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ABSTRACT. On a bounded strictly pseudoconvex domain in C”, n > 1, the smoothness of
the Cheng-Yau solution to Fefferman’s complex Monge-Ampere equation up to the boundary
is obstructed by a local curvature invariant of the boundary. For bounded strictly pseudo-
convex domains in C? which are diffeomorphic to the ball, we motivate and consider the
problem of determining whether the global vanishing of this obstruction implies biholomor-
phic equivalence to the unit ball. In particular we observe that, up to biholomorphism, the
unit ball in C? is rigid with respect to deformations in the class of strictly pseudoconvex do-
mains with obstruction flat boundary. We further show that for more general deformations
of the unit ball, the order of vanishing of the obstruction equals the order of vanishing of
the CR curvature. Finally, we give a generalization of the recent result of the second author
that for an abstract CR manifold with transverse symmetry, obstruction flatness implies
local equivalence to the CR 3-sphere.

1. INTRODUCTION

Let Q C C", n > 1, be a bounded strictly pseudoconvex domain with smooth boundary
0Q). It is well known that the domain €2 is determined up to biholomorphism by the CR
geometry of its boundary 0€). There are several interrelated approaches to studying the CR
geometry of 02, and the biholomorphic geometry of Q. In [36, 37| Fefferman proposed the
study of these geometries, and in particular of the CR boundary invariants, via the formal
asymptotics of the Dirichlet problem

u U,k

(1.1) J(u) == (—1)"det ( ") U;ZE ) =1 in
u =0 on 02

with v > 0 in €. Fefferman’s equation (1.1) governs the existence of a complete Kéahler-
Einstein metric on 2, —log(u) being the Kahler potential. In [23] Cheng and Yau proved
the existence of a unique solution u to Fefferman’s equation with u € C*°(2) N C™+2 (1),
e > 0. Subsequently, Lee and Melrose [47] showed that the Cheng-Yau solution w has an
asymptotic expansion of the form

(1.2) U~ pan(p"Jrl log p)*, m € C™(Q)

k=0
where p is a smooth defining function for € satisfying J(p) = 1+ O(p"*!). Such a defining
function p always exists by [36], and is unique mod O(p"*?); one refers to p as a Fefferman
defining function. Tt follows that the Cheng-Yau solution u is in C""27¢(Q)), ¢ > 0. While
the solution u, and hence each 1, mod O(p™), is globally uniquely determined, Graham
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[39, 40] showed that the coefficients 1, mod O(p™™!) are locally uniquely determined by €
(and independent of the choice of Fefferman defining function p). Moreover, he showed that
if the coefficient n; of the first log term vanishes on 0€) then 7, vanishes to infinite order at
the boundary for all £ > 1. Thus 7;|sq is precisely the obstruction to boundary smoothness
of the Cheng-Yau solution to Fefferman’s equation. The local invariant bn; := 11 |9q of the
boundary 0f2 is called the obstruction function. The local invariant bn; of 02 depends on
the embedding in C", but transforms as a density under local ambient biholomorphisms and
so defines a weighted CR invariant (denoted in the abstract setting by O). In particular, the
vanishing of bn; is a CR invariant condition for a strictly pseudoconvex hypersurface M in
Cr. If M is a strictly pseudoconvex hypersurface for which the obstruction function vanishes,
then M is said to be obstruction flat. If M is locally CR equivalent to the unit sphere, then
we say that M is CR flat or locally (CR) spherical. For € the unit ball in C" the solution
to Fefferman’s equation is u = 1 — ||z||*, which is smooth up to the boundary, hence bn
vanishes for the unit sphere S**~! € C", n > 1. By |39, Proposition 4.14| there are (local)
real analytic strictly pseudoconvex hypersurfaces in C*, n > 1, not locally spherical, for
which the local invariant bn; vanishes identically. In this article we consider the problem of
determining whether this is possible globally for the boundary of a smooth bounded strictly
pseudoconvex domain in C2. The question of whether global obstruction flatness implies CR
flatness is also an interesting problem in higher dimensions, but in the C? case a full answer
to this question seems at present more attainable. In the C? case this problem is also closely
connected with a well known conjecture concerning the weak singularity in the asymptotic
expansion of the Bergman kernel (see Section 2). A strong form of this conjecture asserts
that every topologically trivial smooth bounded strictly pseudoconvex domain in C? with
obstruction flat boundary is biholomorphic to the unit ball. Here we give some preliminary
results in this direction.
Our first main result is the following observation:

Theorem 1.1. Let 4, t € [0, 1], be a smooth family of smooth bounded strictly pseudoconvex
domains in C%, with Qg the unit ball. If O is obstruction flat for all t, then each § is
biholomorphic to the unit ball €.

Remark. Moreover, using the slice theorem of Chéng and Lee [22]|, one can show that in
Theorem 1.1 there exists in fact a smooth family of biholomorphisms &, : €, — € for
t € [0, 1]; see the remark following the proof of Theorem 1.1.

Theorem 1.1 follows straightforwardly from the work of Chéng and Lee on the Burns-
Epstein invariant |21, 22|, using a recent observation of Hirachi [42]. The Burns-Epstein
invariant is discussed in Section 5, where Theorem 1.1 is proved. The necessary background
on pseudohermitian and CR invariants and on deformations of strictly pseudoconvex hyper-
surfaces in C? are discussed in Sections 3 and 4 respectively.

A more direct approach to studying this problem is to analyze the variational properties
of the CR curvature, namely Cartan’s umbilicity tensor @ [18, 17|, and of the obstruction
density O under abstract and embedded deformations. At the linearized level, on the CR
3-sphere (M = S3 H,J) there is a deformation complex

(1.3) 0 —TM/H — Def(M) — Curv(M) — Bian(M) — 0,

governing abstract deformations of the CR structure for which the contact distribution H is
held fixed (there is no loss of generality in doing this by a theorem of Gray [41]); here the
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arrows represent differential operators and we are abusing notation by writing, e.g., TM/H
for the sheaf of germs of sections of TM/H. Generically these abstract deformations will
not be embeddable [53, 45|. Given a CR hypersurface M in a complex manifold ¥, abstract
deformations of the induced CR structure (M, H,.J) which arise from a l-parameter family
of strictly pseudoconvex embeddings ¢, : M — ¥ with ¢y = id (i.e. from a Kuranishi wiggle)
are referred to as stably embeddable deformations. It turns out that by complexifying and type
decomposing the complex (1.3) on the CR 3-sphere one obtains a bigraded complex in which
the linearized operators governing stably embeddable deformations and the CR obstruction
density appear. Working with this complex, and applying a sequence of normalizations of
the parametrized deformation 1, : S* — C? we are able to prove:

Theorem 1.2. Let (5%, H, Jy) be the CR 3-sphere and let (S*, H, J;), t € [0,¢€), be a smooth
family of stably embeddable deformations. If the CR obstruction density O; of (S3, H,J;)
vanishes to order k at t = 0 then so does the CR curvature tensor Q.

Theorem 1.2 is in some sense a refinement of Theorem 1.1, though it only implies Theo-
rem 1.1 in the case of real analytic dependence on the deformation parameter t. We include
this because it may be proved by more elementary and direct methods, and is also of in-
dependent interest. One consequence of Theorem 1.2 is that the real ellipsoids close to the
sphere cannot be obstruction flat, and hence do not give rise to non-spherical examples of
compact obstruction flat hypersurfaces (see Section 6.6). The deformation complex (1.3) is
discussed in detail in Section 6, where Theorem 1.2 is proved. It should be mentioned here
that the corresponding result fails to hold if the abstract deformation is not required to be
stably embeddable [26].

In recent work on this problem the second author [28] has shown that for compact abstract
CR 3-manifolds with transverse symmetry (which implies local embeddability) obstruction
flatness implies CR flatness. Using a new approach, we extend this result by relaxing the
transversality condition on the infinitesimal CR symmetry. We prove:

Theorem 1.3. Let (M, H, J) be a compact CR 3-manifold with infinitesimal CR symmetry.
If (M, H,J) is obstruction flat, then the CR structure is locally spherical.

Theorem 1.3 covers a broad class of domains in C? not covered by the main theorem in
[28]. For example, if Q C C? is the strictly pseudoconvex domain given by

lw + f(2,2) <c,

where f is a proper strictly subharmonic function and ¢ > minf is a constant, then X =
Re (iw) is an infinitesimal CR symmetry of M = 0, which is transverse to the CR
contact distribution on M except along the curve M N {w = 0}. Moreover, it is highly
unclear how one could obtain the result in Theorem 1.3 by modifying the approach of [28],
since the latter relies on being able to work with the pseudohermitian calculus associated
with a global contact form 6 for H normalized by 6(X) = 1. We instead develop a new
approach to the problem based on the CR invariant calculus associated with the CR Cartan
connection. This makes essential use of the work of Cap [13] on infinitesimal symmetries
and deformations of parabolic geometries (of which hypersurface type CR geometries are an
example). These ideas are developed in Section 7, where Theorem 1.3 is proved. We believe

that this approach will be highly useful in further work on this problem.

Remark 1.4. It is worthwhile here to point out an analogy with conformal geometry in
four dimensions. It is well known that a CR 3-manifold is obstruction flat if and only if its
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Fefferman space (a conformal Lorentzian 4-manifold) is Bach flat. While it is easy to produce
examples of compact, Bach flat 4-manifolds, e.g., any (conformally) Einstein 4-manifold is
Bach flat, it is also known that a 4-dimensional Fefferman space which is locally conformally
Einstein is necessarily locally conformally flat (meaning that the underlying CR structure
is locally spherical). Thus, this observation by itself does not provide examples of compact,
obstruction flat CR 3-manifolds that are not locally spherical. In fact, the authors are not
aware of any such examples.

The analogy with conformal geometry is useful in the proof of Theorem 1.3. In particular,
in 4-dimensional conformal geometry the Bach tensor can be interpreted as the Yang-Mills
current for the Cartan/tractor curvature (see, e.g., [8, 54]). In our proof of Theorem 1.3, we
make use of an analogous interpretation for the obstruction density of a CR 3-manifold (see
Lemma 7.1).

Acknowledgements. The authors would like to thank Mike Eastwood, Rod Gover, Robin
Graham, Kengo Hirachi, Bernhard Lamel, Jack Lee, Pawel Nurowski and Paul Yang for
helpful conversations. Part of this work was carried out while the first author was visiting
the Banach Centre at IMPAN in Warsaw for the Simons Semester ‘Symmetry and Geometric

Stuctures’ (BCSim-2017-s06).

