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ABSTRACT. We address the local well-posedness of the hydrostatic Navier-Stokes equations. These equations,
sometimes called reduced Navier-Stokes/Prandtl, appear as a formal limit of the Navier-Stokes system in thin
domains, under certain constraints on the aspect ratio and the Reynolds number. It is known that without any
structural assumption on the initial data, real-analyticity is both necessary [38] and sufficient [24] for the local
well-posedness of the system. In this paper we prove that for convex initial data, local well-posedness holds
under simple Gevrey regularity.

1. Introduction

The present paper is devoted to the study of the following two-dimensional system:

Ayu + udpu + vOyu + up —ndju =0, (x,y) € T x (0,1), (1.1a)
Oyp =0, (x,y)€Tx(0,1), (1.1b)

Opu+0yv =0, (z,y)€Tx(0,1), (1.1¢)

Uly=01 = V|y=01 =0, z€T, (1.1d)

where 77 > 0. The unknowns of this system are (u,v) = (u,v)(x,y,t) and p = p(z,y,t), which model
respectively the velocity field and pressure of a fluid flow. The boundary condition (1.1d) corresponds to
a no-slip condition at the walls y = 0,1. With respect to the tangential variable « we impose T-periodic
(lateral) boundary conditions.

Note that upon integrating in y the incompressibility equation (1.1c), using the boundary condition for v
(1.1d) we obtain the compatibility condition

1
&/"m%%wwzo (1.2)
0

forall z € T and ¢t > 0, so that the vertical mean of w is just a function of time. Condition (1.2) allows
us to compute the pressure gradient, cf. (2.4) below, and to obtain the boundary condition for the vorticity,
cf. (2.6b) below.

System (1.1) is formally obtained [29, 38] when considering the asymptotics of the two-dimensional Navier-
Stokes in a thin domain: Q = (0, L) x (0,1) with § = £ < 1. After a proper rescaling
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the Navier-Stokes equation becomes
Opu + udpu + vOyu + Opp — 6202 — n@ju =0, (z,y)eTx(0,1), (1.3a)
52(Ov + udpv + vOyV) + Oyp — n6toy — 7752857) =0, (z,y)eTx(0,1), (1.3b)

Opu+0yv =0, (z,y)eTx(0,1), (1.3¢)
1
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where n = ﬁ, with Re = % the Reynolds number. If we assume 7 ~ 1 and keep the leading order terms
as 0 — 0, or if we assume 77 < 1 and keep both the leading order and next order terms in (1.3), we end up
with (1.1).

Our concern here will be the local in time well-posedness of (1.1). Besides its mathematical relevance,
this problem is meaningful from the point of view of hydrodynamic stability, notably with regards to the
properties of the so-called primitive equations:

Oru + udpu + vOyu + Ozp — 092 — n@iu =0, (z,y)eTx(0,1), (1.4a)
ayp =0, (l’,y) €T x (Oa 1)7 (1.4b)
Opu+0yv =0, (z,y)eTx(0,1). (1.4¢)

This model and its three-dimensional counterpart are very important in atmospheric sciences, after account-
ing for gravity and many other features [31, 30, 40, 37]. For positive values of tangential and transverse
viscosity coefficients, they are known to be globally well-posed in the Sobolev setting in both the two and
the three dimensional case [43, 3, 4, 40, 8, 21, 27, 28], and the vanishing viscosity limit 77,7’ — 0 can be
characterized in the real-analytic category [22]. Yet, in the absence of additional turbulent viscosity, the
dimensional analysis of (1.3) shows that the tangential diffusion coefficient )’ is expected to be very small.
This allows to relate the well/ill-posedness of (1.1) and the stability/instability properties of (1.4). For in-
stance, assume that (1.1) is linearly ill-posed without analyticity in x: a result in this direction was shown
in [38], and will be discussed later on. It roughly means that, at least in the early stages of the evolution,
there are perturbations with wave number & >> 1 in z that grow like e!*I*. From there, if 1 is small enough
so that 7/'|k|? < 1, one can expect the tangential diffusion —7’0? to stay negligible, and the perturbation to
be an approximate solution of (1.4) (with Dirichlet conditions). This can result in a growth almost as strong
as !/, showing the strong instability of (1.4). We note that if one keeps 7’ > 0 in (1.4) while setting
1 = 0, the local well-posedness can be established for Sobolev initial datum [6, 7], confirming that the hor-
izontal dissipation dominated equation is much more stable that the hydrostatic Navier-Stokes system (1.1)
considered in this paper.

From a mathematical perspective, system (1.3) is reminiscent of the two-dimensional Prandtl system, de-
scribing boundary layer flows. The latter is set in a half-plane, say T x R, and reads

Opu + u0u + vOyu + Oxp — nagu =0, (z,y)eTxRy, (1.5a)
Oyp =0, (z,y) € T xRy, (1.5b)

Opu+0yv =0, (z,y)eT xRy, (1.5¢)

Uly—0 = v]y—og = 0, (1.5d)

yEI-Poou = u®°, yli)r_{loop = p™. (1.5¢)

Hence, the only difference with (1.1) lies in the domain and in the boundary conditions. Here, 4* and p>
are given data, related to the Euler flow above the boundary layer. In particular, as p does not depend on v,
it is no longer an unknown of the system. This is a major difference with (1.1), where p can be seen as a
Lagrange multiplier, associated to the constraint that v = — foy O,u vanishes at y = 1 (see (2.4) below).

The well-posedness properties of (1.5) are now well-understood, and depend on the monotonicity properties
of the initial data. Roughly, if the data have Sobolev regularity, and if furthermore the initial data are
monotonic in y, (1.5) has local in time Sobolev solutions [34, 33]. On the other hand, without monotonicity,
system (1.5) is ill-posed in Sobolev spaces [12, 15]. Local in time well-posedness can be achieved when the
initial datum is real analytic [39, 25], and even under the milder condition of Gevrey regularity in x [14].
We refer to [10, 42, 13, 20, 26, 9] and references therein for more results on the Prandtl system such as
singularities, long time behavior, and Gevrey-class stability. Interestingly, the instability mechanism that
yields ill-posedness in Sobolev involves in a crucial manner the lack of monotonicity and the diffusion term
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—nagu. Indeed, the inviscid version of Prandtl, that is

Opu + u0yu +voyu + 0xp =0, (x,y) € T xRy, (1.6a)
Oyp =0, (x,y) €T xRy, (1.6b)

Oyu+0yv =0, (z,y)eTxRy, (1.6¢)

W]y = 0, (1.6d)

yggﬂoop =p~, (1.6¢)

has local smooth solutions for smooth data, as can be shown by the method of characteristics [19].

With regards to this recent understading of the Prandtl system, it is very natural to ask about the local
well-posedness of (1.1), and to start from the consideration of the inviscid case n = 0, namely

O+ uOyu +v0yu+ 0yp =0, (z,y) € T x (0,1), (1.7a)
Oyp=0, (z,y)eTx(0,1), (1.7b)

Opu+0yv =0, (x,y)eTx(0,1), (1.7¢)

Vly—0.1 = 0. (1.7d)

This hydrostatic Euler system has been the matter of many studies [1, 16, 2, 38, 24, 32, 23, 5, 41]. Contrary
to (1.6), existence of local strong solutions requires a structural assumption, namely the uniform convexity
(or concavity) in variable y of the initial data. A contrario, the presence of inflexion point may trigger
high-frequency instability. This point was established in article [38]. The author considers in [38] the
linearization of (1.7) around shear flows u = Ug(y),v = 0. More precisely, he shows that if the equation
fol (Us(y)—c¢)~2dy = 0 has complex roots, then the linearized hydrostatic Euler system admits perturbations
which have wavenumber & in 2 and grow like ¢®**, § > 0, for all £ > 1. Back to the nonlinear problem
(1.7), one can only expect to show short time stability for data whose Fourier transform in = behaves like
e Okl for large k. This corresponds to analytic data in z. Local well-posedness in the analytic setting was
established in [24]. Moreover, it is mentioned in [38] that this high-frequency instability persists in the case
of the viscous system (1.1), at least for small enough 7.

Considering all these results, the remaining task is to analyse the viscous system (1.1) for convex (or con-
cave) initial data. This is the purpose of this paper. It raises strong mathematical issues, related to the control
of x derivatives of the solution. In particular, we find

O(0pu) + (udy + v0y) (Opur) + (0pu)? + (9xv) Oy + Oy (Orp) — n@;(axu) = 0.

One of the main problems in controlling d,u is the term 0,v0yu. Indeed, O,v = — foy 8§u is recovered
from the divergence-free condition, so that it can be seen as a first oder operator in x applied to 0, u. As this
first order term has no skew-symmetry, it does not disappear from energy estimates, so that standard energy
arguments can only be conclusive with the help of analyticity. In the case of the hydrostatic Euler system,
the way out of this difficulty consists in considering the (approximate) vorticity w = J,u. Its tangential
derivative is seen to satisfy

0 (Ow) + (u0y +v0y)(0pw) + (Ozu) (Opw) + (0zv) Oyw = 0.

Under a uniform convexity or concavity assumption |Jyw| > «, the idea is to test the equation against
Oyw /Oyw rather than J,w, to take advantage of the cancellation:

/ Oy g = — / Dy0pv Oyu = / 9% 0yu = 0.

This allows to get rid of the bad term, and is the starting point of the local well-posedness argument. Such
an idea was used previously in [17, 32].
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Unfortunately, this manipulation, that we will call the hydrostatic trick, is not fully appropriate to the viscous
system (1.1). The reason is that in the estimate for 0,w, the viscous term generates extra boundary integrals

such as 9 5
I = 77/ %%wﬂdm, It = 77/ %&wiwda:.
Tx{0} Oyw Tx{1} Oyw

The value of 9, 0,w at the boundary can be obtained from the equation on d,u, and yields for instance (the
computation will be detailed later)

1
OyOrwly—0 = aip = —281/ uOpudy + Opw|y—1 — Opwl|y—o-
0

The issue comes from the first term at the right hand-side, which is again a first order term in d,u without
any skew-symmetric structure. In other words, there is an additional loss of derivative compared to the
Prandtl equation, so that obtaining well-posedness below analytic regularity is challenging. This is our goal
in what follows, and we prove in Theorem 2.1 below the local well-posedness under Gevrey regularity of
class 9/8 in the z variable, under an extra convexity assumption in y.

