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ABSTRACT. We address the local well-posedness of the hydrostatic Navier-Stokes equations. These equations,
sometimes called reduced Navier-Stokes/Prandtl, appear as a formal limit of the Navier-Stokes system in thin
domains, under certain constraints on the aspect ratio and the Reynolds number. It is known that without any
structural assumption on the initial data, real-analyticity is both necessary [38] and sufficient [24] for the local
well-posedness of the system. In this paper we prove that for convex initial data, local well-posedness holds
under simple Gevrey regularity.

1. Introduction

The present paper is devoted to the study of the following two-dimensional system:

∂tu+ u∂xu+ v∂yu+ ∂xp− η∂2
yu = 0, (x, y) ∈ T× (0, 1), (1.1a)

∂yp = 0, (x, y) ∈ T× (0, 1), (1.1b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1), (1.1c)

u|y=0,1 = v|y=0,1 = 0, x ∈ T, (1.1d)

where η > 0. The unknowns of this system are (u, v) = (u, v)(x, y, t) and p = p(x, y, t), which model
respectively the velocity field and pressure of a fluid flow. The boundary condition (1.1d) corresponds to
a no-slip condition at the walls y = 0, 1. With respect to the tangential variable x we impose T-periodic
(lateral) boundary conditions.

Note that upon integrating in y the incompressibility equation (1.1c), using the boundary condition for v
(1.1d) we obtain the compatibility condition

∂x

∫ 1

0
u(x, y, t)dy = 0 (1.2)

for all x ∈ T and t ≥ 0, so that the vertical mean of u is just a function of time. Condition (1.2) allows
us to compute the pressure gradient, cf. (2.4) below, and to obtain the boundary condition for the vorticity,
cf. (2.6b) below.

System (1.1) is formally obtained [29, 38] when considering the asymptotics of the two-dimensional Navier-
Stokes in a thin domain: Ω = (0, L)× (0, l) with δ = l

L � 1. After a proper rescaling

t :=
Ut

L
, x :=

x

L
, y :=

y

l
, u :=

u

U
, v :=

v

δU
,

the Navier-Stokes equation becomes

∂tu+ u∂xu+ v∂yu+ ∂xp− ηδ2∂2
x − η∂2

yu = 0, (x, y) ∈ T× (0, 1), (1.3a)

δ2(∂tv + u∂xv + v∂yv) + ∂yp− ηδ4∂2
xv − ηδ2∂2

yv = 0, (x, y) ∈ T× (0, 1), (1.3b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1), (1.3c)
1
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where η = 1
δ2Re , with Re = UL

ν the Reynolds number. If we assume η ∼ 1 and keep the leading order terms
as δ → 0, or if we assume η � 1 and keep both the leading order and next order terms in (1.3), we end up
with (1.1).

Our concern here will be the local in time well-posedness of (1.1). Besides its mathematical relevance,
this problem is meaningful from the point of view of hydrodynamic stability, notably with regards to the
properties of the so-called primitive equations:

∂tu+ u∂xu+ v∂yu+ ∂xp− η′∂2
x − η∂2

yu = 0, (x, y) ∈ T× (0, 1), (1.4a)

∂yp = 0, (x, y) ∈ T× (0, 1), (1.4b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1). (1.4c)

This model and its three-dimensional counterpart are very important in atmospheric sciences, after account-
ing for gravity and many other features [31, 30, 40, 37]. For positive values of tangential and transverse
viscosity coefficients, they are known to be globally well-posed in the Sobolev setting in both the two and
the three dimensional case [43, 3, 4, 40, 8, 21, 27, 28], and the vanishing viscosity limit η, η′ → 0 can be
characterized in the real-analytic category [22]. Yet, in the absence of additional turbulent viscosity, the
dimensional analysis of (1.3) shows that the tangential diffusion coefficient η′ is expected to be very small.
This allows to relate the well/ill-posedness of (1.1) and the stability/instability properties of (1.4). For in-
stance, assume that (1.1) is linearly ill-posed without analyticity in x: a result in this direction was shown
in [38], and will be discussed later on. It roughly means that, at least in the early stages of the evolution,
there are perturbations with wave number k � 1 in x that grow like e|k|t. From there, if η′ is small enough
so that η′|k|2 � 1, one can expect the tangential diffusion −η′∂2

x to stay negligible, and the perturbation to
be an approximate solution of (1.4) (with Dirichlet conditions). This can result in a growth almost as strong
as et/

√
η′ , showing the strong instability of (1.4). We note that if one keeps η′ > 0 in (1.4) while setting

η = 0, the local well-posedness can be established for Sobolev initial datum [6, 7], confirming that the hor-
izontal dissipation dominated equation is much more stable that the hydrostatic Navier-Stokes system (1.1)
considered in this paper.

From a mathematical perspective, system (1.3) is reminiscent of the two-dimensional Prandtl system, de-
scribing boundary layer flows. The latter is set in a half-plane, say T× R+, and reads

∂tu+ u∂xu+ v∂yu+ ∂xp− η∂2
yu = 0, (x, y) ∈ T× R+, (1.5a)

∂yp = 0, (x, y) ∈ T× R+, (1.5b)

∂xu+ ∂yv = 0, (x, y) ∈ T× R+, (1.5c)

u|y=0 = v|y=0 = 0, (1.5d)

lim
y→+∞

u = u∞, lim
y→+∞

p = p∞. (1.5e)

Hence, the only difference with (1.1) lies in the domain and in the boundary conditions. Here, u∞ and p∞

are given data, related to the Euler flow above the boundary layer. In particular, as p does not depend on y,
it is no longer an unknown of the system. This is a major difference with (1.1), where p can be seen as a
Lagrange multiplier, associated to the constraint that v = −

∫ y
0 ∂xu vanishes at y = 1 (see (2.4) below).

The well-posedness properties of (1.5) are now well-understood, and depend on the monotonicity properties
of the initial data. Roughly, if the data have Sobolev regularity, and if furthermore the initial data are
monotonic in y, (1.5) has local in time Sobolev solutions [34, 33]. On the other hand, without monotonicity,
system (1.5) is ill-posed in Sobolev spaces [12, 15]. Local in time well-posedness can be achieved when the
initial datum is real analytic [39, 25], and even under the milder condition of Gevrey regularity in x [14].
We refer to [10, 42, 13, 20, 26, 9] and references therein for more results on the Prandtl system such as
singularities, long time behavior, and Gevrey-class stability. Interestingly, the instability mechanism that
yields ill-posedness in Sobolev involves in a crucial manner the lack of monotonicity and the diffusion term
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−η∂2
yu. Indeed, the inviscid version of Prandtl, that is

∂tu+ u∂xu+ v∂yu+ ∂xp = 0, (x, y) ∈ T× R+, (1.6a)

∂yp = 0, (x, y) ∈ T× R+, (1.6b)

∂xu+ ∂yv = 0, (x, y) ∈ T× R+, (1.6c)

v|y=0 = 0, (1.6d)

lim
y→+∞

p = p∞, (1.6e)

has local smooth solutions for smooth data, as can be shown by the method of characteristics [19].

With regards to this recent understading of the Prandtl system, it is very natural to ask about the local
well-posedness of (1.1), and to start from the consideration of the inviscid case η = 0, namely

∂tu+ u∂xu+ v∂yu+ ∂xp = 0, (x, y) ∈ T× (0, 1), (1.7a)

∂yp = 0, (x, y) ∈ T× (0, 1), (1.7b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1), (1.7c)

v|y=0,1 = 0. (1.7d)

This hydrostatic Euler system has been the matter of many studies [1, 16, 2, 38, 24, 32, 23, 5, 41]. Contrary
to (1.6), existence of local strong solutions requires a structural assumption, namely the uniform convexity
(or concavity) in variable y of the initial data. A contrario, the presence of inflexion point may trigger
high-frequency instability. This point was established in article [38]. The author considers in [38] the
linearization of (1.7) around shear flows u = Us(y), v = 0. More precisely, he shows that if the equation∫ 1

0 (Us(y)−c)−2dy = 0 has complex roots, then the linearized hydrostatic Euler system admits perturbations
which have wavenumber k in x and grow like eδkt, δ > 0, for all k � 1. Back to the nonlinear problem
(1.7), one can only expect to show short time stability for data whose Fourier transform in x behaves like
e−δ|k| for large k. This corresponds to analytic data in x. Local well-posedness in the analytic setting was
established in [24]. Moreover, it is mentioned in [38] that this high-frequency instability persists in the case
of the viscous system (1.1), at least for small enough η.

Considering all these results, the remaining task is to analyse the viscous system (1.1) for convex (or con-
cave) initial data. This is the purpose of this paper. It raises strong mathematical issues, related to the control
of x derivatives of the solution. In particular, we find

∂t(∂xu) + (u∂x + v∂y)(∂xu) + (∂xu)2 + (∂xv)∂yu+ ∂x(∂xp)− η∂2
y(∂xu) = 0.

One of the main problems in controlling ∂xu is the term ∂xv∂yu. Indeed, ∂xv = −
∫ y

0 ∂
2
xu is recovered

from the divergence-free condition, so that it can be seen as a first oder operator in x applied to ∂xu. As this
first order term has no skew-symmetry, it does not disappear from energy estimates, so that standard energy
arguments can only be conclusive with the help of analyticity. In the case of the hydrostatic Euler system,
the way out of this difficulty consists in considering the (approximate) vorticity ω = ∂yu. Its tangential
derivative is seen to satisfy

∂t(∂xω) + (u∂x + v∂y)(∂xω) + (∂xu) (∂xω) + (∂xv) ∂yω = 0.

Under a uniform convexity or concavity assumption |∂yω| ≥ α, the idea is to test the equation against
∂xω/∂yω rather than ∂xω, to take advantage of the cancellation:∫

∂xv ∂xω = −
∫
∂y∂xv ∂xu =

∫
∂2
xu ∂xu = 0.

This allows to get rid of the bad term, and is the starting point of the local well-posedness argument. Such
an idea was used previously in [17, 32].
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Unfortunately, this manipulation, that we will call the hydrostatic trick, is not fully appropriate to the viscous
system (1.1). The reason is that in the estimate for ∂xω, the viscous term generates extra boundary integrals
such as

I[ = η

∫
T×{0}

∂y∂xω
∂xω

∂yω
dx, I] = η

∫
T×{1}

∂y∂xω
∂xω

∂yω
dx.

The value of ∂y∂xω at the boundary can be obtained from the equation on ∂xu, and yields for instance (the
computation will be detailed later)

∂y∂xω|y=0 = ∂2
xp = −2∂x

∫ 1

0
u ∂xu dy + ∂xω|y=1 − ∂xω|y=0.

The issue comes from the first term at the right hand-side, which is again a first order term in ∂xu without
any skew-symmetric structure. In other words, there is an additional loss of derivative compared to the
Prandtl equation, so that obtaining well-posedness below analytic regularity is challenging. This is our goal
in what follows, and we prove in Theorem 2.1 below the local well-posedness under Gevrey regularity of
class 9/8 in the x variable, under an extra convexity assumption in y.

2. Main result and strategy

For notational simplicity, from now one we will set η = 1 in (1.1). Let Ω = T × (0, 1). For τ > 0,
γ ≥ 1, we define the Gevrey norm

‖f‖2γ,τ =
∞∑
j=0

τ2j(j!)−2γ‖∂jxf‖2L2(Ω).

Functions f satisfying ‖f‖γ,τ < +∞ are in Gevrey class γ with respect to x, measured in L2 in variable y.
Our main result is the following:

THEOREM 2.1 (Well-posedness for convex Gevrey-class initial datum). Let τ0 > τ1 > 0, γ ≤ 9/8.
Let u0 a function satisfying the regularity condition

‖∂yu0‖γ,τ0 + ‖∂3
yu0‖γ,τ0 < +∞, (2.1)

the convexity condition

inf
Ω
∂2
yu0 > 0, (2.2)

and the compatibility conditions ∂x
∫ 1

0 u0dy = 0, u0|y=0,1 = 0,

∂2
yu0|y=0,1 =

∫ 1

0
(−∂xu2

0 + ∂2
yu0)dy −

∫
Ω
∂2
yu0.

Then there exists T > 0, and a unique solution u of (1.1) with initial data u0 that satisfies

sup
t∈[0,T ]

(
‖∂yu(t)‖γ,τ1 + ‖∂3

yu(t)‖γ,τ1
)
< +∞.

and

inf
t∈[0,T ]×Ω

∂2
yu > 0. (2.3)

A few remarks are in order:
• The main point in our result is that we prove local well-posedness without analyticity, reaching

exponents γ > 1. The value γ = 9/8 is due to technical limitations, and could certainly be
improved. The optimal value that can be expected for γ, or even the possibility of well-posedness
in the Sobolev setting are interesting open questions. Our conjecture - based on a formal parallel
with Tollmien-Schlichting instabilities for Navier-Stokes [18] - is that the best exponent possible
should be γ = 3/2, but such result is for the time being out of reach. If confirmed, it would
emphasize the destabilizing role of viscosity.
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• We loose on the radius τ of Gevrey regularity, going from τ0 to τ1 in positive time. This loss is
very standard [39, 24, 25, 14].
• Besides the Gevrey regularity assumption (2.1), the key assumption is infΩ ∂

2
yu0 > 0, which

corresponds to a strictly convex initial data. The strict concavity condition supΩ ∂
2
yu0 < 0 would

work as well. On the opposite, as discussed before, we do not expect such well-posedness to hold
for data with inflexion points [38].
• The first compatibility condition ∂x

∫ 1
0 u0 = 0 is here to ensure that (1.2) holds for all time. Note

that we can use (1.2) to determine ∂xp: applying ∂x to (1.1a), taking the mean over y ∈ (0, 1),
integrating by parts in the term

∫ 1
0 v∂yu dy, and using the periodic lateral boundary conditions, we

find:

∂xp = ω̃|y=1 − ω̃|y=0 − ∂x
∫ 1

0
u2dy, x ∈ T, (2.4)

where ω = ∂yu is the vorticity, and we have denoted by

ω̃(x, y, t) = ω(x, y, t)−
∫
T
ω(x, y, t)dx, y ∈ {0, 1}, (2.5)

the zero mean (in x) boundary vorticity. We will use the notation (2.5) throughout the paper. Note
that for y ∈ {0, 1}, the functions ω and ω̃ only differ by a function of time.
• The second and third compatibility conditions can be explained as follows. Most of our analysis

relies on the control of the vorticity ω = ∂yu. We notably need some bound on supt∈[0,T ] ‖ω‖γ,τ
for τ ∈ [τ1, τ

0) . If we leave aside the Gevrey regularity in x, this corresponds to an L∞t H
1
y bound

on u. As u satisfies a heat type equation with Dirichlet condition, it is well-known that such an
L∞t H

1
y bound requires the compatibility condition u|t=0|y=0,1 = u|y=0,1|t=0. In view of (1.1c),

this amounts to the second compatibility condition of the theorem: u0|y=0,1 = 0.

