivalent ultimate point.

1
Ep

¼ ∂ε σð Þ
∂σ σ¼σp ¼

1þ pn
σ

σn
p
E

E

�����
�����
σ¼σp

¼
1þ pn E

σp

E
⇒Ep ¼ E

1þ pn E
σp

ð26Þ

Two major updates are made for the newly proposed model. The
first update is to change the demarcation point (referred as offset point
hereinafter) between the first and the second stage from 0.2% proof
stress to a reassigned proof stress p. The second update is to change
the end of the second stage from the ultimate point to the equivalent ul-
timate point.

The equivalent ultimate point is defined as the point with a stress
equals to 99% of the ultimate strength at strain hardening stage. The
first stage of the proposedmodel is adopted from the origin to the offset
point and the second stage is adopted from the offset point to the equiv-
alent ultimate point. The σ-ε relationship from the equivalent ultimate
point to the ultimate point is described as a line.

For the first update, from the discussion in Section 4.1, the existing
two-stage models are not able to provide accurate fit at the beginning
of the second stage. The inaccuracy is caused by the inaccurate calcula-
tion of tangent modulus E0.2 at the σ0.2, and E0.2 is required in the
second-stage expression (e.g. Eq. (6)). E0.2 is calculated by using the



Table 4
Offset point, equivalent ultimate point and exponential coefficients for AHSS and HSLA
steel.

Sheet DP-340 DP-580 DP-700 HSLA-700 MS-1030 MS-1200

p (%) 2.0 1.5 1.0 1.0 0.2 0.2
εp (%) 2.2 1.9 1.4 1.5 0.8 0.8
σp (MPa) 493.6 853.7 882.4 914.7 1202.6 1307.0
σu/σp 1.2 1.1 1.1 1.1 1.1 1.1
εeu (%) 9.4 6.3 3.5 4.6 1.5 2.2
σeu (MPa) 589.9 946.9 937.4 1010.2 1305.4 1480.5
n 6.2 7.0 7.6 6.2 8.7 15.0
m 4.2 3.2 2.6 3.2 3.2 3.2
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first stage expression (Eq. (2)) because the second stage equation
(Eq. (6)) is unknown before the determination of E0.2. This compromise
is only accurate when the transition between the first and the second
stage is smooth. From the experimental σ-ε relationship (e.g. Fig. 5),
DP and HSLA steels curves are highly non-linear when the plastic strain
is smaller than 0.005; MS steels curves are largely non-linear when the
plastic strain is smaller than 0.002, while the nonlinearity tends to be
small and stable when the plastic strain approaches 0.005. Therefore,
to provide an accurate tangentmodulus at the offset point, a larger plas-
tic strain p is needed, particularly for the DP and HSLA steels. The proof
stress offset p from0.002 to 0.020 at an increment of 0.001were iterated
for each experimental σ-ε curve to find the optimal fit with the optimal
p by using the error minimization method. From the result shown in
Fig. 9, it is found that the optimal p for DP and HSLA steels is larger
than 0.005, while for MS steels it is less than 0.005. In addition, for
each experimental σ-ε curve, the optimal p has a positive correlation
with increasing σu/σ0.2. A predictive equation is proposed for the opti-
mal p as shown in Eq. (27) (the black dashed line in Fig. 9), so that p
can be predicted for AHSS of different grades when σu/σ0.2 is known.

p ¼ 4
150

σu

σ0:2
−1

� �
ð27Þ

While the data presented in Fig. 9 shows a clear trend between the
optimal proof stress offset p and the σu/σ0.2 ratio, there is a visible scat-
ter in the data. For each steel, a total of five to nine couponswere tested.
Due to inherent variability in the samples, the optimal p found using
error minimization might not be the only feasible value of the proof
stress offset. Therefore, a range of p values within the scatter for each
material was considered and tested for fit accuracy by determining
the R2 for all specimens. The range of p values for each material which
fit all specimens with an R2 greater or equal to 0.995 was determined
and is shown as the error bars in Fig. 9. The recommended values of
the proof stress offset p for each material was chosen to reflect the
trend of decreasing proof stress offset with increasing nominal strength
from the range of applicable offset values and is given in Table 4.

