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ABSTRACT: Calix[4]pyrrole 1 can form host−guest complexes with certain thallium salts, for example, TlF, not only in the gas
phase but also in solution and in the solid state. The complexation of TlF by calix[4]pyrrole 1 was found to promote self-assembly
and the formation of well-defined and highly ordered fibrous supramolecular morphologies, as revealed by polarizing microscopy and
scanning electron microscopy. The findings reported here serve to broaden the scope of cationic substrates that may be complexed
as ion pairs by calix[4]pyrrole receptors while setting the stage for the development of new hosts for thallium(I) salts.

Thallium is a highly toxic, naturally occurring element that
is widely distributed at very low concentrations in the

earth’s crust. Despite the recognized hazards it poses, thallium
continues to see use in the optics and electronic industries.1

Tl(I) represents the dominant Tl species because under most
conditions monovalent thallium is thermodynamically more
stable than Tl(III).2 Because of the high solubility and mobility
of Tl(I) in water, thallium can be readily transported into
aqueous environments, resulting in the contamination of
drinking water or food chains.3−7 Tl(I) salts thus pose a
recognized threat to humans and various ecosystems.8,9 Over
the past decades, effort has been dedicated to the development
of new methods for the sensing, extraction, and removal of
thallium(I) from soil and groundwater.10−14 In this regard,
macrocyclic receptors are appealing due in large measure to
their ability to recognize various species with high affinity and
selectivity.15−17 To date, crown-ethers, calix[n]arenes (n = 4−
6), and so-called cryptophane derivatives have shown promise
for removing traces of Tl(I).10,18−20 For example, Chamsaz et
al. reported a single-drop liquid-phase microextraction
(SDME) technique that relies on dicyclohexano-18-crown-6
to promote the preconcentration of Tl(I) in an aqueous source
phase, allowing for efficient Tl(I) extraction even at very low
initial Tl(I) levels (e.g., 0.02 ppm).21 Recently, Brotin and
coworkers developed a series of cryptophane derivatives
bearing either phenolic or carboxylic acid groups on the
aromatic rings and showed they were effective for the selective

capture of Tl(I) under either basic or neutral conditions.22−25

Nevertheless, the high toxicity of thallium(I) and its continued
industrial use provide an incentive to further explore its
fundamental complexation chemistry. Here we report that
meso-octamethylcalix[4]pyrrole 1 can stabilize the ion pair
thallium(I) fluoride (TlF) both in organic solution (e.g., 9:1
CDCl3/CD3OD v/v) and in the solid state. To the best of our
knowledge, this is the first study wherein a calix[4]pyrrole (1)
is used to stabilize a structurally characterized ion-pair complex
of a non-alkaline-metal main-group element.
meso-Octamethylcalix[4]pyrrole 1 and its derivatives are

macrocyclic receptors capable of recognizing various neutral
and charged species, including ion pairs.26−29 To date, cations
found to be effective in stabilizing ion-pair complexes of 1 have
been limited to quaternary ammonium, phosphonium,
imidazolium, and cesium ions (Figure 1).28,30,31 In 2012,
Kr  ıź and coworkers suggested that calix[4]pyrrole (1) might
serve as an effective macrocyclic receptor for the univalent
thallium cation (i.e., Tl(I)) based on nuclear magnetic
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resonance (NMR) spectral studies carried out in nitrobenzene-
d5 as well as gas-phase quantum-chemical density functional
theory (DFT) calculations.32 In 2018, support for this
suggestion came from Van ura et al., who carried out
electrospray ionization mass spectrometric and gas-phase
theoretical studies.33 However, the structure of the putative
species 1·Tl+, its stability, and its ability to concurrently bind
Tl+ and anions were not determined.
Mass spectrometry is a recognized technique for studying

host−guest interactions in the gas phase.34,35 We thus began
our own studies by using electrospray ionization high-
resolution mass spectrometry (ESI-HRMS) to confirm the
reported interaction between 1 and Tl+ in gas phase.
Commercially available TlNO3 was employed as the thallium-
(I) source, which was added to host 1 in CHCl3/CH3OH (1:1
v/v). (Caution! TlNO3, like other thallium salts, is highly toxic,
and appropriate care must be taken to avoid inadvertent
exposure.) The positive-ion-mode ESI-HRMS for a mixture of
TlNO3 and receptor 1 recorded over the 300−700 m/z range
(see Figures S1 and S2) revealed a dominant peak in the
spectrum at m/z 633.2676, with ion cluster peaks between m/z
632.6 and 636.8 also being observed. Such findings are in a
good agreement with those calculated theoretically (m/z
633.2680) for C28H36N4Tl (i.e., [1·Tl]