Similarly, the last compatibility condition is related to the fact that we need a bound for supt∈[0,T ] ‖∂tω‖γ,τ
for τ ∈ [τ1, τ

0). More precisely, this condition can be derived from the system obeyed by ω = ∂yu,
which is:

∂tω + u∂xω + v∂yω − ∂2
yω = 0, (x, y) ∈ T× (0, 1), (2.6a)

∂yω|y=0,1 = ω̃|y=1 − ω̃|y=0 − ∂x
∫ 1

0
u2dy. (2.6b)

Indeed, (2.6a) follows from differentiating (1.1a) in y, while the boundary condition (2.6b) is
obtained by evaluating (1.1a) at y = 0, 1, using the Dirichlet boundary conditions for u and v
in (1.1d), and the formula for the pressure gradient (2.4). Now, from (2.6a), it appears that an
L∞t L

2
y control of ∂tω is similar to an L∞t L

2
y control of ∂2

yω, meaning a L∞t H
1
y control of ∂yω. By

differentiating (2.6a), one sees that ∂yω satisfies a heat like equation, and by (2.6a), it also satisfies
a Dirichlet type condition. Again, an L∞t H

1
y control requires ∂yω|t=0|y=0,1 = ∂yω|y=0,1|t=0,

which by (2.6b) amounts to the third compatiblity condition.

General strategy of the proof. Our analysis is based on the vorticity evolution (2.6). We want to benefit
from the so-called hydrostatic trick, which consists in establishing L2 estimates for the weighted derivatives
∂jxω/

√
∂yω. The difficulty is that these estimates are not compatible with the diffusion−∂2

yω, which creates
boundary terms involving ∂jx∂yω|y=0. Because of the extra x-derivative at the right-hand side of (2.6b), one
can not close an estimate at the Sobolev level.

To overcome this difficulty, our first idea is to write ω = ωin +ωbl, where ωbl is a boundary corrector which
solves (approximately):

∂tω
bl − ∂2

yω
bl = 0, ∂yω

bl|y=0,1 = −∂x
∫ 1

0
u2dy,
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where the right side of the Neumann boundary condition is seen as a given data. With this splitting, the
bad term is removed from the Neumann condition on ωin, so that we may apply the hydrostatic trick to this
quantity. Still, this approach is obviously not enough: the equation for ωin still involves ω, either directly or
through ωbl, so that no closed estimate is available on ωin.

This is where we shall take advantage of Gevrey regularity. To explain this point, it is simpler to consider
the linearization of (2.6) around a shear flow (us(y), 0):

∂tω + us∂xω + u′′sv − ∂2
yω = 0, ∂xu+ ∂yv = 0, ∂yω|y=0,1 = ω̃|y=1 − ω̃|y=0 − 2∂x

∫ 1

0
usudy.

As this system has x-independent coefficients, one can Fourier transform in x. More precisely, looking for
local well-posedness in Gevrey class γ, it is natural to look for solutions in the form ω = ek

1/γteikxω̂k(t, y).
We end up with the following system for the boundary layer corrector:

(k1/γ + ∂t)ω̂
bl
k − ∂2

y ω̂
bl
k = 0, ∂yω̂

bl
k |y=0,1 = −2ik

∫ 1

0
usûkdy.

Note that, when taking the boundary layer corrector as a solution of this heat type system, we implicitly
assume that the other terms in the equation, notably the convection term us∂xω ∼ ikyω̂blk are negligible in
the boundary layer. A formal analysis shows that this should hold as long as γ > 3

2 , which is the range
considered here. In the limit case γ = 3

2 , conjectured to be optimal for well-posedness (see remark above),
one should probably replace the heat operator by an Airy type one, as in [18].

Explicit calculations on the boundary layer system reveal that Gevrey regularity in x is converted into spatial
localization in y: for k � 1, ω̂blk has a boundary layer behaviour, with concentration near y = 0, 1 at scale

k
− 1

2γ . Roughly, neglecting the upper boundary, one can think of

ω̂blk ≈ k
1− 1

2γW (t, k
1
2γ y)

∫ 1

0
usûkdy,

ûblk ≈ k
1− 1

γU(t, k
1
2γ y)

∫ 1

0
usûkdy.

Now, the idea is to write∫ 1

0
usûkdy =

∫ 1

0
usû

bl
k +

∫ 1

0
usû

in
k =

(
k

1− 1
γ

∫ 1

0
us(y)U(t, k

1
2γ y)dy

)∫ 1

0
usûkdy +

∫ 1

0
usû

in
k .

In short, one can check that for γ ≤ 2, we have k1− 1
γ
∫ 1

0 us(y)U(t, k
1
2γ y)dy = o(1) in the limit of large k,

so that the first term at the right-hand side can be absorbed in the left-hand side. This leads to a control of∫ 1
0 usu, and thus of ωbl, in terms of ωin. From there, one can get closed estimates on ωin.

Of course, this strategy is made more difficult when dealing with the x-dependent and nonlinear system
(2.6). In particular, the Fourier approach is no longer convenient, and we must use the characterization of
Gevrey regularity in the physical space, through the family {∂jxω}j∈N. In order to take advantage of the
boundary layer phenomenon, we shall introduce Gevrey norms with extra-weight (j + 1)r, see (3.1). The
boundary layer phenomenon will be reflected by the fact that multiplication by y or integration in y will
generate a gain in the exponent r, see Lemma 3.1. Such gain will make possible the control of boundary
layer quantities by ωin, cf. Lemma 3.4.

From there, the analysis will focus on weighted estimates for ωin, using the hydrostatic trick. As usual in
nonlinear problems, these estimates will be obtained conditionally to certain bounds (notably a lower bound
on ∂yω, to benefit from convexity). We will show that such bounds are preserved in small time, which will
require estimates on the time derivative ∂tω, as well as maximum principle arguments for ∂yω.
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3. Preliminaries

As usual in this kind of analysis, we will focus on a priori estimates. This means that from Section 3
to Section 6, we will assume implicitly that we already have a solution of (1.1) on [0, T ] with all necessary
smoothness, and we will collect properties and estimates about this solution. Only in Section 7 will we
describe the way of constructing solutions.

3.1. Norms and notation. Let γ ≥ 1, r ∈ R, τ > 0. We introduce a refined two-dimensional Gevrey
norm

‖f‖2γ,r,τ =
∑
j≥0

M2
j

∥∥∂jxf∥∥2

L2
x,y(T×[0,1])

, where Mj =
(j + 1)rτ j+1

(j!)γ
. (3.1)

Note that the L2 norm in space is only used on Ω = T × [0, 1], although the functions may be defined on
the half-space T× [0,∞). We note that if r′ ≥ r then ‖·‖γ,r′,τ ≥ ‖·‖γ,r,τ .

For functions which are independent of the y variable, we use the one-dimensional counterpart

|f |2γ,r,τ =
∑
j≥0

M2
j

∥∥∂jxf∥∥2

L2
x(T)

,

where Mj is defined as before. Similarly, if r′ ≥ r then |·|γ,r′,τ ≥ |·|γ,r,τ .

Let τ0, τ1 as in the theorem, and let τ0 such that τ0 > τ0 > τ1. Throughout the paper, the Gevrey-class
radius τ will be defined by

τ(t) = τ0 exp(−βt), (3.2)

where β ≥ 1, t ∈ [0, T ], and T always small enough so that τ(t) ≥ τ1. In particular τ̇(t) = −βτ(t).

We will use a . b to denote the existence of a constant C > 0, which may depend only on γ, τ0, τ1, and r,
such that a ≤ Cb. Similarly, will use a � b to denote the existence of a sufficiently large constant C > 0,
which may depend only on γ, τ0, τ1, and r, such that Ca ≤ b.

For any function f we use the notation

fj = Mj∂
j
xf (3.3)

where Mj is defined in (3.1) and depends on r, γ, and τ . With this notation we have

‖f‖2γ,r,τ =
∑
j≥0

‖fj‖2L2
x,y

and |f |2γ,r,τ =
∑
j≥0

‖fj‖2L2
x
.

3.2. A boundary layer lift. The boundary condition (2.6b) in the vorticity evolution (2.6) motivates
the introduction of a boundary layer lift for the the vorticity, which we describe next. Throughout the paper
we appeal to Gevrey estimates for the system

(∂t − ∂2
y)ω[ = 0 (3.4a)

(∂yω
[ + 2ω[)|y=0 = ∂xh|y=0 (3.4b)

ω[|t=0 = 0 (3.4c)

posed for t ∈ [0, T ], x ∈ T, and y ∈ R+. Here h is a placeholder for −
(∫ 1

0 u
2 dy −

∫
T
∫ 1

0 u
2 dydx

)
. Since

the boundary datum for ω[ is a pure x derivative (and this is the only nontrivial datum), we note that (3.4)
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immediately implies that
∫
T ω

[(x, y, t)dx = 0, for any y ≥ 0. We also define

u[(x, y) =

∫ y

+∞
ω[(x, z)dz (3.5)

v[(x, y) =

∫ +∞

y
∂xu

[(x, z)dz. (3.6)

LEMMA 3.1. Let r ∈ R, β ≥ 1 and T > 0 such that τ(t) ≥ τ1 for t ∈ [0, T ]. The boundary layer
vorticity ω[ obeys ∫ t

0

∥∥∥ω[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β3/2

∫ t

0
|h(s)|2γ,r+γ− 3

4
,τ(s) ds (3.7a)∫ t

0

∥∥∥y ω[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β5/2

∫ t

0
|h(s)|2γ,r+γ− 5

4
,τ(s) ds (3.7b)∫ t

0

∥∥∥∂yω[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β1/2

∫ t

0
|h(s)|2γ,r+γ− 1

4
,τ(s) ds (3.7c)∫ t

0

∥∥∥y∂yω[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β3/2

∫ t

0
|h(s)|2γ,r+γ− 3

4
,τ(s) ds (3.7d)∫ t

0

∣∣∣ω[(s)|y=1

∣∣∣2
γ,r,τ(s)

ds .
1

β20

∫ t

0
|h(s)|2γ,r+γ−10,τ(s) ds (3.7e)∫ t

0

∣∣∣∂yω[(s)|y=1

∣∣∣2
γ,r,τ(s)

ds .
1

β20

∫ t

0
|h(s)|2γ,r+γ−10,τ(s) ds, (3.7f)

the boundary layer velocity u[ obeys∫ t

0

∥∥∥u[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β5/2

∫ t

0
|h(s)|2γ,r+γ− 5

4
,τ(s) ds (3.8a)∫ t

0

∥∥∥yu[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β7/2

∫ t

0
|h(s)|2γ,r+γ− 7

4
,τ(s) ds, (3.8b)∫ t

0

∣∣∣u[(s)|y= 1
2

∣∣∣2
γ,r,τ(s)

ds .
1

β20

∫ t

0
|h(s)|2γ,r+γ−10,τ(s) ds, (3.8c)

and the boundary layer velocity v[ satisfies∫ t

0

∥∥∥v[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β7/2

∫ t

0
|h(s)|2γ,r+2γ− 7

4
,τ(s) ds (3.9a)∫ t

0

∣∣∣v[|y=0(s)
∣∣∣2
γ,r,τ(s)

ds .
1

β3

∫ t

0
|h(s)|2γ,r+2γ− 3

2
,τ(s) ds (3.9b)∫ t

0

∣∣∣v[|y=1(s)
∣∣∣2
γ,r,τ(s)

ds .
1

β20

∫ t

0
|h(s)|2γ,r+γ−10,τ(s) ds (3.9c)

for all t ∈ [0, T ].

PROOF OF LEMMA 3.1. In view of (3.2), (3.3), and (3.4), the function ω[j = Mj∂
j
xω[ obeys equations

(∂t + β(j + 1)− ∂2
y)ω[j = 0 (3.10a)

(∂yω
[
j + 2ω[j)|y=0 = ∂xhj |y=0 =

Mj

Mj+1
hj+1 (3.10b)

ω[j |t=0 = 0. (3.10c)
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For fixed x ∈ T we define fj(x, t) =
Mj

Mj+1
hj+1(x, t) for t ∈ [0, T ], and fj(x, t) = 0 for t ∈ R \ [0, T ].

Pointwise in x and y we take a Fourier transform in time and solve in L2(Rt × Tx × R+
y ) the equation

(∂t + β(j + 1)− ∂2
y)ω̄[j = 0

(∂yω̄
[
j + 2ω̄[j)|y=0 = fj .

The solution is obtained by taking the inverse Fourier transform in time (we let ζ denote the dual Fourier
variable to t) of the function

ˆ̄ω[j(ζ, x, y) =
f̂j(ζ, x)

2−
√
β(j + 1) + iζ

e−y
√
β(j+1)+iζ . (3.12)

We implicitly assume here that β > 4 so that for all j ∈ N, for all ζ with Im ζ ≤ 0,

|2−
√
β(j + 1) + iζ| ≥ |

√
β(j + 1) + iζ| − 2 ≥

√
β(j + 1)− Im ζ − 2 ≥

√
β − 2 > 0. (3.13)

We will make a crucial use of

LEMMA 3.2. The following two properties hold

• ω̄[j ≡ 0 for t < 0.
• ω̄[j ≡ ω[j for t ∈ [0, T ].

The proof is postponed to Appendix A. This lemma will allow us to use the explicit formula (3.12) to obtain
estimates on ω[j , starting with (3.7a)-(3.7f).