2. THE LOG TERM IN THE ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL

Let 2 be a domain in C". The Bergman kernel of € is the integral kernel K(z,w) for
the orthogonal projection operator from L?*(2) to the Hardy space A%(€2) of L? holomorphic
functions on Q. Given any orthonormal basis {h;}32, of .A*(Q) the Bergman kernel may be

written as K (z,w) = 377, hj(2)hj(w). When © is the unit ball in C" the Bergman kernel
is given by K(z,w) = Z(1 — z-w)~ ", For  a smooth strictly pseudoconvex domain in
C" it was shown in [35] that the Bergman kernel along the diagonal may be written as

¢
(2.1) K = o + ¢ logp

where p is a defining function for the boundary, and ¢, € C*°(Q). Moreover, taking p to
be a Fefferman defining function, ¢ mod O(p"™) and 1 mod O(p>) are locally uniquely
determined by 02 (and independent of the choice of Fefferman defining function p). For the
unit ball one may take p =u =1 — ||z|]2, so that ¢ = % and ¢ = 0. A problem posed by
many is that of classifying those strictly pseudoconvex domains for which the so-called ‘weak
singularity’ ¢¥» mod O(p™) in the asymptotic expansion of the Bergman kernel vanishes. In
[55], Ramadanov conjectured that if ¢ vanishes to infinte order on the boundary of € then
Q2 must be biholomorphic to the unit ball. In C? a local version of this conjecture holds by
work of Graham (who attributes the result to Burns). In [40] (cf. [6]) Graham expanded 1)

in powers of a Fefferman defining function p, in the C? case, to obtain

6
(2.2) b= ——m+ QP+ 0()
where 7; is as in (1.2), @ is the Cartan umbilicity tensor of the boundary, and k is a
universal nonzero constant (explicitly computed in [43]). Using that 7]oq = 0 implies

m = O(p™), it follows from (2.2) that if ¢» = O(p*) then @ must vanish identically on 9
(i.e. 02 must be locally CR spherical); the argument here is local, so that if one only has
1 = O(p?) in the neighborhood of some point in the boundary, then one may still conclude
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that the boundary is locally CR spherical in that neighborhood. If the domain  C C? is
taken to be simply connected with connected boundary then one may apply the Riemann
mapping theorem of [24] to obtain the result that the vanishing of ¢ (to second order on
the boundary) implies € is biholomorphic to the unit ball. Such topological assumptions are
in fact necessary for biholomorphic equivalence to the unit ball to hold, due to examples of
bounded strictly pseudoconvex domains, not biholomorphic to the unit ball but with locally
spherical boundary, constructed by Burns and Shnider [9]. So the conjecture is resolved in
the case of C?. In higher dimensions the conjecture remains open (though see Remark 2.3);
there are some negative results for a natural generalization of this conjecture to complex
manifolds [30, 50], highlighting the global nature of this problem.
Closely related to Ramadanov’s conjecture is the following question:

Question 2.1. Let Q C C", n > 1, be a smooth bounded strictly pseudoconver domain with
¥|aq identically zero. Does this imply OS) is locally CR spherical?

In constrast to the above local resolution for the C? case of Ramadanov’s conjecture, in
any dimension the answer to the local version of Question 2.1 is no; this is a global problem.
In the C? case, by (2.2), Question 2.1 is equivalent to the question of whether (global)
obstruction flatness of the boundary implies local CR flatness. In this case the question has
been taken up already, e.g., in [5, 52| where bounded Reinhardt domains are considered, for
which the answer to the question is positive, and in [28] where compact CR 3-manifolds with
transverse symmetry are considered, for which obstruction flatness is shown to imply local
CR flatness. Our goal in what follows is to prove some further results in this direction.

Remark 2.2. By work of Boutet de Monvel and Sjostrand [7], for strictly pseudoconvex
domains the Szegd kernel enjoys an asymptotic expansion similar to that of the Bergman
kernel. Questions analogous to those stated above for the Bergman kernel have also been
posed for the Szegd kernel, taken with respect to a suitably chosen (CR invariant) surface
measure on the boundary [43]. In the C? case the coefficient of the log term in the Szegs
kernel has an expansion similar to the expansion (2.2) [43], which again leads naturally to
the question of whether global obstruction flatness implies local CR flatness (see also the
discussion in [28]).

Remark 2.3. Recently Kengo Hirachi has announced a positive answer to Question 2.1 for
domains in C", n > 3, whose boundaries are sufficiently near the unit sphere (in his talk
at the conference on ‘Symmetry and Geometric Structures’ at IMPAN, Warsaw, November
12-18, 2017). In particular, this implies that the conjecture of Ramadanov is true for small
perturbations of the unit ball.

3. PSEUDOHERMITIAN CALCULUS

In this section we recall some standard background material on pseudohermitian and CR
structures, and the associated Tanaka-Webster calculus.

Let M be a smooth oriented 3-manifold. A contact structure on M is a rank 2 subbundle
H C T'M which is nondegenerate in the sense that if H is locally given as the kernel of some
1-form 6, then 6 A df is nowhere vanishing. A CR structure on (M, H) is given by a smooth
endomorphism J : H — H such that J? = —id. We refer to (M, H, J) as a CR 3-manifold.
The partial complex structure J on H C T'M defines an orientation of H, and therefore
defines an orientation on the annihilator subbundle H+ := Ann(H) C T*M. A nowhere
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vanishing section @ of H* is called a contact form for H. A contact form 6 is positively
oriented if df|y is compatible with the orientation of H, equivalently, if df( -, .J ) is positive
definite on H. A CR structure (M, H, J) together with a choice of positively oriented contact
form 6 is referred to as a pseudohermitian structure. The Reeb vector field of a contact form
0 is the vector field T" uniquely determined by 6(7) =1 and 7" 1 df = 0.

Given a CR manifold (M, H, J) we decompose the complexified contact distribution C® H
as 70 @ T, where J acts by i on T"° and by —i on T%' = T10. Let @ be a positively
oriented contact form on M. Let Z; be a local frame for the holomorphic tangent bundle
T and Z; = Zy, so that {T, Z,, Z;} is a local frame for C ® TM. Then the dual frame
{0,0",0'} is referred to as an admissible coframe and one has

(3.1) do = ih;16" A O
for some positive smooth function h;1. The function h,1 is the component of the Levi form
Lo(U, V) = —2id0(U,V) on T*O, that is
Lo(U'Zy, V' Z;) = hysU'V1.
It is sometimes convenient to scale Z; so that h;; = 1, but we will not assume this unless

otherwise specified. We write h'! for the multiplicative inverse of h;;. The Tanaka-Webster
connection associated to € is given in terms of such a local frame {T, Z;, Z7} by

VZ =w'® 2y, VZi=wi'®Z;, VT =0
where the connection 1-forms w,! and w! satisfy
(3.2) Ao = 0" Awit + A1 O A0 and

(3.3) wi' +wi' = hdhy,
for some function A'y. The uniquely determined function A'j is known as the pseudohermi-
tian torsion. Components of covariant derivatives will be denoted by adding V with an appro-
priate subscript, so, e.g., if u is a function then Viu = Zju and VoV u = TZywu—w ' (T)Zu.
We may also use hyi and h'' to raise and lower indices, so that Aj; = hiyA't and Ay =
hﬂAll, with All = Ali.

The pseudohermitian (scalar) curvature R is defined by the structure equation

dw' = Rhys0' A OF + (V' A1) 0P A O — (VA7) 01 A 6.

The torsion of the Tanaka-Webster connection (as an affine connection) is captured by the
following formulae, for a smooth function f,

ViVif = ViVif = —iliVof, and ViVof =V Vif = Ailvif‘
The pseudohermitian curvature R may therefore equivalently be defined by the Ricci identity
(3.4) Vi ViV! = ViViV! +ih1 VoV = Rhyi V!

for any local section V!Z; of T*. Commuting 0 and 1 (or 1) derivatives on V'Z; gives
torsion according to the following formulae

(3.5) ViVoV! = VoV V! — AL ViV = (VPA)VY, and
ViVeV!t — VoViV?! — ALV, V= (VAR VL
In dimension 3, the Bianchi identities of [46, Lemma 2.2| reduce to

(3.6) VoR = 2Re (V'V'Ap).
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The local calculus on CR manifolds associated with the CR Cartan connection is discussed
in more detail in Section 7. For now it suffices to recall some basic definitions and formulae
in terms of pseudohermitian calculus. The Cartan umbilical tensor @ of (M, H,J) is a
(weighted) CR invariant, whose vanishing is necessary and sufficient for (M, H,J) to be
locally equivalent to the induced CR structure on the unit sphere in C?. As in [21], given
a choice of contact form # we interpret the umbilical tensor () as an endomorphism of H,
written locally as

(3.7) Q=ih'0' ® 7y —iQ:'0' © 7.
By [21, Lemma 2.2] the component @);; of Cartan’s tensor is given by

(3.8) Q11 = —%Vlle — %RAH + VoA + %V1V1A11;
where we have taken the opposite sign convention. If 0 = €70 is another contact form, then
Q = e 27Q, so that Q may be thought of more invariantly as a weighted section of End(H).
More precisely, ( may be thought of as a CR invariant section of End(H) ® (TM/H)™>
the dependency on the contact form 6 only being introduced when we use 6 to trivialize
TM/H. The Bianchi identity for the curvature of the CR Cartan connection (see Section 7)
is equivalent to the following Bianchi identity for @), expressed locally as

(3.9) Im(V'V'Q —iA" Q1) = 0,

which may also be seen as a direct consequence of (3.6). The CR obstruction density is given
locally by

1
(3.10) O = g(vlvlcgn —iAMQy).

The CR obstruction density O is again a (weighted) CR invariant. If § = ¢¥0 is another
contact form, then O = e3Y O, so that O defines a CR invariant section of (TM/H)™3. Our
convention here has been chosen so that, for a strictly pseudoconvex domain Q C C? we have
b = 1O, consistent with [44]. Here by, is also thought of as a density; to obtain the function
which arises as the boundary restriction of 7; in the expansion (1.2) one should compute b
with respect to the contact form 6 = Re(i0p)|ra induced by a Fefferman defining function
p for . Since we are only concerned with obstruction flatness, we will allow ourselves to
compute with respect to any contact form and work with the CR obstruction density O.

Remark 3.1. The CR invariance of the right hand side of (3.10) will be made clear in
Section 7. While it is well known by weight considerations ([40]) that one therefore has
O = ¢(V'V'Qq — iA™Qy,) for some nonzero real constant ¢, and there are various ways
to determine the constant ¢ by combining references from the literature, it is hard to find a
single self-contained reference for the formula (3.10). Here we outline a method for deriving
this formula. For the computation of general formulae for local CR invariants there is no loss
of generality in restricting to the real analytic case. One may therefore compute the formula
for O by considering a real hypersurface M in C?, taken to be in Chern-Moser normal form
[25]. Letting (z,w) be coordinates for C? one takes the normalized defining function

p="2Imw — |z|* - Z ZA—ZJ (Rew)’

E,1>2,5>0
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with Aéé = Agg = Aég = 0 for all j, and defines the contact form 6 = Re(i0p)|ras. Taking
6' = dz one may then solve (3.1), (3.2) and (3.3) for hyy, wi' and A'y. Tt is then a straight-
forward but tedious exercise to confirm that V!VQ;, —iAYQ, = ﬁAi—l at the origin. By
|40, Proposition 2.2 by = 4AY;, and since we have taken O := 4bn, this gives (3.10). We
shall later also see that the constant in (3.10) makes results of [21] consistent with [44].
The bundle T'M/H will play an important role in what follows, and should be thought of as
a fundamental density bundle on (M, H). Let M C H* be the bundle of positively oriented
contact forms, thought of as an R, bundle over M in the obvious way, and let © be the
tautological 1-form on M defined by ©y = o, where 7 : M — M is the natural projection.
Then (M, dO) is a symplectic manifold, called the symplectization of (M, H). Sections of
TM/H may be identified with functions which are homogeneous of degree 1 on M, and
sections of (T'M/H)" with functions homogeneous of degree w. Consistent with Section 7,
we introduce the notation &g (w, w) for (T'M/H)", and £(w, w) for the corresponding complex
line bundle C ® &g (w, w). (For the case of Ex(1, 1) we will often still write TM/H.) The CR
obstruction density O is an invariant section of Eg(—3, —3); we say that O is a CR density of
weight (—3,—3). The term ‘density’ is further justified by the observation that Eg(—2, —2)
may be canonically identified with the bundle A? of top-forms on the oriented manifold M.
To see this, note that the bundle &g(—1, —1) = (T'M/H)* may be naturally identified with
H*, so that Eg(—2,—2) may be identified with H+ ® H*. The canonical identification of
Er(—2,—2) with A3 is then given by the map H+ ® H- >0 ® 0 — 0 Adf € A3. We write 0
for the tautological section of T*M ® Eg(1,1) given by the map TM — TM/H = &g(1,1).

