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SUMMARY

The ability to probe the membrane potential of multiple genetically defined neurons simultaneously would
have a profound impact on neuroscience research. Genetically encoded voltage indicators are a promising
tool for this purpose, and recent developments have achieved a high signal-to-noise ratio in vivo with 1-
photon fluorescence imaging. However, these recordings exhibit several sources of noise and signal extrac-
tion remains a challenge. We present an improved signal extraction pipeline, spike-guided penalized matrix
decomposition-nonnegative matrix factorization (SGPMD-NMF), which resolves supra- and subthreshold
voltages in vivo. The method incorporates biophysical and optical constraints. We validate the pipeline
with simultaneous patch-clamp and optical recordings from mouse layer 1 in vivo and with simulated and
composite datasets with realistic noise. We demonstrate applications to mouse hippocampus expressing
paQuasAr3-s or SomArchon1, mouse cortex expressing SomArchon1 or Voltron, and zebrafish spines ex-

pressing zArchon1.

INTRODUCTION

Atechnology to measure the membrane potential of multiple neu-
rons simultaneously in behaving animals would be a transforma-
tive tool for neuroscience research (Bando et al., 2019; Knopfel
and Song, 2019; Yang and St-Pierre, 2016). Although calcium im-
aging (Farhi et al., 2019; Sofroniew et al., 2016) and extracellular
arrays (e.g., neuropixels) (Jun et al., 2017) can report the spiking
outputs of hundreds or even thousands of neurons, subthreshold
dynamics are invisible to these methods. Subthreshold voltages
reflect synaptic and neuromodulatory inputs, as well as the activ-
ity of many endogenous ion channels. Thus, measurements of
subthreshold voltages can be useful for functional connectivity
mapping and for determining the input-output transformations
that a neuron or microcircuit implements. By measuring sub-
threshold waveforms under different levels of optogenetic depo-
larization, one can resolve the distinct contributions of excitatory
and inhibitory synaptic inputs to membrane voltage (Fan et al.,
2020). Voltage imaging can also resolve spike waveforms and
distinguish spike types, e.g., complex versus simple spikes. His-
tory-dependent and subcellular variations in spike waveform can
be important in governing vesicle release probability in axons
(Panzera and Hoppa, 2019) and in controlling synaptic plasticity
in dendrites (Sjostrom et al., 2008). These examples provide a
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strong motivation for measuring membrane voltage in vivo,
despite substantial technical challenges.

Several recent efforts introduced improvements to genetically
encoded voltage indicators (GEVIs): QuasAr3 (Adam et al,
2019), Archon (Piatkevich et al., 2019), Voltron (Abdelfattah
et al., 2019), and ASAP3 (Villette et al., 2019). In combination
with advanced optical instrumentation, these GEVIs achieved
fluorescence voltage imaging from identified neurons in vivo
(Bando et al., 2019). However, these recordings have substantial
statistical and systematic noise sources that present a challenge
for extraction of true neuronal voltage dynamics.

Voltage imaging in vivo presents far more stringent technical
challenges than does calcium imaging. First, accurate detection
of action potentials requires frame rates of ~1,000 frames/s (or
even higher for fast-spiking interneurons), versus typically ~10
frames/s or slower for Ca* imaging. Photons from voltage re-
porters are thus divided into ~100-fold thinner time bins and
consequently have ~10-fold higher shot noise relative to signal,
all else being equal.

Second, GEVIs typically yield 10%-40% AF/F per spike,
whereas the best Ca®* indicators have severalfold increases in
brightness for a single action potential but are insensitive to sub-
threshold potentials (Chen et al., 2013; Tian et al., 2009). For
millivolt-level subthreshold events, GEVIs typically produce
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AF/F < 0.5%. Thus, the subthreshold signals in voltage imaging
can be as much as 100-fold smaller than the spike signals in
Ca?* imaging.

Third, the most advanced voltage imaging schemes rely on 1-
photon (1P) optics (although there has been progress in 2-
photon (2P) voltage imaging; Villette et al., 2019). Consequently,
1P voltage imaging experiments are susceptible to optical cross-
talk between distinct in-focus signal sources and from out-of-
focus cells, blood flow, or background autofluorescence.

Fourth, subthreshold voltages often have strong correlations
between cells, whereas spiking tends to be less correlated
(Lampl et al., 1999). Thus, the true voltage signal of interest is
often correlated with sources of crosstalk.

Fifth, voltage signals only originate at the cell membrane, a
nanometers-thick 2D manifold, whereas Ca®* signals come pre-
dominantly from the cytoplasm throughout the cell body. Voltage
measurements are thus far more sensitive to motion artifacts or
to misalignment of illumination, sample, and detection. During
behavioral tasks, motion artifacts may also correlate with the
true voltage signal.

Progress against these challenges requires combined efforts
on three fronts: (1) molecular tools, through the development of
brighter, faster, and more sensitive voltage reporters; (2) instru-
mentation, through the creation of microscopes with improved
depth penetration, spatial resolution, sensitivity, and speed;
and (3) algorithms, through the software to convert gigantic video
data files into estimates of time-dependent membrane voltage
from defined neurons. This paper deals with the third aspect.

In a voltage imaging movie, each pixel encodes a time-depen-
dent signal that contains a sum of signals from one or more neu-
rons and from various noise sources. The software challenge is
to identify (potentially nonlinear) combinations of pixels that
give optimal estimates of the voltages from individual neurons
while rejecting noise sources and crosstalk from partially over-
lapping cells. This is called the demixing or source-separation
problem. Efforts have focused on algorithms that facilitate iden-
tification of spikes within the single-neuron traces (Cai et al.,
2020). Here we seek to identify both spikes and subthreshold
voltages so as to learn about neuronal outputs and inputs.

Extracting subthreshold signals from voltage imaging datasets
presents unique challenges. Correlated signal and noise dy-
namics confound well-established signal extraction techniques,
such as joint principal-component analysis (PCA) and indepen-
dent-component analysis (ICA) (Mukamel et al., 2009), that as-
sume statistical independence between distinct sources.
Advanced image demixing techniques for in vivo 2P Ca®* imag-
ing data are primarily focused on identifying spiking events and
thus can safely neglect many sources of noise (Pnevmatikakis
et al., 2016).

A joint penalized matrix decomposition (PMD) and nonnega-
tive matrix factorization (NMF) approach has been proposed to
denoise and demix voltage imaging data (Buchanan et al.,
2019). This method can extract cell signals that have a high
signal-to-noise ratio (SNR) from in vitro voltage imaging movies,
in which motion artifacts, blood flow, light scattering, and tempo-
rally varying background can all be ignored.