Let us detail the derivation of (3.7a). A simple calculation based on (3.12) yields

‖ ˆ̄ω[j‖2L2
ζ,x,y
≤ C

(β(j + 1))3/2
‖f̂j‖2L2

ζ,x

for a constant C independent of j (and obviously from T , which is only involved in the definition of fj). By
Plancherel formula in time:

‖ω̄[j‖2L2
t,x,y
≤ C

(β(j + 1))3/2
‖fj‖2L2

t,x
=

C

β(j + 1)3/2

(
Mj

Mj+1

)2 ∫ T

0
‖hj+1(s)‖2L2

x
ds (3.14)

This implies (by the second item of Lemma 3.2)∫ T

0
‖ω[j(s)‖2L2

x,y
ds ≤ C ′

β3/2
(j + 1)2γ− 3

2

∫ T

0
‖hj+1(s)‖2L2

x
ds

Multiplying by (j+ 1)2r and summing over j, we obtain the inequality (3.7a) in the special case t = T . For
the general case t ∈ (0, T ), the idea is to slightly modify ω[j . Namely, instead of extending Mj

Mj+1
hj+1 by

zero outside (0, T ), and then solving the heat equation with the extension fj as a boundary data, we extend
Mj

Mj+1
hj+1|(0,t) by zero outside (0, t). We then solve the heat equation with this modified boundary data f tj ,

which is zero outside (0, t), resulting in a new ω[,tj . Obviously, Lemma 3.2 and the previous calculation

remain true with T replaced by t, ω[j replaced by ω[,tj . This yields (3.7a). Inequalities (3.7b) to (3.8b) follow
very similar arguments, that we skip for brevity.

In the case of (3.9a), we need to take into account one more x-derivative. A simple calculation yields (with
obvious notations):

‖ˆ̄v[j‖2L2
ζ,x,y
≤ C

(β(j + 1))7/2
‖∂xf̂j‖2L2

ζ,x
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The extra factor of (β(j+1))2 at the denominator compared to (3.14) comes from taking two antiderivatives
in y, while f̂j is replaced by ∂xf̂j due to the extra x-derivative in (3.6). It follows that∫ T

0
‖v[j(s)‖2L2

x,y
ds ≤ C

β7/2
(j + 1)2γ− 7

2

∫ T

0
‖∂xhj+1(s)‖2L2

x
ds

and using that |∂xhj+1| . Mj+1

Mj+2
|hj+2| . (j + 2)γ |hj+2|, we get∫ T

0
‖v[j(s)‖2L2

x,y
ds ≤ C

β7/2
(j + 1)4γ− 7

2

∫ T

0
‖hj+2(s)‖2L2

x
ds.

Multiplying by (j + 1)2r and summing over j yields (3.9a) for t = T , while the case of an arbitrary time
t is treated with the modification explained above. The pointwise estimate (3.9b), taken at y = 0, follows
from the inequality

‖ˆ̄v[j |y=0‖2L2
ζ,x
≤ C

(β(j + 1))3
‖∂xf̂j‖2L2

ζ,x
.

The pointwise estimates (3.7f), (3.8c), and (3.9c), taken at y = 1 or y = 1/2 are much better: all boundary
layer terms taken at y = 1 contain an exponential factor e−

√
β(j+1)+iξ which allows to gain an arbitrary

number of powers of βj (which explains the arbitrary factor 1
β20 and the index r − γ − 10). �

LEMMA 3.3. Let r ∈ R, β ≥ 1 and T > 0 such that τ(t) ≥ τ1 for t ∈ [0, T ]. We have

sup
[0,t]

∥∥∥ω[(s)∥∥∥2

γ,r,τ(s)
.

1

β1/2

∫ t

0
|h(s)|2γ,r+γ− 1

4
,τ(s) ds (3.15a)

for all t ∈ [0, T ].

PROOF OF LEMMA 3.3. In order to establish the estimate (3.15a), we rely on the explicit formula
(3.12), which gives an L1 control of the Fourier transform:

‖ ˆ̄ω[j‖L1
ζ(L2

x,y) .
∫
R

1

|
√
β(j + 1) + iζ − 2|

(∫
R+

∫
T

∣∣∣e−2y
√
β(j+1)+iζ

∣∣∣ |f̂j(ζ, x)|2dxdy
)1/2

dζ

.
∫
R

1

|
√
β(j + 1) + iζ|3/4

(∫
T
|f̂j(ζ, x)|2dx

)1/2

dζ

.

(∫
R

1

|
√
β(j + 1) + iζ|3/2

dζ

)1/2(∫
R

∫
T
|f̂j(ζ, x)|2dxdζ

)1/2

.
1

(β(j + 1))1/4

(∫
R

∫
T
|f̂j(ζ, x)|2dxdζ

)1/2

.

This implies that

sup
t∈R
‖ω[j(t)‖L2

x,y
.

1

(β(j + 1))1/4

(∫
R

∫
T
|fj+1(t, x)|2dt

)1/2

Restricting the left-hand side to the supremum over (0, T ), we get

sup
t∈(0,T )

‖ω[j(t)‖2L2
x,y
.

1

(β(j + 1))−2γ+1/2

∫ T

0

∫
T
‖hj+1(t, x)|2dt.

Multiplying by (j + 1)2r and summing over j, we get (3.15a) for t = T . The general case of t ∈ (0, T ) is
treated as in the proof of Lemma 3.1. �
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3.3. The interior vorticity controls the boundary layer lift. So far, we have only focused on the
lower boundary layer lift, which is very small near y = 0. We introduce the notation

ωbl(x, y, t) = ω[(x, y, t)− ω[(x, 1− y, t) (3.16a)

ubl(x, y, t) = u[(x, y, t) + u[(x, 1− y, t) (3.16b)

vbl(x, y, t) = −
∫ y

0
∂xu

bl(x, z, t)dz (3.16c)

to denote the cumulative boundary layer profile, and

ωin(x, y, t) = ω(x, y, t)− ωbl(x, y, t) (3.17a)

uin(x, y, t) = u(x, y, t)− ubl(x, y, t) (3.17b)

vin(x, y, t) = v(x, y, t)− vbl(x, y, t) (3.17c)

to denote the interior vorticity, horizontal velocity component, and vertical velocity component. In view of
(3.3), (3.16) and (3.17) also define the objects ωblj , u

bl
j , v

bl
j in terms of the function h, and ωinj , u

in
j , v

in
j in

terms of h and ω.

LEMMA 3.4. Let γ ∈ [1, 5/4], r > 2γ + 2, M > 0. Assume ω = ∂yu is such that

sup
[0,T ]
‖ω(t)‖γ, r

4
,τ(t) ≤M (3.18)

and define

h(x, t) = −
∫ 1

0
(u(x, y, t))2 dy +

∫
T

∫ 1

0
(u(x, y, t))2 dydx.

With h as above, let ω[ be defined via (3.4), and let ωin be as defined in (3.17). Then there exists β∗ =
β∗(τ0, τ1, γ, r,M) such that: if β ≥ β∗, if T is such that τ(t) ≥ τ1 for t ∈ [0, T ], then∫ t

0
|h(s)|2γ,r,τ(s) ds .M

2

∫ t

0

∥∥ωin(s)
∥∥2

γ,r,τ(s)
ds

for any t ∈ [0, T ].

Note that with h defined as above we have ∂xh = −∂x
∫ 1

0 u
2 dy, so that the additional kinetic energy term

in h is not seen by ωbl. Combining Lemmas 3.1 and 3.3 and 3.4, we see that condition (3.18) implies a sharp
control of the Gevrey norm of the boundary layer profiles ωbl, ubl, and vbl, solely in terms of the Gevrey
norm of the interior vorticity ωin and of the constants M and β.

PROOF OF LEMMA 3.4. For j = 0 we have h0 = M0h = τh, and since
∫
T h(x, t) dx = 0, we may

apply the Poincaré inequality in the x variable:

‖h0‖L2
x
. ‖∂xh0‖L2

x
. ‖ h1‖L2

x
. (3.19)

Hence, it is enough to estimate hj for j ≥ 1. By the Leibniz rule we have

−hj(x, t) =

j∑
`=0

(
j

`

)
Mj

Mj−`M`

∫ 1

0
u`(x, y, t)uj−`(x, y, t)dy. (3.20)

We can without loss of generality estimate only the half-sum
∑

0≤`≤j/2, as the other half-sum can be put in
the same form through the change of index `′ = j − `.

First let us treat the case ` ≥ 1. The compatibility condition (1.2) yields
∫ 1

0 u`(x, y)dy = 0, which directly
implies that ∫ 1

0
u`(x, y)uinj−`(x, y)dy =

∫ 1

0
u`(x, y)

(
uinj−`(x, y)−

∫ 1

0
uinj−`(x, z)dz

)
dy.
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Using the 1D Gagliardo-Nirenberg inequality, the 1D Hardy inequality, the 1D Poincaré inequality, and the
fact that u`|y=0 = u`|y=1 = 0, we have that for ` ≥ 1:∥∥∥∥∫ 1

0
u`(x, y)uj−`(x, y)dy

∥∥∥∥
L2
x

≤
∥∥∥∥∫ 1

0
u`(x, y)uinj−`(x, y)dy

∥∥∥∥
L2
x

+

∥∥∥∥∫ 1

0
u`(x, y)ublj−`(x, y)dy

∥∥∥∥
L2
x

≤ ‖u`‖L∞x L2
y

∥∥∥∥uinj−` − ∫ 1

0
uinj−`dz

∥∥∥∥
L2
x,y

+

∥∥∥∥ u`
y(1− y)

∥∥∥∥
L∞x L

2
y

∥∥∥y(1− y)ublj−`

∥∥∥
L2
x,y

. ‖u`‖
1/2
L2
x,y
‖∂xu`‖

1/2
L2
x,y

∥∥ωinj−`∥∥L2
x,y

+ ‖ω`‖
1/2
L2
x,y
‖∂xω`‖

1/2
L2
x,y

∥∥∥y(1− y)ublj−`

∥∥∥
L2
x,y

.
M

1/2
`

M
1/2
`+1

‖ω`‖
1/2
L2
x,y
‖ω`+1‖

1/2
L2
x,y

(∥∥ωinj−`∥∥L2
x,y

+
∥∥∥y(1− y)ublj−`

∥∥∥
L2
x,y

)
.

For ` = 0, we estimate the L2
x norm of

∫ 1
0 u0 u

bl
j dy precisely as in the case ` ≥ 1. For the interior piece,

since j ≥ 1 we may use (1.2) and the Poincaré inequality in y to estimate∥∥∥∥∫ 1

0
u0(x, y)uinj (x, y)dy

∥∥∥∥
L2
x

. ‖u0‖L∞x L2
y

(∥∥∥∥uinj (x, y)−
∫ 1

0
uinj (x, z)dz

∥∥∥∥
L2
x,y

+

∥∥∥∥∫ 1

0
ublj (x, z)dz

∥∥∥∥
L2
x,y

)

.M

(∥∥ωinj ∥∥L2
x,y

+

∥∥∥∥∫ 1

0
ublj (x, z)dz

∥∥∥∥
L2
x

)
since ‖u0‖L∞x L2

y
. ‖ω0‖L∞x L2

y
. ‖ω0‖L2

x,y
+ ‖ω1‖L2

x,y
.M . At this point we note that∫ 1

0
ublj (x, y)dy = −

∫ 1/2

0
yωblj (x, y)dy + ublj (x, 1/2) +

∫ 1

1/2
(1− y)ωblj (x, y)dz

so that ∥∥∥∥∫ 1

0
ublj (x, y)dy

∥∥∥∥
L2
x

.
∥∥∥yω[j∥∥∥

L2
x,y

+
∥∥∥u[j(x, 1/2)

∥∥∥
L2
x

.

Returning to (3.20), and using that in this range of `, namely less than j/2, we have(
j

`

)
Mj

Mj−`M
1/2
` M

1/2
`+1

.
1

τ1/2

(
j

`

)1−γ 1

(`+ 1)r−γ/2
.

1

(`+ 1)r−γ/2
,

for j ≥ 1 we obtain

‖hj‖L2
x
.
dj/2e∑
`=1

(
j

`

)
Mj

Mj−`M
1/2
` M

1/2
`+1

‖ω`‖
1/2
L2
x,y
‖ω`+1‖

1/2
L2
x,y

(∥∥ωinj−`∥∥L2
x,y

+
∥∥∥y(1− y)ublj−`

∥∥∥
L2
x,y

)
+M

(∥∥ωinj ∥∥L2
x,y

+
∥∥∥yu[j∥∥∥

L2
x,y

+
∥∥∥yω[j∥∥∥

L2
x,y

+
∥∥∥u[j(x, 1/2)

∥∥∥
L2
x

)

.
dj/2e∑
`=1

(l + 1)−
3r
4 ‖ω`‖

1/2
L2
x,y
‖ω`+1‖

1/2
L2
x,y

(`+ 1)
r
4
− γ

2

(∥∥ωinj−`∥∥L2
x,y

+
∥∥∥yu[j−`∥∥∥

L2
x,y

)
+M

(∥∥ωinj ∥∥L2
x,y

+
∥∥∥yu[j∥∥∥

L2
x,y

+
∥∥∥yω[j∥∥∥

L2
x,y

+
∥∥∥u[j(x, 1/2)

∥∥∥
L2
x

)
. (3.21)
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From (3.19) and (3.21), using the discrete Hölder and Young inequalities, inequalities (3.8b), (3.8c), (3.7b)
and assumption (3.18) we obtain from the above that∫ t

0
|h(s)|2γ,r,τ(s) ds =

∫ t

0

∑
j≥0

‖hj(s)‖2L2
x
ds

. sup
[0,t]

∑
j≥0

(j + 1)−
3r
4 (‖ωj‖L2

x,y
+ ‖ωj+1‖L2

x,y
)

(j + 1)
r
4
− γ

2

2 ∫ t

0

(∑
j≥0

∥∥ωinj ∥∥2

L2
x,y

+
∑
j≥0

∥∥∥yu[j∥∥∥2

L2
x,y

)
ds

+M2

∫ t

0

(∥∥ωin(s)
∥∥2

γ,r,τ(s)
+
∥∥∥yu[(s)∥∥∥2

γ,r,τ(s)
+
∥∥∥yω[(s)∥∥∥2

γ,r,τ(s)
+
∣∣∣u[(s)|y=1/2

∣∣∣2
γ,r,τ(s)

)
ds

.M2

(∫ t

0

∥∥ωin(s)
∥∥2

γ,r,τ(s)
ds+

∫ t

0

∥∥∥yu[(s)∥∥∥2

γ,r,τ(s)
+
∥∥∥yω[∥∥∥2

γ,r,τ(s)
+
∣∣∣u[|y=1/2

∣∣∣2
γ,r,τ(s)

ds

)
.M2

(∫ t

0

∥∥ωin(s)
∥∥2

γ,r,τ(s)
ds+

1

β5/2

∫ t

0
|h(s)|2γ,r+γ− 5

4
,τ(s) ds

)
.

