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ABSTRACT: We report the molecular recognition of the
Au(CN)2

− anion, a crucial intermediate in today’s gold mining
industry, by α-cyclodextrin. Three X-ray single-crystal super-
structuresKAu(CN)2⊂α-cyclodextrin, KAu(CN)2⊂(α-cyclodex-
trin)2, and KAg(CN)2⊂(α-cyclodextrin)2demonstrate that the
binding cavity of α-cyclodextrin is a good fit for metal-coordination
complexes, such as Au(CN)2

− and Ag(CN)2
− with linear

geometries, while the K+ ions fulfill the role of linking α-
cyclodextrin tori together as a result of [K+···O] ion−dipole
interactions. A 1:1 binding stoichiometry between Au(CN)2

− and
α-cyclodextrin in aqueous solution, revealed by 1H NMR titrations, has produced binding constants in the order of 104 M−1.
Isothermal calorimetry titrations indicate that this molecular recognition is driven by a favorable enthalpy change overcoming a small
entropic penalty. The adduct formation of KAu(CN)2⊂α-cyclodextrin in aqueous solution is sustained by multiple [C−H···π] and
[C−H···anion] interactions in addition to hydrophobic effects. The molecular recognition has also been investigated by DFT
calculations, which suggest that the 2:1 binding stoichiometry between α-cyclodextrin and Au(CN)2

− is favored in the presence of
ethanol. We have demonstrated that this molecular recognition process between α-cyclodextrin and KAu(CN)2 can be applied to the
stripping of gold from the surface of activated carbon at room temperature. Moreover, this stripping process is selective for
Au(CN)2

− in the presence of Ag(CN)2
−, which has a lower binding affinity toward α-cyclodextrin. This molecular recognition

process could, in principle, be integrated into commercial gold-mining protocols and lead to significantly reduced costs, energy
consumption, and environmental impact.

■ INTRODUCTION

Gold, as a precious metal, is used1,2 not only in jewelry and
currency but also as an increasingly indispensable element in
chemical synthesis,3−10 nanotechnology,11−14 modern elec-
tronics,15,16 and medicine.17−19 The recovery20−24 of gold
from ores and electronic waste has become an increasingly
active field of research, largely because of economic incentives.
One of the most commercially successful processes1 for gold
mining from ores is heap leaching, where alkaline cyanide
lixiviants are used to solubilize gold as its dicyanoaurate salts,
NaAu(CN)2 or KAu(CN)2. Activated carbon is introduced to
separate the dissolved dicyanoaurate salts from the leached
pulpsa technology known25,26 as carbon in pulp. The
dicyanoaurate salts are stripped subsequently from the
activated carbon, producing a concentrated solution for the
final gold recovery by so-called electrowinning.1 To strip the
dicyanoaurate salts from the activated carbon, harsh con-
ditions,27−30 including high temperatures (95−140 °C), high
pressures (70−400 kbar), and concentrated cyanide and
hydroxide solutions, are required. We envision that if the
gold-stripping process can be performed at room temperature
under mild conditions using nontoxic reagents, a significant

drop in energy consumption, as well as reduced costs and
environmental impacts, can be realized.
To achieve room-temperature stripping of gold, we

hypothesized that a molecular receptor for Au(CN)2
− in

aqueous solution might facilitate (Scheme 1) gold transfer
from the surface of activated carbon into solution. There are
several reports of molecular receptors for gold halide anions
relying on the use of cyclodextrins,31,32 crown ethers,33

cucurbiturils,34−36 amides,37−43 cationic cyclophanes,44 and
metal−organic frameworks,45−50 which either form precipitates
selectively with gold ions or function as gold extraction agents.
Anion recognition51−65 has witnessed a blossoming during the
past two decades, where strong binding affinities and high
selectivities have been achieved for a wide range of anions.
Molecular recognition of Au(CN)2

−, the most relevant anion
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in the gold-mining industry, however, has been explored66−72

hardly if at all. There are only three reported molecular
receptors for Au(CN)2

− using metal−organic cages69,70 or
biotin[6]uril.72 There are no reports of molecular receptors for
Au(CN)2

−, to our knowledge, within the context of
commercial gold recovery. The first aim of the present
research was to identify molecular receptors for Au(CN)2