2. Main result and strategy

For notational simplicity, from now one we will set 7 = 1in (1.1). Let @ = T x (0,1). For 7 > 0,
~v > 1, we define the Gevrey norm

1£12.0 = S 72 () 2108 e -
=0

Functions f satisfying || f||,- < 400 are in Gevrey class ~ with respect to z, measured in L? in variable y.
Our main result is the following:

THEOREM 2.1 (Well-posedness for convex Gevrey-class initial datum). Lert 0> >0, v <9/8.
Let ug a function satisfying the regularity condition
10y tt0lly 50 + 3ol 0 < +0s, @.1)
the convexity condition

igﬁw>m (2.2)

and the compatibility conditions 0, fol updy = 0, ugly—o,1 =0,

1
8§ug\y:0,1 = /(; (—aTug + 8§uo)dy — /Q@;’U,o
Then there exists T' > 0, and a unique solution u of (1.1) with initial data ug that satisfies
sup (Hayu(t)”%n + ||82“(t)”%71) < +00.
t€[0,T
and

inf Oyu> 0. (2.3)
te[0,T)xQ

A few remarks are in order:

e The main point in our result is that we prove local well-posedness without analyticity, reaching
exponents v > 1. The value v = 9/8 is due to technical limitations, and could certainly be
improved. The optimal value that can be expected for v, or even the possibility of well-posedness
in the Sobolev setting are interesting open questions. Our conjecture - based on a formal parallel
with Tollmien-Schlichting instabilities for Navier-Stokes [18] - is that the best exponent possible
should be v = 3/2, but such result is for the time being out of reach. If confirmed, it would
emphasize the destabilizing role of viscosity.
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e We loose on the radius 7 of Gevrey regularity, going from 7° to 7| in positive time. This loss is
very standard [39, 24, 25, 14].

e Besides the Gevrey regularity assumption (2.1), the key assumption is infq aguo > 0, which
corresponds to a strictly convex initial data. The strict concavity condition supg, 8§u0 < 0 would
work as well. On the opposite, as discussed before, we do not expect such well-posedness to hold
for data with inflexion points [38].

e The first compatibility condition 0, fol ug = 0 is here to ensure that (1.2) holds for all time. Note
that we can use (1.2) to determine 0, p: applying 9, to (1.la), taking the mean over y € (0,1),
integrating by parts in the term fol vOyu dy, and using the periodic lateral boundary conditions, we

find: .
02 = Dly=1 — D]y—0 — ax/ u?dy, zeT, (2.4)
0
where w = 9yu is the vorticity, and we have denoted by
w(r,y,t) = w(r,y,t) — / w(z,y,t)dz,  y€{0,1}, (2.5)
T

the zero mean (in x) boundary vorticity. We will use the notation (2.5) throughout the paper. Note
that for y € {0, 1}, the functions w and @ only differ by a function of time.

e The second and third compatibility conditions can be explained as follows. Most of our analysis
relies on the control of the vorticity w = 9yu. We notably need some bound on sup,¢(o 7 |||,
for 7 € [r1,7") . If we leave aside the Gevrey regularity in z, this corresponds to an L,?OH; bound
on u. As wu satisfies a heat type equation with Dirichlet condition, it is well-known that such an
L?OH; bound requires the compatibility condition u|;—o|y—0,1 = u|y=0,1]t=0. In view of (1.1c),
this amounts to the second compatibility condition of the theorem: wg|,—o,1 = 0.

Similarly, the last compatibility condition is related to the fact that we need a bound for sup;¢ o 7 | Osw ]|,
for 7 € [11,7%). More precisely, this condition can be derived from the system obeyed by w = Oy,

which is:
0w + u0pw + vOyw — Oiw =0, (z,y)eTx(0,1), (2.6a)
1
8yw]y:0,1 = (JJ|y:1 — (:)|y:0 — 8x/ u2dy. (26]3)
0

Indeed, (2.6a) follows from differentiating (1.1a) in y, while the boundary condition (2.6b) is
obtained by evaluating (1.1a) at y = 0,1, using the Dirichlet boundary conditions for u and v
in (1.1d), and the formula for the pressure gradient (2.4). Now, from (2.6a), it appears that an
LfOLZ control of Jyw is similar to an LfoLz control of agw, meaning a Ly° Hy1 control of Jyw. By
differentiating (2.6a), one sees that 0,w satisfies a heat like equation, and by (2.6a), it also satisfies
a Dirichlet type condition. Again, an L,@"’Hy1 control requires Oyw|¢i—o|y=0,1 = Oyw|y=0,1]t=0,
which by (2.6b) amounts to the third compatiblity condition.

General strategy of the proof. Our analysis is based on the vorticity evolution (2.6). We want to benefit
from the so-called hydrostatic trick, which consists in establishing L? estimates for the weighted derivatives
dw/\/Oyw. The difficulty is that these estimates are not compatible with the diffusion —8§w, which creates
boundary terms involving & Oyw|y—o. Because of the extra x-derivative at the right-hand side of (2.6b), one
can not close an estimate at the Sobolev level.

b

To overcome this difficulty, our first idea is to write w = w' + w®, where w” is a boundary corrector which

solves (approximately):

1
bl a2, bl bl 2
Ow” — opw™ =0, Jyw ]y071:—8$/ u’dy,
0
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where the right side of the Neumann boundary condition is seen as a given data. With this splitting, the
bad term is removed from the Neumann condition on w®, so that we may apply the hydrostatic trick to this
quantity. Still, this approach is obviously not enough: the equation for w" still involves w, either directly or
through w”, so that no closed estimate is available on w”.

This is where we shall take advantage of Gevrey regularity. To explain this point, it is simpler to consider
the linearization of (2.6) around a shear flow (us(y),0):

1
0w + usOpw + ullv — 850; =0, Oyu+0,v=0, Oywl|y—0,1 = @|y=1 —@|y=0 — 2&0/ usudy.
0

As this system has z-independent coefficients, one can Fourier transform in x. More precisely, looking for
local well-posedness in Gevrey class 7, it is natural to look for solutions in the form w = ekl/”eikxwk (t,y).

We end up with the following system for the boundary layer corrector:
1
(K7 + a)ap — 926 =0, 0,0 |y—01 = —2ik / ugligdy.
0

Note that, when taking the boundary layer corrector as a solution of this heat type system, we implicitly
assume that the other terms in the equation, notably the convection term us0,w ~ ikycbzl are negligible in
the boundary layer. A formal analysis shows that this should hold as long as v > % which is the range
considered here. In the limit case v = %, conjectured to be optimal for well-posedness (see remark above),
one should probably replace the heat operator by an Airy type one, as in [18].

Explicit calculations on the boundary layer system reveal that Gevrey regularity in x is converted into spatial
localization in y: for k > 1, dzzl has a boundary layer behaviour, with concentration near y = 0, 1 at scale

1
k~ 2v. Roughly, neglecting the upper boundary, one can think of
bl =5 7= '
wp =~k W(t, k2vy) / uslgdy,
0

bl 1-2 7= b
ay ~k vU(t,kZVy)/ sl dy.
0

Now, the idea is to write

1 1 1 ' Lol ) 1 1 '
/ ugtipdy :/ usﬂzl + / usly' = (l{:lV/ us(y)U(t,k%y)dy>/ ugtpdy + / usty".
0 0 0 0 0 0

1 1
In short, one can check that for v < 2, we have k'~ % fol us(y)U(t, k2 y)dy = o(1) in the limit of large k,
so that the first term at the right-hand side can be absorbed in the left-hand side. This leads to a control of
fol ust, and thus of WP in terms of w™. From there, one can get closed estimates on Wi,

Of course, this strategy is made more difficult when dealing with the z-dependent and nonlinear system
(2.6). In particular, the Fourier approach is no longer convenient, and we must use the characterization of
Gevrey regularity in the physical space, through the family {%w} en. In order to take advantage of the
boundary layer phenomenon, we shall introduce Gevrey norms with extra-weight (j + 1), see (3.1). The
boundary layer phenomenon will be reflected by the fact that multiplication by y or integration in y will
generate a gain in the exponent r, see Lemma 3.1. Such gain will make possible the control of boundary
layer quantities by w™®, cf. Lemma 3.4.

From there, the analysis will focus on weighted estimates for w'", using the hydrostatic trick. As usual in
nonlinear problems, these estimates will be obtained conditionally to certain bounds (notably a lower bound
on dyw, to benefit from convexity). We will show that such bounds are preserved in small time, which will
require estimates on the time derivative d;w, as well as maximum principle arguments for Jyw.
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3. Preliminaries

As usual in this kind of analysis, we will focus on a priori estimates. This means that from Section 3
to Section 6, we will assume implicitly that we already have a solution of (1.1) on [0, 7' with all necessary
smoothness, and we will collect properties and estimates about this solution. Only in Section 7 will we
describe the way of constructing solutions.

3.1. Norms and notation. Let v > 1, € R, 7 > 0. We introduce a refined two-dimensional Gevrey
norm

) Jj+1 rritl
Grr = MO oy where M= ( (j!))’Y
j=0

I/

3.1

Note that the L? norm in space is only used on 2 = T x [0, 1], although the functions may be defined on

the half-space T x [0, 00). We note that if r* > r then [|-||., ., . >[I, .-

For functions which are independent of the y variable, we use the one-dimensional counterpart
2 _ 2 197 £||2
‘f|fy,r,7 - ZMJ HaajcfHL%(T) )
J=0
where M; is defined as before. Similarly, if 7' > r then |-|

.
VTLT — VsTT

Let 7°, 71 as in the theorem, and let 7o such that 7° > 75 > 7. Throughout the paper, the Gevrey-class
radius 7 will be defined by

7(t) = 1o exp(=ft), (3.2)
where 8 > 1, ¢ € [0, 7], and T always small enough so that 7(¢) > 7. In particular 7(t) = —37(¢).

We will use a < b to denote the existence of a constant C' > 0, which may depend only on ~, 79, 71, and 7,
such that a < Cb. Similarly, will use a < b to denote the existence of a sufficiently large constant C' > 0,
which may depend only on ~y, 79, 71, and r, such that Ca < b.