Here, we build upon the PMD-NMF pipeline to account for fluc-
tuating background dynamics that might be correlated with the
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desired in-focus neural signals. We call the augmented pipeline
spike-guided PMD-NMF (SGPMD-NMF). Our procedure takes
advantage of several robust statistical structures within voltage
imaging data. First, action potentials have lower correlations be-
tween cells and to noise sources than do slower subthreshold
signals. We thus extract the spatial footprints of cells from tempo-
rally high-pass-filtered movies, a process that preserves spikes
but suppresses subthreshold fluctuations (spike-guided NMF).
We then apply the same spatial footprints to extract the slower
subthreshold voltage dynamics from the unfiltered movies and
optimize pixel weights within the footprints for this setting.
Spiking and subthreshold footprints coincide when cells are elec-
trotonically compact, a reasonable assumption for studies
performed with soma-localized GEVIs. The tradeoff is that the al-
gorithm requires cells to spike. Cells that show purely subthresh-
old dynamics during the analyzed epoch are not detected,
although in principle one could use regular PMD-NMF to find non-
spiking sources after accounting for all spiking sources.

Second, the spatial profiles of out-of-focus background sour-
ces are more dispersed and smoother compared with the spatial
profiles of in-focus cell signals. By optimizing the smoothness of
the background, we determine how to apportion low-frequency
fluorescence signals among signal and background, even when
these two sources overlap in space and are correlated in time.

Using these constraints, we accurately resolve the subthresh-
old dynamics of neurons recorded in vivo. We validate our
methods with (1) simulated data containing realistic noise and in
which ground truth is known by construction, (2) simultaneous
in vivo patch-clamp and voltage imaging recordings taken in
cortical layer 1 of anesthetized mice, and (3) composite movies
created by summing realin vivo single-cell recordings from mouse
hippocampus. We compare SGPMD-NMF, conventional PMD-
NMF, PCA-ICA, and simple region of interest (ROIl)-based anal-
ysis. SGPMD-NMF produces traces that more closely resemble
ground truth than the other methods. Finally, we apply our pipeline
to datasets from different organisms (mouse and zebrafish) and
using different indicators (paQuasAr3-s, SomArchon1, zArchon1,
and Voltron) to show the broad applicability of SGPMD-NMF.
Code and application to an example dataset are available here:
https://github.com/adamcohenlab/invivo-imaging. Analysis was
conducted using MATLAB and Python.

Signal extraction algorithm

The SGPMD-NMF algorithm comprises two steps: (1) denoising
and (2) demixing. The substeps are shown in Figure 1.
Denoising

The denoising steps address several distinct sources of noise:
motion artifacts, photobleaching, shot noise, and blood auto-
fluorescence. The relative contributions of these noise sources
depend on the details of the preparation: density of expressing
cells, whether the animal is awake or anesthetized, imaging
depth, and microscopy modality. A user should evaluate the ne-
cessity of each type of correction individually.

The raw dataset is first corrected for in-plane motion using
NoRMCorre (Pnevmatikakis and Giovannucci, 2017). This step
aligns the neuron locations between frames of the movie. The
function also returns the horizontal (x) and vertical (y) displace-
ments of each frame relative to a reference frame.
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Denoising Demixing

localNMF on High Pass
Filtered Movie

Image Registration

Trend Removal
Spatial Footprint
Estimate

Shot Noise Reduction
with PMD
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Figure 1. Pipeline for denoising and demix-
ing in vivo voltage imaging data

The denoising steps (blue) comprise a set of
distinct corrections for the sources of statistical
noise and systematic artifacts that can arise
in vivo. The demixing steps (green) use action po-
tentials to identify the cell footprints and the
differing spatial profiles of in-focus versus out-of-
focus sources to apportion subthreshold dynamics
between cells and background.

cell traces
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background traces

heartbeat. To remove this artifact, we first

Photobleaching often does not follow simple monoexponen-
tial kinetics, particularly when the illumination is nonuniform,
such that different molecules experience different local illumina-
tion intensities. Moreover, variations in local microenvironment
can cause heterogeneous bleaching rates even under uniform
illumination. Rather than using an exponential fit, each pixel in
the registered movie is corrected for photobleaching with a
3rd-order spline-based detrending fit. In selecting the detrend-
ing interval, one must select an interval short enough to correct
for the fastest photobleaching transients, but not so short that
subthreshold depolarizations (e.g., network up states) are
removed. Typically, 5 s is appropriate.

Shot noise is removed from the movie via a spatially localized
PMD approach (Buchanan et al., 2019). This approach uses the
uncorrelation of shot noise between pixels, whereas true voltage
signals typically extend over multiple contiguous pixels. The
PMD approach calculates local filters that aim to preserve the
correlated signal structure in the movie while rejecting uncorre-
lated noise. To achieve reasonable run time for long movies,
we typically apply the PMD algorithm to a subset of contiguous
frames selected from the full movie. PMD returns spatial filters,
which are then applied to the full movie to obtain the denoised
version of the full movie. This approach allows the PMD algo-
rithm to run at a fixed time even as the movie duration increases.

NoRMCorre (Pnevmatikakis and Giovannucci, 2017) did not
completely correct for two types of motion artifacts. First, it did
not correct for small out-of-plane z motions that affected the
focus of the image. Second, it did not correct for relative motion
of the sample and spatially structured fluorescence excitation
light. Structured illumination can dramatically improve SNR in
stationary samples by minimizing out-of-focus fluorescence
(Adam et al., 2019; Chien et al., 2017; Fan et al., 2020). However,
brain motion shifts the signal sources relative to the illumination,
leading to modulation of fluorescence that is not corrected by
rigid-body image translations. To reduce the effects of these ar-
tifacts, we employed a generalized linear model to project mo-
tion-correlated signals out of each pixel in the denoised movie.
We removed from each pixel any components of the signal corre-
lated with the regressors [x(t), y(t), X2(t), y2(t), x(t)y(t)], where x(t)
and y(t) represent the motion traces calculated by NoRMCorre.

In some movies, even after motion decorrelation, we observed
an additional ~5-6 Hz periodic artifact because of the animal’s

isolated the heartbeat signal by bandpass
filtering the motion-decorrelated movie in
a frequency window around the heartbeat
frequency. We then conducted PCA on the filtered movie. The
first principal spatial component constituted the spatial profile
of the heartbeat artifact, which we kept for removing the heart-
beat signal at a later step. Finally, to reduce contamination
from blood flow, we added software functionality to manually
select and mask regions containing blood vessels.