− in
aqueous solution with the ultimate goal of achieving efficient
gold stripping from the surface of activated carbon at room
temperature.
Research on cyclodextrins73−76 has been of particular

interest to us.77−79 Not so long ago, we demonstrated31,32

that α-cyclodextrin (α-CD) can encapsulate tetrabromoaurate
in the presence of potassium ions, resulting in selective
precipitation of a gold adduct, leading to a green gold-recovery
technology. It is also well-known80−82 that α-CD can
encapsulate selectively substrates with a linear geometry,
such as poly(ethylene glycol)80 and polyiodide complexes.81,82

The linear geometry of Au(CN)2
− suggests that this substrate

could be a good fit inside the cavity of α-CD. Herein, we
report the molecular recognition of Au(CN)2

−, a critical
intermediate in today’s gold-mining industry, using α-CD in
water with a binding affinity on the order of 104 M−1. The
binding mechanism has been investigated extensively by using
X-ray crystallography, 1H NMR titrations, isothermal calorim-
etry titrations, and density functional theory (DFT) calcu-
lations. In proof-of-principle investigations, we have demon-
strated that this anion-recognition process can be applied to
strip KAu(CN)2 from the surface of activated carbon at room
temperature. We also describe a selective stripping process for
KAu(CN)2 in the presence of KAg(CN)2, which has a lower
binding affinity with α-CD. With further optimization, this
process could be integrated into present gold-mining protocols
and lead to significantly reduced costs, energy consumption,
and environmental impact.

■ RESULTS AND DISCUSSION

Single crystals of a 1:1 adduct were obtained83 by slow
evaporation of an aqueous solution containing a mixture of α-
CD and KAu(CN)2. The solid-state superstructure of the 1:1
adduct between α-CD and Au(CN)2

− is illustrated in Figure 1.
The Au(CN)2

−, which is encapsulated (Figure 1a,b) inside α-
CD, is tilted by about 14° relative to its principal axis. Because
the length (9.6 Å) of Au(CN)2

− is slightly longer than the
depth (7.9 Å) of the binding cavity, one of the cyanide ligands
protrudes outside the primary face of α-CD. Five of the H-5
protons in α-CD are in close contact with the Au atom. The
[Au···C-5] distances are in the range 4.0−4.3 Å. One of the H-
3 protons in α-CD is in close contact with a cyanide carbon,
[NC···C-3] distance: 4.1 Å. Two of the H-3 protons in α-
CD have close contacts with the cyanide nitrogens, [CN···
C-3] distances: 3.9 and 4.4 Å. These short distances (Table 1
and Table S1) suggest that the supramolecular adduct
Au(CN)2

−⊂α-CD is sustained by multiple [C−H···π]84−86

Scheme 1. Structural Formula of α-CD with Numerical
Labels, a Tubular Representation of α-CD, a Space-Filling
Representation of Au(CN)2

−, and a Graphical Illustration of
Gold Stripping from the Surface of Activated Carbon into
Aqueous Solution Using α-CDa

aC = light blue, N = dark blue, and Au = golden yellow.

Figure 1. Space-filling (a) and tubular (b) representations of the solid-state superstructures of Au(CN)2
−⊂α-CD obtained from single-crystal X-ray

diffraction studies. The inward-facing H-3, H-5, and H-6 protons of α-CD are directed toward the Au(CN)2
− anion, establishing multiple [C−

H···π] and [C−H···anion] interactions that stabilize the adduct. (c) Tubular and space-filling representations of two types of K+ ions, forming seven
[K+···O] coordinative bonds with glucose residues and two water molecules with a capped trigonal prismatic coordination geometry. The K+ ions
are located on both the primary and secondary faces of α-CD. Each K+ ion connects three α-CDs together. (d) Tubular (α-CD) and space-filling
(KAu(CN)2) representations of the crystal packing between Au(CN)2