For any function f we use the notation
fi = ML 33

where M; is defined in (3.1) and depends on r, ~y, and 7. With this notation we have

2 2 2 2
R =300, and (7R =S,

j=0 Jj=0

3.2. A boundary layer lift. The boundary condition (2.6b) in the vorticity evolution (2.6) motivates
the introduction of a boundary layer lift for the the vorticity, which we describe next. Throughout the paper
we appeal to Gevrey estimates for the system

(O — 0w =0 (3.42)
(8,0 + 20" |y=0 = xhly=0 (3.4b)
W |t=0 = 0 (3.4¢)

posed fort € [0,T], z € T, and y € R,. Here h is a placeholder for — <f01 wdy — [; fol u? dydm). Since

the boundary datum for W’ is a pure z derivative (and this is the only nontrivial datum), we note that (3.4)
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immediately implies that fT w"(a:, y,t)dx = 0, for any y > 0. We also define

y

ub(x,y):/ W’ (x, 2)dz (3.5)
+jooo

0 (z,y) —/ Opu’ (x, 2)dz. (3.6)
y

LEMMA 3.1. Letr € R, 8 > 1 and T > 0 such that 7(t) > 11 fort € [0,T]. The boundary layer
vorticity w® obeys

t
b
/O Hw (s) v, (s) 53/2/ I %H—V $r(s )d (3.72)
t ) 2
/0 Hyw (s) ) @ 55/2/ B()13 1y (s B8 (3.7b)
¢ 2
b < 2
/O Hayw (S) 77"7'(5) ds < ﬂl/Q / ’h(S)LY T+V*%’T(5) ds (3.7¢)
t
b
/ Hyayw (S ~¥,r,7(8) 63/2 / ’ ’Y ""+7_* 7(s) ds (37d)
2
2
/ ‘ 8)|y=1 (o) ds,SBQO/O [h(S)]5 1y —10,7(s5) 95 (3.7¢)
[ ol ass o [ a 3
W’ (8)|y= § S = S)|5 1075 A5, .
0 Y y=1 i (s) 520 J, ~,r4+y—10,7(s)
the boundary layer velocity w obeys
t
b
/; Hu (3 o (5) ﬁ5/2 / | 77T+'Y 477_( )d (383)
t 2
/ Hyub(s) / () 7 2y 5 (3.8b)
0 ’Y,T,’T(S) 67/2 ’Y,’I“ v TS
¢ 2
b < - 2
Lo 4 < am / LG [— (3.80)
and the boundary layer velocity v° satisfies
t b 2 < 1 t 9
/0 [® (s)‘%w(s dswm / B 14077 100 ds (3.92)
t
b
/0 ‘U |y:0(8) 'er(s / [h(s) 'Y’T+2'7 3.7(s )d (3.96)
i 2
b < = 2

forallt € 0,7
PROOF OF LEMMA 3.1. In view of (3.2), (3.3), and (3.4), the function w; = Mj&{w" obeys equations
O +BG+1)—2)w) =0 (3.102)
M;
—h; 3.10b
Mot j+1 ( )
w)li—o = 0. (3.10c)

(ay‘*’g' + 2“2’)|y=0 = 8xhj’y=0 =
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For fixed z € T we define fj(x,t) = %hﬁl(x,t) fort € [0,77], and f;(x,t) = O0fort € R\ [0,7T].
Pointwise in = and y we take a Fourier transform in time and solve in L? (Ry x T, x RJ ) the equation
O+ B +1)— 02w =0
b _
(81/%‘ + 2W3)|y:0 = fj.

The solution is obtained by taking the inverse Fourier transform in time (we let ¢ denote the dual Fourier
variable to t) of the function

B¢ y) = DTy /FGI (3.12)
2—BG+1)+iC
We implicitly assume here that 5 > 4 so that for all j € N, for all ¢ with Im{ < 0,

12— BG+1) +i| > |VBG+1D) +iC|—2>/BG+1)—ImC—2>+/53-2>0. (3.13)

We will make a crucial use of

LEMMA 3.2. The following two properties hold
° a;; =0fort <0.
o @2 = w;fort € [0, 7.
The proof is postponed to Appendix A. This lemma will allow us to use the explicit formula (3.12) to obtain
estimates on w;, starting with (3.7a)-(3.7f).

Let us detail the derivation of (3.7a). A simple calculation based on (3.12) yields

2h12 £ 112
H ]HLZE»ZJ — (5(‘7+1))3/2||f]”[]g,z

for a constant C' independent of j (and obviously from 7, which is only involved in the definition of f;). By
Plancherel formula in time:

C C M: \? [T
b2 n2 J ) 2
H%m@wé(Mj+UP”WN@w_BU+UW2Q%+J A Posalolizg oo 9

This implies (by the second item of Lemma 3.2)

z,Y

sz c . 2—§T 2
|1 s < G+ 027 [ g (o) s

Multiplying by (j + 1)?" and summing over j, we obtain the inequality (3.7a) in the special case t = T'. For
the general case t € (0,7, the idea is to slightly modify wg.. Namely, instead of extending %hﬁl by
zero outside (0,7"), and then solving the heat equation with the extension f; as a boundary data, we extend

%hﬂl \(07,5) by zero outside (0,¢). We then solve the heat equation with this modified boundary data f?,

which is zero outside (0,t), resulting in a new w;’t. Obviously, Lemma 3.2 and the previous calculation

remain true with 7" replaced by ¢, wg replaced by w?.’t. This yields (3.7a). Inequalities (3.7b) to (3.8b) follow
very similar arguments, that we skip for brevity.

In the case of (3.9a), we need to take into account one more z-derivative. A simple calculation yields (with
obvious notations):

C

2h 112 £ 112
v < 6 .
Willzz,, = GG+ oy 1A,
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The extra factor of (3(j +1))? at the denominator compared to (3.14) comes from taking two antiderivatives
in y, while f; is replaced by 0, f; due to the extra z-derivative in (3.6). It follows that

T

T C 7
| 1@ s < oG+ 0P [ jouhya (9l ds

and using that |0y 41| S M”; |hjto| S (5 +2)7|hjtal, we get
T

r C 4,Y,Z 2
| 1@ ds < 400 [ el ds

Multiplying by (j + 1)?" and summing over j yields (3.9a) for ¢t = T, while the case of an arbitrary time
t is treated with the modification explained above. The pointwise estimate (3.9b), taken at y = 0, follows
from the inequality

A C N
2h 2 2
Itsbolliy, = (a1 Oz,

The pointwise estimates (3.7f), (3.8c), and (3.9¢), taken at y = 1 or y = 1/2 are much better: all boundary

layer terms taken at y = 1 contain an exponential factor e~ V? (+D+€ which allows to gain an arbitrary
number of powers of 35 (which explains the arbitrary factor ﬁ and the index r — v — 10). n

LEMMA 3.3. Letr € R, > 1 and T > 0 such that 7(t) > 11 fort € [0, T]. We have

61/2/ [R($) 01 1 s (3.15)

sup Hwb(s)‘
[O7t] YT T S

forallt €0,T).

PROOF OF LEMMA 3.3. In order to establish the estimate (3.15a), we rely on the explicit formula
(3.12), which gives an L' control of the Fourier transform:

( / / ‘e—2y\/6(j+1)+i4
Ry

R 1/2
|fj<c,x>|2dxdy> ac

1
LEERE /R\ BG+1) +i 2
1 R 1/2
< ; 2d d
[ ivarme (L eore)

1/2
- </R \mw) (L "?“’"’”)'””C)lm

1 1/2
S G <//|f; (o |d:cd<) .

b
sup ||w;(t)|| 12
o 5012, S (5 7

This implies that

Restricting the left-hand side to the supremum over

b 2
sup [lwi()[l72 S o
te(o,T) Bow ™ (B(j 4+ 1))~

Multiplying by (j + 1)?" and summing over j, we get (3.15a) for ¢t = T'. The general case of t € (0,7 is
treated as in the proof of Lemma 3.1. U
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3.3. The interior vorticity controls the boundary layer lift. So far, we have only focused on the
lower boundary layer lift, which is very small near y = 0. We introduce the notation

W@, y,t) = W' (z,y,t) — o’ (2,1 - y,1) (3.162)
ull(z,y,t) = ub(x, y,t) + ub(az, 1—y,t) (3.16b)

y
Wz, y,t) = —/ Dy (x, 2, t)dz (3.16¢)

0

to denote the cumulative boundary layer profile, and
Wz, y,t) = w(x,y,t) — (2, y, 1) (3.17a)
u'™(z,y,t) = u(z,y,t) — u’(z,y,t) (3.17b)
o (x,y,t) = v(z,y,t) — " (2,y,1) (3.17¢)

to denote the interior vorticity, horizontal velocity component and vertical velocity component. In view of
(3.3), (3.16) and (3.17) also define the objects wj , g’l, vé’l in terms of the function h, and wj ,uz-", v;-” in
terms of h and w.

LEMMA 3.4. Lety € [1,5/4], r > 2y 4+ 2, M > 0. Assume w = Oyu is such that
<M (3.18)

sup [|w(t)]
7

i

1 1
h(z,t) :—/0 (u(z,y,t))> dy+/T/0 (u(zx,y,t))? dydz.

With h as above, let w’ be defined via (3.4), and let w'™™ be as defined in (3.17). Then there exists By =
B« (10, T1, v, 7, M) such that: if B > B, if T is such that T(t) > 11 for t € [0,T), then

2
[ o ds <007 [ )12, o

Note that with h defined as above we have 0,h = —0, fol u? dy, so that the additional kinetic energy term
in h is not seen by w®. Combining Lemmas 3.1 and 3.3 and 3.4, we see that condition (3.18) implies a sharp
control of the Gevrey norm of the boundary layer profiles Wb, ub, and v?, solely in terms of the Gevrey
norm of the interior vorticity w"* and of the constants M and .

774 7T(t)

and define

foranyt € [0,T].

PROOF OF LEMMA 3.4. For j = 0 we have hg = Moh = 7h, and since [ h(z,t)dz = 0, we may
apply the Poincaré inequality in the x variable:

lhollz < l0zhollrz S hallze- (3.19)
Hence, it is enough to estimate h; for j > 1. By the Leibniz rule we have
J . 1
7\ M
—hi(z,t) = —_— t)u,— t)dy. 3.20
J(‘T’ ) Zz; <€> Mj—ZMZ/O U((l‘,y, )uj g(fL“,y, ) Yy ( )

We can without loss of generality estimate only the half-sum Zog 1<j/2 A8 the other half-sum can be put in
the same form through the change of index ¢/ = j — /.