4. INFINITESIMAL SYMMETRIES AND DEFORMATIONS OF CR STRUCTURES

Here we collect some basic results on infinitesimal symmetries and abstract deformations
of CR 3-manifolds, and on infinitesimal deformations of strictly pseudoconvex hypersurfaces
in complex surfaces. The relation between abstract and embedded deformations of CR 3-
manifolds has been much studied, particularly in connection with the realizability problem
for abstract CR 3-manifolds [4, 3, 2, 12, 19, 31, 32, 33, 48, 49]. The results we present are
well known. See, e.g., [21] for an excellent reference on infinitesimal abstract deformations
of CR 3-manifolds. Our approach to infinitesimal deformations of strictly pseudoconvex
hypersurfaces in complex surfaces is based on |[3].

4.1. Contact Hamiltonian vector fields and infinitesimal CR symmetries. It is well
known that the space I'(T'M/H) parametrizes the infinitesimal contact diffeomorphisms of
(M, H). Given a section f of TM/H there is a vector field V; on M uniquely determined
by the conditions that V; mod H = f and that the Lie derivative Ly, preserves I'(H), i.e.
that V; be an infinitesimal contact diffeomorphism. The vector field V; is referred to as the
contact Hamiltonian vector field with potential f. Often we will fix a background contact
form for H, and thereby think of f as a smooth function on M. By Cartan’s formula for Ly,
one then has V; = fT 4+ Hy where H; € I'(H) is determined by H; 1df = —df (mod 0).
Moreover, on a CR manifold (M, H, J) we then have the following local formula:

Lemma 4.1. Let § be a contact form for H and Z; a local frame for T*°. The contact
Hamiltonian vector field with potential f is given locally by

(4.1) Vi = fT+if'Z, —if'Z;
where f'' =V'f and f* = V.
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Proof. Tt suffices to check that H; := if1Zy — if1Z; satisfies Hfdf = —df (mod 6). By
(3.1) we have Hy 1df = — 10" — f10* = —df mod 6, as required. O

An infinitesimal CR symmetry of (M, H,J) is a vector field V' whose flow consists of
(local) CR diffeomorphisms of M. In particular, such a V' must be an infinitesimal contact
diffecomorphism. An infinitesimal contact diffeomorphism V' = V; is a CR symmetry if and
only if L/J = 0 (this being defined since the flow of V' preserves H). With this in mind we
recall:

Lemma 4.2 ([21]). Let 6 be a contact form for H and Z; a local frame for T'O. If V =V}
is a contact Hamiltonian vector field, then the Lie derivative LyJ € T'(End(H)) is given
locally by

LyJ =—=2(ViVf +id'f)0' @ Z1 — 2(ViV' f —iA{ )0 @ Z,.

Following [22] we define a CR invariant second order operator D; : TM/H — End(H)
given by D, f = —%L’Vf J. Choosing a contact form 6, by which we identify f with a smooth
function on M, and a local frame Z; for T'°, we have

(4.2) Dyf = (ViVif +id1f)0' © Zr + (VIVif — At f)o @ Z,.

An infinitesimal contact diffeomorphism V = V; is a CR symmetry if and only if D;f =0,
we refer to this as the CR infinitesimal automorphism equation.

4.2. Abstract infinitesimal deformations of CR 3-manifolds. Here we consider the
space of infinitesimal deformations of a compact CR, 3-manifold (M, H, J) up to equivalence,
where two infinitesimal deformations of (M, H,J) are equivalent if they are related by the
linearized action of the diffeomorphism group of M. It is well known that it suffices to
consider only deformations preserving the contact distribution H on M, due to a famous
result known as Gray’s stability theorem:

Lemma 4.3 ([41]). Let (M, H;), t € [0,1], be a family of contact structures on a compact
manifold M, smooth in the sense that there is a smooth family of 1-forms 6; with ker 6, =
H,. Then there exists a smooth path of diffeomorphisms ¢, of M such that ¢y = id and
i (M, H) — (M, Hy) is a contact diffeomorphism for all t € [0, 1].

We therefore restrict our consideration to the space of infinitesimal deformations of the
CR manifold (M, H,J) arising from a smooth 1-parameter family of CR structures J; on
(M, H) with Jo = J. Let (M, H, J;), t € [0,¢), be a such a smooth family of CR structures

on M. Denoting = : by J, differentiating the equation = —1dg at ¢ = 0 we obtain
M. Denoting | J, by J, differentiating th ion J7 = —id 0 we obtai
JJ+JJ =0.

We let Def(M) C End(H) denote the bundle of consisting of endomorphisms of H which
anticommute with J; note that Def(M) depends on (M, H,J). The space of infinitesimal
deformations of (M, H, J), with H held fixed, is then the space of smooth sections of De f(M).
That is, if F is a section of Def(M), then there is a path J; of CR structures on (M, H) with
Jo = J such that J, = J+tE+O(t?). In fact, if we write E locally as F,'0' ® Z1+ E1'0'® Z,
then such a path is given by

=0

Jo= (1 + | E)Y2T +tE

where |E|> = E'E;' [21]. We refer to a section E of Def(M) as an infinitesimal deformation
tensor for (M, H,J).
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Given a smooth family (M, H, J;), t € [0, ¢), of CR structures we write C® H = *T0qp!T%!
where J; acts on ‘T1° by i and on T%! by —i. If Z; is a local frame for 710 = 9719 then
(for sufficiently small ¢) there is a local frame Z!{ for 'T'Y given by

Zi=Z1+ ' (1) Z1.
If we fix a contact form 6§ for H, and take the coframe {0, 6}, 0!} dual to {T, Z{, Zt} then

m (91 - S011(t)01> :

where @7'(t) = ¢11(t) and |o(t)|*> = @1 (t)@i'(t). Writing J, = i0} @ Z¢ — if] @ Zt and
el (1) = tort + O(t?)

one easily sees that the corresponding infinitesimal deformation tensor £ =
locally by
(4.3) FE = 2ip'0' ® Z7 — 2ip1'0' @ 7.

The linearization at (M, H,J) of the action of contact diffeomorphisms (by pullback) on
the space of CR structures on (M, H) is given by the map which sends an infinitesimal
contact diffeomorphism V' and an infinitesimal deformation tensor E to the infinitesimal
deformation tensor £+ Ly, J. We say that pair of infinitesimal deformation tensors E, E’ are
equivalent if E' — E lies in the image of D (recall that D, f = —3Ly, J, for f € D(TM/H)).
If F lies in the image of D; we call E a trivial infinitesimal deformation tensor.

For later use we observe that, in a weak sense, an equivalence between infinitesimal defor-
mations can be integrated. Let Jy, J;, t € [0,¢€), be a pair of smooth paths of CR structures
on (M, H) with Jy = Jj = J. We say that J] is a contact reparametrization of J; if there

exists a smooth path ¢, t € [0, €), of contact diffeomorphisms of (M, H) such that ¢ = id
and ¢} J; = J/, t €0, 1).

ol =

d . .
o |t:0 Jy is given

Lemma 4.4. Let J;, J], t € [0,€), be a pair of smooth paths of CR structures on a compact
contact manifold (M, H) with Jy = J| = J. Suppose that the initial infinitesimal deforma-
tions J and J' are equivalent. Then there is a contact reparametrization J|' of J; such that

Jr=1.

Proof. Since J and J' are equivalent, there exists an infinitesimal contact diffeomorphism V
for which J' — J = Ly J. Let ¢, denote the flow of V, and let J; = ¢;J;. Then

d " __ d d * 7 7
dt o t = i - tZOJt+dt tZOQDtJ()—J—i‘[,\/J—J

as required. 0

*

. d
SOtJt:SOOE

4.3. Infinitesimal deformations of strictly pseudoconvex hypersurfaces. Let M be
a strictly pseudoconvex hypersurface in a complex surface . Then M carries an induced
CR structure (M, H, J), where H, is the maximal complex subspace in T,,M C 7,3 for each
p € M and J is induced from the standard complex structure on Y. Since the considerations
of this section will be local (and biholomorphically invariant) we will simply consider the
case of a strictly pseudoconvex hypersurface in C2. It is also no loss of generality to assume
that our deformations are parametrized. Let M be a strictly pseudoconvex hypersurface
in C?, with induced CR structure (M, H, J). We say that a smooth family of embeddings
Yy s M — C% t € [0,¢), is a parametrized deformation of M if 1y = idyr and 1, (M) is strictly
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pseudoconvex for all ¢. By pulling back the induced CR stuctures on ¢;(M) by 1, for each ¢,
one obtains a smooth family of CR structures (M, Hy, J;) on M with (M, Hy, Jo) = (M, H, J).
We say that a parametrized deformation v; of M is contact parametrized if the induced family
of CR structures (M, Hy, J;) on M satisfies H; = H for all t, equivalently if ¢, : M — (M)
is a contact diffeomorphism for all ¢, where the contact structure on v¢;(M) C C? comes
from the induced CR structure. By Gray’s stability theorem (Lemma 4.3) any parametrized
deformation may be reparametrized by a 1-parameter family of diffeomorphisms of M so
that it becomes a contact parametrized deformation.

Given a strictly pseudoconvex hypersurface M C C? it is usual to identify the real tangent
space TC?|y; with the space T(1) := CTM/T"! defined intrinsically in terms of the CR
structure of M. Locally this identification is given by the map

Tao 2 VT +V'Z mod T — (Re V)T + (Im V) JT + 2Re(V'Z;) € TC?|yy,
where here J denotes the standard complex structure on C2. If 9, is a contact parametrized
deformation of M then % ‘ +—o ¥+ defines a section of T' C?| ) called the variational vector field.
We usually think of the variational vector field as a section of T{; 5y and denote it by . A
contact Hamiltonian vector field V on M (taken mod T%!) is a trivial example of a variational
vector field, since the flow of V' may be thought of as a (trivial) contact parametrized
deformation of M. The variational vector field of a general contact parametrized deformation

is in some sense a complex analog of a contact Hamiltonian vector field, as shown by the
following lemma.

Lemma 4.5 (|3|). Let ¢, : M — C?, t € [0,¢), be a contact parametrized deformation of
the strictly pseudoconvex hypersurface M C C?. The variational vector field ¢ € I'(T) is
given locally with respect to an admissible coframe {6,600} by

U = fT +if'Z, mod T

where f is the complex function 0(x)) and f' = V' f. Moreover, if (M, H, J;) is the smooth
family of CR structures on M arising from i, then the initial infinitesimal deformation
tensor E = J is given locally by (4.3) with

el = —i(VIVIf —iAl ), ol =@t =iV A ).

Proof. We write v; : M — C? in components as ¢y = (1}, 4?). Since, by definition, 1, :
(M, H, J;) — C? is a CR embedding for each ¢t € [0,¢), it follows that the component
functions ¢} and ¢? are CR functions for (M, Hy, J;). Let Z; be a local frame for 79 = 0719,
Then (for sufficiently small ¢) there is a local frame for ‘T%! given by Z! = Z; + ¢1'(t)Z1,
with ¢7!(t) = te' + O(t?). The fact that ¢} and ¢? are CR functions for (M, Hy, J;) is
expressed by the equations Z%wf = 0, k = 1, 2. Differentiating these equations at t = 0 we
obtain

(4.4) Zip* + o' Zih =0, k=1,2

where wk = %’ -0 Yk and Y* = 9§ (the k' component of the initial embedding). Writing
Y= fT+V'Z mod T%' € T(T{10), as a section of TC?|;; we have
Y =Re )T+ (Im f)JT + V' Z + V7.