− anions and α-CDs, showing the positions of K+ cations and Au(CN)2
−

anions as well as the relative dispositions of the α-CD tori.
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and [C−H···anion]87−90 interactions between Au(CN)2
− and

the inward-facing H-3, H-5, and H-6 protons. These
noncovalent interactions are revealed91,92 (Figure S8) by a
reduced-density gradient analysis. The K+ ions are located on
both the primary and secondary faces of α-CD. Each K+ ion is
linked to three α-CDs with a capped trigonal prismatic
coordination geometry and a coordination number of seven,
two of which are involved with water molecules as ligands.
Two types of K+ ions are found (Figure 1c) in the packing of
the crystals. Type 1 K+ ions link one primary α-CD face and
two secondary faces, while type 2 K+ ions connect one
secondary face and two primary faces of the α-CDs. The [K+···
O] ion−dipole distances are in the range 2.7−3.2 Å. It is worth
noting that the [K+···NC] distances are in the range 5.4−7.9
Å, suggesting the existence of relatively weak electrostatic
attractions, stabilizing the adducts in the solid state. The
alignment (Figure 1d and Figure S1) of α-CDs is in the
repeating order of HT−HH−TT where H (head) represents
the secondary face and T (tail) represents the primary face of
the α-CDs. The HT and TT plane-to-plane distances ([O···O]
from the OH groups on the opposing faces) are in the range
2.9−3.6 Å, and the HH plane-to-plane distances ([O···O] from
the OH groups of the primary faces) are around 3.8 Å.
Single crystals of a 2:1 adduct were also obtained93 (Figure

2) as a result of slow diffusion of EtOH into an aqueous
solution containing a mixture of α-CD and KAu(CN)2. The
solid-state superstructure of the 2:1 adduct between α-CD and
Au(CN)2

− is illustrated in Figure 2. The Au(CN)2
− is located

between two α-CD primary faces and is tilted by about 22°
relative to its principal axis (Figure 2a,b). There are nine H-5
protons from α-CD in close contact (Table 1 and Table S2)
with the cyanide nitrogen atoms with [CN···C-5] distances
in the range 3.7−4.5 Å. Five of the H-6 protons in α-CD have
[Au···C-6] contact with the distance in the range 3.9−4.5 Å
(Figure S9). The multiple [C−H···π]84−86 and [C−H···
anion]87−90 interactions, which stabilize the 2:1 adduct
between α-CD and Au(CN)2

−, are associated mainly with
the inward-facing H-5 and H-6 protons. Next to each of the
cyanide ligands is located an EtOH molecule, forming (Figure
2c) a hydrogen bond with Au(CN)2

−. The [O···NC]
distance was found to be 2.8 Å, suggesting the existence of
strong hydrogen-bonding interactions between the EtOH
molecules and Au(CN)2

−. The binding energies of Au(CN)2
−

in the single-crystal superstructure were determined by DFT
calculations and are shown (Table S7) to be (i) to one α-CD
(−42.4 kcal mol−1), (ii) to both α-CDs (−79.4 kcal mol−1),
(iii) to one EtOH (−12.9 kcal mol−1), (iv) to both EtOH
(−22.5 kcal mol−1), (v) to one EtOH and one α-CD (−62.8
kcal mol−1), and (vi) to all, that is, two α-CDs and two EtOH
molecules (−119.8 kcal mol−1). The EtOH molecules, which
occupy part of the internal cavities of the α-CDs, enhance the
overall stability of the 2:1 adduct and thus facilitate the shift in
the binding stoichiometry from 1:1 to 2:1. The K+ ions are
only found at the secondary faces of the α-CDs. Each K+ ion is

linked (Figure 2d) to four α-CDs with a capped trigonal
prismatic coordination geometry and a coordination number of
seven. The [K+···O] ion−dipole distances are in the range
2.7−3.2 Å. The relative arrangement (Figure 2e and Figure S3)
of α-CDs repeats in the order HH and TT with plane-to-plane
distances ([O···O] from the OH groups on the opposing
primary faces and secondary faces) of 2.7−3.2 and 3.8−4.1 Å,
respectively.
The association between α-CD and KAu(CN)2 in D2O was

investigated by 1H NMR titrations. The resonances for H-3
and H-5 (Scheme 1) of α-CD undergo downfield shifts (Figure
3a) upon titration with KAu(CN)2. In comparison, a mixture
of KCl (25 mM) and α-CD does not show (Figure S19) any
chemical shift of the resonances for these protons, suggesting
these chemical shifts are induced by the binding between α-
CD and the Au(CN)2

− anion. Following the chemical shift of
H-3, the titration curve reveals (Figure 3b,c) a 1:1 binding
stoichiometry commensurate with the solid-state super-
structure obtained from the single crystal of the 1:1 adduct
grown from aqueous solution. The binding constant (Ka)
between Au(CN)2

− and α-CD in D2O was determined94

(Figures S15−S18) to be 8.1 × 104 M−1.