First let us treat the case £ > 1. The compatibility condition (1.2) yields fol ug(z,y)dy = 0, which directly

implies that
1 . 1 1
/0 el gl (e, y)dy = /0 welz, y>( (@, y) - /0 u;-’im,z)dz) dy.
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Using the 1D Gagliardo-Nirenberg inequality, the 1D Hardy inequality, the 1.D Poincaré inequality, and the
fact that ug|y—o = us|y=1 = 0, we have that for £ > 1:

1
/0 el y)u_o(@, y)dy

L}

S ‘

1
/0 wg(a, y)ulo(x,y)dy

1
/ ue(w, y)ui™ o (z,y)dy
0 L%

ut" —/ u' ,dz +H
it 0 it L2, Y 1—9)

1/2 1/2 1/2 1/2 bl
< el 2 19suell 7 i ell o+ el 2 19swell ) [|o(L = )l

Li,y>

For ¢ = 0, we estimate the L2 norm of fol uQ ug’-ldy precisely as in the case £ > 1. For the interior piece,
since 7 > 1 we may use (1.2) and the Poincaré inequality in g to estimate

1 1
Sl e = [ o] [
L2 Y 0 Lz, 0 2,

) 1
SM (Hw;"HL%y + /0 u;’.l(x7z)d2’ L2>

since ”uOHLgOL% < ||W0HLgoL5 < Hw0||L%’y + ||w1||L%,y < M. At this point we note that

°

L3

y(1-y) éﬂe‘

< HUEHLgOLZ

LeL2

Lz,y

1/

M 1/2 1/2 ; bl
ﬁ/2 leoell 2% Hooea 2 (loiell o+ |2 =l
{41

1
/ ug(z, y)ul (z, y)dy
0

1

! bl 1/2 bl bl bl
_ (z,y)dy = — o (z,y)dy +u (2, 1/2) + [ (1 —y)w/(z,y)dz

1/2
1
‘ /O ull (z, y)dy

Returning to (3.20), and using that in this range of ¢, namely less than j/2, we have

so that

< b b
~ Hy%HLgy + Huj(x, 1/2)‘ L2

12

j M; 1 /A" 1 - 1
) My M2 2 TN (G )R (4 1)/

for 5 > 1 we obtain

& J M; 1/2 1/2 ;
stz < 3 (3) <tz Wl el (il + o0 - el
illz2 ; t) eMl/QMel_i/j [ HLgy j

L?c,y)

i b b b
+M(sz«m+Hyuju%+Hywju%+Hua~<w>1/2>HLg>
. _3r 2 1/2
32 4+ D)7 el wer s

/=1 (£+ 1)2_% L%,y)

i b b b
(A S Y ST R

(el +



WELL-POSEDNESS OF THE HYDROSTATIC NAVIER-STOKES EQUATIONS 13

From (3.19) and (3.21), using the discrete Holder and Young inequalities, inequalities (3.8b), (3.8¢), (3.7b)
and assumption (3.18) we obtain from the above that

t t
L IO s = [ Iy s

Jj=0

) _3r 2
_ G+ F il s, + gl 2 )
Ssup | >

0 \sz0 G+1)i3
0 [ 0

2
) ds
v,7,7(s)
< M2 “lwin(s)|2 d o)
<M </0 [« )3 ) S+/O Hyu (8)‘7,T,T(s)+

2
ds>
¥,r,7(s)
< A2 Y i 2 d 1 ! h(s)|2 d
SM 0 Hw (S)H'Y,T,T(S) S+55/2 0 | (S)"Y:TJF'Y*%T(S) 5]

Here we have used that r/4 — ~/2 > 1/2. The proof is completed using that M?3 ~5/2 <« 1, which follows
once (3, is taken sufficiently large, and the fact that v < 5/4, which allows us to absorb the second term in
the right side of the above into the left side. (]

t ) 9
L (i, + X o
Jj=0 j=0

2

2
)ds
L3y

2

[y

51,7 (s

‘Ub‘yzyz

Nk
ol *
,Y7T7T(S)

4. Estimates involving w™

From the vorticity evolution (2.6), and the definition of w? (3.16) (which in particular obeys fT wh (z,y,t)dx =
0 for any y > 0), we obtain that the equation obeyed by the interior vorticity is

D™ — ajwi” + udpw™ + vOyw™ = —udyw® — vy (4.1a)
By ly=0,1 = & [y=1 = & y=0 + 20’ y=1 — By’ |y=1. (4.1b)
W™ (0) = o (4.1¢)

The initial condition for w”f is obtained from the fact that w”(0) = 0, which holds in view of (3.4c). The
main a priori estimate for w** is provided by the following Proposition.

PROPOSITION 4.1. Let M,dg, v € [1,9/8] be given, and let B, be as in Lemma 3.4. There exists
ro = ro(y) such that for all v > rg, one can find By = Bo(M, o, 10, T1,7,7) > max(Bs,4) satisfying: if
B > Boand T < 1 is small enough so that T(t) > 7 for all t € [0,T), under the assumptions

sup [|w(t)|l, 3r ;py + sup ||Oyw@)|., r .y <M 4.2)
S0 o) .0+ 50 100 5
and
0o < Oyw < i, “4.3)
do
sup [[0jw(®)]| o2 < M, (4.4)

te[0,T
we have that
in 2 ! 9.wim 2 d ¢ in 2 ds < 1 0)I12 45
SSEI[JO%]HW (S)H'YJ‘,T(S)_{—/O H yW (S)H’y,r,T(S) 8+’8/0 Hw (S)H'y,r+%,‘r(3) 5> 57(2]||w( )H%T,To (4.5)

holds for all t € [0,T). Moreover, as a consequence we obtain

2
Y57sTO

(4.6)

t t
4
2 2 2
P B < —
300 )0+ /0 100 ()2, 5 100y A+ 6 /0 I 5,005 < 3 1(0)
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forallt €0,T).
PROOF OF PROPOSITION 4.1. Using the convention (3.3), from (4.1) we obtain

O+ B(G+1)— 85)w§" + (udy + v0 )wi»" + vj-”
—(u0z + vOy)w; bl vblﬁyw — M;[02, udy + vylw + v;0pw (4.7a)

8yw§"|y:071 = wj |y:1 - wj ‘y:() + 2wj]y:1 — 8yw?|y:1. (4.7b)

yw

Note that as soon as 5 > 1, we may replace @jnly:0,1 = wén\yzo,l in (4.7b). We perform a “hydrostatic
energy estimate” on (4.7), which is permissible in view of (4.3). That is, we multiply (4.7a) with w;-" / Oyw
and integrate over {2 = T x [0, 1]. We notably use the “hydrostatic trick”, which in this case gives

. . Y . .
vt dedy = —/ (/ (%cum) Oyuttdxdy
/Q et 0 \Jo j yty
1
:/axuz»"u;-"dazdy—/ (/ (%cu;”) u}n\yzldx
T 0
= / </ Oy ubl (z y)dy) (x 1)dx.

taking into account that fol Ozuj(z,y)dy = 0 and that u;|,—; = 0. Thus, we obtain

2 2 2

n
“j

Oyw

wit

1d

2dt

n
Oyw i

Oyw

+ B8 +1)

_l’_

3yw

L2 L2

L2
= /T (ayw - E)yT y0> da:—i—/ < Ozuj (z y)dy> N, 1)da

Oyw! W 92w 1 [ (W)? (udy + vd,)dyw
+ | ————dzdy — -
o Ow Oyw 2 Jog Oyw Oyw

dxdy
win win .

— u@waljd:ndy—/va wbljdxdy—/vblwmdazdy
/ 7 Dy 0 YT B,w q 3%

. in Jj—1 . n

j wj M; (] / wj
- 1 ded e drd
ZMk; k1 (k) /Q”’““J g, Y ZMkM k Q”’“ay“’” Fow Y

=: le —+ TQJ —+ T3J — T4j — T5j — Tﬁj — T7j — ng — ng. (48)

Summing over j, and integrating on [0, ¢), with ¢ < T, we obtain that

int 2 ) ! in||2 ! o in||2
Hw ()H’%T‘,T(t)_}— 5 0 Hw H'y,r+1/2,‘r+ 0 H yw ny,r,T

Z 1 Zn 1 aywm
J
< Bl ot 5o [ (1115 || )t (4 iml - 5 s
5 YT T0 (s >0 2 12 2 8yw 12
o [ 8 51+ 73]+ i+ Tl “9)

7>0

The rest of the proof is dedicated to estimating the nine terms on the right side of (4.9).
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The T7; bound. From (2.6b) and (4.7b) we obtain that

T /8yw§"!yo,1(W§"!y1 —wﬁ-"\y:O)dx
15 —
T Oywly=0,1

B 7 . ) , ) . ,
_ / (@5 y=1 — @ [y=0) (W}" ly=1 — W;'n‘y=0)dx +/ (2w}y=1 — Oywi|y=1) (W] |y=1 — W;n|y=0)dx
T T

Oywly=0,1 Oywly=0,1

= Th1j + Thay.
From the Gagliardo-Nirenberg inequality || f| o 0.1) < [ fll12(0,1) + 2 Hf||2/220 3 H8yf||1L/220 1)» We have

Tl S 5 (i3, + ez 10570 )

Using Cauchy-Schwartz, we similarly obtain
2
Lz> '

Summing up the above two estimates, and summing over j > 0 we obtain that

> Ilel—%

320

| Thajl S1Ts] + 5 (H ilv= 1‘

b
!l

2
Oy’ 1 1 2
J b b
' S @l g (m )+ [oustloms

2 >
/ Oyw 2 Vo,

Using (3.7e)—(3.7f), and combining the resulting bound with Lemma 3.4 (which may be used due to as-

sumption (4.2)), we arrive at
H zn“ 1 ! |h’2
N 52 VST ()/820 0 ¥,r+v—10,7

/ ) !Tlg!—*
<1/WMW @10
N(S[?) 0 Vs, T

yw

T

>0 L2

where we have used that 5o M2 < 520,

The T5; bound. From (3.16) we obtain that

To; = 2/11~ (/01 6xu?(x7y)dy> (u?(:c,O) + ug(m, 1)) dx
= 2/11‘ <v;(x, 0) — v?(x, 1)) (ug(az,()) + ug(x, 1)) dx

and thus, also appealing to Gagliardo-Nirenberg, we obtain

b b b b
2t 2 ([l [, ) (e + )
b b
[l + o
Jy Jly 1/2 1/2
R el RVl U IR P el TRV i
(] + 1)5—7 L?, L7, L%,

and summing over j we arrive at

b b
D Ty S (‘U \y=0‘w+y_§ﬁ + ‘”j\yzl

>0

+[el,

) U
’Yvr+’y_ 2 T

J111/2 )
5
’Y7T+Z_’Y?T

vr+3—v,T vr+E—v,T
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Upon integrating on [0, t), the above terms are bounded using (3.7a), (3.8a), (3.9b), and (3.9c¢), after which

Lemma 3.4 is used to yield
t 1 by 1/2 to 1/2 . 1/2
<
A J; ‘T2J‘ ~ ﬁ5/2 </(; ’h 7,r+373,7’> </0 |h’%r+}“7—> + </0 ’h"Y,T+é7T>
1/2 t 1/2
o) ([P
’Y,?"+3’Y*3,T 0 'Y7T+§7T

M2 t .
s (/) 1

For the last inequality, we have applied Lemma 3.4 to both factors at the right-hand side, which is legitimate
under the assumptions

< M.