Letting (2!, 2?) denote the coordinates for C* and evaluating dz* on the above display (noting
that dz*(JT) = idz*(T) and dz*(Z;) = 0) we obtain ¢* = fd2*(T) + Vidz*(Z)), k = 1,2.
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If we think of the coordinates z* as maps from C? to C, then restricting to M we have

Yk = 2% . M — C. For a (real or complex) vector field V tangent to M we therefore have
dz*(V) = V¥, and thus

P = [T+ VIZiR, k=12,
Using that Z;y* = 0, k = 1,2, we therefore have
(4.5) ZifF = (Zi [YTW* + fZeTN + (ZiVh) 20t + V! 21 2y
= (Zi/)TY* + f1Z1, TIW" + (ZV) 20" + V1 2y, Zi .
From the structure equations (3.1) and (3.2) it is straightforward to compute that

(Z1, Z4] = ihiiT + N (Z1) 2y — w1 (Z)) 71, and  [Z3,T] = A2y — wi(T) Z;.
Substituting (4.5) into (4.4) we therefore obtain
(Zif + ih g VTR + (Z7V + fAY + Vi N (Zh) + oi) 2w =0, k=12
Recall that v = (¥!,4?) is a CR embedding, so that

1 2
det (?;ﬁ ?52) #0

on M. It follows that Z;f + ihy;V! = 0, so that V! = ihZ;f = iV'f, which proves the
first statement of the lemma. Similarly, it follows that Z;V! + fAY + Vi 1 (Z7) + o1t =0
and hence

o1t = =iVl — fAYy = ViV f — fA'.
Conjugating this gives the formula for ¢!, as claimed. O

The following lemma shows that the real part of 6(¢)) depends only on the contact
parametrization of the smooth family (M) of strictly pseudoconvex hypersurfaces in C2,
and can be taken to be zero.

Lemma 4.6. Let ¢, : M — C?%, t € [0,¢), be a contact parametrized deformation of the
compact strictly pseudoconvex hypersurface M C C2. Then there is a smooth family oy,
t €10,¢€), of contact diffeomorphisms of M which reparametrizes v to ¥, = 1o @, such that
0(1&’) 15 imaginary, where 6 is any pseudohermitian structure on M.

Proof. Fix any pseudohermitian structure ¢ for the initial CR structure (M, H,J), and let
= 6(¢)). Then 4 ot = (Re f)T + (Im f)JT mod C ® H, where here J denotes the

standard complex structure on C2. Let V be the contact Hamiltonian vector field with

potential —Re f, and let ¢; be the flow of V. Then %‘t:() ¢t = —(Re f)T mod H. Since

Yo = o = idy; we have %‘t:o vy = %‘t:O Yy + %‘t:o @ and the result follows. O

5. VARIATION OF THE BURNS-EPSTEIN INVARIANT

In [10] Burns and Epstein defined a global invariant of compact CR 3-manifolds whose
holomorphic tangent bundle is trivial, by analogy with the Chern-Simons invariant for a
(conformal) Riemannian 3-manifold. Let G — M denote the CR Cartan structure bundle
of (M,H,J). (G is denoted Y in [25].) Let w € Q'(G,su(2,1)) denote the CR Cartan
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connection, and let K = dw + w A w denote its curvature. The Chern form c(K) =
= tr(K A K) is a closed, basic 4-form on G. If

1 1
Teo(w) = (w/\K+3w/\w/\w)

{72
then from the definition of K one has d Tcy(w) = co(K). But ¢y(K') vanishes since dim M =
3. So T'ea(w) is a closed, CR invariant 3-form on G. The bundle G — M is a trivial extension
of the frame bundle Gy — M of the holomorphic tangent bundle T%°, G = Gy x H;, where H,;
is the real 3-dimensional Heisenberg group. It follows that G — M admits global sections if
and only if the holomorphic tangent bundle 710 is trivial. In [10] Burns and Epstein showed
that if one pulls Tey(w) back to M via two different sections of G corresponding to global
admissible coframes with h;; = 1 as in [56], then the resulting 3-forms on M differ by an
exact form. Given any such section ¢ : M — G, one may define

j= u(M) = /M S Tew),

which is then a global CR invariant, known as the Burns-Epstein invariant of (M, H,J).
As remarked in [10], if one only assumes that ¢;(T'?) is zero in H*(M,R) (i.e. one allows
c1(T+?) to be a torsion class) then there is some k € N such that (71°)% is trivial, so one
may take a k-fold multi-section of G and integrate %T co(w) over the image to define y. For
further extensions of this invariant, including to higher dimensions, see [1, 11, 21, 51].

In 3-dimensions, the total )'-curvature of a pseudo-Einstein CR manifold is a scalar
multiple of the Burns-Epstein invariant. In this case, the pseudohermitian structure given
by 6 is said to be pseudo-FEinstein if ViR — iV'A;; = 0; if 0 is a pseudo-Einstein contact
form then @' = AyR + $R? — 2| A%, where A, is the sub-Laplacian, |A|? = A;; A", and the
Burns-Epstein invariant is given by [20, 42]

- 82/@9/\d6
T

The total ('-curvature, Q' = [, @ 0 A d6, is known to give a different generalization of the
Burns-Epstein invariant to higher dimensions.

As with the contact distribution, there is no loss of generality in holding the Cartan struc-
ture bundle G — M fixed when considering deformations of CR structures on M. A smooth
family (M, H, J;), t € [0,¢), of CR structures on M gives rise to a corresponding family w;
of Cartan connections on G. Letting u; denote the Burns-Epstein invariant corresponding to
Jy and w = wy, from the definition of T'cy and of K one obtains [10, Proposition 3.3]

d 1 / :
—| wm=——— [ tr(wAK),
-0 ! A2 o

il
dt 1t=0

dt

where K is the curvature of w = wy (and we are implicitly pulling back the integrand by a
section of G — M). Using the framework of [56], Burns and Epstein then compute (see also

[21, Proposition 2.6]) that if £ = %L:o Jy is given locally in terms of ;' by (4.3) then
d

dt|,

(5.1)

:—/ o 01 + 01" Q)6 A do.

In particular we see that the only critical points of p are the locally spherical CR structures.
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For a compact strictly pseudoconvex hypersurface in C2, the real first Chern class of
the holomorphic tangent bundle is the zero class, so the Burns-Epstein invariant is always
defined. As in [42] (cf. [44, Theorem 1.2|) we observe:

Lemma 5.1. Let 1), : M — C?, t € [0,¢), be a contact parametrized deformation of the com-
pact strictly pseudoconvex hypersurface M C C?, and let p; be the Burns-Epstein invariant
d

of Yy(M) C C2. Then
dt T o2 Im/ 1O

where f = 0(1&), and the integrand is regarded as a density.

Proof. Let (M, H, J;) denote the CR structure on M obtained by pulling back the CR struc-
ture on the strictly pseudoconvex hypersurface (M) C C? via ;. Let (6,6',0') be an
admissible coframe, which we can assume, without loss of generality, to be global. Let
E = %L:O J; be given in terms of ¢;' by (4.3). Then by Lemma 4.5 we have ¢;! =
—i(ViVif —iA;' f), where f is thought of as a function using the trivialization of Eg(1,1)
induced by 0. Then, using (5.1) and integrating by parts (using (2.18) of [46], a well known
consequence of Stokes’ theorem )

d 1 1
at tZOMt— 5 QRG/MSO Qu 0 Ndo
= ﬁ Re/ —Z(vlvlf - iAllf)Qll 0 A do
m M
= ﬁ Re/ —if(vllell - iAllQll) 0 A do
n M
=52 Im/ fOOANAO,
as required. 0

Remark 5.2. Note that, since O is real, the formula for %| +—o Mt In Lemma 5.1 depends only
on the imaginary part of f. This makes sense, as Re f depends on the particular contact
parametrization of the deformation (cf. Lemma 4.6), whereas p; depends only on the family
of strictly pseudoconvex hypersurfaces ¢y (M) C C2.

In order to prove Theorem 1.1 we will use:

Theorem 5.3 (|22]). The CR 3-sphere is a strict local minimizer for the Burns-Epstein
wmvariant.

Theorem 5.3 represents the culmination of the work of Chéng and Lee in [21, 22|. In [21]
it was established that the second variation of the Burns-Epstein invariant at the standard
CR 3-sphere is positive definite for infinitesimal deformations orthogonal to the orbit of
the contact diffeomorphism group (as here the deformations are taken to fix the underlying
contact structure). In [22] a local slice theorem for the space of CR structures on (M, H)
under the action of the contact diffeomorphism group was established and used to prove
that (in the slice) the second variation of the Burns-Epstein invariant at the sphere gives a
suitably good approximation to the Burns-Epstein invariant to imply that the sphere is a
strict local minimizer.
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Proof of Theorem 1.1. Let €, t € [0,1], be a smooth family of smooth bounded strictly
pseudoconvex domains in C?, with €y being the unit ball. Assume 0f); is obstruction flat
for all ¢. By Lemma 5.1, the Burns-Epstein invariant ;(0€2;) then remains constant for all ¢
and, hence, 1(09Q;) = u(0€). But the Burns-Epstein invariant is a strict local minimizer for
the CR 3-sphere 00y by the Chéng and Lee result Theorem 5.3. Hence 0€); must be globally
CR equivalent to the unit sphere 0€, for all ¢. Since €2 is simply connected with connected
boundary, by continuity the same must be true for each €2;. It then follows by Hartogs-
Bochner (cf. also the Riemann mapping theorem of [24]) that each €, is biholomorphic to
the unit ball €. O

Remark 5.4. As remarked after the statement of Theorem 1.1, the conclusion of the theorem
can be easily improved to state that there exists a smooth family ®; : ; — g of biholo-
morphisms, ¢ € [0,1]. To see this, note that one may contact parametrize the boundary
deformation and pull the boundary CR structures back to S®, giving a smooth family of
CR structures with fixed underlying contact distribution. Since each of these CR struc-
tures must be spherical, the slice theorem of Chéng and Lee [22] says that one may find
a smooth family of contact diffeomorphism of S? parametrizing them. One can then use
these to reparametrize the contact parametrization of the deformation so that it becomes a
parametrization by CR diffeomorphisms. This parametrization then extends to the domains
as a parametrization by biholomorphisms.

6. A DEFORMATION COMPLEX ON THE CR 3-SPHERE

Here we describe in detail the deformation complex (1.3) on the CR 3-sphere, and use it
to prove Theorem 1.2.

6.1. The linearized curvature operator on the sphere. Let (M, H,J) be a compact
CR 3-manifold. We have already introduced the operator —2D : Eg(1,1) — Def(M) which
gives the infinitesimal deformation tensor £ = —2D;f = Ly, J arising from pulling back the
CR structure by the flow of the contact Hamiltonian vector field V; with potential f. Being
a weight (—2, —2) CR invariant, by (3.7) the Cartan curvature @) of (M, H, J) is a section of
the bundle Curv(M) = Def(M) ® Er(—2,-2). If (M, H, J;), t € [0,€), is a smooth family
of CR structures on M with Jy = J, then Q = %| 1o @+ will not in general be a section
of Curv(M), but only of the larger bundle End(H) ® &r(—2,—2). If (M, H,J) is locally

spherical, however, then @ € I'(Curv(M)) since the vanishing of Q implies locally
Q=iQ:'0' ® Zi —iQ'0' ® Z,.