Here we have used that r/4− γ/2 > 1/2. The proof is completed using that M2β−5/2 � 1, which follows
once β∗ is taken sufficiently large, and the fact that γ ≤ 5/4, which allows us to absorb the second term in
the right side of the above into the left side. �

4. Estimates involving ωin

From the vorticity evolution (2.6), and the definition of ωbl (3.16) (which in particular obeys
∫
T ω

bl(x, y, t)dx =
0 for any y ≥ 0), we obtain that the equation obeyed by the interior vorticity is

∂tω
in − ∂2

yω
in + u∂xω

in + v∂yω
in = −u∂xωbl − v∂yωbl (4.1a)

∂yω
in|y=0,1 = ω̃in|y=1 − ω̃in|y=0 + 2ω[|y=1 − ∂yω[|y=1. (4.1b)

ωin(0) = ω0 (4.1c)

The initial condition for ωin is obtained from the fact that ωbl(0) = 0, which holds in view of (3.4c). The
main a priori estimate for ωin is provided by the following Proposition.

PROPOSITION 4.1. Let M, δ0, γ ∈ [1, 9/8] be given, and let β∗ be as in Lemma 3.4. There exists
r0 = r0(γ) such that for all r ≥ r0, one can find β0 = β0(M, δ0, τ0, τ1, r, γ) > max(β∗, 4) satisfying: if
β ≥ β0 and T ≤ 1 is small enough so that τ(t) ≥ τ1 for all t ∈ [0, T ], under the assumptions

sup
t∈[0,T ]

‖ω(t)‖γ, 3r
4
,τ(t) + sup

t∈[0,T ]
‖∂yω(t)‖γ, r

2
,τ(t) ≤M (4.2)

and

δ0 ≤ ∂yω ≤
1

δ0
, (4.3)

sup
t∈[0,T ]

∥∥∂2
yω(t)

∥∥
L∞x L

2
y
≤M, (4.4)

we have that

sup
s∈[0,t]

∥∥ωin(s)
∥∥2

γ,r,τ(s)
+

∫ t

0

∥∥∂yωin(s)
∥∥2

γ,r,τ(s)
ds+ β

∫ t

0

∥∥ωin(s)
∥∥2

γ,r+ 1
2
,τ(s)

ds ≤ 1

δ2
0

‖ω(0)‖2γ,r,τ0 (4.5)

holds for all t ∈ [0, T ]. Moreover, as a consequence we obtain

sup
s∈[0,t]

‖ω(s)‖2γ,r−γ+ 3
4
,τ(s) +

∫ t

0
‖∂yω(s)‖2γ,r−γ+ 3

4
,τ(s) ds+ β

∫ t

0
‖ω(s)‖2γ,r−γ+ 5

4
,τ(s) ds ≤

4

δ2
0

‖ω(0)‖2γ,r,τ0
(4.6)
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for all t ∈ [0, T ].

PROOF OF PROPOSITION 4.1. Using the convention (3.3), from (4.1) we obtain

(∂t + β(j + 1)− ∂2
y)ωinj + (u∂x + v∂y)ω

in
j + vinj ∂yω

= −(u∂x + v∂y)ω
bl
j − vblj ∂yω −Mj [∂

j
x, u∂x + v∂y]ω + vj∂yω (4.7a)

∂yω
in
j |y=0,1 = ω̃inj |y=1 − ω̃inj |y=0 + 2ω[j |y=1 − ∂yω[j |y=1. (4.7b)

Note that as soon as j ≥ 1, we may replace ω̃inj |y=0,1 = ωinj |y=0,1 in (4.7b). We perform a “hydrostatic
energy estimate” on (4.7), which is permissible in view of (4.3). That is, we multiply (4.7a) with ωinj /∂yω
and integrate over Ω = T× [0, 1]. We notably use the “hydrostatic trick”, which in this case gives∫

Ω
vinj ω

in
j dxdy = −

∫
Ω

(∫ y

0
∂xu

in
j

)
∂yu

in
j dxdy

=

∫
Ω
∂xu

in
j u

in
j dxdy −

∫
T

(∫ 1

0
∂xu

in
j

)
uinj |y=1dx

= −
∫
T

(∫ 1

0
∂xu

bl
j (x, y)dy

)
ublj (x, 1)dx.

taking into account that
∫ 1

0 ∂xuj(x, y)dy = 0 and that uj |y=1 = 0. Thus, we obtain

1

2

d

dt

∥∥∥∥∥ ωinj√
∂yω

∥∥∥∥∥
2

L2

+ β(j + 1)

∥∥∥∥∥ ωinj√
∂yω

∥∥∥∥∥
2

L2

+

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

=

∫
T

(
∂yω

in
j ω

in
j

∂yω

∣∣∣
y=1
−
∂yω

in
j ω

in
j

∂yω

∣∣∣
y=0

)
dx+

∫
T

(∫ 1

0
∂xu

bl
j (x, y)dy

)
ublj (x, 1)dx

+

∫
Ω

∂yω
in
j ω

in
j

∂yω

∂2
yω

∂yω
dxdy − 1

2

∫
Ω

(ωinj )2

∂yω

(u∂x + v∂y)∂yω

∂yω
dxdy

−
∫

Ω
u∂xω

bl
j

ωinj
∂yω

dxdy −
∫

Ω
v∂yω

bl
j

ωinj
∂yω

dxdy −
∫

Ω
vblj ω

in
j dxdy

−
j∑

k=1

Mj

MkMj−k+1

(
j

k

)∫
Ω
ukωj−k+1

ωinj
∂yω

dxdy −
j−1∑
k=1

Mj

MkMj−k

(
j

k

)∫
Ω
vk∂yωj−k

ωinj
∂yω

dxdy

=: T1j + T2j + T3j − T4j − T5j − T6j − T7j − T8j − T9j . (4.8)

Summing over j, and integrating on [0, t), with t ≤ T , we obtain that

∥∥ωin(t)
∥∥2

γ,r,τ(t)
+ 2β

∫ t

0

∥∥ωin∥∥2

γ,r+1/2,τ
+

∫ t

0

∥∥∂yωin∥∥2

γ,r,τ

≤ 1

δ2
0

∥∥ωin0 ∥∥2

γ,r,τ0
+

1

δ0

∫ t

0

∑
j≥0

|T1j | −
1

2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

+ |T2j |+

|T3j |+ |T4j | −
1

2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

 ds

+
1

δ0

∫ t

0

∑
j≥0

|T5j |+ |T6j |+ |T7j |+ |T8j |+ |T9j |ds. (4.9)

The rest of the proof is dedicated to estimating the nine terms on the right side of (4.9).
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The T1j bound. From (2.6b) and (4.7b) we obtain that

T1j =

∫
T

∂yω
in
j |y=0,1(ωinj |y=1 − ωinj |y=0)

∂yω|y=0,1
dx

=

∫
T

(ω̃inj |y=1 − ω̃inj |y=0)(ωinj |y=1 − ωinj |y=0)

∂yω|y=0,1
dx+

∫
T

(2ω[j |y=1 − ∂yω[j |y=1)(ωinj |y=1 − ωinj |y=0)

∂yω|y=0,1
dx

= T11j + T12j .

From the Gagliardo-Nirenberg inequality ‖f‖L∞(0,1) ≤ ‖f‖L2(0,1) + 2 ‖f‖1/2
L2(0,1)

‖∂yf‖1/2L2(0,1)
, we have

|T11j | .
1

δ0

(∥∥ωinj ∥∥2

L2
x,y

+
∥∥ωinj ∥∥L2

x,y

∥∥∂yωinj ∥∥L2
x,y

)
.

Using Cauchy-Schwartz, we similarly obtain

|T12j | . |T11j |+
1

δ0

(∥∥∥ω[j |y=1

∥∥∥2

L2
x

+
∥∥∥∂yω[j |y=1

∥∥∥2

L2
x

)
.

Summing up the above two estimates, and summing over j ≥ 0 we obtain that

∑
j≥0

|T1j | −
1

2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

 . 1

δ2
0

∥∥ωin∥∥2

γ,r,τ
+

1

δ0

(∣∣∣ω[j |y=1

∣∣∣2
γ,r,τ

+
∣∣∣∂yω[j |y=1

∣∣∣2
γ,r,τ

)
.

Using (3.7e)–(3.7f), and combining the resulting bound with Lemma 3.4 (which may be used due to as-
sumption (4.2)), we arrive at∫ t

0

∑
j≥0

|T1j | −
1

2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

 . 1

δ2
0

∫ t

0

∥∥ωin∥∥2

γ,r,τ
+

1

δ0β20

∫ t

0
|h|2γ,r+γ−10,τ

.
1

δ2
0

∫ t

0

∥∥ωin∥∥2

γ,r,τ
(4.10)

where we have used that δ0M
2 ≤ β20.

The T2j bound. From (3.16) we obtain that

T2j = 2

∫
T

(∫ 1

0
∂xu

[
j(x, y)dy

)(
u[j(x, 0) + u[j(x, 1)

)
dx

= 2

∫
T

(
v[j(x, 0)− v[j(x, 1)

)(
u[j(x, 0) + u[j(x, 1)

)
dx

and thus, also appealing to Gagliardo-Nirenberg, we obtain

|T2j | ≤ 2

(∥∥∥v[j |y=0

∥∥∥
L2
x

+
∥∥∥v[j |y=1

∥∥∥
L2
x

)(∥∥∥u[j |y=0

∥∥∥
L2
x

+
∥∥∥u[j |y=1

∥∥∥
L2
x

)

.

∥∥∥v[j |y=0

∥∥∥
L2
x

+
∥∥∥v[j |y=1

∥∥∥
L2
x

(j + 1)
3
2
−γ

(
(j + 1)

3
2
−γ
∥∥∥u[j∥∥∥

L2
x,y

+ (j + 1)
7
8
− γ

2

∥∥∥u[j∥∥∥1/2

L2
x,y

(j + 1)
5
8
− γ

2

∥∥∥ω[j∥∥∥1/2

L2
x,y

)
,

and summing over j we arrive at∑
j≥0

|T2j | .
(∣∣∣v[|y=0

∣∣∣
γ,r+γ− 3

2
,τ

+
∣∣∣v[j |y=1

∣∣∣
γ,r+γ− 3

2
,τ

)(∥∥∥u[∥∥∥
γ,r+ 3

2
−γ,τ

+
∥∥∥u[∥∥∥1/2

γ,r+ 7
4
−γ,τ

∥∥∥ω[∥∥∥1/2

γ,r+ 5
4
−γ,τ

)
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Upon integrating on [0, t), the above terms are bounded using (3.7a), (3.8a), (3.9b), and (3.9c), after which
Lemma 3.4 is used to yield∫ t

0

∑
j≥0

|T2j | .
1

β5/2

(∫ t

0
|h|2γ,r+3γ−3,τ

)1/2
((∫ t

0
|h|2γ,r+ 1

4
,τ

)1/2

+

(∫ t

0
|h|2γ,r+ 1

2
,τ

)1/2
)

.
M2

β5/2

(∫ t

0

∥∥ωin∥∥2

γ,r+3γ−3,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

For the last inequality, we have applied Lemma 3.4 to both factors at the right-hand side, which is legitimate
under the assumptions

r + min{3γ − 3,
1

2
} ≥ 2γ + 2, sup

[0,T ]
‖ω(t)‖γ, 1

4(r+max{3γ−3, 1
2
}),τ(t) ≤M.

Both assumptions are satisfied for r > r(γ) large enough, the second one being deduced from (4.2). Thus
we have proven ∫ t

0

∑
j≥0

|T2j | .
M2

β5/2

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ
. (4.11)

The T3j and T4j bounds. These are the only terms for which assumption (4.4) is used. In view of (4.3)–(4.4)
and the Gagliardo-Nirenberg inequality in y, we immediately obtain

∑
j≥0

|T3j | −
1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
∑
j≥0

 M

δ
3/2
0

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
L2
xL

2
y

∥∥ωinj ∥∥L2
xL
∞
y
− 1

8

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
∑
j≥0

 M

δ
3/2
0

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
L2

∥∥ωinj ∥∥L2 +
1

δ
1/4
0

∥∥ωinj ∥∥1/2

L2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
1/2

L2

− 1

8

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
M4

δ7
0

∥∥ωin∥∥2

γ,r,τ

and using (4.2) combined with (4.3)–(4.4) we also obtain

∑
j≥0

|T4j | −
1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
∑
j≥0

M2

δ2
0

∥∥ωinj ∥∥L2
xL

2
y

∥∥ωinj ∥∥L2
xL
∞
y
− 1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
∑
j≥0

M2

δ2
0

∥∥ωinj ∥∥L2

∥∥ωinj ∥∥L2 +
1

δ
1/4
0

∥∥ωinj ∥∥1/2

L2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
1/2

L2

− 1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
M8/3

δ3
0

∥∥ωin∥∥2

γ,r,τ
.
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Here we have also used the second term on the left side of (4.2), in order to estimate ‖∂x∂yω‖L∞x L2
y
. Thus,

∫ t

0

∑
j≥0

|T3j |+ |T4j | −
1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

 .M4

δ7
0

∫ t

0

∥∥ωin∥∥2

γ,r,τ
. (4.12)

The T5j bound. As it turns out, this term creates the most stringent assumption on γ, namely that γ ≤ 9/8.
Since u|y=0,1 = 0, using (4.2) and (4.4), we have

|T5j | ≤
1

δ0

∥∥∥∥ u

y(1− y)

∥∥∥∥
L∞

∥∥∥y(1− y)∂xω
bl
j

∥∥∥
L2

∥∥ωinj ∥∥L2

.
‖ω‖L∞
δ0

Mj

Mj+1(j + 1)1/2

∥∥∥yω[j+1

∥∥∥
L2

(j + 1)1/2
∥∥ωinj ∥∥L2

and thus, upon summing over j and integrating on [0, t] we arrive at∫ t

0

∑
j≥0

|T5j | .
M

δ0

(∫ t

0

∥∥∥yω[∥∥∥2

γ,r+γ− 1
2
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.