Demixing

After cleaning the noise from the movie, we approached the
demixing problem of separating individual neurons and back-
ground spatial components, or footprints. We took advantage
of the greater statistical independence of spiking compared
with subthreshold voltages to identify the single-cell footprints.
The PMD denoising step enabled us to isolate spiking signals
at the single-pixel level with a temporal high-pass filter. Without
PMD denoising, finding single-trial, single-pixel spikes would be
impeded by temporally uncorrelated shot noise. To reduce anal-
ysis time for large fields of view (FOVs), we applied 2 x 2 binning
to the denoised movie before demixing.

First, we applied a sliding-window temporal high-pass filter
(cutoff of 10 ms) to each pixel in the denoised movie to remove
the low-frequency subthreshold signals. The high-pass-filtered
movie was then processed by a local nonnegative matrix factor-
ization (localNMF) demixer, which detected cell profiles by iden-
tifying sets of highly correlated, spatially contiguous pixels
(Buchanan et al., 2019). The initial demixer output, Ag, consisted
of the d x n matrix of cell footprints, where d is the number of
pixels in a frame and n is the number of spiking cells. The value
of n depends on a user-specified threshold for cross-correla-
tions between different regions of the FOV. If the SNR is high,
cells can be detected in principle from a single spike; if the
SNR is low, more spikes may be necessary. Footprints from
nearby cells were allowed to overlap. A threshold was applied
to the initial estimates of the cell footprints, Ag, to set small
values to zero and thereby to delimit the spatial support of the
cells. If there was a substantial heartbeat artifact in the movie,
then we used linear regression to express each frame of the
denoised movie (before high-pass filtering) as a linear combina-
tion of the cell footprints and the heartbeat spatial profile. We
then removed the component apportioned to the heartbeat
signal.

We then sought to identify the time course of the background
dynamics. Background was defined as spatially extended
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signals that accounted for variance in the movie not accounted
for by cell signals. PCA was applied to the original movie (after
denoising but before high-pass filtering), with analysis restricted
to pixels not in the thresholded Ag. A user-specified number of
background components was selected, typically <10. These
components represent contributions to the fluorescence from
out-of-focus cells, breathing artifacts, or residual motion
artifacts. We assumed that the time course of the background
contributions to each cell would be a linear combination of the
off-cell background dynamics.

The next step was to apportion the on-cell dynamics between
background and signal. Initially the background footprints were
set to zero under all cells. We then used a fast hierarchical alter-
nating least-squares (HALS) algorithm (Friedrich et al., 2017) to fit
background weights and cell temporal components to the full
denoised movie (including the low-frequency dynamics). By us-
ing cell spatial weights initialized from the spiking-only data, we
ensured that the extracted low-frequency dynamics had the
same spatial footprints as the spiking, a consequence of the
electrotonic compactness of cell bodies. After iterating the
least-squares fit, the output gave updated cell spatial footprints,
A1, and afit for the d x r matrix of background spatial footprints,
By, where r is the estimated rank of the background.

At this step, By typically contained contamination from Aj; i.e.,
the spatial maps of the background had structures that resem-
bled the in-focus cells. This crosstalk implied that subthreshold
signals were not optimally apportioned between in-focus cells
and background. To remedy this crosstalk, we sought to remove
the spatial footprints of the cells from the images of the back-
ground. Here we used the fact that the out-of-focus background
was spatially smoother than the in-focus signal.

We created updated background spatial components By =
Bo-A1X Wopt, Wwhere Wop: is a n X r matrix of weights selected
to maximize a measure the spatial smoothness in each column of
Bs.

We chose each column, j, of the weight matrix by optimizing
the following through gradient descent:

I,

wo, = argvr("?in\\vg (BY-A; x w)

where V « is the nearest-neighbor discrete approximation to the
gradient operator, and

Vot || = > |ui—u,

(if)ee

where pixels (i,f) are in the edge set € when the pixels are adja-
cent. The gradients at points where the objective was nondiffer-
entiable were set to zero for the optimization procedure.

With the updated footprints, we implemented a least-squares
estimate of membrane voltage by regressing the cell spatial
components and updated background images on the full
denoised and motion-corrected (but not high-pass-filtered)
movie. This process gave the final output traces, which isolated
cells and accurately separated their subthreshold signals from
the background dynamics. A key feature of this algorithm is
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that it did not impose statistical independence of cell and back-
ground temporal sequences or spatial profiles.

Boththe PMD denoising and the localNMF demixing steps scale
linearly in computational cost with the number of movie frames, so
to reduce the time for analysis, in our implementation, we ran the
PMD denoising and localNMF demixing steps on only a subset
of the frames of the movie (typically 6,000 frames for denoising
and 10,000 frames for demixing) to obtain spatial filters (for denois-
ing) or cell and background spatial footprints (for demixing), which
were then applied to the whole movie. This approach reduced the
total time of analysis for a 96 x 284 pixel movie of 60,000 frames to
under 20 min on the Harvard Faculty of Arts and Sciences
Research Computing (FASRC) Cannon cluster.

RESULTS

SGPMD-NMF pipeline reliably recovers cell signals in
the presence of a correlated background

We verified the pipeline on simulated data containing two partially
overlapping disk-shaped cells and a spatially heterogeneous
time-varying rank-1 background (Figure 2A). To impose correlated
subthreshold dynamics, we constructed sets of three subthresh-
old waveforms with a specified 3 X 3 cross-correlation matrix and
then assigned one waveform to each of the cells and one to the
background. The subthreshold oscillations had a root-mean-
square (RMS) amplitude of 2 mV. We then added spikes (2-ms
wide) atop the waveforms at independent Poisson-distributed in-
tervals. Spike height and subthreshold power spectrum were
selected to approximately correspond to in vivo recordings. To
model the impact of shot noise, the overall brightness was scaled
by an adjustable factor, and then the total photon counts at each
pixel were selected from a Poisson random variable with a mean
equal to the mean fluorescence for that pixel.