For the CR 3-sphere, we denote the CR invariant linearized curvature operator Def(M) —

Curv(M) by R;. We will explicitly compute this operator in terms of the standard pseudo-

hermitian structure on S3.

Let S® denote the unit sphere in C?. Let (z,w) be the standard coordinates on C? and
let u=1— 2] — |w|?>. The standard pseudohermitian structure on S® is given by taking
0 = i0u|rgs. A global framing of the holomorphic tangent bundle of S? is given by Z; =
@TJ% — 2%, giving ' = wdz — zdw. All forms written in ambient coordinates are implicitly
pulled back to S®. The contact form 6 may be written as i(zdz + wdw) and we have
df = i(dz A dz + dw A dw). One then sees that df = i0* A 01, e.g., by computing the two
2-forms with respect to the frame {T', Z;, Z;}. Solving the structure equation (3.2) gives
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wil = —2i0, and A'; = 0. Therefore dw;! = —2idf = 20* A 01, so R = 2. We now consider
a smooth 1-parameter family of CR structures on S3, given in terms of the vector field

1
1—(t)]?
spanning ‘7°, with ¢,1(0) = 0. Then
1
1

AR (Zy+ o1 (t) Z1)

] o — ! o1
—’—1—|<,0(t)|2( p1 (1)0°)

where p1'(t) = ¢11(t), and because of our choice of normalization we have 6 A 0f = 6" NG,
so that hyj(t) = 1. We write @1 (t) = i’ + O(t?) so that ' = £| _ 67 = —p;'6'. Writing
(3.2) for each t as )

Ao} = 0; Awi'(t) + A (1O A 6]
and differentiating with respect to t at t = 0 we have

Aot = 0" Awi ' + 0" Ayt + A0 A 6L

Since 1 = —p;'0%, we also have df' = —(der!) A 61 — p71d6L, and equating this with the
above display we obtain that

(6.1) Ali = —Vopr!
and @' = —(Vip11)0 mod 0'. But w,! is imaginary since hy3(t) = 1 for all ¢, so
¥

(6.2) i’ = (Vigi )0 — (Vipr ).
Since dar! = RO A 0 mod 0' A 6,0 A 6, we therefore obtain
(6.3) R=V'V'p, — VIV
We may now easily compute Q = %’ 1o @t Since R = 2 we have

d d

—| VIVIR, = —| (Z' - ZI L w'(t)ZiR,

dt|,_, 1Vi1 dt|,_, 1 1_ 1 _

= 7171 R+ Z1(<P1IZIR) + (901121 -7 -lwll)ZlR
=V,V,FR.
Similarly, since A;; = 0 we have
d .
E VBAH(t) = V()All - _VOVOSOH ;
t=0
d .
% ViV%All(t) = V1V1A11 = —V1V1V0(,011.
t=0
From (3.8) we therefore obtain (cf. [21])
. 1 o7 21 1
(6-4) Qu = ——(9011,1111 - @Ii,nn) — ©11,00 — —@11,011 + R ©11,0
6 3 2

where indices placed after a comma denote covariant derivatives, so, e.g., v11,''11 denotes
V1V1iVIiVip;. While R = 2 here, we have retained R in the expression to emphasize that
the pseudohermitian curvature shows up in the last term. The fact that there is only one term
in the above expression involving (77 (as opposed to its conjugate ;1) will be exploited in the
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proof of Theorem 1.2. The above computation shows that if E = 2i¢p,0' ® Z; — 2ip1'0' ® Z,
is an infinitesimal deformation tensor, then applying the CR invariant linearized curvature
operator R;: Def(M) — Curv(M) we obtain

(6.5) R;E =iF\'0' ® Z; —iFi'0' ® Z,
where
1 1 i1 20 4 1
(6~6) = —6(9011, 11 — P11, 11) — ¥11,00 — 3%011,0 1+ 538011,0-

Recalling that for every infinitesimal deformation tensor E there is a family J; with Jo = J
and J = F, we see that if F' = R;E for some F then there is a family J; with Jo = J and

O=F.

6.2. Deformations and the Bianchi identity. Let (M, H, J) be a compact CR 3-manifold.
The last operator we need to consider is simply the adjoint of the operator D, : Eg(1,1) —
Def(M). Tt is natural to define the adjoint with respect to the tautological weight (2,2)
volume form on (M, H, J) coming from the identification of &g(—2, —2) with A3. Fixing a
contact form @ for H one may also take the adjoint of D; with respect to the volume form
6 Adf, and this gives the same result after we trivialize the relevant density bundles using 6.
The advantage of the CR invariant construction is that it turns out to give a CR invariant
operator
D% : Curv(M) — Er(—3, —3).

Moreover, the Bianchi identity (3.9) turns out to be equivalent to D%Q = 0 (cf. [21]). This
explains the use of the notation Bian(M) for Eg(—3,—3) in (1.3).

To formalize these observations, we define a local pairing between sections of De f(M) and
Curv(M) by

(E,F) = E"'"F\, + By F'' = 2Re(EM )

where E = Ey\'0' @ Z1 + F1'0'® Z, and F = F,'0' ® Z; + F1'0' ® Z,. Note that (E, F) has
weight (—2, —2) and may therefore be integrated. We define a natural CR invariant global
pairing between sections of Def(M) and Curv(M) by

(B, F) = /M(E, F).

We define D% : Curv(M) — Er(—3, —3) to be the adjoint of D; with respect to this global
pairing. Since in a local frame the component E'* of E = D;f is given by V!V f —iAlf,
integrating by parts gives
(6.7) D5F = 2Re(V'V'Fy;, —iAYMFy))
where F is given locally by F110' ® Z; + F;'0' ® Z,. Recalling (3.7) we see that the Bianchi
identity (3.9) is equivalent to D%Q = 0.

Now let (53, H, J) be the standard CR structure on S* and let J;, ¢ € [0, €), be a smooth
family of CR structures on (S%, H) with Jy = J. For each ¢ the Cartan umbilicity tensor Q;

of J; satisfies the Bianchi identity D7 Q; = 0. Let Q= %} .o @t Differentiating the Bianchi
identity D% Q; = 0 with respect to ¢ at ¢ = 0 we obtain

(6.8) D;Q =0,

which can be seen as a Bianchi identity for Q.
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6.3. The deformation complex. The discussions in Sections 4.2, 6.1 and 6.2 allow us
to conclude that on the CR 3-sphere the following sequence of differential operators is a
differential complex:

(6.9) 0 — &x(1,1) 2% Def(M) L2 Curv(M) 2 Bian(M) —s 0.

That R;D; = 0 follows from the diffeomorphism invariance of the Cartan umbilicity tensor
@, and the fact that ) vanishes for the standard CR 3-sphere. That D% R; = 0 follows
from (6.8). A fact which is not obvious from the previous discussion is that the above
complex is locally exact. This is because, for natural reasons [13|, (6.9) turns out to be
the Bernstein-Gelfand-Gelfand (BGG) complex on S® = SU(2,1)/P corresponding to the
adjoint representation of SU(2,1), which gives a fine resolution of the sheaf of constant
sections of the homogeneous vector bundle A = SU(2,1)/P xp su(2,1) — S®. The rank
8 vector bundle A4 — S? is flat and trivial, and the global constant sections are in one to
one correspondence with the infinitesimal symmetries of the CR 3-sphere. Moreover, the
cohomology of (6.9) is equal to the cohomology of the de Rham complex on S? twisted by
A, which is H*(S3 R) @ su(2,1). In particular,

(6.10) ker Ry =imD; and kerDj=imRj,.

Let £ — S? denote the trivial complex line bundle on S%. Complexifying and type
decomposing (6.9) one obtains the bigraded Complex

(6.11) Tl 0 TO 1 Tl 0 TO 1
/ g
TOl ®T10 TOl ®T10

where we have suppressed the density Welghts in the notation. The initial bundle is really
£(1,1), the final bundle is £(—3, —3), and in their second appearance the bundles (7"°)* ®
7% and (T°')* ® T"? should be tensored with £(—2, —2). By (4.2) the operators D and D

are given locally with respect to any admissible coframe {6,6',6'} by

(6.12) Df = (ViVf4+iAd'f)0' @ Z;, and Df = (ViV'f —iAi' [0 @ Z,.

By definition we have D; = D+ D. By (6.7) the operators D* and D* are given locally with
respect to any admissible coframe by

(6.13) 'D*(F1191®Zi) = VlviFli—iAliFli, and @*(F1161®Z1) = VivlFil—i—iAilFil.
By definition D% = D*+D*, where D* is extended to act by zero on (T )*@T 0 ®E(-2, —2),
and similarly D* is extended in the obvious way. In Section 6.1 we derived a fairly simple
formula for R; with respect to standard pseudohermitian structure ¢ on the CR 3-sphere,
extended to a standard admissible coframe {6,6',0'}. The simplification comes from the

fact that the pseudohermitian curvature R is then constant, and the pseudohermitian torsion
vanishes. By (6.5) and (6.6), with respect to the standard admissible coframe on S we have

.1 ‘ i i 2t 5 7 7
(6.14)  Ri(2ip'0' ® Zy) =i (__901171111 — 10 — g%l,oll + §R9011,0) 0' ® Zi;

(6.15) R+(2i901191 &® Z1) = _%Soﬁ,ﬁli 9' ® Z7.
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The remaining operators are conjugates of these, RY=Ri and R~ = R¥. By definition we
have R; = R+ R+ R + R~. Since (6.9) is a complex we have

(6.16) RD4+R™MD=0 and DR +D*R =0

Next we observe that the linearized operators governing stably embeddable deformations
and the CR obstruction density arise naturally from this picture. Let (M, H,J) be a CR
3-manifold. We may define D, D* and their conjugates on M by the same local formulae
(6.12) and (6.13) as we used for the CR 3-sphere. Given a section F of C ® Def(M) =
(T0) @ TO' @ (TOV)* @ T we write E?0 for the (T"°)* ® T%! part and E©®? for the
(T%")* ® T part, and similarly for sections of C ® Curv(M). Then (D;f)*") = Df, and
(D;f)2 = Df. Now if M is a strictly pseudoconvex hypersurface in C2, then it follows
from Lemma 4.5 that E is the infinitesimal deformation tensor of a contact parametrized
deformation of M in C? if and only if £©? = —2Df for some complex density f. The
—2 is chosen to match with our previous conventions. Let E = —2(Df + Df) be such an
infinitesimal deformation tensor. If f is real, then £ = —2(Df + Df) and FE is the trivial
infinitesimal deformation arising from the flow of the contact Hamiltonian vector field V.
If f = iv is imaginary then E = 2(Df — Df), and any contact parametrized deformation
Y, of M C C? inducing F satisfies %‘ o ¥t = JV,, where here J is the standard complex
structure on C2.

To see how the linearized obstruction density appears in (6.11), we first observe that for
a general CR 3-manifold the CR obstruction density (3.10) may be written as

OZEWQWX
3

Let ¢ : S® — C% t € [0,¢), be a contact parametrized deformation of the unit sphere
S3 C C?, and let (S®, H, J;) denote the corresponding family of induced CR structures on

S3. Let O, denote the CR obstruction density of (S®, H,J,), and let O = %’t:o O;. Then,
since Q% = 0 for the unit sphere, differentiating O, = : D} (20) ot t = 0 gives
1.
(6.17) O = §D*Q(270)>
where Q0 = dt‘t 0 0

6.4. Lowest order obstruction flatness and CR flatness of deformations. We now
apply the deformation complex to prove Theorem 1.2 for the case where O, vanishes to
second order in the deformation parameter ¢, see Theorem 6.2 below. We first observe
that, for deformations of the unit sphere, @ and @ are independent of the choice of contact
parametrization of the deformation. Given a smooth family M, ¢ € [0, €), of compact strictly
pseudoconvex hypersurfaces in C?, we call a contact parametrized deformation 1, : My — C?
with ¢y (My) = My, for all t, a contact parametrization of the family M,.