Table 1. Intermolecular Distances (Å)a between KAu(CN)2 and α-CD in the Solid-State Superstructures with 1:1 and 1:2
Stoichiometries

[Au···C-5] [Au···C-6] [NC···C-3] [CN···C-3] [NC···C-5] [CN···C-5] [K+···O]

Au(CN)2
−⊂α-CDb 4.0−4.3/5 >4.5 4.1/1 3.9−4.4/2 4.0−4.2/3 4.3−4.4/2 2.7−3.2/7

Au(CN)2
−⊂(α-CD)2b >4.5 3.9−4.5/5 >4.5 >4.5 4.0−4.5/9 3.7−4.5/9 2.7−3.2/7

aThese short distances suggest that the supramolecular complexes are sustained by multiple [CH···π] and [CH···anion] interactions. bThe number
of protons from the glucose subunits involve in short contacts (distance <4.5 Å) with Au(CN)2

− is presented after the slash symbol.

Figure 2. Space-filling (a) and tubular (b) representations of the
solid-state superstructures of Au(CN)2

−⊂(α-CD)2 obtained from
single-crystal X-ray diffraction studies. The inward-facing H-5 and H-
6 protons of α-CD are directed toward the Au(CN)2

− anion,
establishing multiple [C−H···π] and [C−H···anion] interactions that
stabilize the adduct. (c) Tubular representations of two EtOH
molecules associated with the Au(CN)2

− anion in a space-filling
representation. (d) Tubular and space-filling representations of a K+

ion, forming seven [K+···O] coordinative bonds with glucose residues
with a capped trigonal prismatic coordination geometry. The K+ ions
are only located at the secondary faces of α-CDs. Each K+ ion
connects four α-CDs together. (e) Tubular (α-CD) and space-filling
(KAu(CN)2) representations of the crystal packing between Au-
(CN)2

− anions and α-CDs, showing the position of K+ cations and
Au(CN)2

− anions as well as the relative disposition of the α-CD tori.
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To shed more light on the driving force for the 1:1 adduct
formation between Au(CN)2

− and α-CD in water, isothermal
titration calorimetry (ITC) was performed95 at 25 °C. The

molecular recognition between α-CD and Au(CN)2
− is

accompanied (Figure 4a,b) by an exothermal process, where
the binding enthalpy (ΔH) is found to be −8.0 kcal mol−1.

Figure 3. (a) 1H NMR (600 MHz, D2O, 25 °C) spectra of α-CD (5 mM) titrated with KAu(CN)2. Proton numerical labels refer to the structural
formula in Scheme 1. (b) Changes in chemical shift of H-3 caused by addition of KAu(CN)2. Red trace represents curve fitting using a 1:1
receptor−substrate binding model. (c) Calculated changes in mole fractions for α-CD (blue trace) and Au(CN)2

−⊂α-CD (red trace) in D2O as a
function of the substrate−receptor mole ratio, suggesting a 1:1 binding stoichiometry.

Figure 4. ITC Profiles for the titration of KAu(CN)2 (0.5 mM, a and b) and KAg(CN)2 (0.5 mM, c and d) with α-CD at 25 °C in H2O. The red
solid line represents the best-fitting curve obtained assuming a 1:1 receptor−substrate binding model.
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The titration curve follows a 1:1 binding model and produces a
binding constant of 1.5 × 104 M−1. The Gibbs free energy of
binding was determined to be −5.7 kcal mol−1, which allows us
to deduce a binding entropy that is associated with a TΔS
value of −2.3 kcal mol−1. These results suggest that the binding
between Au(CN)2

− and α-CD is driven96 by a favorable
enthalpy change overcoming a small entropic penalty.
The binding affinity (Ka = 1.4 × 103 M−1) between

Ag(CN)2
− (Figure 4c,d) and α-CD is an order of magnitude

weaker compared with that of Au(CN)2
−. The binding

enthalpy (ΔH = −7.9 kcal mo1−1) of Ag(CN)2
− is similar to

that of Au(CN)2
−, which is reasonable considering their

similarities in size and shape. This similarity is corroborated
(Table S4) by DFT calculations. The binding energy of the
optimized Au(CN)2