The second update is inspired by the characteristic of the AHSS σ-ε
curve. Compared with other steels with rounded σ-ε curve, AHSS σ-ε
curves have a long strain hardening process with almost no stress in-
crease before the ultimate point. For example, from σeu to σu, the aver-
age strain increases are 46% for DP-340, 70% for DP-580, 91% for DP-700,
54% for HSLA-700, 68% for MS-1030, and 47% for MS-1200. For existing
two stagemodels as discussed in Section 2, the slope change rate for the
second stage model is determined by the second derivative of the σ-ε
relationship as shown in Eq. (28), where all parameters are material
properties except for m.

∂2ε σð Þ
∂σ2

¼
εu−ε0:2− σu−σ0:2

E0:2

� �
m m−1ð Þ

σu−σ0:2ð Þm σ−σ0:2ð Þm−2 ð28Þ
Fig. 9. The relationship between σu/σ0.2 and the optimal p.
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From the discussion on Fig. 1, for test curves with a long horizontal
tail portion before the ultimate point (e.g. case n=1000),mwill be dra-
matically increased for Fig. 1 to fit this tail. As a result, the increment of
mwill lower themodel strain output and thus sacrifice themodel fit ac-
curacy at the beginning of the second stage. Therefore, to further im-
prove the model accuracy, the long strain hardening tail portion with
minimal stress increase before the ultimate point is excluded from the
second stagemodel. The longhorizontal tail portion ismodeledwith ad-
equate accuracy and simplicity as a linear relationship between the
equivalent ultimate point and the ultimate point.

Representative examples of the optimal fit with test data using the
proposed two stage plus linear model for each steel are shown in
Fig. 10. A summary of the average values of strain and stress at the offset
point and the equivalent ultimate point as well as n andm determining
the optimal fit for each material is shown in Table 4.

5. Predictive equations for model parameters

The σ-ε relationship for the updated model requires seven material
property parameters (E, σp, εp, σeu, εeu, σu, and εu) and two non-
property parameters (n and m). By definition, εp and σeu can be calcu-
lated by expressions εp = σp/E + p and σeu = 0.99σu. Therefore,
seven parameters are needed to build the proposed model. Some of
the the required parameters are not always provided in design code or
from a steel manufacturer, and some are not always available from ex-
periments for some cases. To enable the usability of the proposed
model for these cases, the recommendations for these key parameters
are provided.

5.1. Predictive equations for model parameters from literature

Among the unknown parameters, some are commonly required by
existing stress-strain models, which include elastic modulus, ultimate
strength, and ultimate strain. Therefore, predictive equations of these
parameters were used to fit the test results of AHSS and HSLA steel.
Gardner and Yun [20] adopted the Mirambell and Real model [8] and
developed predictive equations and numerical values for required
model parameters after conducting a statistical study on CFS database.
Fig. 11 shows two examples of different situations (cases 1, 2, and 3
from [20]) for the Mirambell and Real model [8] built by parameters
from test results and the predictive equations developed in [20]. The
first example on conventional CFS, shown in Fig. 11(a), is from a tensile
test on 3.0 mm thick G450 specimen [24]. When using all parameters
from the test (case 1), the 2-stage model [8] is able to provide accurate
fit with the experimental curve.When using E,σ0.2, andσu from the test,
while using the rest parameters predicted by the proposed equations
(case 2) to build the 2-stage model, the fit is generally accurate except
at the high stress range approaching σu. When only σ0.2 is available
from the test and all other required parameters are calculated by the
proposed equations (case 3) to build the the 2-stage model, the model
fit is inaccurate after passing through σ0.2. The second example
(Fig. 11(b)) shows an experimental σ-ε curve from the AHSS database
(DP580-L01). For case 1, as discussed in Section 4.1, the 2-stage model



Fig. 10. Representative examples of the optimal fit with the experimental σ-ε curves using the proposed two-stage plus linear model for (a) DP-340; (b) DP-580; (c) DP-700; (d) HSLA-
700; (e) MS-1030; (f) MS-1200.
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built by parameters from the test canfit well for thefirst stage, while the
beginning of the second stage is not accurately fitted. For case 2 and
case 3, the first stage is well fitted, while the fit for the second stage is
inaccurate. Similar to this example, the situations of different cases for
DP-340, DP-580, DP-700, and HSLA-700 are similar. For MS steels,
Fig. 11. Examples of comparisons between stress-strain model [8] constructed by
parameters from test and predicted parameters [20] for (a) conventional CFS (G450
steel from [24]) and (b) AHSS (DP-580L01).
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although the fits for case 2 and case 3 are still not accurate, the inaccu-
racy is slightly smaller than that of DP or HSLA steel.