Lemma 6.1. Let M; C C%, t € [0,¢), be a smooth family of compact strictly pseudoconvex
hypersurfaces with M, the unit sphere. Let 1, : S — C? be a contact parametrization of
this family, and let (53 H,J;) denote the corresponding family of CR structures on S3. Let
O = dt’t 0 O and Q= o @t Then Q and O are independent of the choice of contact
parametrization ;.

i
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Proof. The lemma is equivalent to the statement that @ (and hence also @ = %D*Q(Q’O))
is unchanged under contact reparametrization of the abstract deformation (S3, H,.J;). But
this was already observed in seeing that (6.9) is a complex, and is equivalent to R;D; being
Z€T0. 0

This lemma allows us to work with a convenient choice of contact parametrization. Let
Yy 1 S — C% t € [0,¢), be a contact parametrized deformation of the unit sphere such that

f = 0(¢) imaginary, and let (S3, H, J;) denote the corresponding family of CR structures on
S8 If welet E= &| _ J;, then E = 2(Df — Df). Taking the (2,0) part of Q = R;E gives

(6.18) QP = 2(R*D — R*D)f = —AR'Df

since R¥D = —R+tD. Thus
. 4 _
(6.19) 0= —gD* RIDYf.

These observations lead us to the following theorem, which implies Theorem 1.2 for the case
where O, vanishes to second order in the deformation parameter ¢.

Theorem 6.2. Let ¢, : S3 — C?, t € [0,¢), be a contact parametrized deformation of the
unit sphere S3 C Cz,. and let (S3, H, J;) denote the corresponding family of CR structures on
S3. If O =0, then Q = 0.

Proof. By Lemma 6.1 and Lemma 4.6 it is no loss of generality to assume f = 0(@/}) is
imaginary. Let F = %‘t:o Ji, so that £ =2(Df —Df). By (6.19) we then have

(6.20) D*RYDf =0.

Let (6,6",60") be the standard admissible coframe on S* (for which A'; =0 and R = 2). As
usual we use 6 to trivialize £(1,1) and think of f as a function. We define 7' to be —if';
where fly = ViV!f, so that

E = 2ip'0' @ Z; — 2ip7'0' ® Z4.

Continuing to denote derivatives of f by appending indices, by (6.15) and (6.18) we have

(6.21) QRO = _ARYDf = —2R"(2ipi'0' ® Z;) = % fih 0 ® Zs.
Applying D* to the above, by (6.20) (or (6.17))
fritut =0
Integrating by parts twice we have
0= / f1111 fﬁﬁnn = fnnﬁ fﬁﬁn = Hﬁ11|2,
M M M

where the integrals are taken with respect to §Ad¢. So fir'h1 = 0, and (6.21) gives Q9 = 0.
Since @ is real, Q = 2Re Q> = 0, as required. U
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6.5. Higher order obstruction flatness and CR flatness of deformations. Our aim
is now to prove the following theorem, which implies Theorem 1.2.

Theorem 6.3. Let v, : S® — C?,t € [0,¢€), be a smooth contact parametrized deformation of
the unit sphere S® C C?, and let (S3, H, J;) denote the corresponding family of CR structures
on S3. If O; = O(t%), then Q; = O(t*).

The proof of this theorem requires several results, which straightforwardly generalize the
above results for the case of first order deformations. First of all we show that the conditions
O; = O(t*) and Q; = O(t*) are geometric conditions on the deformation, that is these
conditions only depend on the family of strictly pseudoconvex hypersurfaces M; C C? (with
My the unit sphere), and not on the contact parametrization of M;.

Lemma 6.4. Let ¢; : S — C?, t € [0,¢), be a smooth contact parametrized deformation of
the unit sphere S® C C?, and let (S3, H, J;) denote the corresponding family of CR structures
on S3. Suppose Q; = O(t") and O, = O(t*). If ¥, is any contact reparametrization of v,
inducing the family of CR structures (S, H,J!) on S3, then Q}, = O(t*) and O, = O(t*).

Proof. Let 1} be given by vy o ¢, where ¢, is a smooth family of contact diffeomorphisms
of (S*, H). Then J; = ¢}J;, so by the naturality of the Cartan umbilical tensor we have
Q) = ©;Qy. Since Q; = %#Q(z) + ﬁt”lQ(ZH) + O(t**?) we have

Q=i (FHQ0+ 0™ = H'eiQ + 0 ) = O

as required. The argument for the CR obstruction density is the same. O

We shall also need the fact that these two conditions are biholomorphically invariant, that
is, invariant under composition with a smooth family of ambient biholomorphisms.

Lemma 6.5. Let ¢, : S — C?, t € [0,¢), be a smooth contact parametrized deformation of
the unit sphere S® C C?, and let (S3, H, J;) denote the corresponding family of CR structures
on S3. Suppose Q; = O(t') and Oy = O(t*). Let U; be a neighborhood of 1(S®) C C? and
®,: Uy — C% t €0,¢), a smooth family of biholomorphisms with ®¢ = id. If 1, = ®; o 1y
induces the family of CR structures (S®, H,J!) on S3, then Q}, = O(t*) and O, = O(t*).

Proof. The result is immediate from the fact that the Cartan umbilical tensor and CR
obstruction density are weighted biholomorphic invariants (cf. [37, 40]), so that we have
Qg == |det ¢t|74/3Qt and O,Ii = |det @t|720t' O

Remark 6.6. Clearly, the conclusion of Lemma 6.5 holds even if the open subsets U; only
contain M; := 1,(S®) in their closures and the biholomorphisms ®; extend smoothly to M.
By Hartogs’ theorem the same is true if @, is replaced by a smooth family of CR embeddings
(bt . Mt — (CQ.

In proving Theorem 6.3 our strategy will be to repeatedly normalize the contact parametrized
deformation by contact reparametrizations and by ambient biholomorphisms (or CR embed-
dings), allowing us to argue as in the proof of Theorem 6.2. For the normalization proce-
dure we need several lemmas. The first is the following straightforward generalization of
Lemma 4.4.
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Lemma 6.7. Let (M, H,J;), t € [0,¢€), be a smooth family of CR structures on M. If
1
J= o+ B+ O )

where E is a trivial infinitesimal deformation tensor, then there exists a smooth family o,
t €10,¢€), of contact diffeomorphisms of (M, H) such that

OrJ, = Jo+ O(t").
We will also need the following lemma.

Lemma 6.8. Let ¢y : M — C?, t € [0,¢), be a contact parametrized deformation of the
compact strictly pseudoconvex hypersurface M C C? with 1; = 1o+ O(t*), and let (M, H, J;)
be the corresponding family of CR structures on M. Suppose J; = J + O(t*1). Then there
exists a smooth family of CR embeddings ¢, : (M) — C%, t € [0,¢€), with ¢o = id such that
g 0Py = by + O(tFH).

To state the next lemma we need a definition. Let ¢ : M — C2 t € [0,¢), be a
contact parametrized deformation of the strictly pseudoconvex hypersurface M C C2, and
let (M, H, J;) denote the corresponding family of CR structures on M. If ¥, = 1)y + %tkﬁ' +

O(t**1) then we may think of £ = d—’; wt as a section of TC?|y;, and we define 1)®) to be
t=

the corresponding section of T(; o). When k =1 we have ¥y = 4. The following lemma is
a straightforward generahza‘mon of Lemma 4.6.

Lemma 6.9. Let ¢, : M — C? t € [0,¢), be a contact parametrized deformation of the
compact strictly pseudoconvexr hypersurface M C C? with 1y = 1y + O(t*). Then there is
a smooth family ¢, t € [0,€), of contact diffeomorphisms of M which reparametrizes 1, to

Yl = 1y 0 o, with @('*)) imaginary.

Finally, in order to run the argument we used in the proof of Theorem 6.2 we need another
straightforward generalization of our results from the case of first order deformations:

Lemma 6.10. Let ¢, : S — C?, t € [0,¢), be a smooth contact parametrized deformation of
the unit sphere S® C C?, and let (S3, H, J;) denote the corresponding family of CR structures
on S3. If Yy = o + O(t*) and f = O(xp™), then

1
(6.22) Jo=J+ Et’“E + O(t"h)
where E = —2(Df + Df). Moreover,

1
(6.23) Q= 7;I"RsE + O,
and
1
(6.24) O, = @tkD*(R E)Z0 1 o(tht).

Combining these lemmas we may now prove Theorem 6.3.

Proof of Theorem 6.3. We note first that the case k = 1 is trivial, and k£ = 2 is the content
of Theorem 6.2. Now, fix a k > 3. Theorem 6.2 implies Q = R;E = 0, where E = J =
—2(Df + Df) and f = (¢)). Since (6.9) is exact at Def(S?), it follows that F is a trivial
infinitesimal deformation tensor. By Lemma 6.7 (or Lemma 4.4), contact reparametrizing
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1y if necessary, we may assume E = 0 (i.e. J; = J+ O(#?)). By Lemma 6.8, composing 1
with a smooth family of CR embeddings if necessary, we may assume that ¢, = ¥ + O(t?).
By Lemma 6.9, further contact reparametrizing 1; if necessary, we may assume that O(w(2))
is imaginary. By Lemmas 6.4 and 6.5 (cf. Remark 6.6) the conditions @Q; = O(t?) and
O; = O(t*) are preserved under these normalizations on ;. These observations form the
base case of an induction. Let ¢ € {2,...,k — 1} and suppose that Q; = O(t*) and that,
after contact reparametrizing and composing v; with a smooth family of CR embeddings
if necessary, ¥, = o + O(t") and 0(¢¥)) is imaginary. Since f = 6(v¥)) is imaginary,
by Lemma 6.10 we have J; = J + £t‘E® + O(t**") with E¥) = 2(Df — Df). But then
O; = Ht'D*(R;E)20 + O(#*!), where

30!
D*(R;E)*Y = D*(2R*Df — 2R*Df) = —4D*R*Df.