+) (inset). Many other
metal ions, such as Li+, Na+, K+, Rb+, Cs+, Ca2+, and Ag+, were
also found to interact with 1, as inferred from HRMS and DFT
calculations (Table S1 and Figures S3−S11); however, given
the prior report from Van ura and coworkers,33 we elected to
focus on Tl+ salts in the present study.
To support the notion that calix[4]pyrrole 1 is capable of

capturing thallium(I) salts not only in the gas phase but also in
the solid state, efforts were made to obtain single crystals of 1
grown in the presence of various thallium(I) salts. Here TlNO3
was again used as the thallium(I) source. A series of thallium
salts, that is, TlF, TlCl, TlBr, TlOH, and Tl2SO4, were then
generated in situ by adding F−, Cl−, Br−, OH−, and SO4

2−, all
as their tetrabutylammonium (TBA) salts, to solutions of
TlNO3 and 1 in a mixture of CH2Cl2/CH3OH (1:1 v/v). To
our delight, X-ray-quality crystals of the thallium(I) fluoride
complex of 1 (1·TlF) were obtained by allowing a solution of
tetra-n-butylammonium fluoride (TBAF) in CH2Cl2/CH3OH
(1:1 v/v) to diffuse slowly into a solution of 1 and TlNO3 in
CH2Cl2/CH3OH (1:1 v/v). The resulting crystal structure

revealed that the Tl+ cation is symmetrically included in the
bowl-like cavity of the calix[4]pyrrole unit (Figure 2a,b), a

finding reminiscent of what is seen in the case of the Cs+

cation.30 The distance between the Tl+ ion and the centroids of
the pyrrole rings of 1 was found to be 3.36 Å. This value is
shorter than the 3.39 Å observed in the case of the
corresponding cesium fluoride complex, 1·CsF.30 This finding
is thus taken as evidence that the bound Tl+ cation is stabilized
via cation−π interactions. Meanwhile, the F− ion is symmetri-
cally bound to the four NH protons of the calix[4]pyrrole via
presumed hydrogen bonds. The N···F distance, 2.88 Å, proved
similar to the 2.79 Å distance observed previously in the case
of the corresponding cesium fluoride complex, 1·CsF.30 The
F− and Tl+ ions within 1·TlF are separated by a distance of
3.77 Å, forming a classical host-separated ion-pair complex.26

Additionally, each F− ion is coordinated to a Tl+ ion in an
adjacent complex with a shorter Tl···F contact of 2.45 Å. This
allows for the formation of a 1D coordination polymer (Figure
2c,d). The interactions of 1 and TlF were further analyzed by
DFT calculations (Figures S12−S14 and Table S2).
We next sought to explore the host−guest interactions

between 1 and thallium(I) salts in solution. In a variety of
previous studies involving calix[4]pyrroles, 1H NMR spectros-
copy proved useful in characterizing ion-pair binding.27,31 With
such an appreciation in mind, 1H NMR spectroscopic analyses
of calix[4]pyrrole 1 and TlF were carried out in a mixture of
CDCl3/CD3OD (9:1 v/v) at 298 K (Figure 3). It was found
that when 5 equiv of TlNO3 was added to a solution of host 1
(5.1 mM) in CDCl3/CD3OD (9:1 v/v), negligible changes in
the β-pyrrole proton resonances (in green in Figure 3) at 5.91
ppm and the methyl proton resonances (in pink) at 1.51 ppm
were observed; likewise, the signals for the pyrrolic NH
protons at 7.58 ppm shifted only slightly to 7.60 ppm. On this
basis, we conclude that neither TlNO3 as an ion pair nor NO3

−

as an anion is bound appreciably by 1. In contrast, upon adding
5 equiv of TBAF to a 5.1 mM solution of receptor 1 in CDCl3/
CD3OD (9:1 v/v), the signals for the pyrrolic NH protons (in
purple) at 7.58 ppm were seen to shift downfield to 7.71 ppm,
whereas the peaks corresponding to the pyrrolic CH protons
(in green) at 5.91 ppm and the methyl protons (in pink) at
1.51 ppm shifted only slightly (to 5.90 and 1.52 ppm,
respectively). These changes are consistent with formation of a

Figure 1. Presentative binding modes seen for ion-pair complexes of
meso-octamethylcalix[4]pyrrole (1). (a) Reported quaternary ammo-
nium, phosphonium, imidazolium, or cesium ions known to stabilize
ion-pair complexes. (b) Schematic view of thallium(I) ion-pair
recognition by 1.