, 1
rmin{dy = 3,5} 2 2y +2, sup W), 1 ymaxgsy-3,1))7)

(0,T]

Both assumptions are satisfied for » > r(~y) large enough, the second one being deduced from (4.2). Thus
we have proven

[ im s [y @i

j>0

The T3, and T);; bounds. These are the only terms for which assumption (4.4) is used. In view of (4.3)—(4.4)
and the Gagliardo-Nirenberg inequality in y, we immediately obtain

1 || 9ywim™
| Tl -5 yaj
>0 vl L2
. 2
< Z ﬂ 8yw;.n meH 2 71 ayw;n
J=0 58/2 Oyw L2L2 R VR L2
o5 (228 (e Loz |2 | 22|
szo 53/2 Oy L2 " 5(1)/4 - VO L2 V Oy L2
4
S
and using (4.2) combined with (4.3)—(4.4) we also obtain
1 a n
Ty) — 7 || 2l
j%% g \/ Oyw 12
2
M? .. 1 || Oyt
< o m m = J
Nj; 52 |« Hngﬂ e HL2L°° 1|\ /o L
. 1/2 .
M2 . . 1 1/2 8ywz,” 1 8ywl,n
S o mn mn I in J = J
; 52 [ g2 | Nl 2 53/4 ™[] 2 ] 1| Vo |,

M
~ 5(?]) y,r,T
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Here we have also used the second term on the left side of (4.2), in order to estimate ||0,0yw|| ; o ». Thus,
z My

1
3 (il + - |

7>0

n

<5 [, @12)

The T5; bound. As it turns out, this term creates the most stringent assumption on -y, namely that v < 9/8.
Since u|y—o,1 = 0, using (4.2) and (4.4), we have

1
|T5;| < 5 yﬂ% Hy (1-— )aij ‘ meHLQ
@]l Lo M;

s o
b0 Mi(j+1)? e L

. /2] i
G+ DY || 2
and thus, upon summing over j and integrating on [O, t] we arrive at

V2t 1/2
/Z’TE’] ~ 5 (/ H oy Py— 2,> (/0 szn|w,r+§,r> :

We now appeal to (3.7b) and to Lemma 3.4, which is again legitimate for » > r(+y) large enough. We obtain

1/2 t . 1/2
/ Z| 5]|~555/4 </ | |'y,7‘+2'7 4,T> </0 meHy,r+;,T>

7>0
~ 60,65/ 0 2 47 0 ’ 2’

M2 t 112
S |, ")

vyt
In the last inequality we have used that 2y — 7/4 < 1/2, which holds since v < 9/8.

(4.13)

The Ti; bound. Similarly, using that v|,— 1 = 0, we obtain

1 v
ol < 50 (o | ot = 0ol e
|0z || o ;
530575 Hyang‘ 12 Hw;‘an
i [[vu]

St (G071 le),

t M t 2 1/2 t - 1/2
/OJZ>:0| & %o </0 ’ r—§.T 0 o H’Yﬂ“+%,‘r

Using (3.7d), and then Lemma 3.4 (applicable for » > r(+) large enough, by (4.2)), we obtain

A 1/2
/Z| GJ /33/4 </‘ |’Y,T+7 4,T> (/0 me”'y,r-&-é,7—>

7>0

so that

1/2

M2 t 2 1/2 t -
550/83/4</0 Hw H%r,r) </0 Hw H'W"‘f‘éﬂ') 4.14)

since y < 7/4.
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The T7; bound. For T7; we directly estimate

STl < 3 G0 3] G40 el S 50

j>0 j>0

H lnH
1 .
7%77 ’Yar+§77—

Integrating in time, appealing to (3.9a), and still using Lemma 3.4 we obtain

A 1/2
/ ‘7>ZO |T7] 6 /67/4 (/ ‘ |’Y?T+2’Y_47T> (/0 lenH*yJ’J,-éﬂ-)
12/t 1/2
in in||2
g ([ Emte) ([0

o N @.15)

as2y—9/4 <1/2.

The T3; bound. We note that

Mkﬁjk+1<> ()1 ]Jtllerl) ’

and for 1 < k < [j/2] it is convenient to use (i) > (j — k+1)/k. We obtain

in

Ukwj—k—l—lT
Q yw

J
G hErDr—
i U R

/2] . .
|Ts;| < L2 — k)2
J

~ r—y+1
i

wé”
UpWj—k+1 87
Q yW

In order to estimate Tg; 10w, We Split wj 11 = w;'-’i ki1t w?l_ i1- First, using the Gagliardo-Nirenberg
inequality on €2 and the Poincaré inequality in x (since k£ > 1) we may bound

+
=

=: Tgj1ow + 18; high-

1/2 1/2 1/2 1/2

okl oo S eorllze + 10ewrll e + (lanll}s + 10uewrl|y2)) (10ywrll s + 10:8ywr [ 50)
1/2

S 10uwill 2 + [1Oawil |62 100 Byerc]| Vs

SE (llonsallze + 110ywriall L) (4.16)

from which we conclude that we estimate

upw? w—?dacd < R T H (1—y)wl ‘ meH
0 k j—k—l—layw AN 0 y(l—y) Lo Y Y j—k+1 12 7 L2
2l ‘
<2 rslze + 10ynall o) s, i
~ 5 L Y L J=k+1|| o 175 1IL2
< K2 w2 + 110ywiallpe ||, [
~ 50 k.r/2 wj_k+1 L2 w] L2-
Similarly,
w" k’y”/z Wil e + l|Oywrrall 2 :
‘/Qukwj k+1a dedy do kr/2 H Wi- kHHL? Hw;'nHH
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so that from the discrete Young and Holder inequalities, we obtain

> Tijow

320

1 72 wigall e + 10ywjs | ; ;
S 5o j; (G + 1)7"—"/—}—1 ’ = jr/2 — L2 (Hyw"’ il + ”WWHA,,H;,T> HwZany,r—i-%,T

1 . ,
<5 (Il g + 19,01, 5) (Hywb\ ot me\\w;,T) [
S (T T S | P @1

For the second inequality, we have assumed that 7/2—2v+1 > 1/2 (so that (H;%/jﬂ
and for the third inequality we have appealed to (4.2).

'yr—&—l’r

is square summable),

In order to bound T§; nign, We use that Uk\y:0,1 = 0, and the 1D Poincaré inequality to obtain
in

1 .
) J < ) wm
/Q w5 dady) S o g g ool g 15

i —k+1)7 '
N (]50) lloonll g2 lwj—rrall 22 lof" || 2

G =k + D)7 @il + ol 2
50 (k_|_1)1/2

We again rely on discrete Young and Holder inequalities, assume that r > %’y + % (so that (5 + 1)2’7*3’"/ 4is
square summable), and use (4.2) to arrive at
VT % 7T>

. —3r ||wH n in
ZTSJ high N 5 Z(] + 1)27 ° MW Hw H'Y,T'Jr%,T (Hw Hv,r,r T Hwb)
> . (4.18)
'yr—— T

J=0 J
Combining (4.17), (4.18), integrating in time, using (3.7a), (3.7b), and Lemma 3.4 (which is applicable by

M |
S 1y (g [
assumption (4.2)), we arrive at
2 1/2 t 9 1/2 ; 12
b in||2
’Y,r+é,‘r> * </0 Hw %ré’T) ) (/0 H"J H%H—éx)

t M t
[z i (]
0 >0 0 0
"3
M b 1/2 Lo 1/2 Eoo 1/2
§5053/4<(/0 Ih!wﬂ—z,T) +</O \hlwﬂ_i,T) (/0 |w HW%’T)

t
o
0 Jo
M [t . 2
+ 5 [l

llwj—ks2ll 2 (5 + 1) [wf™]| 2 -

N

1
’77T+§7T

1
7)T+§7T

M2 to g 1/2 to 1/2 MOt
S A T P e
M2t
S (&)/ﬁ o™ |5 2.7 (4.19)
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since v < 5/4.