From Gardner and Yun's paper [20], the fit range for exponential co-
efficients n andm are different from the range of the proposed model.
For the conventional 2-stage model, n determines the curvature from
the origin to σ0.2, and m determines the curvature from σ0.2 to σu. For
the proposed 2-stage plus linear model, n determines the curvature
from the origin to σp, and m determines the curvature from σp to σeu.
Therefore, the predictive equations for n and m of existing two-stage
models are not applicable for n andm of the proposed model. The aver-
age E of the tested AHSS sheets, as discussed in Section 3.3, is 208.0 GPa
with a coefficient of variance of 0.065. Gardner and Yun's paper [20] and
the AISI-S100 standard for cold-formed steel [25] recommends 203 GPa
for E, which is only 2% lower than the test results. Therefore, E = 203
GPa is recommended for AHSS in this paper when the test result is un-
available. A linear relationship between εu and σ0.2/σu is proposed for
both hot-rolled steel and CFS sheets, and its fit with AHSS results is
shown in Fig. 12 [20]. From the figure, the predicted εu is 34% to 261%
higher than the results from the tests.
Fig. 12. Comparison of εu between prediction [20] and AHSS test data.



Fig. 15. Predictive expression for ultimate strength σu.Fig. 13. Comparison of σu/σ0.2 between prediction [20,26,27] and AHSS test data.
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Forσu, the relationship betweenσu/σ0.2 andσ0.2 with three different
expressions proposed by Fukumoto [26] (Eq. (29)), Langenberg [27]
(Eq. (30)), and Gardner [20] (Eq. (31)) were compared.

σu=σ0:2 ¼ 0:83þ 203:8=σ0:2 ð29Þ

σu=σ0:2 ¼ 1−0:72e−0:0027σ0:2
� �−1 ð30Þ

σu=σ0:2 ¼ 1þ 130=σ0:2ð Þ1:4 ð31Þ

The fit with AHSS and HSLA steel curves is shown in Fig. 13. It was
found the predicted σu/σ0.2 is largely conservative compared with
tests results. Predicted σu can be calculated by the product of σu/σ0.2

and σ0.2. The ultimate strength σu calculated by Eq. (29) and Eq. (30)
is up to 26% less than the test results, while 28% less when using
Eq. (31).

From the discussion above, the predictive equations from literature
might not able to reasonably predict εu and σu of the AHSS database.
Therefore, predictive equations for key parameters, excluding E, re-
quired by the proposed two-stage plus linear model need to be
provided.

5.2. Expressions for material-property parameters

The predictive equations for material-property parameters required
by the proposed two-stage plus linear model are provided based on a
known 0.2% proof stress σ0.2, which is typically available from a low
strain level test or directly provided by the steel manufacturer. The rela-
tionship between σp and σ0.2 is plotted in Fig. 14. Test data for different
steels are plotted as circles with different colors; additionally, the aver-
age of each steel is plotted as a squarewith the corresponding color. The
plot suggests a strong linear relationship betweenσp andσ0.2 and there-
fore a linear expression in MPa as shown in Eq. (32) is fitted to describe
the relationship.

σp ¼ 1:23� σ0:2 þ 60 for DP and HSLA
σ0:2 for MS

	
ð32Þ
Fig. 14. Predictive expression for selected proof stress σp for AHSS when measured 0.2%
proof stress σ0.2 is available.
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Two trendlines with ±5% variance is added to the plot and most of
the test data is between the trendlines, which indicates a good accuracy
of the expression. The maximum error between the predictive σp by
Eq. (32) and the test data is 6.1%. It is recommended to use p = 0.002
for MS steels, therefore σp = σ0.2.

The relationship between σu and σp extracted from test data is plot-
ted in Fig. 15. The plot indicates a strong linear relationship between the
two parameters and a linear expression in MPa is fitted to the test data
as shown in Eq. (33).