We explored the ability of the algorithm to retrieve the input
signals as a function of the overall movie brightness and the
subthreshold correlations. The overall movie brightness (e.g.,
controlled by illumination intensity) determined the relative con-
tributions of Poisson-distributed shot noise versus low-rank
signal and background sources. First, we compared the perfor-
mance of PCA-ICA and SGPMD-NMF (Figure 2B). In the dis-
played example, we analyzed a simulation in which the sub-
threshold correlations between cells and between each cell
and the rank-1 background were all 0.5. When all traces were
normalized (mean of 0 and standard deviation [SD] of 1), the
RMS error of the traces extracted by PCA-ICA was 0.44,
whereas for SGPMD-NMF, it was 0.11. Furthermore, the corre-
lation between the extracted PCA-ICA traces for the two cells
was 0.19, whereas the correlation between the extracted
SGPMD-NMF traces was 0.53, close to the ground truth value
of 0.5. This lower correlation from PCA-ICA compared with
ground truth is expected, because ICA explicitly searches
for independent components. Altogether, these results demon-
strate that SGPMD-NMF offers superior performance
compared with PCA-ICA in extracting subthreshold dynamics.

We then tested the ability of the SGPMD-NMF algorithm to pre-
serve the correlations between cell 1 and cell 2, and between each
cell and its respective ground truth, under different conditions of
SNR and subthreshold correlations (Figure 2C, i-vi). Under all
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Figure 2. Validation of the SGPMD-NMF al-
gorithm on simulated data

(A) Example field of view comprising two simulated
cells with spatial overlap and correlated sub-
threshold dynamics and a broad background
whose dynamics were also correlated with each of
the cells.

(B) Comparison of signal extraction via PCA-ICA
versus SGPMD-NMF. The signals extracted via
SGPMD-NMF were substantially closer to the
ground truth than were the signals extracted via
PCA-ICA.

(C) Quantification (mean + SD) of SGPMD-NMF
performance as a function of signal characteristics
SGPMD-NMF compared with PCA-ICA, ROl average, and PMD-
PCA-ICA NMF. Here (XY) is the cross-correlation of Xand Y,
ROI C4 and C, are the signals of the two cells, and B is
EMD:NMF the background. When subscripts are omitted, the
calculation is averaged over both cells. Super-

scripts “in” and “out” refer to the ground truth

0 02505 0751 0 02505 0751

voltage input and the extracted fluorescence
output, respectively. AV,,s is the root-mean-
square voltage difference between extracted

%_) signal and ground truth voltage (lower values
§ (v) indicate bet.ter .performance). In (i), (i), (iv), (v), (vii),
o and (viii), (C'C#") = 0.5. In (i), (i), (iv), (vi), (vii), and
0 (ix), (C"B"y=0.5 (gray dashed line; closer prox-
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but the most stringent conditions, the algorithm extracted the
input signals with high fidelity. A movie brightness of 1 repre-
sented the SNR of a typical in vivo recording from Adam et al.
(2019). We also compared the performance of PCA-ICA, ROI
average, and PMD-NMF against the results of SGPMD-NMF. In
all settings, SGPMD-NMF displayed the best performance in
terms of correspondence to ground truth and preservation of
ground truth cell-to-cell subthreshold correlations.

To quantify the correspondence between the ground truth in-
puts and the SGPMD-NMF outputs, we calculated the RMS differ-
ence between input and output. Fluorescence recordings do not
natively come with an absolute voltage scale, so to make the com-
parison, we scaled the fluorescence to match the 2 mV RMS
amplitude of the subthreshold inputs. Under all conditions, except
for the lowest movie brightness, the RMS difference between
input and output was under 1 mV, indicating faithful extraction
of ground truth voltages (Figure 2C, vii-ix). Compared against
each of the other analysis pipelines, SGPMD-NMF had the lowest
RMS difference between ground truth and extracted voltage.

SGPMD-NMF corresponds with electrophysiology
ground truth in vivo

To assess the correspondence between SGPMD-NMF and elec-
trophysiology ground truth in vivo, we compared in vivo fluores-

cence recordings of single neurons in mouse cortex L1 express-
ing Voltron with simultaneous whole-cell patch clamp (Figure 3).
The patch-clamp data were smoothed and downsampled to
match the 400 Hz sampling frequency of the voltage imaging
data. Figure 3A shows that the spatial profile identified for the
active cell was localized, and Figure 3B shows that the
SGPMD-NMF extracted signal and spike profiles corresponded
to the ground truth patch-clamp recording. Because of the
sparse expression in these experiments, there was little back-
ground or signal contamination from other cells. As a result, all
signal extraction approaches performed well, although across
five cells, the average RMS difference between voltage imaging
trace and ground truth was modestly lower for SGPMD-NMF
(2.6 mV) compared with PMD-NMF (3.3 mV; p = 0.038, paired
1-sided t test, Figure 3C). The RMS difference was calculated
in windows of 5,000 frames, the same window size used for de-
trending, and averaged across all windows in the recording.

SGPMD-NMF is robust to motion, background, and
overlapping sources

To test the impact of the various steps of SGPMD-NMF pipe-
line, we extracted signals from a recording of a hippocampal
neuron in an awake mouse expressing SomArchon1 using ver-
sions of SGPMD-NMF with individual steps omitted (Figures
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Figure 3. Validation of SGPMD-NMF with
in vivo electrophysiology

(A) Spatial footprint (top) and signal (bottom) ex-
tracted from an in vivo voltage imaging recording
(mouse cortex L1 expressing Voltron) with simul-
taneous patch clamp.

(B) Inset of signal shown in (A) with patch-clamp
ground truth recording overlaid. Further insets are
marked in green and magenta and shown to the
right.

(C) RMS differences between electrophysiological
ground truth and voltage imaging signal extracted

‘ ﬁ “'i“\ N ‘ | by SGPMD-NMF (2.6 mV) and PMD-NMF (3.3 mV;
W Wl WM HW : Mwﬂ‘ WW (PR"™ mean displayed by bar, n = 5 independent re-
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cordings). p = 0.038, paired 1-sided t test.
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could control the degree of spatial overlap
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tested the algorithm beyond the worst
case of in vivo crosstalk, because two
real cells could never occupy the same
volume.

We extracted the single-cell voltage
traces from the individual recordings (giv-
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4A-4D). Because it was not feasible to acquire simultaneous
patch-clamp and voltage imaging recordings under these con-
ditions, we qualitatively assessed whether the extracted signals
were consistent with expected membrane voltage dynamics.
Application of the full SGPMD-NMF pipeline identified a well-
localized cell and clear spikes that rode atop subthreshold de-
polarizations (Figure 4A). When the motion regression step was
omitted, nonphysiological negative-going transients contami-
nated the signal during periods of animal motion (Figure 4B).
When the background smoothing step was omitted, the spike
signals were substantially diminished relative to baseline noise
because too much of the background crosstalk and noise
was incorrectly ascribed to the cell (Figure 4C). With just
PMD-NMF (Buchanan et al., 2019), the spatial footprint was
poorly localized to the cell location, a consequence of the
strong subthreshold correlation between in-focus cell and out-
of-focus background (Figure 4D).