We now appeal to (3.7b) and to Lemma 3.4, which is again legitimate for r > r(γ) large enough. We obtain∫ t

0

∑
j≥0

|T5j | .
M

δ0β5/4

(∫ t

0
|h|2γ,r+2γ− 7

4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M2

δ0β5/4

(∫ t

0

∥∥ωin∥∥2

γ,r+2γ− 7
4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M2

δ0β5/4

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ
. (4.13)

In the last inequality we have used that 2γ − 7/4 ≤ 1/2, which holds since γ ≤ 9/8.

The T6j bound. Similarly, using that v|y=0,1 = 0, we obtain

|T6j | ≤
1

δ0

∥∥∥∥ v

y(1− y)

∥∥∥∥
L∞

∥∥∥y(1− y)∂yω
bl
j

∥∥∥
L2

∥∥ωinj ∥∥L2

.
‖∂xu‖L∞

δ0

∥∥∥y∂yω[j∥∥∥
L2

∥∥ωinj ∥∥L2

.
M

δ0

∥∥∥y∂yω[j∥∥∥
L2

(j + 1)1/2

(
(j + 1)1/2

∥∥ωinj ∥∥L2

)
,

so that ∫ t

0

∑
j≥0

|T6j | .
M

δ0

(∫ t

0

∥∥∥y∂yω[∥∥∥2

γ,r− 1
2
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

Using (3.7d), and then Lemma 3.4 (applicable for r > r(γ) large enough, by (4.2)), we obtain∫ t

0

∑
j≥0

|T6j | .
M

δ0β3/4

(∫ t

0
|h|2γ,r+γ− 7

4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M2

δ0β3/4

(∫ t

0

∥∥ωin∥∥2

γ,r,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

(4.14)

since γ ≤ 7/4.
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The T7j bound. For T7j we directly estimate∑
j≥0

|T7j | ≤
∑
j≥0

1

δ0
(j + 1)−1/2

∥∥∥v[j∥∥∥
L2

(j + 1)1/2
∥∥ωinj ∥∥L2 .

1

δ0

∥∥∥v[∥∥∥
γ,r− 1

2
,τ

∥∥ωin∥∥
γ,r+ 1

2
,τ
.

Integrating in time, appealing to (3.9a), and still using Lemma 3.4 we obtain∫ t

0

∑
j≥0

|T7j | .
1

δ0β7/4

(∫ t

0
|h|2γ,r+2γ− 9

4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M

δ0β7/4

(∫ t

0

∥∥ωin∥∥2

γ,r+2γ− 9
4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M

δ0β7/4

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

(4.15)

as 2γ − 9/4 ≤ 1/2.

The T8j bound. We note that

Mj

MkMj−k+1

(
j

k

)
.

(
j

k

)1−γ (j + 1)r

(k + 1)r(j − k + 1)r−γ
,

and for 1 ≤ k ≤ [j/2] it is convenient to use
(
j
k

)
≥ (j − k + 1)/k. We obtain

|T8j | .
[j/2]∑
k=1

j1/2(j − k + 1)1/2

(k + 1)r−γ+1

∣∣∣∣∣
∫

Ω
ukωj−k+1

ωinj
∂yω

∣∣∣∣∣+

j∑
k=[j/2]+1

1

(j − k + 1)r−γ

∣∣∣∣∣
∫

Ω
ukωj−k+1

ωinj
∂yω

∣∣∣∣∣
=: T8j,low + T8j,high.

In order to estimate T8j,low, we split ωj−k+1 = ωinj−k+1 + ωblj−k+1. First, using the Gagliardo-Nirenberg
inequality on Ω and the Poincaré inequality in x (since k ≥ 1) we may bound

‖ωk‖L∞ . ‖ωk‖L2 + ‖∂xωk‖L2 + (‖ωk‖
1/2
L2 + ‖∂xωk‖

1/2
L2 )(‖∂yωk‖

1/2
L2 + ‖∂x∂yωk‖

1/2
L2 )

. ‖∂xωk‖L2 + ‖∂xωk‖
1/2
L2 ‖∂x∂yωk‖

1/2
L2

. kγ
(
‖ωk+1‖L2 + ‖∂yωk+1‖L2

)
(4.16)

from which we conclude that we estimate∣∣∣∣∣
∫

Ω
ukω

bl
j−k+1

ωinj
∂yω

dxdy

∣∣∣∣∣ . 1

δ0

∥∥∥∥ uk
y(1− y)

∥∥∥∥
L∞

∥∥∥y(1− y)ωblj−k+1

∥∥∥
L2

∥∥ωinj ∥∥L2

.
kγ

δ0

(
‖ωk+1‖L2 + ‖∂yωk+1‖L2

) ∥∥∥yω[j−k+1

∥∥∥
L2

∥∥ωinj ∥∥L2

.
kγ+r/2

δ0

‖ωk+1‖L2 + ‖∂yωk+1‖L2

kr/2

∥∥∥yω[j−k+1

∥∥∥
L2

∥∥ωinj ∥∥L2 .

Similarly, ∣∣∣∣∣
∫

Ω
ukω

in
j−k+1

ωinj
∂yω

dxdy

∣∣∣∣∣ . kγ+r/2

δ0

‖ωk+1‖L2 + ‖∂yωk+1‖L2

kr/2

∥∥ωinj−k+1

∥∥
L2

∥∥ωinj ∥∥L2
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so that from the discrete Young and Hölder inequalities, we obtain∑
j≥0

T8j,low

.
1

δ0

∑
j 6=0

jγ+r/2

(j + 1)r−γ+1

‖ωj+1‖L2 + ‖∂yωj+1‖L2

jr/2

 (∥∥∥y ω[∥∥∥
γ,r+ 1

2
,τ

+
∥∥ωin∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ

.
1

δ0

(
‖ω‖γ, r

2
+ ‖∂yω‖γ, r

2

)(∥∥∥y ω[∥∥∥
γ,r+ 1

2
,τ

+
∥∥ωin∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ

.
M

δ0

(∥∥∥y ω[∥∥∥
γ,r+ 1

2
,τ

+
∥∥ωin∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ
. (4.17)

For the second inequality, we have assumed that r/2−2γ+1 > 1/2 (so that jγ+r/2

(j+1)r−γ+1 is square summable),
and for the third inequality we have appealed to (4.2).

In order to bound T8j,high, we use that uk|y=0,1 = 0, and the 1D Poincaré inequality to obtain∣∣∣∣∣
∫

Ω
ukωj−k+1

ωinj
∂yω

dxdy

∣∣∣∣∣ . 1

δ0
‖uk‖L2

xL
∞
y
‖ωj−k+1‖L∞x L2

y

∥∥ωinj ∥∥L2

.
(j − k + 1)γ

δ0
‖ωk‖L2 ‖ωj−k+2‖L2

∥∥ωinj ∥∥L2

.
(j − k + 1)γ

δ0

∥∥ωink ∥∥L2 +
∥∥ωblk ∥∥L2

(k + 1)1/2
‖ωj−k+2‖L2 (j + 1)1/2

∥∥ωinj ∥∥L2 .

We again rely on discrete Young and Hölder inequalities, assume that r > 8
3γ + 2

3 (so that (j + 1)2γ−3r/4 is
square summable), and use (4.2) to arrive at∑

j≥0

T8j,high .
1

δ0

∑
j

(j + 1)2γ−3r/4 ‖ωj‖L2

(j + 1)r/4

 ∥∥ωin∥∥
γ,r+ 1

2
,τ

(∥∥ωin∥∥
γ,r,τ

+
∥∥∥ω[∥∥∥

γ,r− 1
2
,τ

)

.
M

δ0

∥∥ωin∥∥
γ,r+ 1

2
,τ

(∥∥ωin∥∥
γ,r− 1

2
,τ

+
∥∥∥ω[∥∥∥

γ,r− 1
2
,τ

)
. (4.18)

Combining (4.17), (4.18), integrating in time, using (3.7a), (3.7b), and Lemma 3.4 (which is applicable by
assumption (4.2)), we arrive at∫ t

0

∑
j≥0

T8j .
M

δ0

((∫ t

0

∥∥∥y ω[∥∥∥2

γ,r+ 1
2
,τ

)1/2

+

(∫ t

0

∥∥∥ω[∥∥∥2

γ,r− 1
2
,τ

)1/2
)(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

+
M

δ0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.
M

δ0β3/4

((∫ t

0
|h|2γ,r+γ− 3

4
,τ

)1/2

+

(∫ t

0
|h|2γ,r+γ− 5

4
,τ

)1/2
)(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

+
M

δ0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.
M2

δ0β3/4

(∫ t

0

∥∥ωin∥∥2

γ,r+γ− 3
4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

+
M

δ0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.
M2

δ0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

(4.19)
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since γ ≤ 5/4.

The T9j bound. In order to estimate T9j we note that for 1 ≤ k ≤ j − 1 we have

Mj

MkMj−k

(
j

k

)
.

(
j

k

)1−γ (j + 1)r

(k + 1)r(j − k + 1)r
.

(
j

min{k, j − k}

)1−γ 1

(min{k, j − k})r

and similarly to T8j we decompose

T9j .
[j/2]∑
k=1

1

kr

∣∣∣∣∣
∫

Ω
vk∂yωj−k

ωinj
∂yω

∣∣∣∣∣+

j−1∑
k=[j/2]+1

1

(j − k)r−γ+1jγ−1

∣∣∣∣∣
∫

Ω
vk∂yωj−k

ωinj
∂yω

∣∣∣∣∣
=: T9j,low + T9j,high. (4.20)

First we treat the case k ≤ j/2. Using the Poincaré inequality in y (which is allowed since uk+1|y=0,1 = 0)
we obtain∣∣∣∣∣

∫
Ω
vk∂yωj−k

ωinj
∂yω

dxdy

∣∣∣∣∣ . 1

δ0

∥∥∥∥ vk
y(1− y)

∥∥∥∥
L∞
‖y(1− y)∂yωj−k‖L2

∥∥ωinj ∥∥L2

.
1

δ0
‖∂xuk‖L∞

(∥∥∂yωinj−k∥∥L2 +
∥∥∥y∂yω[j−k∥∥∥

L2

)∥∥ωinj ∥∥L2

.
kγ

δ0
‖ωk+1‖L∞x L2

y

(∥∥∂yωinj−k∥∥L2 +
∥∥∥y∂yω[j−k∥∥∥

L2

)∥∥ωinj ∥∥L2

Furthermore, using the 1D Gagliardo-Nirenberg and Poincaré inequalities in x, for 1 ≤ k ≤ [j/2] we arrive
at ∣∣∣∣∣

∫
Ω
vk∂yωj−k

ωinj
∂yω

dxdy

∣∣∣∣∣ . k2γ+r/4

δ0

‖ωk+2‖L2

kr/4

(∥∥∂yωinj−k∥∥L2 +
∥∥∥y∂yω[j−k∥∥∥

L2

)∥∥ωinj ∥∥L2 .

Summing over j, assumng that r > 8
3γ + 2

3 , and appealing to (4.2) we obtain

∑
j≥0

|T9j,low| .
‖ω‖γ, 3r

4
,τ

δ0

(∥∥∂yωin∥∥γ,r,τ +
∥∥∥y∂yω[∥∥∥

γ,r,τ

)∥∥ωin∥∥
γ,r,τ

.
M

δ0

(∥∥∂yωin∥∥γ,r,τ +
∥∥∥y∂yω[∥∥∥

γ,r,τ

)∥∥ωin∥∥
γ,r,τ

. (4.21)

For the case k ≥ j/2, we first note that the compatibility condition (1.2) allows us to write∫
T

∫ 1

0
u2
k+1dydx =

∫
T

∫ 1

0
uk+1u

bl
k+1dydx+

∫
T

∫ 1

0
uk+1

(
uink+1 −

∫ 1

0
uink+1dz

)
dydx.

By Cauchy-Schwartz and the Poincaré inequality in y (for zero mean functions) we conclude

‖uk+1‖2L2 .
∥∥∥ublk+1

∥∥∥2

L2
+
∥∥ωink+1

∥∥2

L2 .
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Then we similarly estimate∣∣∣∣∣
∫

Ω
vk∂yωj−k

ωinj
∂yω

dxdy

∣∣∣∣∣
.

1

δ0
‖vk‖L2

xL
∞
y
‖∂yωj−k‖L∞x L2

y

∥∥ωinj ∥∥L2

.
1

δ0
‖∂xuk‖L2 ‖∂x∂yωj−k‖L2

∥∥ωinj ∥∥L2

.
(j − k)γjγ−1

δ0
k1/2 ‖uk+1‖L2 ‖∂yωj−k+1‖L2

(
j1/2

∥∥ωinj ∥∥L2

)
.

(j − k)γ+r/2jγ−1

δ0

(
k1/2

∥∥ωink+1

∥∥
L2 + k1/2

∥∥∥u[k+1

∥∥∥
L2

) ‖∂yωj−k+1‖L2

(j − k)r/2

(
j1/2

∥∥ωinj ∥∥L2

)
.