σu ¼ 1:09� σp þ 24 ð33Þ

Most test data is within the two trendlines with ±5% variance for
Eq. (33). For the case that σp is not available directly, σp is calculated
by Eq. (32) firstly and then σu is calculated by Eq. (33). In this case,
the difference of σu between predicted value and experimental data is
less than 5% except DP-700; the difference for DP-700 is less than 10%.

The relationship between εu and σp/E is plotted in Fig. 16. As
discussed in Section 3.3 and Section 4, even for the same type of steel
with same cutting direction, εu may vary significantly because of the
stress plateau near the ultimate point. Therefore, the relationship be-
tween εu and σp/E is not as clear as the two aforementioned stress ex-
pressions, while still sufficiently visible. For the four steels with
nominal yield strength less than 1000 MPa, the ultimate strain de-
creases when σp/E increases; for MS-1030 and MS-1200, the ultimate
strain is generally stable. Therefore, a two-part predictive expression
as shown in Eq. (34) is fitted to the data.

εu ¼ −
130
3

� σp

E
þ 161
600

for DP and HSLA

0:03 for MS

8<
: ð34Þ

To include the relatively large variance of the ultimate strain, two
trendlines with± 40% variance is plotted andmost test data is between
these two trendlines. This large difference tolerance is also commonly
used for the predictive expression for ultimate strain of stainless steel
Fig. 16. Predictive expression for ultimate strain εu.



Fig. 19. Predictive equation for second stage exponential coefficient m.
Fig. 17. Predictive expression for strain of the equivalent ultimate point εeu.
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[9] and conventional CFS [20,28]. The difference between the predictive
expression and the average of the test data is less than 20%.

The relationship between εeu and (σeu − σp)/Ep is plotted in Fig. 17.
Ep is the tangent modulus at σp and it is calculated by Eq. (26). A linear
relationship is found and the line of best fit is closely approximated by
Eq. (35).

εeu ¼ 3:54� σeu−σp

Ep
þ 0:014 ð35Þ

Two trendlines with ± 30% variance with Eq. (35) is added to the
plot in Fig. 17 andmost of the test data lies between the trendlines. Sim-
ilar to the case of ultimate strain, the difference between the predictive
expression and the corresponding average value of strains of equivalent
ultimate points from the experiment for each steel is less than 20%.

5.3. Recommendation for exponential coefficients n and m

As discussed in Section 2 (Fig. 1), the non-material property expo-
nential coefficients n and m determine the degree of curvature for the
first and second stage of the model, respectively, as described by
Eq. (25). The values for n and m shown in Table 4 are determined by
error minimization. A summary of n for each test is shown in Fig. 18.
Based on the observation of σ-ε curves for different type of steels (e.g.
Fig. 5), the degree of curvature for the first stage, n, generally increases
when the yield strength of steel increases. For example, the curve tran-
sition from the end of linear elastic region to the selected offset point for
DP-340 is relatively gradual, while for the two MS steels is relatively
sharp. This observation is supported by the error minimization fitting
of n shown in Fig. 18 which indicates an overall trend that n increases
as the steel strength increases. Due to the obvious scatter in the plot, in-
stead of a continuous expression, a tabular recommendation of n for
Fig. 18. Recommendation for first stage exponential coefficient n based on statistics study
of experiment results.
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each steel is proposed as shown by the black solid squares in Fig. 18 as
the average approximation of the test data.

Similarly,m depicts the degree of the curvature for the second stage
of the model from σp to σeu. Therefore, a relationship exists between m
and σp/σu as plotted in Fig. 19. A linear relationship is observed and a
linear expression given in Eq. (36) is fitted to the test data.

m ¼ −12:55� σp

σu
þ 14:43 ð36Þ

Most m data is within ± 20% variance trendlines of Eq. (36); while
the difference between Eq. (36) and the average of the test data given
in Table 4 is less than 10%.

6. Yield strength determination

In conventional CFS numerical modeling, the 0.2% proof stress σ0.2 is
widely considered as yield strength and used as the offset point for
existing stress-strain models as described in Section 2. From the discus-
sion in Section 4, usingσ0.2 as the offset point is not able to accurately fit
the AHSS experimental stress-strain database. Instead, using the recom-
mended p proof stress as the offset point is proposed for its excellent fit
with the database. Additionally, as shown in Table 4, the ratio between
σu andσp is 1.1 for almost all AHSS andHSLA steel; the only exception is
DP-340where its ratio is 1.2. The value of this ratio is close to the ratio of
σu/σ0.2 for most conventional CFS [20]. Therefore, the applicability of
using the recommended p proof stress to represent the yield strength
is investigated.