−⊂α-CD is −35.6 kcal mol−1, and that of
the Ag(CN)2

−⊂α-CD is −36.2 kcal mol−1.
The decrease in binding affinity of α-CD for Ag(CN)2

− in
H2O is the result of a larger entropic penalty associated with a
TΔS value of −3.7 kcal mol−1, which can be attributed to the
difference in hydration states of the Au(CN)2

− and Ag(CN)2
−

ions in water. This result suggests that the binding of
Au(CN)2

− in water is most likely aided and abetted by
hydrophobic effects,97−99 which provide a favorable binding
enthalpy by (i) releasing high-energy water from inside the α-
CDs, (ii) while reducing the entropic penalty resulting from
the transfer of surface-bound water from the CDs and
Au(CN)2

− anions into the bulk solution.
We have demonstrated that α-CD, given a high-affinity for

Au(CN)2
− anions in H2O, can be applied as a stripping agent

to remove KAu(CN)2 from the surface of activated carbon at
room temperature. The KAu(CN)2 stripping experiments were
performed at room temperature. An aqueous solution (5 mL)
of α-CD at a range of concentrations (1−10% w/v) was mixed
(Supporting Information, section 6) with KAu(CN)2-loaded
carbon (50 mg, containing 0.6 mg of gold), and the suspension
was stirred for 30 min, after which time the carbon was isolated
by filtration. The concentration of gold in the filtrate was
determined by inductively coupled plasma mass spectrometry.

The concentration of the stripped gold increases (Figure 5a)
when higher concentrations of α-CD are employed. When the
concentration of gold reaches 23 ppm, the corresponding
KAu(CN)2 recovery efficiency is 19%. As a comparison, a
blank aqueous solution elutes <0.1 ppm gold from the carbon,
corresponding to a much lower recovery efficiency of 0.08%. In
the presence of α-CD, the KAu(CN)2 recovery efficiency is
enhanced by a factor of 237. When using γ-CD, a low-affinity
receptor for Au(CN)2

−, we observed (Figure 5b) little
enhancement of the KAu(CN)2 stripping. The high affinity
of α-CD is crucial for the successful stripping of KAu(CN)2
from the surface of activated carbon.
We have also tested KAg(CN)2 stripping using the same

protocol. Compared with KAu(CN)2, the recovery (Figure 5c)
of KAg(CN)2 is much less efficient. The highest concentration
of silver stripped from the surface of activated carbon by using
10% w/v α-CD is 1.8 ppm on account of the low binding
affinity of α-CD with Ag(CN)2

−. This result encouraged us to
investigate selective KAg(CN)2 stripping from the surface of
activated carbon loaded with KAu(CN)2 and KAg(CN)2. The
concentration of stripped gold reached (Figure 5d) as high as
37 ppm, while the concentration of silver was below 1.2 ppm in
all samples, suggesting a high stripping selectivity in favor of
KAu(CN)2. In addition, we have noted that a higher
KAu(CN)2 stripping efficiency (31%) is achieved in the
presence of KAg(CN)2, which could compete with KAu(CN)2
on the carbon surface and promote its desorption. The high
stripping selectivity of KAu(CN)2 over KAg(CN)2 from the
surface of activated carbon could make the carbon-in-pulp
process particularly attractive for gold mining with high silver-
containing ores.

■ CONCLUSIONS
We have reported the molecular recognition of Au(CN)2

− by
α-cyclodextrin in aqueous solution with a binding affinity on
the order of 104 M−1. The binding is driven by a favorable
enthalpy against a small entropic penalty. The 1:1 and 2:1
adducts between α-cyclodextrin and KAu(CN)2 are sustained

Figure 5. Histograms showing the average concentrations of metals stripped from the surface of activated carbon by cyclodextrins. Effect of the
concentrations of (a) α-CD and (b) γ-CD on the stripping of KAu(CN)2. (c) Effect of the concentration of α-CD on the stripping of KAg(CN)2
and (d) effect of the concentration of α-CD on selective stripping of KAu(CN)2 from a mixture of KAu(CN)2 and KAg(CN)2 loaded on the
surface of activated carbon.
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by multiple [C−H···π] and [C−H···anion] interactions in
addition to hydrophobic effects. These findings expand the
scope of second-sphere coordination100−103 of transition-metal
complexes by α-cyclodextrin beyond those already recorded in
the literature104,105 for (i) the neutral anticancer chemo-
therapeutic agent, carboplatin, (ii) the cationic [Rh(cod)-
NH3)]