A challenge with validating the algorithm’s preservation of
intercellular subthreshold correlations is that it is technically
infeasible to make whole-cell patch-clamp recordings from mul-
tiple neurons in vivo while simultaneously performing voltage im-
aging. Thus, there was no ground truth data against which to
compare the outputs of SGPMD-NMF when applied to multiple
cells.
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ing input traces) and then applied

SGPMD-NMF to the composite record-

ings (giving output traces) (Figure 4E).

We performed the calculation for four
pairs of cells (giving four trials). The correlation between the input
traces was near zero, as expected for recordings taken at
different times and different FOVs. In in vivo recordings, the dis-
tance of closest approach of in-focus cells is approximately 1
cell diameter, corresponding to 20 pixels in our movies. At this
separation, the lag-1 cross-correlation (see STAR Methods for
details) between the output traces of the two cells was
(C1U1C,%), = 0.17 £0.17 (mean = SEM), which was not signif-
icantly different from zero (see STAR Methods for rationale for
using lag-1 correlations). The mean lag-1 correlation between
each output trace and its corresponding input trace at this sep-
aration was (C"C°); = 0.92 + 0.02 (mean + SEM). The temporal
auto- and cross-correlation functions of the output traces closely
matched the corresponding functions of the input traces
(Figure 4F).

We next tested the algorithm performance in the presence of
out-of-focus spatially overlapping sources. We added in vivo
voltage imaging movies of well-isolated hippocampal neurons
expressing paQuasAr3-s to subsequent recordings of the
same cells taken with 20 pm defocus (Figure 4G). Addition of
an out-of-focus background cell with a lateral offset of 20 pixels
did not substantially perturb the extracted waveform of the in-
focus cell, with(C"C°); = 0.93 + 0.02 (mean + SEM, n = 4
pairs) (Figure 4H). Shifting the out-of-focus cell to directly
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Figure 4. Validation of SGPMD-NMF algorithm against sources with motion, background, and overlapping cells

(A-D) Four analyses of the same recording (mouse hippocampal CA1 pyramidal cells expressing SomArchon1). Top: image of the cell footprint. Middle: extracted
fluorescence trace. Bottom: close-up of the fluorescence in the boxed region.

(A) Full SGPMD-NMF.

(B) SGPMD-NMF with the motion regression step omitted.

(C) SGPMD-NMF with the background smoothing step omitted.
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D) PMD-NMF.

) Left: composite movies were formed by adding two separately acquired single-cell movies (mouse hippocampal CA1 oriens interneurons expressing pa-
QuasAr3-s) with a 20-pixel lateral offset between the cells. Right: signals were extracted from the source movies individually and from the composite movie jointly.
(F) Temporal cross-correlations of input and output traces showed good fidelity of extracted relative to input traces. Here (XY); is the cross-correlation of Xand Y
normalized by its value at a lag-1 time step (see STAR Methods for details). Shadings show mean + SEM over 4 composite movies.

(G) Left: second set of composite movies was formed by adding two separately acquired single-cell movies of the same cell (mouse hippocampal CA1 oriens
interneurons expressing paQuasAr3-s), one with the cell in focus and one with the cell 20 um out of focus. The lateral offset between the two cells ranged from
0 pixels to 20 pixels. Right: signals were extracted from the source movies individually and from the composite movie jointly. In the composite movie, only the in-
focus cell was extracted as a cell signal, and the out-of-focus cell was treated as background.

(H) Correlation of output traces with corresponding input traces as a function of overlap between the two cells. Error bars show mean + SEM over 4 composite
movies.

beneath the in-focus cell lowered this correlation to (C"C°); =  ponents (Figures 5, 6, S1, and S2). The videos show that the
0.76 + 0.08. initial denoising steps of SGPMD-NMF substantially reduced

speckle, motion, and blood flow artifacts. The movies of the re-
SGPMD-NMF pipeline works for multiple species and siduals (denoised movie minus signal and background) show
reporters that most sources of variation under spiking cells are accounted

After validating SGPMD-NMF in simulations and composite da-  for in either signal or background and that the extracted wave-
tasets, we then applied the pipeline to analyze multi-cell in vivo ~ forms of the spiking cells in the signal look biologically plausible
recordings acquired with different species, brain regions, cell (e.g., elevated spike rates during periods of subthreshold depo-
types, reporters, and imaging modalities (Table 1). The reporters larization). The background movie is spatially smooth near the

and imaging systems have all been published previously (Abdel-  identified cells and shows low-frequency temporal dynamics
fattah et al., 2019; Adam et al., 2019; Fan et al., 2020; Piatkevich  that are highly correlated across many pixels.

et al., 2018). The zebrafish data were acquired on a previously To assess the performance of SGPMD-NMF, we compared
unpublished transgenic line expressing zArchon1 under control the SGPMD-NMF outputs to what one would obtain from a
of the Vglut2a enhancer (STAR Methods). flat average across each cell footprint after denoising, i.e., the

Videos S1, S2, S8, and S4 show each step of the SGPMD- mean of the ROI (Figures 5C, 6D, S1C, and S2C). The ROI-
NMF pipeline for each of the preparations. SGPMD-NMF identi-  based signals contained all sources of background, whereas
fied spiking cells and separately extracted time-dependent SGPMD-NMF traces isolated cell signals from background.
signals from in-focus cells and from multiple background com-  To quantify the comparison, we quantified the ratios of the
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Table 1. In vivo datasets analyzed via SGPMD-NMF

Brain region Cell type Reporter

Imaging modality Reference

Mouse cortex L1 (Figure 3)  interneurons (Ndnf*)

Mouse hippocampus CA1 oriens interneurons paQuasAr3-s

(Figure 4)

Mouse hippocampus CA1 pyramidal cells SomArchon1
(Figures 4 and 5; Video S1)

Mouse cortex L1 interneurons (Ndnf*) Voltron

(Figure 6; Videos S2 and S5)

Mouse cortex L1
(Figure S1; Video S3)

interneurons (5-HT3aR*) SomArchont

Zebrafish spinal cord zArchon1

(Figure S2; Video S4)

excitatory (Vglut2a™)