In this section, the energy method was used to verify the rationality
of defining the yield strength using the recommended p proof stress.
The area under the load-displacement curve from the origin to the frac-
ture point is the dissipated energy during the whole loading process.
From the definition of engineering strain and engineering stress, the
area under the engineering σ-ε curve is proportional to the dissipated
energy, hence it will be called equivalent energy dissipation. If the
areas under any two σ-ε curves are equal, the energy dissipation of
these two loading processes are equal. The equivalent energy dissipa-
tion for each experimental σ-ε curve was calculated by the area under
the curve. The equivalent energy dissipation for conventional steel
stress-strain models was set equal to that of the experiment, and then
the corresponding yield strength σy for these models was calculated.
The calculated yield strength of each conventionalmodelwas compared
with the conventional 0.2% proof stress σ0.2 and recommended p proof
stress σp from Table 4. Additionally, when adopting σy = σp in the con-
ventional models, the differences of the equivalent energy dissipation
between conventional models and experimental σ-ε curves were
discussed.

The area S0 under the experimental σ-ε curve from the origin to the
fracture point for each specimen is calculated by trapezoidal numerical
integration. Two conventional steel stress-strain models, the elastic



Fig. 20. The schematic diagram for (a) the EPP model and (b) the AEP model (bottom).

Table 5
Comparison among AHSS test curves, EPP model, and AEP model.

Steel DP-340 DP-580 DP-700 HSLA-700 MS-1030 MS-1200

pEPP (%) 4.8 3.3 1.5 1.9 0.5 0.8
Δσ0.2EPP (%) −35.8 −30.9 −24.4 −28.4 −5.0 −9.0
ΔσpEPP (%) −11.9 −7.0 −2.9 −5.7 −5.0 −9.0
ΔSEPP (%) −11.8 −6.9 −2.9 −5.5 −4.5 −8.4
pAEP (%) 1.8 1.5 1.3 0.8 0.2 0.6
Δσ0.2AEP (%) −23.0 −25.9 −26.4 −22.0 −1.0 −3.7
ΔσpAEP (%) 2.5 −0.2 −2.9 2.7 −1.0 −3.7
ΔSAEP (%) 1.5 −0.0 −1.6 0.9 −0.5 −1.2
λ 6 6 4 4 2 2
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perfect plastic model (referred as EPP model hereinafter) and the artifi-
cial elastic plastic model with strain hardening and softening (referred
as AEP model hereinafter) [29], are used in this section. Schematic dia-
grams of the EPP and AEP models are shown in Fig. 20. Most required
parameters are determined from the experimentalσ-ε curves, including
elasticmodulus E, ultimate strain εu, ultimate strengthσu, fracture strain
εf, and fracture stress σf. The yield strength σy and the yield strain εy of
both EPP and AEP model are the unknown material-property parame-
ters to be determined.

The area S1 under the EPP model is calculated by Eq. (37).

S1 ¼
Z εf

0
σ εð Þdε ¼ 1

2
� σy

E
� σy þ σy � εf−

σy

E

� �

¼ εf−
σy

2E

� �
� σy ð37Þ

By assuming an equal energy dissipation between the experimental
curve and the EPPmodel, σy is calculated by solving S1= S0 as shown in
Eq. (38).

σy ¼ Eεf−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eεf
� �2−2ES0

q
ð38Þ

The calculated σy is located on the experimental σ-ε curve, and its
corresponding offset pEPP = εy − σy/E is calculated. The pEPP values are
averaged across each steel and are given in Table 5. The calculated pEPP
value is significantly larger than the traditional 0.2% and greater than
the recommended offset p given in Table 4. The average percentage dif-
ferenceΔσ0.2EEP between the calculated σy and σ0.2 from the test aswell
as the average percentage difference ΔσpEEP between the calculated σy

and the recommended proof stress σp from the test as determined in
Section 4.2 are calculated and shown in Table 5. Overall, σy from the
EPP model is closer to σp than σ0.2 for DP and HSLA steels, while σ0.2 is
adopted as σp for MS steels. This shows that the recommended offset
proof stress σp determined in Section 4.2 is a better fit to represent
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the yield strength for the DP and HSLA steels than the traditional 0.2%
proof stress.