Summing over j, noting that the powers of j precisely cancel, we find for r > r(γ) large enough:∑
j≥0

|T9j,high| .
‖∂yω‖γ, r

2

δ0

(∥∥ωin∥∥
γ,r+ 1

2
,τ

+
∥∥∥u[∥∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ

.
M

δ0

(∥∥ωin∥∥
γ,r+ 1

2
,τ

+
∥∥∥u[∥∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ
. (4.22)

Integrating in time the sum of (4.21) and (4.22), appealing to (3.7a) and (3.7d), and using Lemma 3.4 (which
is applicable for r > r(γ) large enough, by assumption (4.2)), we obtain∫ t

0

∑
j≥0

|T9j | −
1

2

∫ t

0

∥∥∂yωin∥∥2

γ,r,τ
.
∫ t

0

(∥∥∥y∂yω[∥∥∥2

γ,r,τ
+
∥∥∥u[∥∥∥2

γ,r+ 1
2
,τ

)
+
M2

δ2
0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.
1

β3/2

∫ t

0
|h|2γ,r+γ− 3

4
,τ +

M2

δ2
0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.

(
M2

β3/2
+
M2

δ2
0

)∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

(4.23)

since γ − 3/4 ≤ 1
2 .

Conclusion of the proof. Inserting the bounds (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.19), and (4.23)
into estimate (4.9), we obtain∥∥ωin(t)

∥∥2

γ,r,τ(t)
+ 2β

∫ t

0

∥∥ωin∥∥2

γ,r+1/2,τ
ds+

∫ t

0

∥∥∂yωin∥∥2

γ,r,τ
ds− 1

δ2
0

∥∥ωin0 ∥∥2

γ,r,τ0

.

(
1

δ3
0

+
M4

δ8
0

+
M

δ0β3/2

)∫ t

0

∥∥ωin∥∥2

γ,r,τ
ds

+

(
M2

δ0β5/2
+

M2

δ2
0β

5/4
+

M2

δ0β3/2
+

M

δ2
0β

7/4
+

M2

δ2
0β

3/4
+
M2

δ3
0

)∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ
ds. (4.24)

Note that
∥∥ωin∥∥2

γ,r,τ
≤
∥∥ωin∥∥2

γ,r+ 1
2
,τ

, so that we may combine the last two terms on the right side of (4.24).
Choosing β0 large enough, depending onM ≥ 1, δ0 ≤ 1, and the implicit constant in (4.24), for any β ≥ β0

we obtain ∥∥ωin(t)
∥∥2

γ,r,τ(t)
+ β

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ
ds+

∫ t

0

∥∥∂yωin∥∥2

γ,r,τ
ds ≤ 1

δ2
0

∥∥ωin0 ∥∥2

γ,r,τ0
.

The estimate (4.5) now follows directly from the above estimate.
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Finally, in order to prove (4.6), we appeal to (3.15a), Lemma 3.4, and estimate (4.5), to obtain

sup
[0,t]

∥∥∥ω[∥∥∥2

γ,r−γ+ 3
4
,τ(s)
.

1

β1/2

∫ t

0
|h(s)|2γ,r+ 1

2
,τ(s) ds

.
M2

β1/2

∫ t

0

∥∥ωin(s)
∥∥2

γ,r+ 1
2
,τ(s)

ds ≤ 1

2δ2
0

∥∥ωin(0)
∥∥2

γ,r,τ0
(4.25)

upon ensuring that β is sufficiently large, depending onM, δ0. Moreover, from (3.7c) and (3.7a) we similarly
obtain ∫ t

0

∥∥∥∂yω[(s)∥∥∥2

γ,r−γ+ 3
4
,τ(s)

ds+ β

∫ t

0

∥∥∥ω[(s)∥∥∥2

γ,r−γ+ 5
4
,τ(s)

ds .
1

β1/2

∫ t

0
|h(s)|2γ,r+ 1

2
,τ(s) ds

≤ 1

2δ2
0

∥∥ωin(0)
∥∥2

γ,r,τ0
(4.26)

as above. Summing (4.25)–(4.26) with (4.5) (and using (a+ b)2 ≤ 2a2 + 2b2) we obtain

sup
s∈[0,t]

‖ω(s)‖2γ,r−γ+ 3
4
,τ(s) +

∫ t

0
‖∂yω(s)‖2γ,r−γ+ 3

4
,τ(s) ds+ β

∫ t

0
‖ω(s)‖2γ,r−γ+ 5

4
,τ(s) ds

≤ 4

δ2
0

∥∥ωin(0)
∥∥2

γ,r,τ0

by using that γ ≤ 5/4. This concludes the proof of (4.6). �

As an easy consequence of the estimate (4.6), we state:

COROLLARY 4.2. Let M, δ0 and γ ∈ [1, 9/8] be given. For r ≥ r0(γ), β ≥ β0 and T such that
τ(t) ≥ τ1 for all t ∈ [0, T ], if

4

δ2
0

‖ω0‖γ,r,τ0 ≤
M

2
(4.27)

then

sup
t∈[0,T ]

‖ω(t)‖γ, 3r
4
,τ(t) ≤

M

2
.

5. Estimates for ∂tω

In order to emphasize the linear nature of the estimates in this section we denote ∂tω = ω̇. The equation
obeyed by ω̇ is

∂tω̇ − ∂2
y ω̇ + (u∂x + v∂y)ω̇ + (u̇∂x + v̇∂y)ω = 0 (5.1a)

∂yω̇|y=0,1 = (˜̇ω|y=1 − ˜̇ω|y=0)− ∂x
(

2

∫ 1

0
u u̇ dy

)
. (5.1b)

PROPOSITION 5.1. Let M, δ0 and γ ∈ [1, 9/8] be given. There exists r1 = r1(γ) ≥ r0 such that: for
all r, r′ satisfying r′ ≥ r1, 3r

4 − r
′ ≥ r1, one can find β1 = β1(M, δ0, τ0, τ1, r, r

′, γ) ≥ β0 satisfying: if
β ≥ β0, if T ≤ 1 small enough so that τ(t) ≥ τ1 for all t ∈ [0, T ], and if (4.2)–(4.4) hold, we have

sup
s∈[0,t]

‖ω̇(s)‖2γ,r′−γ+ 3
4
,τ(s) +

∫ t

0
‖∂yω̇(s)‖2γ,r′−γ+ 3

4
,τ(s) ds+ β

∫ t

0
‖ω̇(s)‖2γ,r′−γ+ 5

4
,τ(s) ds

≤ 4

δ2
0

‖ω̇(0)‖2γ,r′,τ0 . (5.2)
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PROOF OF PROPOSITION 5.1. The proof is very similar to that of Proposition 4.1, since one may view
equation (5.1) as linearizing about ω itself of (2.6) (respectively u for the boundary condition). In order to
avoid redundancy, we only emphasize the essential differences.

Estimate (5.2) follows directly from estimates for ω̇in which are analogous to (4.5). In order to define ω̇in,
we define ω̇[ as the solution of system (3.4) with boundary datum given by ∂xḣ = −2∂x

∫ 1
0 u u̇ dy, which

is consistent with (5.1b). The function ω̇[ obeys all the estimates claimed in Lemma 3.1, except that on the
right side we need to replace h with ḣ. As in (3.16) we define the boundary layer functions corresponding
to ω̇, and according to (3.17) we define the interior functions corresponding to ω̇. Note that as before we
impose ω̇bl(0) = 0, and thus ω̇in(0) = ω̇0, where by (2.6a):

ω̇0 = −u0∂xω0 − v0∂yω0 − ∂2
yω0.

At this stage, we can prove an analogous statement to the one provided by Lemma 3.4, with h being replaced
by

ḣ = 2

∫ 1

0
u u̇ dy − 2

∫
T

∫ 1

0
u u̇ dydx.

Namely, we can show that for any r as in Proposition 4.1 and any r′ such that
3r

4
− γ

2
− 1 ≥ r′ > 2γ + 2,

we have ∫ t

0

∣∣∣ḣ(s)
∣∣∣2
γ,r′,τ(s)

ds .M2

∫ t

0

∥∥ω̇in(s)
∥∥2

γ,r′,τ(s)
ds. (5.3)

Indeed, denoting for all f

f ′j = (j + 1)r
′−rfj = M ′j∂

j
xf, where M ′j =

(j + 1)r
′
τ j+1

(j!)γ
,

similarly to (3.19) we obtain
∥∥∥ḣ0

∥∥∥
L2
x

.
∥∥∥ḣ1

∥∥∥
L2
x

, while for j ≥ 1, as a substitute to (3.21) we obtain the

inequality∥∥∥ḣ′j∥∥∥
L2
x

.
j∑
`=1

(
j

`

)
M ′j

M ′j−`M
′1/2
` M

′1/2
`+1

∥∥ω′`∥∥1/2

L2
x,y

∥∥ω′`+1

∥∥1/2

L2
x,y

(∥∥∥ω̇in′j−`∥∥∥
L2
x,y

+
∥∥∥y(1− y)u̇bl

′
j−`

∥∥∥
L2
x,y

)

+M

(∥∥ω̇inj ∥∥L2
x,y

+
∥∥∥yu̇[j∥∥∥

L2
x,y

+
∥∥∥yω̇[j∥∥∥

L2
x,y

+
∥∥∥u̇[j(x, 1/2)

∥∥∥
L2
x

)
.

The half sum
∑dj/2e

`=1 and the last term at the right-hand side can be treated as before, resulting in∫ t

0

(dj/2e∑
`=1

(
j

`

)
. . . + M

(∥∥ω̇inj ∥∥L2
x,y

+ · · ·+
∥∥∥u̇[j(x, 1/2)

∥∥∥
L2
x

))2

.M2

(∫ t

0

∥∥∥ ˙ωin(s)
∥∥∥2

γ,r′,τ(s)
ds+

1

β5/2

∫ t

0

∣∣∣ḣ(s)
∣∣∣2
γ,r′+γ− 5

4
,τ(s)

ds

)
if supt∈[0,T ] ‖ω(t)‖

γ, r
′
4
,τ(t)
≤M , which is satisfied by assumption (4.2) as soon as r′ ≤ 3r.

For the half-sum
∑j

`=dj/2e+1, we can not proceed symmetrically as in the proof of Lemma 3.4: as we want
an L2 in time control by ω̇, the bound(

j

`

)
M ′j

M ′j−`M
′1/2
` M

′1/2
`+1

. (l + 1)γ/2
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yields by a discrete convolution inequality:

∫ t

0

( j∑
`=dj/2e+1

. . .
)2
.

sup
[0,t]

∑
`≥1

(`+ 1)
γ
2 ‖ω′`‖L2

2 ∫ t

0

(∥∥∥ ˙ωin(s)
∥∥∥2

γ,r′,τ(s)
+ ‖yu̇[(s)‖2γ,r′,τ(s)

)
ds

Writing
∑

`(`+ 1)
γ
2 ‖ω′`‖L2 =

∑
`

1
`+1

(
(`+ 1)

γ
2

+1‖ω′`‖L2

)
and using Cauchy-Schwartz, we find:

∫ t

0

( j∑
`=dj/2e+1

. . .
)2

. sup
[0,t]
‖ω(s)‖2γ,r′+ γ

2
+1,τ(s)

(∫ t

0

∥∥∥ ˙ωin(s)
∥∥∥2

γ,r′,τ(s)
ds+

1

β7/2

∫ t

0

∣∣∣ḣ(s)
∣∣∣2
γ,r′+γ− 7

4
,τ(s)

ds

)
.M2

(∫ t

0

∥∥∥ ˙ωin(s)
∥∥∥2

γ,r′,τ(s)
ds+

1

β7/2

∫ t

0

∣∣∣ḣ(s)
∣∣∣2
γ,r′+γ− 7

4
,τ(s)

ds

)
where the last inequality comes from (4.2), under the assumption that r′ + γ

2 + 1 ≤ 3r
4 . Gathering the two

previous inequalities yields (5.3) for β sufficiently large.

Now, similarly to (4.7), we have that

(∂t + β(j + 1)− ∂2
y)ω̇in

′
j + (u∂x + v∂y)ω̇

in′
j + v̇in

′
j ∂yω

= −(u∂x + v∂y)ω̇
bl′
j − v̇bl

′
j ∂yω −M ′j

[
∂jx, u∂x + v∂y

]
ω̇ −M ′j∂jx(u̇∂xω)−M ′j

[
∂jx, ∂yω

]
v̇ (5.4a)

∂yω̇
in
j |y=0,1 = ˜̇ω

in′

j |y=1 − ˜̇ω
in′

j |y=0 + 2ω̇[
′
j |y=1 − ∂yω̇[

′
j |y=1. (5.4b)

Note that (5.4b) is the same as (4.7b), the left side of (5.4a) is the same as the left side of (4.7a), and the
first two terms on the right side of (5.4a) are the same as the first two terms on the right side of (4.7a). The
difference comes from the last three terms at the right-side of (4.7a), namely the quadratic terms. The main
point is that they now lack of symmetry: they involve not only (ω̇in

′
, ω̇bl

′
) but also ω. In particular, all terms

containing ω must be controlled uniformly in time, to allow for the L2
t control of ω̇in

′
at the left-hand side.

This is why we take r′ less than 3r
4 : with such a margin we can still use (4.2) to control uniformly in time

the terms where most derivatives fall on ω.

More precisely, proceeding as in the proof of (5.3) to handle the linear terms (see the estimates of T1j ,
. . . ,T7j), we can show that for β large enough:∥∥ω̇in(t)

∥∥2

γ,r′,τ(t)
+ 2β

∫ t

0

∥∥ω̇in∥∥2

γ,r′+1/2,τ
ds+

3

2

∫ t

0

∥∥∂yω̇in∥∥2

γ,r′,τ
ds− 1

δ2
0

‖ω̇0‖2γ,r′,τ0

.
M4

δ7
0

∫ t

0

∥∥ω̇in∥∥2

γ,r′,τ
ds+

M2

δ0β3/4

∫ t

0

∥∥ω̇in∥∥2

γ,r′+ 1
2
,τ
ds

+
∑
j≥0

∫ t

0
(S1j + S2j + S3j + S4j) (s)ds, (5.5)

where

S1j = −
∫

Ω
M ′j [∂

j
x, u∂x]ω̇

ω̇in
′

j

∂yω
, S2j = −

∫
Ω
M ′j [∂

j
x, v∂y]ω̇

ω̇in
′

j

∂yω

S3j = −
∫

Ω
M ′j∂

j
x(u̇∂xω)

ω̇in
′

j

∂yω
, S4j = −

∫
Ω
M ′j [∂

j
x, ∂yω]v̇

ω̇in
′

j

∂yω
.
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The first term is analogue to T8j . One can write

S1j = −

dj/2e∑
k=1

+

j∑
k=dj/2e+1

(j
k

)
M ′j

M ′kM
′
j−k+1

∫
Ω
u′kω̇

′
j−k+1

ω̇in
′

j

∂yω
= S1j,low + S1j,high.