Voltron + patch clamp

wide-field epifluorescence reporter: Abdelfattah et al., 2019

data: this work

micromirror-based, data: Adam et al., 2019
soma-targeted, structured

illumination
micromirror-based,
soma-targeted, structured
illumination

reporter: Piatkevich et al., 2019
data from setup: Adam et al., 2019

wide-field epifluorescence data: Abdelfattah et al., 2019

holographic peripheral data: Fan et al., 2020
membrane-targeted

structured illumination
light sheet transgenics: this work

reporter: Piatkevich et al., 2018

Diverse datasets included different species (mouse and zebrafish), regions of the central nervous system (hippocampus, cortex, and spinal cord), re-
porters (paQuasAr3-s, SomArchon1, zArchon1, and Voltron), and imaging modalities (structured illumination, holographic, wide-field epifluorescence,
and light sheet). See also Figures S1 and S2 and Videos S1, S2, S3, S4, and S5.

variances of the SGPMD-NMF signal, background, and residual
traces to the variance of the mean ROI trace (Table S1). Most
(>99%) of the variance of the denoised movie within the cell
ROIs was explained by a combination of signal and back-
ground, demonstrating that SGPMD-NMF accounted for almost
all time-varying signals in the movies. Specifically, except for
the zebrafish spinal cord dataset, the variance of the signal
was on average larger than the variance of the background,
indicating the cell regions had a strong signal. For the zebrafish
spinal cord dataset, we found that the background had a larger
variance than the signal because of strong contributions of
blood flow to the background.

Using the mouse hippocampus data, we also conducted a
comparison of SGPMD-NMF to PCA-ICA (Figure 5E). For the
six cells identified in both methods, we calculated the 15 pair-
wise correlations between cell signals. For all but 3 cell pairs,
which happened to have low cross-correlations, the magnitude
of correlation of the PCA-ICA signals was lower than that of
the SGPMD-NMF signals. Based on analysis with simulated
data (Figure 2), we infer that PCA-ICA likely underestimated
cell-cell cross-correlations in membrane voltage.

SGPMD-NMF analysis of the data from mouse cortex L1 using
the Voltron reporter identified 59 spiking cells in a single FOV,
including several overlapping footprints. However, the residual
contained several objects that looked like bright cells but were
not picked up by the algorithm. To determine the reason for
this, we studied the signals from ROls around these cells. These
cells all had low SNR and lacked clearly discernible spikes (Fig-
ure 6F). We quantified the number and amplitude of spikes via
skewness (Figure 6G). The mean skewness of the ROI signals
of these cells after a 250 ms sliding-window temporal high-
pass filter was 0.14 + 0.03 (mean + SEM). For cells identified
by SGPMD-NMF, the same metric was 0.88 + 0.09. We inferred
that SGPMD-NMF did not pick up these cells because they did
not pass the initial spike-finding step. To determine whether
we could identify nonspiking cells, we analyzed a cropped
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portion of the dataset (Video S5). We employed a multi-pass
strategy for localNMF that identified additional cells with lower
SNR (Buchanan et al., 2019).

Finally, we applied the SGPMD-NMF pipeline to recordings in
mouse cortical L1 cells expressing SomArchon1 (Figure S1) and
to zebrafish spinal cord expressing the zebrafish-optimized
variant, zArchon1 (Figure S2). In both cases, the pipeline ex-
tracted realistic-looking cell morphologies and spikes riding
atop subthreshold depolarizations.

DISCUSSION

In vivo voltage imaging is a promising approach for studying the
intercellular correlations in spiking and subthreshold dynamics.
However, the data analysis must be performed with great care
to avoid introducing spurious correlations or systematic artifacts.
We have demonstrated a robust software pipeline for demixing
voltage signals and background in complex, noisy tissues.
Parameter tuning is an important aspect of obtaining results
from SGPMD-NMF. In the denoising steps, the temporal de-
trending filter window and block size for the block-wise PMD
can be adjusted. We find that results are robust to small changes
in both parameters. A filter window of 5,000 frames and a block
size approximately the size of one neuron led to good results on
movies sampled at 1 kHz and 400 Hz. The other parameters of
the PMD denoiser are automatically set by simulation (Buchanan
et al., 2019). For the demixing steps, the high-pass filter window
for isolating spikes, number of background components, and lo-
calNMF parameters can be adjusted. A high-pass filter window
of between 5 and 10 ms worked well across all tested datasets.
A good number of background components can be found by the
greatest number of components such that the resulting back-
ground traces do not have spikes. The localNMF parameters
can be tuned by checking that the neuron spatial profiles are
localized appropriately. These parameters typically do not
need tuning across movies of similar SNR. The limited parameter
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tuning of SGPMD-NMF compares favorably with techniques in
which, e.g., signal and background are defined manually. In
such cases, there is often ambiguity about how to distinguish
signal from background and how to avoid contamination from
nearby or out-of-focus sources.

An outstanding challenge is to identify strategies for creating
masks that optimize the SNR of the extracted traces. Both shot
noise and systematic noise (e.g., artifacts from blood flow, uncor-
rected motion, and diffusing intracellular vesicles) vary over a cell.
The many combinations of pixel weights give, on average, the
correct voltage but differ in noise statistics. If the noise is inde-
pendent across pixels, then the HALS approach optimizes the
signal. When this assumption is not true, appropriate incorpora-
tion of a spatiotemporally correlated noise model could improve
the quality of the extracted traces. Automated detection of blood
vessels would also decrease manual labor in running the pipeline.

An independent voltage imaging spike detection pipeline,
VolIPy, was recently introduced by Cai et al. (2020). This pipeline
is largely complementary to ours, because it focuses on extract-
ing spike times, rather than accuracy of subthreshold dynamics.
VolIPy uses a supervised neural network to find neurons based on
summary images of the datasets. A similar approach could be
adopted here to use cell morphology to identify both spiking
and nonspiking cells as initial footprint guesses in the SGPMD-
NMF demixing step; this will be an interesting direction to explore
in future work. Compared with VolPy, SGPMD-NMF offers more
effective demixing in several respects. First, denoising of tempo-
rally uncorrelated noise via PMD allows improved accuracy in
demixing (Buchanan et al., 2019). Second, SGPMD-NMF en-
ables recovery of subthreshold signals and correlations with
high fidelity by incorporating a background model that can
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Figure 5. Voltage imaging in the mouse hip-
pocampus CA1 pyramidal cell layer (PCL)
using SomArchon1
Cells expressed SomArchon1 and were imaged
via micromirror-based, soma-targeted, structured
illumination.
(A) Top: image of the field of view, showing dense
neurons as occurs in the pyramidal cell layer of
CA1. The cell footprints are overlaid. Regions
contaminated by blood flow are masked in white.
Bottom: extracted single-cell traces. Subthreshold
depolarizations clearly coincided with elevated
spike rates, giving confidence that the subthresh-
Y old waveforms reflect membrane potential.