For the AEP model, at the position where the yield plateau ends and
the nonlinear strain hardening starts, εsh, is not clearly defined quantita-
tively. In this paper, εsh was initially determined by the statistical result
of λ= εsh/εy for CFS specimenswith a similarσ-ε curve shape as theAEP
model from previous studies. From Rogers's report [30], three speci-
mens, 060-G300-SCDR3, 060-G300-SCL2, and 060-G300-SCT3 are ap-
plicable and their λ values are 6.70, 6.98 and 9.40 respectively. From
Abdel's paper [31], specimens A-9 and B-4 are applicable and their λ
values are 3.68 and 7.40 respectively. From Huang's paper [5], speci-
mens AF-R1 and GF-R1 are applicable and their λ values are 2.50 and
4.20 respectively. The average value of λ is 5.84. Based on this data, λ
in the AEP model is initially assumed as 6, an approximation of this
average.

No mathematical model is specified in literature for the strain hard-
ening and strain softening regions. In this study, a quadratic model σ(ε)
= aε2 + bε+ c for εsh ≤ ε ≤ εf is used. The values of εu, σu, εf, and σf from
the experimental σ-ε curves are used to build the AEP model, and σy is
the only unknown parameter to be determined. The coefficients a, b,
and c were solved by Eq. (39), Eq. (40), and Eq. (41) which are expres-
sions of σy.

a ¼ εsh σ f−σu
� �þ εu σy−σ f

� �þ εf σu−σy
� �

εsh−εf
� �

εu−εshð Þ εf−εu
� � ð39Þ

b ¼ −
ε2sh σ f−σu

� �þ ε2u σy−σ f
� �þ ε2f σu−σy

� �
εsh−εf
� �

εu−εshð Þ εf−εu
� � ð40Þ

c ¼ −
εshεuσ f εu−εshð Þ þ εshεfσu εsh−εf

� �þ εuεfσy εf−εu
� �

εsh−εf
� �

εu−εshð Þ εf−εu
� � ð41Þ

Noticeably, by combining σy = aεsh2 + bεsh + c, σu = aεu2 + bεu + c,
andσf= aεf2+ bεf+ c, three constraints are generated and they are suf-
ficient to solve a, b, and c as a set of unique solutions. By definition, σu is
the peak of the strain hardening process, and likewise should be the
peak of the quadratic model. Therefore, the percentage difference be-
tween the peak of the quadratic model and the ultimate strength,
δpeak, is calculated, and if it is less than 1%, then the solution is consid-
ered valid. After the calculation of a, b, and c as expressions of σy, the
area S2 under the AEP model is calculated as an expression of σy as
shown in Eq. (42).

S2 ¼
Z εf

0
σ εð Þdε ¼ λ−

1
2

� �σ2
y

E
þ
Z εf

εsh
aε2 þ bε þ cdε ð42Þ

The yield strength σy is then calculated by solving S0 = S2 using the
generalized reduced gradient nonlinear algorithm in Excel Solver and
δpeak is then checked if it is within the 1% tolerance. Applying the initial
λ for DP-340 and DP-580 gives very small δpeak. For DP-700, HSLA-700,
MS-1030, and MS-1200, δpeak is larger than 10%. The major cause is, for
these cases, a is significantly larger than that of DP-340 and DP-580. The



Fig. 21. EPP and AEP model based on test curve (DP-700D01).
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references [5,30,31] used to calculate the initial λ only covered conven-
tional grade steels, instead of high-strength steels. Good fits were
achieved by varying λ and it was determined to use λ = 6 for DP-340
and DP-580, λ = 4 for DP-700 and HSLA-700, and λ = 2 for MS-1030
and MS-1200. The adjusted λ for each steel is inversely correlated to
its nominal yield strength.