2+ as its hexafluorophosphate,106 and (iii) the anionic
AuBr4

− as its potassium salt.31,32,78,79 Second-sphere coordi-
nation adducts involving β- and γ-cyclodextrinsas well as
their methylated derivativeswith transition metal complexes,
such as ferrocene,107 [Rh(cod)Cl]2, [Pt(cod)X2] (X = Cl, Br,
and I),108,109 cobalt clusters,110 and the neutral phosphane−
transition metal complexes,111 trans-[Pt(PR3)Cl2(NH3)]
where R = Me and Et, were reported in the literature in the
1980s. It would appear that the ability of the readily available
cyclodextrins and their methylated derivatives to form adducts
with neutral and charged transition metal complexes in
aqueous solution is wide in its scope.
We have demonstrated that the molecular recognition

between α-cyclodextrin and Au(CN)2
− can be applied to

strip gold from the surface of activated carbon at room
temperature. We also show that α-cyclodextrin can strip
selectively Au(CN)2

− in the presence of Ag(CN)2
−, a process

that is difficult to achieve using the current carbon-in-pulp
process. These findings could, in principle, be integrated into
commercial gold-mining protocols and lead to significantly
reduced costs, energy consumption, and environmental impact.
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leads to a better fit, suggesting that these larger CDs can encapsulate
two Au(CN)2

− ions in D2O.
(95) A stock aqueous solution of α-CD in a syringe was titrated into
an aqueous solution of KAu(CN)2 (0.5 mM) placed in a titration cell.
(96) 2:1 binding models were used for the data fitting, resulting in
Ka values on the order of 102 and 101 M−1 for β- and γ-CD,
respectively, matching the results obtained from 1H NMR titration
experiments. The binding affinities of KAu(CN)2 with β- and γ-CD
are much weaker and fit poorly to isotherms employing (Figures
S26−S29) 1:1 binding models.
(97) Biedermann, F.; Nau, W. M.; Schneider, H. J. The
Hydrophobic Effect Revisited − Studies with Supramolecular
Complexes Imply High-Energy Water as a Noncovalent Driving
Force. Angew. Chem., Int. Ed. 2014, 53, 11158−11171.
(98) Snyder, P. W.; Lockett, M. R.; Moustakas, D. T.; Whitesides, G.
M. Is It the Shape of the Cavity, or the Shape of the Water in the
Cavity? Eur. Phys. J.: Spec. Top. 2014, 223, 853−891.
(99) Hillyer, M. B.; Gibb, B. C. Molecular Shape and the
Hydrophobic Effect. Annu. Rev. Phys. Chem. 2016, 67, 307−329.
(100) Colquhoun, H. M.; Stoddart, J. F.; Williams, D. J. Second-
Sphere Coordination−A Novel Role for Molecular Receptors. Angew.
Chem., Int. Ed. Engl. 1986, 25, 487−507.
(101) Alston, D. R.; Ashton, P. R.; Lilley, T. H.; Fraser Stoddart, J.;
Zarzycki, R.; Slawin, A. M. Z.; Williams, D. J. Second-Sphere Co-
ordination of Carboplatin and Rhodium Complexes by Cyclodextrins
(Cyclomalto-oligosaccharides). Carbohydr. Res. 1989, 192, 259−281.
(102) Raymo, F. M.; Stoddart, J. F. Second-Sphere Coordination.
Chem. Ber. 1996, 129, 981−990.
(103) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M.
Advanced Inorganic Chemistry, 6th ed.; John Wiley & Sons, Inc.: New
York, 1999; p 479.
(104) Alston, D. R.; Lilley, T. H.; Stoddart, J. F. The Binding of
Cyclobutane-1,1-Dicarboxylatodiammineplatinum(II) by Alpha-Cy-
clodextrin in Aqueous Solution. J. Chem. Soc., Chem. Commun. 1985,
22, 1600−1602.
(105) Alston, D. R.; Slawin, A. M. Z.; Stoddart, J. F.; Williams, D. J.
The X-Ray Crystal Structure of a 1:1 Adduct between α-Cyclodextrin
and Cyclobutane-1,1-Dicarboxylatodiammineplatinum(II). J. Chem.
Soc., Chem. Commun. 1985, 22, 1602−1604.
(106) Alston, D. R.; Slawin, A. M. Z.; Stoddart, J. F.; Williams, D. J.
Cyclodextrins as Second Sphere Ligands for Transition Metal
ComplexesThe X-Ray Crystal Structure of [Rh(Cod)(NH3)2·α-
cyclodextrin][PF6]·6H2O. Angew. Chem., Int. Ed. Engl. 1985, 24, 786−
787.
(107) Harada, A.; Takahashi, S. Preparation and Properties of
Cyclodextrin Inclusion Compounds of Organometallic Complexes.
Ferrocene Inclusion Compounds. J. Chem. Soc., Chem. Commun. 1984,
645−646.
(108) Harada, A.; Takahashi, S. Preparation and Properties of
Inclusion Compounds of Transition Metal Complexes of Cyclo-octa-
1,5-diene and Norbornadiene with Cyclodextrins. J. Chem. Soc., Chem.
Commun. 1986, 1229−1230.
(109) Harada, A.; Yamamoto, S.; Takahashi, S. Preparation and
Properties of Inclusion Compounds of Transition-Metal Complexes
of Cycloocta-1,5-diene and Norbornadiene with Cyclodextrins.
Organometallics 1989, 8, 2560−2563.