The Ty; bound. In order to estimate Ty; we note that for 1 < £k < j — 1 we have

]Wk]]\@]j—k (i?> ~ (ir) 7 (k + 153"(; —)k + 1) : (min{k{j - k}>1 V (min{k‘,lj — kT

and similarly to Tg; we decompose

[7/2] 1 wi.” j—1 1 wi.”
Ty; S Z — /'Ukzaywj—k] + Z _ , VpOywi_jy—2—
~ _ —~v+1 —1 Yy
il Oy k=[j/2]+1 (G = k)i Q Oy
=: T9j1ow + T9j high- (4.20)

First we treat the case k < j/2. Using the Poincaré inequality in y (which is allowed since wj1|y—0,1 = 0)
we obtain

< i Uik

~Y 1 _

o ol (sl + v0hss ]

ly(1 — y)Oyw;—k|l 2 H"J;"nHm

BRI
) el

Furthermore, using the 1D Gagliardo-Nirenberg and Poincaré inequalities in z, for 1 < k < [j/2] we arrive
at

win
VpOyw i —2—dxd
/Q kUyWw kayw Y

Lee

el g (10524l o + 00454

B ol
e

win
0w 1 ——dxd
/Q'Uk ywj k8yw ray

) 1z

Summing over j, assumng that r > %7 + %, and appealing to (4.2) we obtain

lwll, zr, . .
> Ttond £ (ol + w0 ) ol

7>0

M | |
S5 <H5ywan%T + HyaywbH%J o]l - 4.21)

For the case k > j/2, we first note that the compatibility condition (1.2) allows us to write

1 1 1 1
// updyde = // Uk+1uzl+1d?/d$+// Uk+1 <U§ﬁrl —/ uﬁﬁrldz> dydz.
TJo T Jo T Jo 0

By Cauchy-Schwartz and the Poincaré inequality in y (for zero mean functions) we conclude

ekl

2
2
luksle S |||,



WELL-POSEDNESS OF THE HYDROSTATIC NAVIER-STOKES EQUATIONS 21

Then we similarly estimate

win
VpOyw i —2—dxd
/Q kUyWw kayw Y

1 ,
S+ ””k”Lngo Haywj—kHLgOLg Hw}nHB

1

”6 “kHLQ |0 Oywij— kHL2 ij HL2

A
N (]52)]?1/2 Juksall L2 [10ywj—krall 2 ( 12 meHB)
(j — k)yrtr/2n=t in 10yt in
QOB ) Bl ()

Summing over j, noting that the powers of j precisely cancel, we find for r > r(~y) large enough:

< HaywH%% in b in
I E e (e S R 1 =

j=>0
M . .
N B <meny,r+§J + ”ub‘ %H_é,T) meH%rJr%,T . 4.22)

Integrating in time the sum of (4.21) and (4.22), appealing to (3.7a) and (3.7d), and using Lemma 3.4 (which
is applicable for r > r(-y) large enough, by assumption (4.2)), we obtain

2
/O;ng’ /Ha meTN/O <Hy<9ywb‘w¢ vt ) 62 / = me+2,T
J=z
M . 2
AL ey W

M in
S <53/2 52 >/ H H'yr+27 (4.23)
since y — 3/4 < 1.

Conclusion of the proof. Inserting the bounds (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.19), and (4.23)
into estimate (4.9), we obtain

in 2 ! in||2 ! in||? 1 in||?
Hw (t)H%rT(t)—i_zﬂ/ Hw H'y,r—&-1/27'ds+ 0 Hayw H%des_%“wo H%T’TO

1 M in
<<(53+ 8 553/2)/ H |

M2 M? M? M MP MY [t e ™
+ 5035/ + 5235/ + 503372 + 52B7/A + 5233/ + % o o H%m-%y 8- (4.24)

+ [

’Y,TT

mH

Note that me H7 e = H it d e , so that we may combine the last two terms on the right side of (4.24).

Choosing 3y large enough, dependmg on M > 1, §p < 1, and the implicit constant in (4.24), for any 5 > By
we obtain

O g 8 [ 1 g st [ 02, s < 2 [t
~,7,7(t) 0 'y,rJr%,‘r 0 Y v, T — 5(2) ¥,r,70

The estimate (4.5) now follows directly from the above estimate.
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Finally, in order to prove (4.6), we appeal to (3.15a), Lemma 3.4, and estimate (4.5), to obtain

S[(l)l,tr]) ”w ‘ vr—v+3,r 51/2 / I 7’"*277(5) ds
H in( ds < —= ™ (0)| (4.25)
/81/2 7T+2’ ( ) 262 770 ’
upon ensuring that 3 is sufficiently large, depending on M, dy3. Moreover, from (3.7¢) and (3.7a) we similarly
obtain
! b Yl
B ‘ d / H / o ds
/0 H v (S) 7,7“—7-&-%,7’(5) S 6 0 v (S) v,r—v-i-%,'r(s) ﬁl/? | 'Y 7"+27
2
— 252 Hw )H'y,r,m (426)
as above. Summing (4.25)—(4.26) with (4.5) (and using (a + b)? < 2a? + 2b?) we obtain
t t
2 2 2
2 [ g+ L1002 gyt + 8 [T,
2
= 5 [w™ (O],
by using that v < 5/4. This concludes the proof of (4.6). g

As an easy consequence of the estimate (4.6), we state:

COROLLARY 4.2. Let M,d0y and v € [1,9/8] be given. For r > ro(7y), 8 > Bo and T such that
7(t) > 1 forallt € [0,T), if

4

%HWOH%T,TO <

w‘i

4.27)

then

IN

[[w (@) -
sup ||w 3r .
t€[07T] Y 4 7T(t) 2

5. Estimates for 0;w

In order to emphasize the linear nature of the estimates in this section we denote J;w = w. The equation
obeyed by w is

Oy — 0ji» + (udy + vy )i + (1Dy + Vy)w = 0 (5.1a)
1
Byioly—ot = Blyet — Blyeo) — s <2 / wi dy> . (5.1b)
0

PROPOSITION 5.1. Let M,y and v € [1,9/8] be given. There exists r1 = r1(y) > ro such that: for
all v, v satisfying v’ > ry, %TT — 1" > 1y, one can find 5y = B1(M,d, 10, 71,77 ,Y) > Bo satisfying: if

B > Bo, if T < 1 small enough so that 7(t) > 11 forall t € [0,T), and if (4.2)—(4.4) hold, we have

sup 15650 /Haw A ds+6/ IO "
se|0,
4 2

< ? ”w(o)’ v, 0 "
0

5.2)
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PROOF OF PROPOSITION 5.1. The proof is very similar to that of Proposition 4.1, since one may view
equation (5.1) as linearizing about w itself of (2.6) (respectively u for the boundary condition). In order to
avoid redundancy, we only emphasize the essential differences.

Estimate (5.2) follows directly from estimates for ;" which are analogous to (4.5). In order to define ¢)*",
we define &’ as the solution of system (3.4) with boundary datum given by Oph = —20, fol uu dy, which
is consistent with (5.1b). The function &’ obeys all the estimates claimed in Lemma 3.1, except that on the
right side we need to replace h with h. As in (3.16) we define the boundary layer functions corresponding

to w, and according to (3.17) we define the interior functions corresponding to w. Note that as before we
impose w* (0) = 0, and thus & (0) = g, where by (2.6a):

d)() = —anwa — voﬁywo — asz.

At this stage, we can prove an analogous statement to the one provided by Lemma 3.4, with & being replaced

by
) 1 1
h:2/ uudy—2//uudyd$.
0 TJo

Namely, we can show that for any r as in Proposition 4.1 and any 7’ such that
3r v

——=—=1> 2 2,
1 5 r’ > v+

we have

’ < M? ' - in 2
i 8 SM /O [ (S)]]7 v sy - (5.3)

/Ot’h(s

fi= G+1)" fi= M'(?jf, where M =

Indeed, denoting for all f
(j+ 1)t
Ghr

, while for j > 1, as a substitute to (3.21) we obtain the

AC )

-b
+ @, 1/2)
Y

<[l

similarly to (3.19) we obtain Hho

inequality

i

zn

] —L

z]: ] MJI 1/2
- M’ 1/2

# (uw;inu% + Hyaz\

) +Hy(1— )gﬂe‘

L%)

The half sum ) l[J: / 12 1 and the last term at the right-hand side can be treated as before, resulting in

/{)t&? @) o M Hug(x, 1/2)\(%))2

/=1
[ 7 [ e )
ds + S
vt 7 (s) 55/2 w I fy—3 r(s)

<M2</t‘
~ 0

if supyeqo, 7 ||w(t)||%%/ﬁ(t) < M, which is satisfied by assumption (4.2) as soon as ' < 3r.

b
+ Hwa\

2
Lzyy

w.in(s

For the half-sum Zi: rj/2]+1> We can not proceed symmetrically as in the proof of Lemma 3.4: as we want

an L? in time control by &, the bound

@) s s ()
Mj_ oMy My
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yields by a discrete convolution inequality:
2

/ Z ...>2§ supZEwL )2 [Jwp | 2 /0t<‘

. 2
wzn(s)‘
e=[j/2]+1 0] >1

/’)/77”/ 7T(S)

; ||yub<s>||i,rl,7<s>) s

Writing >, (¢ + 1)2 lwillLz =2 @%1 ((E +1)2+! |y ||L2> and using Cauchy-Schwartz, we find:

[0S )

{=[j/2]+1
< sup ||w(s / wm / ds>
[OEH ( )||fyr+ 241,7(s) ( ’ ‘,” T(S 57/2 ‘ Yl 4y=T 7 (s)

wzn ‘

< M? ( / ‘ o (s) 57/2 / ‘ V' +r=5.7(s) ds)

where the last inequality comes from (4.2), under the assumption that 7’ + 3 + 1 < %{. Gathering the two
previous inequalities yields (5.3) for 5 sufficiently large.

Now, similarly to (4.7), we have that

O+ B + 1) = 32)o™ + (udy + 00y + v Dy

—(udy + v0y)? — 0¥ dyw — M [89, udy + vdy] b — MO (Wdyw) — M} [8, dyw] v (5.4a)
Dy o1 = &7 Lymr — @ lymo + 267 Jym1 — By |y (5.4b)
Note that (5.4b) is the same as (4.7b), the left side of (5.4a) is the same as the left side of (4.7a), and the
first two terms on the right side of (5.4a) are the same as the first two terms on the right side of (4.7a). The
difference comes from the last three terms at the right-side of (4. 7a) namely the quadratic terms. The main
point is that they now lack of symmetry: they involve not only (w in’ bl,) but also w. In particular, all terms
containing w must be controlled uniformly in time, to allow for the Lt2 control of &™ at the left-hand side.
This is why we take 7’ less than ?jf : with such a margin we can still use (4.2) to control uniformly in time
the terms where most derivatives fall on w.