(B) Background components from SGPMD-NMF.
./_*‘-' .’ The two components that explained the most
b : variance in the movie are included, with each
component’s spatial profile above the corre-
sponding temporal trace.
(C) Average across pixels in cell 5 in the denoised
movie (mean ROIl), SGPMD-NMF reconstructed
signal movie (SGPMD-NMF), reconstructed back-
ground movie (background), and residual movie
(residual).
(D) Scatterplot of the relative variance of each cell
background versus signal.
(E) Comparison of the pairwise cell-cell cross-cor-
relations between SGPMD-NMF and PCA-ICA.
Most (12 of 15) pairwise correlations had a smaller
magnitude for PCA-ICA versus SGPMD-NMF.
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have temporal dynamics correlated with cell signals. Without a
proper method to account for the background, subthreshold sig-
nals of extracted cells will be inaccurate. Third, blood artifacts,
which are not considered by VolPy, contaminate extracted cell
signals, because regions of blood flow often overlap with cell
footprints. In many cases, these blood artifacts are difficult to
see in the raw data but become readily apparent after the denois-
ing step used here. Although our method does not include a
spike-finding step, such algorithms are available in the literature
and can be appended to our pipeline. Specifically, the SpikePur-
suit algorithm (Abdelfattah et al., 2019) and the improved version
incorporated in the VolPy package (Cai et al., 2020) have been
optimized for fluorescent voltage recordings.

With progress in 2P voltage imaging (Villette et al., 2019), the
challenges of optical crosstalk are expected to abate, but other
challenges arise. Voltage signals only come from the intersection
of the submicron 2P laser focus and the nanometers-thick cell
membrane, leading to extreme sensitivity to motion artifacts.
Furthermore, the stringent optical sectioning of 2P microscopy
implies that all fluorescence must originate in a narrow equatorial
belt of the cell, compared with 1P microscopy, which can
average over the entire surface area of the cell. As a result, the
requirements on per-molecule fluorescence are more
demanding in 2P than in 1P microscopy, so photobleaching is
more of a concern. In movies in which photobleaching is sub-
stantial, one could still apply SGPMD-NMF to identify cell and
background footprints on the early part of the recording when
SNR is high and then apply these footprints to later parts of the
recording to get cell temporal signals for the full movie. Although
photobleaching-induced loss of SNR is unavoidable, this
approach will make the best use of the available data.
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Figure 6. Voltage imaging in mouse cortex L1 using Voltron

Cells expressed Voltron and were imaged via wide-field epifluorescence.

(A) Top: image of the field of view. The cells are labeled at the centroid of their footprints. Bottom: extracted single-cell traces. Insets shown in (C) are marked in red
and black.

(B) Background components from SGPMD-NMF. The two components that explained the most variance in the movie are included, with each component’s spatial
profile above the corresponding temporal trace.

(C) Inset of eight single-cell traces over a window of approximately 3 s.

(D) Average over pixels in cell 6 in the denoised movie (mean ROIl), SGPMD-NMF reconstructed signal movie (SGPMD-NMF), reconstructed background movie
(background), and residual movie (residual).

(E) Scatterplot of the relative variance of each cell background versus signal. Anticorrelation between relative variance of background and signal results because
together, background and signal account for >99% of the total variance. If background and signal were uncorrelated, they would fall along the line x +y = 1.
Deviations below the line x + y = 1 indicate positive correlation between signal and background.

(F) Top: SD image of the reconstructed sum of background and residual. Magenta masks indicate 14 manually selected bright spots, or missed cells. Bottom:
mean ROI (on denoised movie) of the 14 missed cells. These traces showed little or no spiking activity.

(G) Skewness of temporally high-pass-filtered mean ROI traces (on denoised movie) of the 14 missed cells and 59 detected cells. Skewness provides a measure
of spiking activity relative to baseline noise. Error bars show mean + SEM. The missed cells displayed substantially less spiking activity compared with the
detected cells.

A fascinating application of GEVI technology would be to map O Lead contact
dendritic voltages in vivo. This application would require broadly O Materials availability
trafficked GEVIs, as opposed to soma-localized GEVIs; ad- O Data and code availability
vances in imaging to sample fine dendritic processes; and novel o EXPERIMENTAL MODEL AND SUBJECT DETAILS
signal extraction algorithms to accommodate that subthreshold O Simultaneous whole-cell patch-clamp recording and
and spiking waveforms may vary in different ways across the voltage imaging in vivo
dendritic tree. O Zebrafish spinal cord

o METHOD DETAILS

STAR*METHODS O Simultaneous whole-cell patch-clamp recording and

voltage imaging in vivo
O Zebrafish spinal cord
o QUANTIFICATION AND STATISTICAL ANALYSIS
O lLag-1 cross-correlation calculation for composite
o KEY RESOURCES TABLE movie analysis
o RESOURCE AVAILABILITY O PCA-ICA analysis

Detailed methods are provided in the online version of this paper
and include the following:
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KEY RESOURCES TABLE

Reagent or resource Source Identifier

Deposited data

Simultaneous in vivo whole-cell patch- This paper https://dx.doi.org/10.25378/janelia.c.
clamp recording and voltage imaging 5325254

(Voltron in mouse L1)

zebrafish spinal cord voltage imaging This paper https://doi.org/10.6084/m9.figshare.
(zArchon1) 14153339

Experimental models: Organisms/strains

Mouse: NDNF-Cre: B6.Cg-Ndnf™?-1(fola/ere) Jackson Laboratory Stock #028536

Hze/J

Zebrafish: Tg(vGlut2a:Gal4), vGlut2a:Gal4: National BioResource N/A

Tg(UAS:zArchon-GFP) Project, Zebrafish, Core Institution, Japan;

UAS:zArchon-GFP: Cohen lab

Recombinant DNA

paQuasAr3-s Addgene 107703, 107704

SomArchon1 Addgene 126943, 126512

Voltron Addgene 119036

zArchon1 Addgene 108427

Software and algorithms

SGPMD-NMF This paper https://github.com/adamcohenlab/
invivo-imaging

TreFiDe Buchanan et al., 2019 https://github.com/ikinsella/trefide

Python Python Software Foundation https://www.python.org/

MATLAB MathWorks https://www.mathworks.com/products/
matlab.html

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead contact, Adam E.
Cohen (cohen@chemistry.harvard.edu).