Computing as in the proof of Theorem 6.2, with respect to the standard admissible coframe
on the CR 3-sphere we obtain D*RYDf = £ fi1''1;", where the indices denote covariant
derivatives. But since ¢ < k, we again have fjj''1;'! = 0. By the same argument as in
the proof of Theorem 6.2 it follows that fi1''y; = 0. But (R,;E)*0 = 1f;1160' @ Z,
so RyE = 0 and by (6.23) we have Q; = O(t**!). In order to be able to continue the
induction we observe R;FE = 0 implies F is a trivial infinitesimal deformation tensor so that
by Lemmas 6.7 to 6.9, after contact reparametrizing and composing 1), with a smooth family
of CR embeddings if necessary, we obtain 1, = 1y + O(t**!) with 8()“*1)) imaginary. By
Lemmas 6.4 and 6.5 (again cf. Remark 6.6) the conditions Q; = O(t**1) and O; = O(t*) are
preserved under these normalizations on ;. The result follows. 0

6.6. An Example: Real Ellipsoids in C?. Let S® be the standard CR 3-sphere. Consider
the family of ellipsoids defined by r; = 0, where

rei=1—(]z]> +|w]?) — t (A(Rez)* + B(Rew)?), ¢>0.
In [29] it is shown that, after pulling back the corresponding CR structures to S* one has

Q= 50 +0(°),

where Q) # 0 on the sphere S®. Thus, @ = 0 and therefore Theorem 6.2 does not give us
any information about the order of vanishing (or nonvanishing) of the obstruction. However,
by Theorem 6.3, we conclude that there is O not identically zero on S® such that

1
O, = 51t2(9<2) +O(t%).

7. THE CR TRACTOR CALCULUS

Canonically associated with any CR 3-manifold (M, H, J) is a (torsion free, normal) Car-
tan geometry of type (PU(2,1), K), where the projective unitary group PU(2,1) acts on
the CR 3-sphere by fractional linear transformations, and K is the stabilizer subgroup of a
point, so that S* = PU(2,1)/K. Moreover, this correspondence induces in a natural way
an equivalence of categories [16]. In particular, this means that infinitesimal symmetries
and deformations of CR 3-manifolds may equivalently be described in terms of infinitesimal
symmetries and deformations of the corresponding Cartan geometry. The results of taking
this point of view are described in detail for the more general case of parabolic geometries
in [13]. Below we recall in our specific setting a result of Cap [13]| on the Cartan geometric



24

descripton of infinitesimal symmetries, and use this result to prove Theorem 1.3. The result
of [13] we require is formulated in terms of tractor calculus [14]. The tractor calculus on a
(parabolic) Cartan geometry modelled on G/P is the calculus of associated vector bundles
induced by representations of G (the so-called tractor bundles). We recall below the neces-
sary background on the tractor calculus of CR 3-manifolds. Rather than first constructing
the CR Cartan connection, our approach is to directly construct the standard tractor bundle
and connection, specializing the treatment of [38] to the 3-dimensional case. The Cartan
bundle and connection may be readily recovered from this by passing to an adapted frame
bundle. This gives a direct and highly practical approach to the Cartan geometry of CR
3-manifolds.

As is usual in CR geometry, it will be convenient for us to work with the group G =
SU(2,1), and the stabilizer subgroup P giving S* = G/P, rather than (PU(2,1), K). The
Cartan geometry of type (PU(2,1), K) corresponding to (M, H, J) may be lifted to a Cartan
geometry of type (G, P) if and only if the holomorphic tangent bundle (or equivalently the
canonical bundle) admits a cube root (see, e.g., [16]). For any CR 3-manifold such a lift
always exist locally, and globally for strictly pseudoconvex hypersurfaces in C?. We will
always assume that (M, H,J) admits such a lift, i.e. that the integral first Chern class
of TH0 is divisible by 3. This is also a necessary condition for the global existence of the
standard tractor bundle, since this is induced by a G-representation that does not descend to
a PU(2, 1)-representation. The adjoint tractor bundle, on the other hand, which is induced by
the adjoint representation of G, is always globally well defined. These bundles are discussed
in detail below.

7.1. CR densities and holomorphic tangent vectors. Let (M, H, J) be a CR 3-manifold,
and let A0 denote the complex rank 2 bundle of (1,0)-forms on M. The bundle A%? =
A2(AY9) of (2,0)-forms is referred to as the canonical line bundle of M, and denoted by ¢ .
We assume throughout that its dual £ admits a (global) cube root, which we fix and de-
note by £(1,0). (If M is a strictly pseudoconvex hypersurface in CP?, then we may take the
complex line bundle £(1,0) to be O(1)|5r where O(1) is the hyperplane bundle on CP?.) We
then define the CR density line bundle of weight (w,w') to be &(w, w’) = £(1,0)*®&(L,0)
where w, w’ € C with w—w' € Z. Note that for w real the bundle £(w, w) is invariant under
conjugation, and hence contains a real subbundle &g (w, w). The CR density bundles exhaust
the so called natural line bundles on CR manifolds [16], the upshot of which is that we will be
able to naturally identify all the more familiar line bundles on M with one of these bundles.
Though we will not do away with the usual bundles, it will be useful to record their weights
as CR density bundles. Note that by definition £(3,0) = ™, so £(—3,0) = % .
Trivializing the bundle TM/H determines a contact form on M via the natural map
TM — TM/H. Similarly, a choice of non-vanishing section ¢ (i.e. a trivialization) of ¢
determines canonically a contact form 6 on M by the requirement [34] (see also [46]) that

(7.1) ONAD =0 A (T 2C) A (T 20).

In this case we say that 6 is volume normalized with respect to (. Combining these obser-
vations, we may realize TM/H as a real CR density line bundle (cf. Section 3) as follows.
A contact form 6 determines canonically a section |(|> = ( ® ( of # @ # = £(—3,—3) by
the condition that ¢ satisfy (7.1) (¢ is only determined up to phase at each point). If we
rescale 0 to 0 = Y0, with T € C(M, R), then the corresponding section |¢|? equals e3T|¢|2.
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Thus, the map which assigns to a contact form @ the section |¢|*® of &g(—1, —1) extends to

a canonical isomorphism of H+ with & (—1,—1). Dually TM/H is canonically isomorphic

to Er(1, 1), explaining the notation we used earlier. Recall that this identification gives us a

tautological 1-form 6 of weight (1, 1), corresponding to the map TM — TM/H = &g(1,1).
We define the CR Levi form L : T @ T%' — CTM/CH by

L(U,V) = 2i[U, V] mod CH.

On a strictly pseudoconvex CR 3-manifold the CR Levi form is a bundle isomorphism, so
we have T @ T%! =~ CTM/CH = £(1,1). The CR Levi form may be interpreted as
a Hermitian bundle metric on T"° ® £(—1,0), and we would like to have a more concise
notation for bundles like this one. We use the symbol £ decorated with appropriate indices
to denote the tensor bundles constructed from T° and T%!. For example, £! = T19,
E = (T%)*, and &1 = (TH)* @ (T™')*. We will now generally use abstract index notation
for sections of these bundles. So, for example, V! may denote a global section of &' = T*°
(previously written locally as V1Z;). This keeps the notation from getting too heavy, and
allows us to globalize our previous local formulas. Generally we denote the tensor product
of a complex vector bundle V on M with £(w,w’) by appending (w,w’), as in V(w, w"). The
CR Levi form will be thought of as a section h;1 of £;7(1,1), with inverse h'' (which is then
a section of £M1(—1,—1)). The Levi form will be used to identify £ with £(1,1), and &3
with £(—1, —1), and to raise and lower indices without comment.

From the general theory [16] we know that the bundle &' = T can be identified with a
density bundle of some weight. Since £1' = £(1,1) we see that £ = £(w, 1 —w) for some w.
Recalling that A% may be canonically identified with Eg(—2, —2), the exact weight can be
determined by noting that the wedge product gives a canonical identification # @ (T%!)* =
CA3) ie. £(-3,0)® & = E(—2,—2), so that & = £(1,—2) and hence & = £(—2,1) and
EY=E(2,-1).

7.2. Weighted pseudohermitian calculus. In order to construct the standard tractor
bundle and connection directly from the standard pseudohermitian calculus, we first observe
that the Tanaka-Webster connection V of a pseudohermitian structure 6 extends naturally
to act on the CR density bundles, since V acts on the canonical bundle .#". Since the
Tanaka-Webster connection of 6 preserves 6, and also preserves the section ||? of JZ° QA =
&(—3,—3) determined by volume normalization, the Tanaka-Webster connection respects
the CR invariant identification of TM/H with Eg(1,1). Another way of saying this is that
VO = 0. A similar argument shows that V preserves the CR Levi form, VL = 0. Hence,
the Tanaka-Webster connection of 6 respects all of the CR invariant identifications made in
Section 7.1. We therefore make use of CR densities whenever convenient.

Given a choice of admissible coframe (6, ', 0') we now take components of tensors with
respect to (6,0, 0). This means that if V is a tangent vector, then V° has weight (1, 1),
and is globally well defined (and independent of 6). A choice of global contact form allows
us to decompose the complexified tangent bundle CTM as E' @ E' @ £(1,1). Using abstract

index notation we may therefore decompose V globally as V < (VLVL Vo). If (8, 6’1,95
and 6 = eY0, then writing 0' = 0 + Y10 where Y' = VI it is easy to see that (0, 0%,6")
is again an admissible coframe. It follows that if V' 2 (v Vi V0), then

(7.2) VL (W a0t v vyt vy,



26

Dually, for a 1-form n with n 2 (m1,m1,m0) we have

0 . AT
(7.3) n = (m,n1,m — T+ ZTIUI)‘
We will need to commute derivatives of weighted tensor fields, for this we need to know

the curvature of the CR density bundles. Let 7 be a section of £(w,w’). From (3.4) and (3.5)
one easily obtains that

w—w

(7.4) ViVir = ViVi1 +1th1Vor = Rh7;

w—w'

(7.5) ViVor — VoVir — AL ViT =

(viAil)Tv

cf. |38, Proposition 2.2|. These formulae can be interpreted globally, using the abstract index
formalism.

In order to directly check the CR invariance of the CR tractor connection, expressed with
respect to a pseudohermitian structure, we need the following transformation laws for the

Tanaka-Webster connection. If 7 is a section of &(w,w) and § = €*6 then [38, Proposition
2.3]

(7.6) Vir = Vir +wYlir :
(7.7) Vit = Vit + w'Ti7;
(78) @DT == VOT — iTlvlT + iTiVjT

+ 3 [ (w + w) o+ iwTy — i T +i(w — w) Y| 7

where indices attached to Y denote covariant derivatives, so, e.g., T11 = V!V T. Note that
in (7.8) one of Ty, T!;, T1; can be eliminated by using that Ty = i(T!; — T!;). Now either
by direct calculation, or by noting that £ = £(2, —1) and using the above, we have

(7.9) ViVl = vV 42m Vv

(7.10) ViVl = ViV — 1Vt

(7.11) VoVl = VoV — vV V44TtV VE (1Y — i) v?

for any section V! of £'. We also need the results of [46, Lemma 2.4] that if 0 = €¥6 then
(7.12) R=R—-2T' + T4 +7T7));

(7.13) A=A+ T -1

where R and A;; are interpreted as densities of respective weights (—1, —1) and (1,1). We
also to introduce the following higher order curvature quantities, which arise as components
of the Ricci tensor of the Fefferman metric [46, 38|,

1
(714) T1 - E(le - 4@'V1A11),
a section of £ (—1,—1), and the real (—2, —2) density
T 1
(7.15) S =—(V'T + VT + 1—632 — A% A).

The reason these arise in the formula for the CR tractor connection below can be seen
from the intimate relation between the CR tractor connection and the conformal tractor
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connection of the Fefferman metric [15] (cf. [54]). These higher order curvature quantities
transform according to [38]

. ‘ 1 1 1 -1
Ti =T+ ST + ~RTy —iAnT 4+ =TT — 27T — (7)) 7
2 4 2 2 2
. 1 . . j _
S — S + §T00 - 3(T1T1 + TlTi) + i(T(ﬁTl - TOlTl) ‘l— %(AllTlTl - AﬁTlTl)
1 1 a1 .
— Z(T0)2 — me — §(T11T1T1 + T 0T + 5(Tﬂ + Y1) T+ %(TlTl)?