More precisely, proceeding as in the proof of (5.3) to handle the linear terms (see the estimates of 71,
.,17;), we can show that for 3 large enough:

Sin gy || 9 b2 d §t6~m2 d_i.z
Hw ()H'y,r’,Tt +25 Hw H’y,r’—i—l/Q,T S+2 0 H yw H%T’,T § 58 HWOH’YW/,TO

in M2 ! - in 2
S 57 / H Hw/ 53/4/ Hw |v,r’+%,rds
+ Z/ Slj + SZ] + S3J + S4J) ( )d (55)
3>0

where

in’

Sy = — /M’aﬂ W, Sy — — /M’@J 08, )

8yw

ZTL

53]‘ /M’(‘)J uc’)xw)a y S4J /M’ 3 .

yW
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The first term is analogue to Tg;. One can write

Sij = - + ( ),] / U k17— = S1jlow + S1j high-
k=1  k=[j/2]+1 k) MiM;_y1 Jo Oy

The treatment of S 10w is exactly the same as the one of Tg; 1oy . Similarly to (4.17), (4.19), we get

/SUIOW dsg/ H m ”’yT-&- ,7(s)

To treat Sy nigh, We use the inequality (‘7> % (J—k+1)7" " for k > [7/2] + 1, so that
k) MyM;_ .y

J
1 . NV i/
Stjnigh S D gll%llm G —k+1)7" ;g llzz llf™ || 2
k=[5/2]+1

J
k’Y . el L i/
S > Sllwrallzz(G =k + 17 ) g llz2 5™ [l
k=[j/2]+1

so that by the discrete Young’s inequality:

t t
Z/O Slj,high(s)ds S — Sup Zk Hwk )HL2/0 Hw(s)H%%T(s)”me’y,r’J(s)

OsE

1 b y
S 50 50 166t | Il o

0 sel0,¢]

The sup in time is controlled as usual by assumption (4.2), under the constraint ' +v + 1 < %. As regards
the second factor, one can split ||&(5) ([ .-(s) < |67 (8)|ly.4.7(s) + 67 (8)||.4.7(s) and control the second
term by the analogue of Lemma 3.1, followed by (5.3). For v’/ > v + (y + 5) we find that

t
Z/ S1jhigh(s)ds S / l™(s)
0

Estimates on So; (which is analogue to Ty;) and S3; can be established in the same way. We find for r’ and
3”” — 7/ large enough (with thresholds depending on 7):

/ SQ] < 77/ ”8yw 'y’y—l—'r’ ()d8+ 52 / || Zﬂ ||,}/,}_Hﬂ+ (s )dS

C>0,n arbitrarily small, and

t M2 ! -in
Z/ S3j < 5/ 16 ()l -0 7y s
7 0 0 Jo

To handle Sy, we proceed slightly differently. We start with the decomposition

()5

’Y,TTS

[5/2] j-1

Syj = Z + Z ( > /M/ /83/0'}] kvka

k=0 k=[j/2]+1
= S4jlow T+ S4jhigh-
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S4j nigh can be treated similarly to Ty; 1izh. We obtain, see (4.22):

t t
1 i b g
2 /0 Sihigh X % 101) Hay“’”w;/o (15 5)ly 3 0y + 18043 7)) 1™ 43 e
J

/H n(s) 2
'yr+ ‘rs

Here, we have used the Gevrey control of dyw given by (4.2) to bound the first factor, and the analogue of
Lemma 3.1 followed by (5.3) to control the boundary layer term in the second factor. As regards S4; 10w, We
integrate by parts in y. As ¥ vanishes at the boundary, no boundary term appears, and we get

[i/21 , . M - in’ 2 9 - in/

_ J J ( / Y Y a m / ywj )

P _ 9 — o B

o = 2 (i) M,gM;k/Q sty ot ap Ty,
= S4j,low,1 + S4j,10w,2 + S4j,10w,3~

We can bound S4; 1ow,1 With the same ideas as before. For r’ and 3—’" — 1/ large enough we have

/ZS4JIOW1N 5o /szn ||77”+ ’T(S

As regards Sy; 1ow,2 We start from the bound

[/2]

Sjlow,2 S 52 > ) kllperz(k+1)7 " HUkHL"OHaQWHLOOL?HWm lr2re0
0 k=0
M [7/2]

! . v« am/!
N 2 D Niopllzgers (b + 17" Nl e 16} [l 2 oge
k=0

where the last inequality comes from (4.4) to control 8§w. It follows that

[7/2]

Sjlow2 S 852 DG =k D pallz B+ D)7 gl 2 (107 22 + 10,905 [122)-
k=0

From there, for r’ and 3—7" — 1’ large enough (with thresholds depending on ),

C MS
/ ZS4JIOW2<77/ 19y6™( 77+r 7(s) d8+ / o™ ( wa+r (s)

With similar manipulations, we get the bound

C M* in
/ 2543 low,3 < 77/ Hayw 'y'y+r 7(s) d3+ / [|w ”77+r 7(s)

Injecting the previous estimates in (5.5), we get for large enough :

t t
i 2 Cinh2 Cinl2 1, 2
me(t)H%r’,‘r(t) + 5/0 meH%T’Jrl/Qﬂ' ds +/0 Hayme'YW’,‘r ds < % HWOH%T'JO )
Estimate (5.2) follows from this inequality, in the same way as (4.6) is deduced from (4.5). ]

COROLLARY 5.2. Let M,0g and v € [1,9/8] be given. There exists ro = ra(y) > 71 such that for
7 2 r2(7), one can find By = B2(M, 60, 70,71,7,7) = P1 and

TO = TO (Ma 6076/7_077—1”777“3 ||d)(]”%%_‘_,7_%77_0) >0
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satisfying: if B > Bo, if T < Tb, if (4.2)-(4.3)-(4.4) hold, and if

M
10yoll 2 my < 7 (5.6)

r
753,70

then

M
-5 6.7

sup [[Oyw ()], = o <
2 100l

PROOF OF COROLLARY 5.2. We write 9yw(t) = Oywo + f(f Oyw(s)ds, so that for all t € [0,T7:
/ 10y5(5) .2 7yl
< 10yl 2 20y + / 10,(3)1l 2 (o)

1/2
< 10,w0ll 5 o) + VE (/ 10,6(s) %T(s)ds> |

Taking for instance ry = 4r; + 4 + 3, where r; was introduced in Proposition 5.1, and r» > r9, we ensure
thatr’ := %+~ — 3/4 satisfies 7 > ry and 2* — 1’ > ry. By Proposition 5.1, for 3 > 3 large enough, and
T such that 7(t) € [r, 7] forall t € [0, T, we get

10y (Ol 5,71 < 110

sup ||yw(t)

< -
1 [0.1] v,r/2,7(t) HayWOH'y,Z,T (0) + ||W( )||772+777 0 (58)

The result follows from the assumption on dywy, once Tj is taken small enough to ensure that %.Tio lw(0)| T3 o <
12 4

M holds. O

COROLLARY 5.3. Let M,09 and v € [1,9/8] be given. There exists r3 = r3(y) > ro such that for
r 2 r3(7), one can find B3 = B3(M, do, 70, 71,7,7) = P2, co = co(T0, 71,7, 1) > 0 and

Ty =Ty <M, 50, B:70: 71757 (O], » \|w(0)||%%+7_%m) >0 (5.9)
satisfying: if B> Bo, if T < To, if (4.2)-(4.3)-(4.4) hold, and if
1. 1 1 coM
16000 00, 0l IOyl < (5.10)
then
M
2
sup |{|05w(t)||eere < —.
Sup 10y Ol 2 < 3

PROOF OF COROLLARY 5.3. We write the vorticity equation under the form
(95(.0 = W + u0;w + vOyW.

Hence, for all ¢t € [0, T]:
1050l e 2 < Mol 2oz + llu(®) | L, 10wl Lo 12 + N0() |29, 10y (t) | oo r2.-
For r large enough, we obtain

105w ) 2orz S N0l 5,r) + 0@, I O] ] )

’y?%?T(t) :
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By Propositions 4.1 and Proposition 5.1 applied respectively with r and ' = £ + v — %, and by inequality
(5.8), we find

1 1
2 < g . - 2
tes[l(l)g"} ”ayw(t)HLgoLz% ~ 50 HwOH'y,%—&-'y—%,TO + 6(2) ||w0”'y,r,‘ro

1 .
+ %HWOH%T,TO ||ayw0 Y5570 + TOHWOH%%+77%,TQ :

Upon taking 7" sufficiently small, this concludes the proof of the Corollary. U

6. Minimum and maximum principle for 0,w

The quantity J,w obeys a (degenerate) parabolic equation with Dirichlet boundary conditions

Oy (Oyw) — Og(ﬁyw) + (u0y + v0y) (Oyw) + (Ozu)(Oyw) = wWlyw (6.1a)

1
0cly-01 = (@lyr ~ 5lyo) = 0 [ Pdy. (6.1b)
0

Our goal is to combine this fact with L%Lgfy estimates on w J,w and the Dirichlet datum, to deduce that the
convexity of u is conserved for small time.

PROPOSITION 6.1. Let M, 69 > 0 and vy € [1,9/8] be given. There exists 4 = r4(7y) > 13 such that
forr > r4(7y), one can find By = P4(M, 0,70, 71,7,7) > P3 and Ty as in (5.9) satisfying: if 5 > Do, if
T < T, if (4.2)-(4.3)-(4.4) hold, and if

1
< < — .
4(50 S 8yw0 S 450, (6 2)
then
1
0

PROOF OF PROPOSITION 6.1. We wish to apply a version of the parabolic minimum/maximum princi-
ple for the following degenerate parabolic problem posed in €2 x (0, T"), with € being the periodic in x strip
(z,y) € T x (0,1):

(0r — 0F + b(w,y,1) - Vay + cla,y,t))Y = d(z,y,t) in Qx(0,7T), (6.4a)

Y =a(x,t) on 00 x[0,T), (6.4b)

WY|t=0 = Yo(z,y) in €. (6.4¢)

Here ¢ = Oyw, b = (u,v) is incompressible and vanishes on the boundary T x {0, 1}, ¢ = 0,u vanishes

at the boundary T x {0, 1}, d = w0,w, and the boundary data is a = (@|y=1 — ©|y=0) — O fol u?dy. As
emphasized after Theorem 2.1, the third compatibility condition of the theorem corresponds to the relation
a’(ajv 0) = ¢0(~"3a 0)'

By (6.2), the initial datum 1)y is taken to obey 0 < 409 < p(x,y) < 1/(4dp), for some g € (0,1/4),
uniformly on €2. Thus, by the compatibility of the initial datum and of the boundary condition, we have that
0 < 460 < a(x,0) < 1/(4dp), uniformly on T. Thanks to the Gagliardo-Nirenberg inequality

1/2 1/2 1/2
1l < A (1715 + 10,0135
and the estimate (5.2), we have that
1
B;E/ uudy
0