Materials availability
Optogenetic constructs used in this study are available from Addgene as paQuasAr3-s (Addgene 107703, 107704), SomArchon1
(Addgene 126943, 126512), Voltron (Addgene 119036), zZArchon1 (Addgene 108427).

Data and code availability

Code to run SGPMD-NMF on an example dataset is available on GitHub here: https://github.com/adamcohenlab/invivo-imaging.
Instructions for installing and running the code are here: http://bit.ly/sgpmdnmf-instructions. All SGPMD-NMF analyses done in
the paper were run on the Harvard FASRC Cannon cluster. The TreFiDe dependency package requires Linux; other aspects of
the code do not have operating system prerequisites.

The simultaneous in vivo whole-cell patch-clamp recording and voltage imaging dataset is available at https://dx.doi.org/10.
25378/janelia.c.5325254 (Rozsa et al., 2021). The zebrafish spinal cord voltage imaging dataset is available at https://doi.org/
10.6084/m9.figshare. 14153339 (Bohm et al., 2021). All other voltage imaging datasets analyzed have been previously published
(Table 1).

EXPERIMENTAL MODEL AND SUBJECT DETAILS
All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Harvard University or of Janelia

Farm Research Campus.
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Simultaneous whole-cell patch-clamp recording and voltage imaging in vivo
In vivo whole-cell recordings were made in NDNF-Cre mice (JAX 28536) (4 females, 3 males; 54-160 days old at the time of the first

surgery).

Zebrafish spinal cord

Recordings were done in 5 day-post-fertilization (dpf) transgenic zebrafish larvae expressing UAS:zArchon1-GFP under the control
of vGlut2a:Gal4 (Satou et al., 2013). The sex of the larvae was not determined because it is not practical to determine sex at this devel-
opmental stage.

METHOD DETAILS

Simultaneous whole-cell patch-clamp recording and voltage imaging in vivo

AAV2/1-syn-FLEX-Voltron-ST (Abdelfattah et al., 2019) (titer: 2x10'2 GC/ml) was injected at 6-10 injection sites 200 um deep into the
somatosensory cortex (30 nL each; injection rate, 1 nl/s) (Liu et al., 2020). Headbars and cranial windows (2.5 mm diameter) were
implanted centered on 1.6 mm lateral, 1.2 mm posterior from lambda (Daie et al., 2021). To prepare the JF dye for injection, 100 nano-
moles of lyophilized JF525 were dissolved in 20 pl of DMSO, 20 pl Pluronic F-127 (20% w/v in DMSO), and 60 ul of PBS (final dye
concentration 1 uM). 33-71 days after the first surgery, mice were anesthetized with 2%-3% isoflurane and 100 pL of the dye solution
was injected into the retro-orbital sinus of the right eye using a 30 gauge needle. One day later we removed the cranial window and
performed durotomy (Goldey et al., 2014). The craniotomy was filled with 10-15 pL of 1% agarose, then a D-shaped coverslip was
secured on top to suppress brain motion, but leaving access to the brain on the lateral side of the craniotomy.

Micropipettes (3—6 MQ) were filled with (in mM) 126 K-gluconate, 4 KCI, 4 ATP-Mg, 0.3 GTP-Na,, 10 HEPES, 10 creatine phosphate
(pH 7.25; 300 mOsm). Somatic whole-cell recordings were obtained from layer 1 interneurons (20-100 um depth from brain surface)
visualized with infrared oblique illumination (Szucs et al., 2009). The infrared LED (Osram SFH 4550, 850 nm) was attached to the im-
aging objective with a custom-printed holder and illuminated the craniotomy 30-45° from normal. Warm saline (35-37°C) was perfused
in the craniotomy to keep the cortex at physiological temperature. We recorded in current clamp mode. Signals were filtered at 20 kHz
(Multiclamp 700B, Axon Instruments) and digitized at 100 kHz using acg4 (Campagnola et al., 2014). A wide-field fluorescence micro-
scope equipped with a water immersion objective (40X, NA 0.8, Olympus) was used for imaging. lllumination was delivered using a
525 nm LED (Mightex, LCS-0525-60-22); intensity at the sample, < 20 mW/mm?2. A custom filter set (517/20 nm (excitation, Semrock
FF01-517/20), 537LP nm (emission, Chroma RET537Ip), and a 532LP dichroic mirror (Chroma, RT532rdc)) was used for fluorescence
imaging of Voltron525. Images were collected using a sCMOS camera (Hamamatsu Orca Flash 4.0 v3) at frame rates of 400 Hz or
1000 Hz. The pixel size was 0.502 um/pixel. Mice were under isoflurane anesthesia and imaged in darkness.

Zebrafish spinal cord

Larvae were paralyzed by immersion in 1 mg/ml a-bungarotoxin for ~1 min and mounted in a drop of 1.5% low melting point agarose.
Imaging was done on a custom light sheet microscope using a 639 nm red laser (MLL-FN-639, CNI lasers) to illuminate a 480 um wide
region with ~300 mW of laser light. Images were collected through a low magnification high NA objective (XLPLN25XWMP2,
Olympus) a 100 mm tube lens (TTL100-A, Thorlabs) and a 664 nm long pass filter. Images were recorded at 1 kHz on a sCMOS cam-
era (Hamamatsu Flash 4.0). During the recording, larvae were presented with a forward moving grating at 15 mm/s to induce swim-
ming. To ensure naturalistic behavior, the ventral nerve root signal was electrophysiologically recorded at the same time and the
fictive swim signal fed back to control the speed of the backward motion on the grating as described in Ahrens et al. (2013).

QUANTIFICATION AND STATISTICAL ANALYSIS

Lag-1 cross-correlation calculation for composite movie analysis
We calculated (XY), the lag-1 cross-correlation as follows. First, we denote the cross-correlation function of X and Y as (X *Y)(t),
which is a discrete function centered at t = 0. t denotes the lag. Then,

(X=Y)
VX EX) (1) x (Y xY)(D)
which is a function of time. The lag-1 cross-correlation reduces the effect of uncorrelated shot noise on the correlation between noisy
signals X and Y.

XY) =

PCA-ICA analysis

All PCA-ICA analyses were conducted on full movies that had been denoised following SGPMD-NMF. The movies were then high-
pass filtered in time with a 50 Hz high-pass filter. The high pass filtered movies were then segmented using PCA followed by time-
domain ICA (Mukamel et al., 2009). The maximum number of sources from PCA-ICA was set to 20, and further components that did
not correspond to cells were eliminated manually by inspection of the temporal and spatial components.
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