(110) Harada, A.; Shimada, M.; Takahashi, S. γ-Cyclodextrin as a
Second Sphere Coordination Ligand for Cobalt Cluster Complexes.
Chem. Lett. 1989, 18, 275−276.
(111) Alston, D. R.; Slawin, A. M. Z.; Stoddart, J. F.; Williams, D. J.;
Zarzycki, R. Second Sphere Coordination Adducts of Phosphane-
Transition Metal Complexes with β-Cyclodextrin and Its Methylated
Derivative. Angew. Chem., Int. Ed. Engl. 1988, 27, 1184−1185.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://dx.doi.org/10.1021/jacs.0c11769
J. Am. Chem. Soc. 2021, 143, 1984−1992

1992

http://pubs.acs.org/doi/suppl/10.1021/jacs.0c11769/suppl_file/ja0c11769_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c11769/suppl_file/ja0c11769_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c11769/suppl_file/ja0c11769_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c11769/suppl_file/ja0c11769_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c11769/suppl_file/ja0c11769_si_001.pdf
https://dx.doi.org/10.1002/anie.201310958
https://dx.doi.org/10.1002/anie.201310958
https://dx.doi.org/10.1002/anie.201310958
https://dx.doi.org/10.1002/anie.201310958
https://dx.doi.org/10.1140/epjst/e2013-01818-y
https://dx.doi.org/10.1140/epjst/e2013-01818-y
https://dx.doi.org/10.1146/annurev-physchem-040215-112316
https://dx.doi.org/10.1146/annurev-physchem-040215-112316
https://dx.doi.org/10.1002/anie.198604873
https://dx.doi.org/10.1002/anie.198604873
https://dx.doi.org/10.1016/0008-6215(89)85185-7
https://dx.doi.org/10.1016/0008-6215(89)85185-7
https://dx.doi.org/10.1016/0008-6215(89)85185-7
https://dx.doi.org/10.1002/cber.19961290902
https://dx.doi.org/10.1039/C39850001600
https://dx.doi.org/10.1039/C39850001600
https://dx.doi.org/10.1039/C39850001600
https://dx.doi.org/10.1039/C39850001602
https://dx.doi.org/10.1039/C39850001602
https://dx.doi.org/10.1002/anie.198507861
https://dx.doi.org/10.1002/anie.198507861
https://dx.doi.org/10.1002/anie.198507861
https://dx.doi.org/10.1039/C39840000645
https://dx.doi.org/10.1039/C39840000645
https://dx.doi.org/10.1039/C39840000645
https://dx.doi.org/10.1039/c39860001229
https://dx.doi.org/10.1039/c39860001229
https://dx.doi.org/10.1039/c39860001229
https://dx.doi.org/10.1021/om00113a007
https://dx.doi.org/10.1021/om00113a007
https://dx.doi.org/10.1021/om00113a007
https://dx.doi.org/10.1246/cl.1989.275
https://dx.doi.org/10.1246/cl.1989.275
https://dx.doi.org/10.1002/anie.198811841
https://dx.doi.org/10.1002/anie.198811841
https://dx.doi.org/10.1002/anie.198811841
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c11769?ref=pdf