7.3. Tractor calculus. Let C*! denote the defining representation of SU(2,1). Let P be
the subgroup of G = SU(2, 1) stabilizing a fixed isotropic line ¢ in C*'. Let (M, H,J) be
a CR 3-manifold and let (G — M,w) be the canonical Cartan geometry of type (G, P)
corresponding to the CR structure on M. If V is an irreducible representation of SU(2,1)
then the bundle V = G xp V is called a CR tractor bundle. Every irreducible representation
V of SU(2, 1) is contained in some tensor representation constructed from C*! and (C*!)* as
a subspace of tensors satisfying certain symmetries and the trace-free condition. It follows
that knowledge of the so called (CR) standard tractor bundle T = G x p C*! is sufficient to
recover all of the tractor bundles. The standard tractor bundle 7 — M should be thought
of as a P-vector bundle, which is equivalent to saying that it is canonically equipped with a
signature (2,1) Hermitian bundle metric (since P C SU(2,1)) and that the fibers of T are
canonically filtered vector spaces

T'cT?CT,, reM

where T! is an isotropic line and 7.0 = (T.})* (since P preserves the filtration ¢ C ¢+ C C>1).
The P-principal Cartan bundle G — M may readily be recovered from the standard tractor
bundle as the bundle of P-adapted frames, that is, frames where the first frame vector is
chosen from 7, the second from 7, and the frame is normalized so that the signature (2, 1)
bundle metric takes the form

— o O
O = O
oo =

Moreover, the canonical CR Cartan connection w on G — M may equivalently be viewed as
a linear connection V on 7 — M, called the tractor connection, which preserves the bundle
metric on 7 — M. The tractor connection on the standard tractor bundle induces a linear
connection on each tractor bundle in the obvious way. Here we will construct (7, V) without
reference to (G,w).

Following [38] we take 7 to be the set of equivalence classes of pairs (0, (o, u', p)), where
0 is a contact form and (o, pu',p) € £(0,1) ® £(—1,0) & £(—1,0), under the equivalence
relation: (6, (o, ut, p)) ~ (0, (6, i, p)) if 6 = Y0 and

o 1 0 0 o
(7.16) o] = T! 1 0 it
,5 —%(TlTl — ZT()) —Tl 1 14
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where as before T; = VT, T = hHTI with T; = Vi1, and To = VY. The canonical
filtration of 7 is immediately evident, fixing a contact form 6 this is given by

0 0
T!= 0 cT? = * cT.
* k

If (0, (o, 1it, p)) ~ (6, (6, i*, p)) then one easily checks that

26p + fi' i = 20p + p' s,
which defines by polarization a signature (2,1) Hermitian bundle metric h on 7. We will
adopt the abstract index notation £4 for 7, and £4 for T, using capitalized Latin letters

from the start of the alphabet for our abstract indices. The Hermitian bundle metric A is
then written as h,5. Decomposing £ with respect to any choice of contact form 6, we have

0 0 1
h’AB — 0 h’li 0
1 0 O

The line bundle £(—1,0) is naturally included in 7 by the map

0
p— | O
p

The map £(—1,0) — £4 corresponds to a canonical section Z4 of £4®&(1,0), known as the
canonical tractor. The canonical tractor also induces a canonical projection EA — £(0,1)
taking v? to o = hzv*ZP. This corresponds to the obvious projection
o
1
T =

P

If M is a strictly pseudoconvex hypersurface in CP? then £(—1,0) is the restriction of
the tautological line bundle O(—1) to M and T = £ can be identified with the restriction
of the tautological rank 3 complex vector bundle over CP? (coming from the projection
C3\ {0} — CP?) to M. The canonical tractor can then be identified with the Euler field
on C3, whence the notation Z. From this point of view, however, the origins of the tractor
metric A and particularly of the tractor connection are more subtle.

The tractor connection. In order to define the tractor connection, we recall the higher order
pseudohermitian curvatures 7; and S from (7.14) and (7.15). With respect to a choice of

contact form 6 the tractor connection on a section v4 < (o, !, p) is then given by

VlO'
(7.17) Vit L Vip' +p+ Ro ,
Vip —iAppt —oTy
, Vio — pi
(7.18) Vit = Vipt —iAilo ,

Vip — 1Rui + oTx
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and

Lo Voo — %Ra +ip
(7.19) Vv = Vou' + §Ru' — 2i0T"
Vop — 5Rp — 21T p' —iSo

To verify that these formulae give rise to a well defined connection one needs to check that
the right hand sides of (7.17) and (7.18) transform according to (7.16). For (7.19) one also
needs to take into account the change in the Reeb direction, see (7.3). From these formulae
it is easy to see that the tractor connection preserves the tractor metric hyg.

The tractor curvature s is a 2-form valued in (trace free skew-Hermitian) endomorphisms
of the standard tractor bundle. Given a choice of contact form #, Kk may be decomposed into
three components r17 47, k1047, and k194, defined by

V1Viv? — ViVi0? + ik Voo? = ki1 Bo?;
ViVor? = VVioP — AL VP = /iloABvA;

B B 1 B B, A
ViVov? — VoViv”? — A 1V10" = Kiga~ v

for any section v of £4 (the tractor connection is coupled with the Tanaka-Webster connec-
tion of # in order to define the iterated covariant derivatives). By definition the component
k1747 of the tractor curvature is a CR invariant, i.e. it does not depend on the choice of
0. However, a straightforward calculation shows that x174” = 0. The vanishing of k14"
implies, by (7.3), that x194” and kio4? are CR invariant (this phenomenon is special to
3-dimensional CR structures). A straightforward calculation using the above formulae for
the tractor connection, the formulae (7.4) and (7.5) for the curvature of the density line
bundles, and the definitions of 77 and S, gives

0 0 0 0 o
(7.20) Kioa Pt L 0 =] 0 o0 0 !
oYy +ip'Qn Y1 iQu 0 p

where Q17 is given by (3.8), and
Yy = —iV1S + VoT} + %RTl — 3A,,T"

The CR invariance of Qq; then follows immediately from the CR invariance of x194” and
the transformation law (7.16). On the other hand, Y] is not CR invariant, rather the trans-
formation law (7.16) implies that if 0 =eYhthen Y, =Y, — Q11 Y. (The pair Q1; and Y7,
respectively, are highly analogous to the Weyl curvature and Cotton tensor in 4-dimensional
conformal geometry.) Since the tractor connection preserves the tractor metric we have
k104” = —haphPCKk1ocP, giving

, 0 00 o
(7.21) KioaZvd = | Q7' 0 0 ut
Y1 0 0 p

where Y7 = Y.
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7.4. The adjoint tractor bundle and the obstruction as a divergence. Let C*!
denote C? equipped with the signature (2, 1) Hermitian inner product

((20, 21, 22), (Wo, w1, W2)) = 20Wa + 21W + 22Wo

chosen so that the standard first and last basis vectors are isotropic. Let G = SU(2,1) be
the linear group preserving the inner product, with Lie algebra

a z 110
su(2,1) = w —2ilma —Z | : 9, €R, a,z,weC
W - —a

The adjoint tractor bundle is the bundle induced from G by the adjoint representation of G
on its Lie algebra V = g. Since g consists of the trace-free skew-Hermitian endomorphisms of
C?!, the adjoint tractor bundle A — M is the subbundle of End(7) consisting of trace-free
skew-Hermitian endomorphisms of 7. A section s € I'(A) may be written with respect to a
choice of contact form 6 as

L (o iu
sa” 2 —2ilmp —ov?
A —1 —ﬁ
If = €70 then
R 1 0 0 7 vy w 1 0 O
saBL T! 1 0 vt —2ilmp —o! —! 1 0
—%(TlTl - ’lTo) _Tl 1 A —U1 —Il_j/ —%(TlTl + ZTO) Tl 1
If a section of A is given by
WU i
SAB i Vl * *
A x %
then
0 VLM — iR'Ul + ZUTl Vl"Ul — AHU, leu — U1
(7.22) VisaP = Vvt +id+ 1R(2p — p) — o'l * *
iVid —iApvt + R — (p+m)Th * *
(7.23) ‘
, Vip — vq +iAjtoy — iuTy Vivy + 2p — )byt + juRhyy  iViu + vy
VISAB = Viul — i(2,u — ﬁ)Ail + UlTi * *
1ViA — leRl/I — A7y + (n+n)Ty * *
(7.24) |
Vop — A+ 2iv, T — Su Vovr—jRuy—ivi —2uTy  iVou—i(pu+7)
VosaZ L | vt + LRt — 2i(2p — )T —iSv? * *
iVoX — 2i(Thv' + Thy) —iS(p + 1) * *

The tractor curvature r satisfies the Bianchi identity, d¥x = 0, which can be written in
terms of the components as Vik1ga® — Vik10a® = 0 (i.e. Viki0a? = Vikia®).

Lemma 7.1. Let (M, H,J) be a CR 3-manifold. Then the CR obstruction density O van-
ishes if and only if Viki0a® = 0 (equivalently V'k1gs® =0).
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Proof. Fix a background contact form 6. By a straightforward calculation using (7.20),
(7.21), (7.22) and (7.23), from the Bianchi identity Vixi94” — Vik104® = 0 one obtains that
Y, = —iV!Q;. By the same calculation, using this identity, one obtains that

, 0 00
V'kioa” = 0 0 0
—i(V'VQu —iAMQu) 0 0
The lemma follows immediately by (3.10). O

7.5. Proof of Theorem 1.3. The proof of Theorem 1.3 makes use of a universal prolon-
gation formula for the infinitesimal automorphism equation in a parabolic geometry, which
puts infinitesimal automorphisms in one to one correspondence with nontrivial sections of
the adjoint tractor bundle satisfying a first order (prolonged) equation [13|. In the statement
of this result for the 3-dimensional CR case (Lemma 7.3) we refer to the operator L given by
the following proposition, an example of a so called BGG-splitting operator (see, e.g., [13]).

Proposition 7.2 ([13, 27|). The BGG-splitting operator L : £(1,1) — A is given by

, WU iU
Lu = vtk %
A x %

where vy = iViu, p = 3(Vou—V'ioy—2uR), v' = £ (iVou' +2V = Vi +2i Aoy — 3iuT),
and X\ = £ (2iVoRep +V1V1—V1V1 31R1m/¢—|—3( T —u T —2iSu).

The following lemma, which is part (1) of the proposition of section 3.2 of [13], gives the
prolonged system corresponding to the CR infinitesimal automorphism equation.

Lemma 7.3. Let (M, H,J) be a CR 3-manifold. The vector field X is an infinitesimal CR
symmetry if and only if Vs = —X 1k, where s = Lu with u = 0(X).

Proof of Theorem 1.3. Suppose O = 0. Fix a contact form 6 and let V denote the Tanaka-
Webster connection of ¢ coupled with the CR tractor connection. By Lemma 7.1, since
O = 0 we have V'kjp4? = 0. If X is an infinitesimal CR symmetry then by Lemma 7.3,
since k1147 = 0, we have V1547 = urig4?, where u = (X). Note that s,%sp? Vikjoc? =
s4% (Vikiop?) scP is a density of weight (—2,—2) so can be invariantly integrated. Inte-
grating by parts we obtain

(7.25) 0—/ (V Kiop”) scl = /(VSA kiog” sc® + 54° k1op™ Vsc>

A _ B c A B
uh /€10A KioB~ Sc~ t+ 84 Kiop  KioC )

Now by (7.20) and (7.21) we have

) 0 00 0 0 0 000
Mkiop? kioc®? = | Q11 0 0 0 0 0]=[o000
-Y; 0 0 Y1 iQr 0 000
and
) 0 0 0 0 00 0 00
WMo ks 2| 0 0 0 Qi 00 | = 0 00
YL il 0 ~Y; 0 0 —1QI* 0 0



where |Q|? = Q11Q". Hence (7
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) simplifies to

2
A B
/ Lh10a€ K10 5B =0

and we have

) . 0 0 0 7 Uy "
R k194 k1o scP = tr 0 0 0 vt —2ilmp  —o!
—|Q* 0 0 A -1 —1
0 0 0
= tr 0 0 0 = —iu|Q|.

—plQF —uvi|QF —iu|Q?

We conclude that [ u?|Q[* = 0. Since u cannot vanish on an open set, the result follows. [
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