By using the adjusted λ for the AEP model, σy is calculated and then
located on the experimentalσ-ε curve, and its corresponding offset pAEP
= εy− σy/E is calculated. The pAEP values are averaged across each steel
and are shown in Table 5. For DP and HSLA steels, pAEP is significantly
larger than 0.2%, while it is close to the recommended p given in
Table 4, and for MS steels, pAEP is slightly larger than the recommended
0.2%. The average percentage differenceΔσ0.2AEP between the calculated
σy and σ0.2 aswell as the average percentage differenceΔσpAEP between
the calculated σy and σp (from Table 4) are calculated and shown in
Table 5. The large differences between the σy and σ0.2 indicate the irra-
tionality of using σ0.2 as yield strength for DP and HSLA steels, while the
small difference between σy and σp shows the potential of using σp as
the yield strength for AHSS. An example of EPP and AEP models deter-
mined fromanexperimentalσ-ε curve (DP-700D01) is shown in Fig. 21.

In addition, the percentage difference of energy dissipationΔSEPP be-
tween the experimentalσ-ε curve and the EPPmodelwhen adoptingσy

=σp is calculated and the averages are shown in Table 5. It is found that
the energy dissipation of the EPPmodel is smaller than the actual exper-
iment for all steels, and ranges from −1.0% to −13.3%. Similarly, the
percentage difference of energy dissipation ΔSAEP between the experi-
ments and the AEP model when adopting σy = σp is calculated and
the averages are shown in Table 5. The average difference for each
steel is less than 2%, which supports using σp as the yield strength in
the AEP model. As expected, the AEP model gives a better fit to the
data than the EPP model, but both models illustrate the necessity for
using the recommended offset as given in Table 4 to represent the
yield strength in conventional material models.

7. Conclusion

Advanced high strength steels have different material properties
compared with conventional steels. A series of tensile coupon tests on
DP, HSLA, and MS steels with nominal yield strength from 340 MPa to
1200MPawere carried out. Essentialmaterial properties including elas-
tic modulus, 0.2% proof stress, ultimate strength and fracture elongation
were determined. Couponswere cut from different directions along the
sheet rollingdirection andnoobvious differences onmaterial properties
due to cutting directionswas observed. Existing stress-strainmodels for
conventional CFS and for stainless steels were discussed but they were
not found to provide accurate fit with the AHSS database, especially
around the yield region. An updated two-stage plus linear stress-
strain model was therefore developed based on the Ramberg-Osgood
model. Excellent fit was achieved between the proposed model and
the AHSS database. For the required parameters of the proposed
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model, a series of predictive equationswere proposed tomodel the gen-
eral stress-strain relationships of AHSS. A discussion on determination
of yield strength was carried out by comparing the energy dissipation
between experimental stress-strain curves and conventional stress-
strain models, including the EPP model and the AEP model. The calcu-
lated yield strength of the conventional models showed poor fit with
conventional 0.2% proof stress for DP and HSLA steels, but excellent
consistencywhen the yield strengthwas represented by a novel recom-
mended proof stress in the proposed stress-strain model. The stress-
strain model and predictive equations presented herein could be uti-
lized to model the constitutive relationship of AHSS in future work in-
cluding analytical simulations.
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Glossary

E: elastic modulus
Ep: tangent modulus at p proof stress
E0.2: tangent modulus at 0.2% proof stress; Ep when p = 0.002
σ: total stress
σf: stress of fracture point
σp: proof stresswith a plastic strain of p defined by the offset of elasticmodulus; stress of p
offset point
σu: ultimate tensile strength
σy: yield strength
σ0.2: 0.2% proof stress; σp when p = 0.002
σeu: stress of the equivalent ultimate point
ε: total strain
εf: total strain of fracture point
εp: total strain corresponds to σp; total strain of p offset point
εu: ultimate strain; total strain corresponds to σu

εy: total yield strain; total strain corresponds to σy

ε0.2: total strain corresponds to σ0.2; εp when p = 0.002
εeu: strain of the equivalent ultimate point; total strain corresponds to σeu

m: strain-hardening exponent of the second stage model (for two-stage or multi-stage
Ramberg-Osgood model)
n: strain-hardening exponent of thewholemodel (for one-stage Ramberg-Osgoodmodel)
or of the first stage model (for two-stage or multi-stage Ramberg-Osgood model)
p: offset of elastic modulus to define the proof stress

Acronyms

AEP model: artificial elastic plastic model with nonlinear strain hardening and softening
AHSS: advanced high strength steels
DP steels: dual phase steel
EPP model: elastic perfect plastic model
HSLA steels: high-strength low-alloy steel
MS steels: martensitic steel
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