The treatment of S1j,low is exactly the same as the one of T8j,low. Similarly to (4.17), (4.19), we get∑∫ t

0
S1j,low(s)ds .

M2

δ0

∫ t

0
‖ω̇in(s)‖2

γ,r′+ 1
2
,τ(s)

ds.

To treat S1j,high, we use the inequality
(
j

k

)
M ′j

M ′kM
′
j−k+1

. (j − k + 1)γ−r
′

for k ≥ dj/2e+ 1, so that

S1j,high .
j∑

k=dj/2e+1

1

δ0
‖u′k‖L∞(j − k + 1)γ−r

′‖ω̇′j−k+1‖L2‖ω̇in′j ‖L2

.
j∑

k=dj/2e+1

kγ

δ0
‖ω′k+1‖L2(j − k + 1)γ−r

′‖ω̇′j−k+1‖L2‖ω̇in′j ‖L2

so that by the discrete Young’s inequality:∑∫ t

0
S1j,high(s)ds .

1

δ0
sup
s∈[0,t]

∑
k

kγ‖ω′k(s)‖L2

∫ t

0
‖ω̇(s)‖γ,γ,τ(s)‖ω̇in‖γ,r′,τ(s)

.
1

δ0
sup
s∈[0,t]

‖ω(s)‖γ,r′+γ+1,τ(s)

∫ t

0
‖ω̇(s)‖γ,γ,τ(s)‖ω̇in‖γ,r′,τ(s)

The sup in time is controlled as usual by assumption (4.2), under the constraint r′+ γ + 1 ≤ 3r
4 . As regards

the second factor, one can split ‖ω̇(s)‖γ,γ,τ(s) ≤ ‖ω̇in(s)‖γ,γ,τ(s) + ‖ω̇bl(s)‖γ,γ,τ(s) and control the second
term by the analogue of Lemma 3.1, followed by (5.3). For r′ ≥ γ + (γ + 3

4) we find that∑∫ t

0
S1j,high(s)ds .

M2

δ0

∫ t

0
‖ω̇in(s)‖2γ,r′,τ(s)ds.

Estimates on S2j (which is analogue to T9j) and S3j can be established in the same way. We find for r′ and
3r
4 − r

′ large enough (with thresholds depending on γ):∑
j

∫ t

0
S2j ≤ η

∫ t

0
‖∂yω̇in(s)‖2γ,γ+r′,τ(s)ds+

C

η

M4

δ2
0

∫ t

0
‖ω̇in(s)‖2

γ,γ+r′+ 1
2
,τ(s)

ds

C > 0, η arbitrarily small, and∑
j

∫ t

0
S3j ≤

M2

δ0

∫ t

0
‖ω̇in(s)2‖γ,γ+r′,τ(s)ds

To handle S4j , we proceed slightly differently. We start with the decomposition

S4j = −

dj/2e∑
k=0

+

j−1∑
k=dj/2e+1

(j
k

)
M ′j

M ′kM
′
j−k

∫
Ω
∂yω

′
j−kv̇

′
k

ω̇in
′

j

∂yω

= S4j,low + S4j,high.
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S4j,high can be treated similarly to T9j,high. We obtain, see (4.22):∑
j

∫ t

0
S4j,high .

1

δ0
sup
[0,t]
‖∂yω‖γ, r′

2

∫ t

0

(
‖ω̇in(s)‖γ,r′+ 1

2
,τ(s) + ‖u̇[‖γ,r′+ 1

2
,τ(s)

)
‖ω̇in(s)‖γ,r′+ 1

2
,τ(s)ds

.
M2

δ0

∫ t

0
‖ω̇in(s)‖2

γ,r′+ 1
2
,τ(s)

ds.

Here, we have used the Gevrey control of ∂yω given by (4.2) to bound the first factor, and the analogue of
Lemma 3.1 followed by (5.3) to control the boundary layer term in the second factor. As regards S4j,low, we
integrate by parts in y. As v̇ vanishes at the boundary, no boundary term appears, and we get

S4j,low =

dj/2e∑
k=0

(
j

k

)
M ′j

M ′kM
′
j−k

∫
Ω

(
ω′j−k∂yv̇

′
k

ω̇in
′

j

∂yω
− ω′j−kv̇′k

∂2
yω

(∂yω)2
ω̇in

′
j + ω′j−kv̇

′
k

∂yω̇
in′
j

∂yω

)
= S4j,low,1 + S4j,low,2 + S4j,low,3.

We can bound S4j,low,1 with the same ideas as before. For r′ and 3r
4 − r

′ large enough we have∫ t

0

∑
j

S4j,low,1 .
M2

δ0

∫ t

0
‖ω̇in(s)‖2

γ,r′+ 1
2
,τ(s)

ds.

As regards S4j,low,2 we start from the bound

S4j,low,2 .
1

δ2
0

dj/2e∑
k=0

‖ω′j−k‖L∞x L2
y
(k + 1)−r

′‖v̇′k‖L∞‖∂2
yω‖L∞x L2

y
‖ω̇in′j ‖L2

xL
∞
y

.
M

δ2
0

dj/2e∑
k=0

‖ω′j−k‖L∞x L2
y
(k + 1)−r

′‖v̇′k‖L∞‖ω̇in
′

j ‖L2
xL
∞
y

where the last inequality comes from (4.4) to control ∂2
yω. It follows that

S4j,low,2 .
M

δ2
0

dj/2e∑
k=0

(j − k + 1)γ‖ω′j−k+1‖L2(k + 1)−r
′+2γ‖u̇′k+2‖L2(‖ω̇in′j ‖L2 + ‖∂yω̇in

′
j ‖L2).

From there, for r′ and 3r
4 − r

′ large enough (with thresholds depending on γ),∫ t

0

∑
j

S4j,low,2 ≤ η
∫ t

0
‖∂yω̇in(s)‖2γ,γ+r′,τ(s)ds+

C

η

M6

δ4
0

∫ t

0
‖ω̇in(s)‖2γ,γ+r′,τ(s)ds.

With similar manipulations, we get the bound∫ t

0

∑
j

S4j,low,3 ≤ η
∫ t

0
‖∂yω̇in(s)‖2γ,γ+r′,τ(s)ds+

C

η

M4

δ2
0

∫ t

0
‖ω̇in(s)‖2γ,γ+r′,τ(s)ds.

Injecting the previous estimates in (5.5), we get for large enough β:∥∥ω̇in(t)
∥∥2

γ,r′,τ(t)
+ β

∫ t

0

∥∥ω̇in∥∥2

γ,r′+1/2,τ
ds+

∫ t

0

∥∥∂yω̇in∥∥2

γ,r′,τ
ds ≤ 1

δ2
0

‖ω̇0‖2γ,r′,τ0 .

Estimate (5.2) follows from this inequality, in the same way as (4.6) is deduced from (4.5). �

COROLLARY 5.2. Let M, δ0 and γ ∈ [1, 9/8] be given. There exists r2 = r2(γ) ≥ r1 such that for
r ≥ r2(γ), one can find β2 = β2(M, δ0, τ0, τ1, γ, r) ≥ β1 and

T0 = T0

(
M, δ0, β, τ0, τ1, γ, r, ‖ω̇0‖γ, r

2
+γ− 3

4
,τ0

)
> 0
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satisfying: if β ≥ β0, if T ≤ T0, if (4.2)-(4.3)-(4.4) hold, and if

‖∂yω0‖γ, r
2
,τ0
≤ M

4
, (5.6)

then

sup
t∈[0,T ]

‖∂yω(t)‖γ, r
2
,τ(t) ≤

M

2
. (5.7)

PROOF OF COROLLARY 5.2. We write ∂yω(t) = ∂yω0 +
∫ t

0 ∂yω̇(s)ds, so that for all t ∈ [0, T ]:

‖∂yω(t)‖γ, r
2
,τ(t) ≤ ‖∂yω0‖γ,r/2,τ(t) +

∫ t

0
‖∂yω̇(s)‖γ, r

2
,τ(t)ds

≤ ‖∂yω0‖γ, r
2
,τ(0) +

∫ t

0
‖∂yω̇(s)‖γ, r

2
,τ(s)ds

≤ ‖∂yω0‖γ, r
2
,τ(0) +

√
t

(∫ t

0
‖∂yω̇(s)‖2γ, r

2
,τ(s)ds

)1/2

.

Taking for instance r2 = 4r1 + 4γ + 3, where r1 was introduced in Proposition 5.1, and r ≥ r2, we ensure
that r′ := r

2 + γ − 3/4 satisfies r′ ≥ r1 and 3r
4 − r

′ ≥ r1. By Proposition 5.1, for β ≥ β0 large enough, and
T such that τ(t) ∈ [τ1, τ0] for all t ∈ [0, T ], we get

sup
t∈[0,T ]

‖∂yω(t)‖γ,r/2,τ(t) ≤ ‖∂yω0‖γ, r
2
,τ(0) +

2
√
T

δ0
‖ω̇(0)‖γ, r

2
+γ− 3

4
,τ0
. (5.8)

The result follows from the assumption on ∂yω0, once T0 is taken small enough to ensure that 2
√
T0
δ0
‖ ˙ω(0)‖γ, r

2
+γ− 3

4
,τ0
≤

M
4 holds. �

COROLLARY 5.3. Let M, δ0 and γ ∈ [1, 9/8] be given. There exists r3 = r3(γ) ≥ r2 such that for
r ≥ r3(γ), one can find β3 = β3(M, δ0, τ0, τ1, γ, r) ≥ β2, c0 = c0(τ0, τ1, γ, r) > 0 and

T0 = T0

(
M, δ0, β, τ0, τ1, γ, r, ‖ω(0)‖γ,r,τ0 , ‖ω̇(0)‖γ, r

2
+γ− 3

4
,τ0

)
> 0 (5.9)

satisfying: if β ≥ β0, if T ≤ T0, if (4.2)-(4.3)-(4.4) hold, and if

1

δ0
‖ω̇0‖γ, r

2
+γ− 3

4
,τ0

+
1

δ2
0

‖ω0‖2γ,r,τ0 +
1

δ0
‖ω0‖γ,r,τ0‖∂yω0‖γ, r

2
,τ0 ≤

c0M

4
, (5.10)

then

sup
t∈[0,T ]

∥∥∂2
yω(t)

∥∥
L∞x L

2
y
≤ M

2
.

PROOF OF COROLLARY 5.3. We write the vorticity equation under the form

∂2
yω = ω̇ + u∂xω + v∂yω.

Hence, for all t ∈ [0, T ]:

‖∂2
yω(t)‖L∞x L2

y
≤ ‖ω̇(t)‖L∞x L2

y
+ ‖u(t)‖L∞x,y‖∂xω(t)‖L∞x L2

y
+ ‖v(t)‖L∞x,y‖∂yω(t)‖L∞x L2

y
.

For r large enough, we obtain

‖∂2
yω(t)‖L∞x L2

y
. ‖ω̇(t)‖γ, r

2
,τ(t) + ‖ω(t)‖2

γ,r−γ+ 3
4
,τ(t)

+ ‖ω(t)‖γ,r−γ+ 3
4
,τ(t)‖∂yω(t)‖γ, r

2
,τ(t).
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By Propositions 4.1 and Proposition 5.1 applied respectively with r and r′ = r
2 + γ − 3

4 , and by inequality
(5.8), we find

sup
t∈[0,T ]

‖∂2
yω(t)‖L∞x L2

y
.

1

δ0
‖ω̇0‖γ, r

2
+γ− 3

4
,τ0

+
1

δ2
0

‖ω0‖2γ,r,τ0

+
1

δ0
‖ω0‖γ,r,τ0

(
‖∂yω0‖γ, r

2
,τ0 +

√
T

δ0
‖ω̇0‖γ, r

2
+γ− 3

4
,τ0

)
.

Upon taking T sufficiently small, this concludes the proof of the Corollary. �

6. Minimum and maximum principle for ∂yω

The quantity ∂yω obeys a (degenerate) parabolic equation with Dirichlet boundary conditions

∂t(∂yω)− ∂2
y(∂yω) + (u∂x + v∂y)(∂yω) + (∂xu)(∂yω) = ω∂xω (6.1a)

∂yω|y=0,1 = (ω̃|y=1 − ω̃|y=0)− ∂x
∫ 1

0
u2dy. (6.1b)

Our goal is to combine this fact with L2
tL
∞
x,y estimates on ω ∂xω and the Dirichlet datum, to deduce that the

convexity of u is conserved for small time.

PROPOSITION 6.1. Let M, δ0 > 0 and γ ∈ [1, 9/8] be given. There exists r4 = r4(γ) ≥ r3 such that
for r ≥ r4(γ), one can find β4 = β4(M, δ0, τ0, τ1, γ, r) ≥ β3 and T0 as in (5.9) satisfying: if β ≥ β0, if
T ≤ T0, if (4.2)-(4.3)-(4.4) hold, and if

4δ0 ≤ ∂yω0 ≤
1

4δ0
, (6.2)

then

2δ0 ≤ ∂yω(t) ≤ 1

2δ0
, ∀t ∈ [0, T ]. (6.3)

PROOF OF PROPOSITION 6.1. We wish to apply a version of the parabolic minimum/maximum princi-
ple for the following degenerate parabolic problem posed in Ω× (0, T ), with Ω being the periodic in x strip
(x, y) ∈ T× (0, 1):

(∂t − ∂2
y + b(x, y, t) · ∇x,y + c(x, y, t))ψ = d(x, y, t) in Ω× (0, T ), (6.4a)

ψ = a(x, t) on ∂Ω× [0, T ), (6.4b)

ψ|t=0 = ψ0(x, y) in Ω. (6.4c)

Here ψ = ∂yω, b = (u, v) is incompressible and vanishes on the boundary T × {0, 1}, c = ∂xu vanishes
at the boundary T × {0, 1}, d = ω∂xω, and the boundary data is a = (ω̃|y=1 − ω̃|y=0) − ∂x

∫ 1
0 u

2dy. As
emphasized after Theorem 2.1, the third compatibility condition of the theorem corresponds to the relation
a(x, 0) = ψ0(x, 0).