Figure 2. X-ray crystal structure of 1·TlF: (a) Top view. (b) Front
view showing the inclusion of the Tl+ in the bowl-like cavity of the
calix[4]pyrrole and binding of F− above the calix[4]pyrrole cone in a
host-separated ion-pair mode. (c) Top view and (d) side view of the
coordination 1D network induced by the complexation of TlF. Color
codes: Tl+, gray; F−, green; C, black; N, light blue; H, pastel red.
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fluoride anion complex.36 The subsequent addition of 5 equiv
of TlNO3 into the aforementioned TBAF-containing CDCl3/
CD3OD (9:1, v/v) solution led to formation of a precipitate
that was subsequently identified as being 1·TlF. The sample as
obtained (i.e., without separating off the precipitate) was
subject to 1H NMR spectroscopic analysis. No discernible
signals ascribable to the pyrrole NH protons were seen. In
contrast, the pyrrolic NH protons signals appear at 8.68 ppm
when CD3OD was replaced with CD3OH (Figure S15).
Meanwhile, the signals for the pyrrolic CH protons and the
methyl protons were found to shift upfield to 5.87 ppm and
downfield to 1.57 ppm, respectively. These findings are
consistent with the binding of Tl+ by calix[4]pyrrole 1 being
affected by fluoride binding and vice versa.
We next sought to explore whether conditions other than

those used to grow single crystals of 1·TlF would support self-
assembly. We thus prepared a saturated solution of TlNO3 in a
mixture of CHCl3 and CH3OH (1:1 v/v), which was used to
dissolve calix[4]pyrrole 1 to a final concentration of 50 mM.
The addition of 5 equiv of TBAF resulted in the formation of a
white precipitate essentially immediately (Figure S16). This
precipitate was found to consist of tiny needle-shaped crystals
when viewed under a polarizing microscope (Figure 4a and
Figures S17 and S18) or a scanning electron microscope
(Figure 4b and Figure S19). As a control experiment, 5 equiv
of TBAF was added to a saturated solution of TlNO3 in
CHCl3/CH3OH (1:1 v/v) in the absence of 1. Under these
conditions, no precipitation was observed. To gain insight into
the nature of the needle-like microcrystalline material, SEM-
EDS (scanning electron microscopy−energy-dispersive spec-
trometry) experiments were carried out. EDS elemental
mapping associated with an SEM image (Figure 4b−f)
revealed all of the elements (i.e., C, N, Tl, and F) expected
for microcrystals consisting of 1·TlF. Fourier transform
infrared spectroscopic (FTIR) analyses (Figure S20) con-
firmed that the spectrum of the microcrystalline material
presumed to be 1·TlF differs from that of calix[4]pyrrole 1
alone. In brief, the IR spectrum of 1 exhibits signature pyrrole
NH features at 3441 cm−1 (stretching vibration mode), pyrrole
CH units at 3106 cm−1 (stretching vibration mode), and
pyrrole ring moieties at 1576 cm−1 (ring-stretching mode).
These characteristic peaks ascribable to 1 are also visible in the
FTIR spectrum of 1·TlF (3251, 3115, and 1585 cm−1,

respectively). Furthermore, the addition of 5 equiv of TBAF
into a saturated solution of CsNO3 in CHCl3/CH3OH (1:1 v/
v) in the presence of 1 gave a clean and transparent solution
free of any apparent precipitate. The further addition of 5
equiv of TlNO3 as a solid to the aforementioned mixture
resulted in the near-instantaneous formation of a white
precipitate that was found to be chemically identical to the
1·TlF complex previously discussed (Figure S21). This finding
leads us to conclude that 1·TlF is more prone to undergo self-
assembly than 1·CsF under essentially identical conditions.
This could be rationalized in terms of (1) the binding of TlF to
1 being stronger than that of CsF and (2) the Tl+ being
“harder” than Cs+, which makes the bridging intracomplex ion-
pairing interactions seen in the solid state more favored in the
case of TlF than CsF.
In summary, we have shown that calix[4]pyrrole 1 is able to

serve as an ion-pair receptor for TlF in the solid state and in
organic media, as inferred from a combination of single-crystal
X-ray diffraction analyses and 1H NMR spectroscopic studies
carried out in a mixture of CDCl3/CD3OD (9:1 v/v). Of
particular note is the propensity of 1·TlF to undergo self-
assembly promoted by ion-pair (TlF) complexation, as
supported by polarizing microscopic, infrared spectroscopic,
and scanning electron microscopic measurements. Given the
importance of thallium chemistry, we envision that the finding
that calix[4]pyrrole 1 can act as an ion-pair receptor for
thallium(I) salts will spur new application opportunities in the
near future. More broadly, the present work serves to expand
the periodic table of salts that may be targeted by
calix[4]pyrrole-type ion-pair receptors.
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Figure 3. Partial 1H NMR spectra (CDCl3/CD3OD (9:1 v/v), 298
K) of a sample of 1 (5.1 mM) recorded in the absence or presence of
5 equiv of TlNO3, 5 equiv of TBAF, or 5 equiv of TBAF + 5 equiv of
TlNO3, respectively.

Figure 4. (a) Polarizing microscope picture (crossed polarizers, ×60)
of the self-assembled entities formed from calix[4]pyrrole 1 and TlF.
(b) SEM image and SEM/EDS mapping for (c) C, (d) N, (e) Tl, and
(f) F.
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data_request@ccdc.cam.ac.uk, or by contacting The Cam-
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
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