1 1 M . .
<5 (G + ) 1olhgir-gm <00l 515

10k, )]0 7o) < A1l oo zspey + 2 \
L2(0,T;Lg°)
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for 5 sufficiently large. By the fundamental theorem of calculus in time, and the Cauchy-Schwartz inequality
we thus obtain that

. 1
360 < 460 — VT |l VT G0l gt 0 < o

DS =11 = 35,

uniformly on T x (0, T"), upon taking 7" sufficiently small. Thus, on the parabolic boundary 2 x {0} U9 x
(0,T), we have that ¢ > 3.
By the same Gagliardo-Nirenberg inequality, the Poincaré inequality in y, and estimate (4.6), we have

Cy

: <
'Y»%-F’Y—%,TO - (

SUp [le®)llpgorge = sup [100ut)ll e rge < - llwollsrry

t€[0,T] v t€[0,T)

where C = Cy (19, 71,7, 7). Denoting

Co= 14 2 il ©3)
the above estimate implies that
c(z,y,t)+ Cy > 1.
Lastly, we note that by the Gagliardo-Nirenberg inequality and (4.6) we have
t ¢ Vi
/0 ()| e e s = /0 o5 10205 15 5 S 5 ol
so that for 7' < 1 we have
e(t) :==t+ /O t e+ ||d(s) — 360¢(8) || e oo d
St Vi |woll] ., +1C1 woll .z,
< CoVE (14 Jwoll? 1y + Itll sy ) = VED, (6.6)

holds for all ¢ € [0, T, where C5 is a constant that only depends on -, r, 79, and 71, and we have denoted

D, =0y (1 +[lwoll2 ., + Hwo\lym) :

With this notation, we make the following change of unknowns

) = —C*t(¢(x y,t) — 380) + e(t) (6.7a)
a=e “la(x,t) — 300) + e(t) (6.7b)
J: Ol (d(, y, t) — 3dpc(x, y,t)) (6.7¢)
¢=c(z,y,t) + (6.7d)
Yo = Yo(z,y) — 3(50 (6.7¢)

The quantity e(t) was chosen so that é(t) = 1 + ||d(t)]| 100~ One may then verify directly that
(O —0;+b-Vay+0)=(d+|d|| o) +1+c>1>0 (6.8a)
Ylyefoy =a >t >0 (6.8b)
Yli—o = o = 8o > 0. (6.8¢)

The parabolic minimum principle then guarantees that

Y(z,y,t) >0 on Qx[0,T] (6.9)

Indeed, if a strictly negative minimum would be attained by 1, then this point minimum could not lie on the
parabolic boundary (since @ > 0 and 19 > 0). If this point would lie in the interior, at this point we would
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need to have V5,10 = 0, whereas (—85—}—6)1/; < Ossince ¢ > 0. This contradicts (d + HCZHLOO) +1+4ce > 0,
which thus proves (6.9). -
Working backwards from the definition of v, we see that (6.5), (6.6), and (6.9) imply

Tﬁ(% Y, t) Z 360 - eC*te(t) Z 350 - \/Tec*TD* Z 2(50

as long as 7 is chosen sufficiently small in terms of C., D.., and &y, consistent with the dependence given in
(5.9). This proves the lower bound in (6.3).

The proof of the upper bound in (6.3) follows from very similar arguments, reducing the problem to a
maximum principle for a parabolic equation. To avoid redundancy, we omit these details. ([l

7. Proof of Theorem 2.1

The proof of the main theorem proceeds as follows. Let v < 9/8 and r > r4(7y). For any 79 < 7°
assumption (2.1) implies that wy = Jyug satisfies

wo Y770 wo Y770 0.
I +[105wollyrm < +

We fix 1 € (1, TO). We then fix Jy small enough and M large enough, so that the initial constraints (4.27),
(5.6), (5.10) and (6.2) hold. Let 5 > 34 and € > 0. We consider the approximate system

O 4 u0zu + vOyu + Ozp — aju —ed?u=0, (z,y9)€Tx(0,1), (7.1a)
ayp =0, (ZL‘, y) €T x (07 1)7 (7.1b)

Opu+ 0y =0, (z,y)eTx(0,1), (7.1¢)

uly=01 = v|y=01 = 0, (7.1d)

with the same initial condition u|¢—g = ug. System (7.1) is called the two-dimensional primitive equations,
and has been widely studied, in various geometries and under various boundary conditions [4, 3, 40]. In
particular, Gevrey or analytic regularity results were obtained in both periodic and bounded geometries [35,
36, 22]. In the context of system (7.1), the well-posedness result stated in Theorem 2.1 can be proved
without much difficulty. In fact, the presence of —e02u allows for a classical treatment, and the existence
of solutions at fixed € > 0 follows e.g. from a Galerkin approximation procedure (which is compatible with
the hydrostatic trick [32]). Moreover, the compatibility conditions are the same for (1.1) and (7.1). We find
in this way a unique local solution u® with the regularity requirements stated in Theorem 2.1. We can then
consider 7} , the maximal time on which ||w.|/y,0 < +oo. In particular, if 7. , is small enough so that
7(1%,«) > 71, one has

o lawe ()], 50 7y = 00 (7.2)
By the initial constraint (4.27), the fact that 79 < 7°, and the continuity of the solution, there exists a
maximal time 0 < 7. < 7T, on which the conditions (4.2)-(4.3)-(4.4) are satisfied with u replaced by
ue and T replaced by T.. Note that all the estimates that we established for a solution u of (1.1) adapt
straightforwardly to a solution u¢ of (7.1). The only notable change is the inclusion of the —£9? term in (3.4)
for defining the boundary layer lift w"<. However, since all estimates for w”* are obtained by performing a
Fourier transform in x and using Plancherel to obtain the desired L2 bound, this modification is routine (see
also [20] for e-independent bounds for analytic in 2 - Sobolev in y solutions of the e-regularization of the
Prandtl system). Applying Corollaries 4.2, 5.2, 5.3, and Prosition 6.1 at positive €, we see that there exists
T > 0 independent of &, such that for all ¢ € [0, min(7%, T)], the conditions (4.2)-(4.3)-(4.4) still hold with
M replaced by %, and dp replaced by 20p. If 7. < T, then one has necessarily 7. = T ., otherwise by
continuity the inequalities (4.2)-(4.3)-(4.4) would be satisfied beyond 7. But then there is a contradiction
between (7.2) and the first half of (4.2). Hence, T: > T, and so T; , > T'.

We have just shown that the approximations u. are all defined on a time interval independent of ¢, and
satisfy uniform Gevrey bounds on it. This allows to let € go to zero, and conclude by standard compactness
arguments to the existence of a solution.
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For the uniqueness of solutions, the equation obeyed by the difference is basically a linearized version of the
equation, very similar to the equation obeyed by w. Then an estimate similar to the one from Proposition 5.1,
gives the good estimate for the difference of two solutions, implying uniqueness.
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Appendix A. Proof of Lemma 3.2

To prove the first item, we adapt arguments of [11, pages 1805-1807]. We fix x € T, y > 0, and drop

them from notations. We write
~ 2 1 —y+/B(+1)+i¢
&i(n) = f3(Q) g;(C), g5(¢) = . —e YV :
0 =509, 9i(0) = s

Clearly, as f; = 0 for ¢ < 0 and belongs to L' (R),

HQO= [ fitye“dt

Ry

is holomorphic for Im ¢ < 0, and continuous for Im ¢ < 0. Moreover,

lim fj (¢) = 0 uniformly for Re ¢ € R, lim fj(C) = 0 uniformly forIm{ <0.  (A.1)
Re(—+oc0

Im{—+o0

The first limit follows directly from the inequality
HO1< [ Ifsole ™
Ry

and the dominated convergence theorem. The second limit follows from a close look at Riemann-Lebesgue’s
lemma: given ¢ > 0, and some f5 € CH(R,) with fR+ |fj = f5] < &, we get

(0] < /R Rk /R pie

€

[Re (|

where the second bound follows from an integration by part of the second integral.
Obviously, g; is also holomorphic in Im ¢ < 0, continuous over Im ¢ < 0, with bound

<e+

1
l9: ()1 < g5 VIV, (A2)

see (3.13). We finally apply the Cauchy formula: for any ¢ < 0, for any p > 0

S

B0 = tim o [ £ g0 dc

s—+oo 27 s
1 X | A |
== tm o (/[—s,s]_m £5(€) g;(Q)etd¢ + /[s,s—m] fi(€) g5 ()™t d¢

N L dc)
[—s—ipi,—s]
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As t < 0, taking into account the first limit in (A.1), the first integral at the right-hand side goes to zero
when . — +o0, while the two other integrals over the vertical segments converge to the integrals over the
vertical half-lines:

1 3 | i |
w(t) = lim oo (/[sys_m] Fi(©) g5(Q)et d¢ + /[_s_m_s] £i(€) g;(¢)e™! dC)
1 . | ) |
e </[o,_m] Fis + Q) gi(s + Qe dc + /[-ioo,O] Fi(=5+¢) gj(=s + (el ==+ d<>

Using the second limit in (A.1) and the bound (A.2), we can conclude that the limit at the right-hand side is
zero thanks to the dominated convergence theorem.

To prove the second item of the lemma, we remark from formula (3.12) that
(1+ ¢} € LER, Ly(Ry, H(T))),  (1+|¢)"*a} € LER, Hy (R4, Hy(T))), Vk
using the smoothness of fj with respect to z. We deduce that
—b 3/4 —b 1/4
@€ HYM(R, ARy, HE(T))), @ e H/M (R, H)(Ry, HE(T)), V. (A3)

Moreover, using again (3.12) and Plancherel in time, we get that: for any ¢ = ¢(t, z, y) smooth and fastly
decreasing as t — oo and y — +o00,

/ D (BG +1) - o + / 0y, Oy — / (2 e + f3) @ly—0 = 0.
RxR4xT RxR4 xT RxT

If we take ¢ with support in time included in (—oo,T"), taking into account that @’ is zero for negative

J
times, we end up with

M;
/ @ (B +1) =) + / 0y Oytp —/ (28 |y=0 + ~——hj41) ¢ly—0 = 0.
(0,T)xR4 xT (0,T)xR4 xT (0,T)xT Mjiq

We recognize the weak formulation of system (3.10a)-(3.10b)-(3.10c). The identity wg. = Jb over (0,7
follows from the uniqueness of solutions to this system (for example in the regularity class given by (A.3)).
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