By (6.2), the initial datum ψ0 is taken to obey 0 < 4δ0 ≤ ψ0(x, y) ≤ 1/(4δ0), for some δ0 ∈ (0, 1/4),
uniformly on Ω. Thus, by the compatibility of the initial datum and of the boundary condition, we have that
0 < 4δ0 ≤ a(x, 0) ≤ 1/(4δ0), uniformly on T. Thanks to the Gagliardo-Nirenberg inequality

‖f‖L∞y ≤ C‖f‖
1/2
L2
y

(
‖f‖1/2

L2
y

+ ‖∂yf‖1/2L2
y

)
and the estimate (5.2), we have that

‖∂ta(x, t)‖L2(0,T ;L∞x ) ≤ 4 ‖ω̇‖L2(0,T ;L∞) + 2

∥∥∥∥∂x ∫ 1

0
u u̇ dy

∥∥∥∥
L2(0,T ;L∞x )

.
1

δ2
0

(
1

β1/4
+

M

β1/2

)
‖ω̇0‖γ, r

2
+γ− 3

4
,τ0
≤ ‖ω̇0‖γ, r

2
+γ− 3

4
,τ0
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for β sufficiently large. By the fundamental theorem of calculus in time, and the Cauchy-Schwartz inequality
we thus obtain that

3δ0 ≤ 4δ0 −
√
T ‖ω̇0‖γ, r

2
+γ− 3

4
,τ0
≤ a(x, t) ≤ 1

4δ0
+
√
T ‖ω̇0‖γ, r

2
+γ− 3

4
,τ0
≤ 1

3δ0

uniformly on T× (0, T ), upon taking T sufficiently small. Thus, on the parabolic boundary Ω×{0}∪∂Ω×
(0, T ), we have that ψ ≥ 3δ0.

By the same Gagliardo-Nirenberg inequality, the Poincaré inequality in y, and estimate (4.6), we have

sup
t∈[0,T ]

‖c(t)‖L∞x L∞y = sup
t∈[0,T ]

‖∂xu(t)‖L∞x L∞y ≤
C1

δ0
‖ω0‖γ,r,τ0

where C1 = C1(τ0, τ1, γ, r). Denoting

C∗ = 1 +
C1

δ0
‖ω0‖γ,r,τ0 , (6.5)

the above estimate implies that

c(x, y, t) + C∗ ≥ 1.

Lastly, we note that by the Gagliardo-Nirenberg inequality and (4.6) we have∫ t

0
‖d(s)‖L∞x L∞y ds =

∫ t

0
‖ω(s)‖L∞x L∞y ‖∂xω(s)‖L∞x L∞y ds .

√
t

δ2
0

‖ω0‖2γ,r,τ0

so that for T ≤ 1 we have

e(t) := t+

∫ t

0
e−C∗s ‖d(s)− 3δ0c(s)‖L∞x L∞y ds

. t+
√
t ‖ω0‖2γ,r,τ0 + tC1 ‖ω0‖γ,r,τ0

≤ C2

√
t
(

1 + ‖ω0‖2γ,r,τ0 + ‖ω0‖γ,r,τ0
)

=
√
tD∗ (6.6)

holds for all t ∈ [0, T ], where C2 is a constant that only depends on γ, r, τ0, and τ1, and we have denoted

D∗ = C2

(
1 + ‖ω0‖2γ,r,τ0 + ‖ω0‖γ,r,τ0

)
.

With this notation, we make the following change of unknowns

ψ̄ = e−C∗t(ψ(x, y, t)− 3δ0) + e(t) (6.7a)

ā = e−C∗t(a(x, t)− 3δ0) + e(t) (6.7b)

d̄ = e−C∗t(d(x, y, t)− 3δ0c(x, y, t)) (6.7c)

c̄ = c(x, y, t) + C∗ (6.7d)

ψ̄0 = ψ0(x, y)− 3δ0 (6.7e)

The quantity e(t) was chosen so that ė(t) = 1 +
∥∥d̄(t)

∥∥
L∞

. One may then verify directly that

(∂t − ∂2
y + b · ∇x,y + c̄)ψ̄ =

(
d̄+

∥∥d̄∥∥
L∞

)
+ 1 + c̄e ≥ 1 > 0 (6.8a)

ψ̄|y∈{0,1} = ā ≥ t ≥ 0 (6.8b)

ψ̄|t=0 = ψ̄0 ≥ δ0 > 0. (6.8c)

The parabolic minimum principle then guarantees that

ψ̄(x, y, t) ≥ 0 on Ω× [0, T ] (6.9)

Indeed, if a strictly negative minimum would be attained by ψ̄, then this point minimum could not lie on the
parabolic boundary (since ā ≥ 0 and ψ̄0 > 0). If this point would lie in the interior, at this point we would
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need to have∇t,x,yψ̄ = 0, whereas (−∂2
y+c̄)ψ̄ < 0 since c̄ > 0. This contradicts

(
d̄+

∥∥d̄∥∥
L∞

)
+1+c̄e > 0,

which thus proves (6.9).
Working backwards from the definition of ψ̄, we see that (6.5), (6.6), and (6.9) imply

ψ(x, y, t) ≥ 3δ0 − eC∗te(t) ≥ 3δ0 −
√
TeC∗TD∗ ≥ 2δ0

as long as T is chosen sufficiently small in terms of C∗, D∗, and δ0, consistent with the dependence given in
(5.9). This proves the lower bound in (6.3).

The proof of the upper bound in (6.3) follows from very similar arguments, reducing the problem to a
maximum principle for a parabolic equation. To avoid redundancy, we omit these details. �

7. Proof of Theorem 2.1

The proof of the main theorem proceeds as follows. Let γ ≤ 9/8 and r ≥ r4(γ). For any τ0 < τ0

assumption (2.1) implies that ω0 = ∂yu0 satisfies

‖ω0‖γ,r,τ0 + ‖∂2
yω0‖γ,r,τ0 < +∞.

We fix τ0 ∈ (τ1, τ
0). We then fix δ0 small enough and M large enough, so that the initial constraints (4.27),

(5.6), (5.10) and (6.2) hold. Let β ≥ β4 and ε > 0. We consider the approximate system

∂tu+ u∂xu+ v∂yu+ ∂xp− ∂2
yu− ε∂2

xu = 0, (x, y) ∈ T× (0, 1), (7.1a)

∂yp = 0, (x, y) ∈ T× (0, 1), (7.1b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1), (7.1c)

u|y=0,1 = v|y=0,1 = 0, (7.1d)

with the same initial condition u|t=0 = u0. System (7.1) is called the two-dimensional primitive equations,
and has been widely studied, in various geometries and under various boundary conditions [4, 3, 40]. In
particular, Gevrey or analytic regularity results were obtained in both periodic and bounded geometries [35,
36, 22]. In the context of system (7.1), the well-posedness result stated in Theorem 2.1 can be proved
without much difficulty. In fact, the presence of −ε∂2

xu allows for a classical treatment, and the existence
of solutions at fixed ε > 0 follows e.g. from a Galerkin approximation procedure (which is compatible with
the hydrostatic trick [32]). Moreover, the compatibility conditions are the same for (1.1) and (7.1). We find
in this way a unique local solution uε with the regularity requirements stated in Theorem 2.1. We can then
consider Tε,∗ the maximal time on which ‖ωε‖γ,0,τ1 < +∞. In particular, if Tε,∗ is small enough so that
τ(Tε,∗) ≥ τ1, one has

sup
t∈[0,Tε,∗)

‖ωε(t)‖γ, 3r
4
,τ(t) = +∞. (7.2)

By the initial constraint (4.27), the fact that τ0 < τ0, and the continuity of the solution, there exists a
maximal time 0 < Tε ≤ Tε,∗ on which the conditions (4.2)-(4.3)-(4.4) are satisfied with u replaced by
uε and T replaced by Tε. Note that all the estimates that we established for a solution u of (1.1) adapt
straightforwardly to a solution uε of (7.1). The only notable change is the inclusion of the−ε∂2

x term in (3.4)
for defining the boundary layer lift ω[,ε. However, since all estimates for ω[,ε are obtained by performing a
Fourier transform in x and using Plancherel to obtain the desired L2

x bound, this modification is routine (see
also [20] for ε-independent bounds for analytic in x - Sobolev in y solutions of the ε-regularization of the
Prandtl system). Applying Corollaries 4.2, 5.2, 5.3, and Prosition 6.1 at positive ε, we see that there exists
T > 0 independent of ε, such that for all t ∈ [0,min(Tε, T )], the conditions (4.2)-(4.3)-(4.4) still hold with
M replaced by M

2 , and δ0 replaced by 2δ0. If Tε < T , then one has necessarily Tε = Tε,∗, otherwise by
continuity the inequalities (4.2)-(4.3)-(4.4) would be satisfied beyond Tε. But then there is a contradiction
between (7.2) and the first half of (4.2). Hence, Tε ≥ T , and so Tε,∗ ≥ T .

We have just shown that the approximations uε are all defined on a time interval independent of ε, and
satisfy uniform Gevrey bounds on it. This allows to let ε go to zero, and conclude by standard compactness
arguments to the existence of a solution.
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For the uniqueness of solutions, the equation obeyed by the difference is basically a linearized version of the
equation, very similar to the equation obeyed by ω̇. Then an estimate similar to the one from Proposition 5.1,
gives the good estimate for the difference of two solutions, implying uniqueness.
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Appendix A. Proof of Lemma 3.2

To prove the first item, we adapt arguments of [11, pages 1805-1807]. We fix x ∈ T, y > 0, and drop
them from notations. We write

ˆ̄ω[j(η) = f̂j(ζ) gj(ζ), gj(ζ) =
1

2−
√
β(j + 1) + iζ

e−y
√
β(j+1)+iζ .

Clearly, as fj = 0 for t < 0 and belongs to L1(R),

f̂j(ζ) =

∫
R+

fj(t)e
−iζtdt

is holomorphic for Im ζ < 0, and continuous for Im ζ ≤ 0. Moreover,

lim
Im ζ→+∞

f̂j(ζ) = 0 uniformly for Re ζ ∈ R, lim
Re ζ→±∞

f̂j(ζ) = 0 uniformly for Im ζ ≤ 0. (A.1)

The first limit follows directly from the inequality

|f̂j(ζ)| ≤
∫
R+

|fj(t)|e−Im ζtdt

and the dominated convergence theorem. The second limit follows from a close look at Riemann-Lebesgue’s
lemma: given ε > 0, and some f εj ∈ C1

c (R+) with
∫
R+
|fj − f εj | ≤ ε, we get

|f̂j(ζ)| ≤
∫
R+
|fj − f εj | + |

∫
R+

f εj (t)e−iζtdt|

≤ ε+
Mε

|Re ζ|

where the second bound follows from an integration by part of the second integral.
Obviously, gj is also holomorphic in Im ζ < 0, continuous over Im ζ ≤ 0, with bound

|gj(ζ)| ≤ 1

β − 2
e−
√
|ζ|y, (A.2)

see (3.13). We finally apply the Cauchy formula: for any t < 0, for any µ > 0

ω[j(t) = lim
s→+∞

1

2π

∫ s

−s
f̂j(ζ) gj(ζ)eiζt dζ

=− lim
s→+∞

1

2π

(∫
[−s,s]−iµ

f̂j(ζ) gj(ζ)eiζt dζ +

∫
[s,s−iµ]

f̂j(ζ) gj(ζ)eiζt dζ

+

∫
[−s−iµ,−s]

f̂j(ζ) gj(ζ)eiζt dζ

)
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As t < 0, taking into account the first limit in (A.1), the first integral at the right-hand side goes to zero
when µ → +∞, while the two other integrals over the vertical segments converge to the integrals over the
vertical half-lines:

ω[j(t) = lim
s→+∞

1

2π

(∫
[s,s−i∞]

f̂j(ζ) gj(ζ)eiζt dζ +

∫
[−s−i∞,−s]

f̂j(ζ) gj(ζ)eiζt dζ

)
= lim
s→+∞

1

2π

(∫
[0,−i∞]

f̂j(s+ ζ) gj(s+ ζ)ei(s+ζ)t dζ +

∫
[−i∞,0]

f̂j(−s+ ζ) gj(−s+ ζ)ei(−s+ζ)t dζ

)
Using the second limit in (A.1) and the bound (A.2), we can conclude that the limit at the right-hand side is
zero thanks to the dominated convergence theorem.

To prove the second item of the lemma, we remark from formula (3.12) that

(1 + |ζ|)3/4ω̂[j ∈ L2
ζ(R, L2

y(R+, H
k
x(T))), (1 + |ζ|)1/4ω̂[j ∈ L2

ζ(R, H1
y (R+, H

k
x(T))), ∀k

using the smoothness of f̂j with respect to x. We deduce that

ω[j ∈ H
3/4
t (R, L2

y(R+, H
k
x(T))), ω[j ∈ H

1/4
t (R, H1

y (R+, H
k
x(T)), ∀k. (A.3)

Moreover, using again (3.12) and Plancherel in time, we get that: for any ϕ = ϕ(t, x, y) smooth and fastly
decreasing as t→ ±∞ and y → +∞,∫

R×R+×T
ω[j (β(j + 1)− ∂t)ϕ +

∫
R×R+×T

∂yω
[
j ∂yϕ−

∫
R×T

(2ω[j |y=0 + fj)ϕ|y=0 = 0.

If we take ϕ with support in time included in (−∞, T ), taking into account that ω[j is zero for negative
times, we end up with∫

(0,T )×R+×T
ω[j (β(j+ 1)− ∂t)ϕ +

∫
(0,T )×R+×T

∂yω
[
j ∂yϕ−

∫
(0,T )×T

(2ω[j |y=0 +
Mj

Mj+1
hj+1)ϕ|y=0 = 0.

We recognize the weak formulation of system (3.10a)-(3.10b)-(3.10c). The identity ω[j = ω[j over (0, T )
follows from the uniqueness of solutions to this system (for example in the regularity class given by (A.3)).
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