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Abstract

The rankable and the compressible sets have been studied for more than a quarter of a century. We ask
whether these classes are closed under the most important boolean and other operations. We study this
question for both polynomial-time and recursion-theoretic compression and ranking, and for almost every
case arrive at a Closed, a Not-Closed, or a Closed-Iff-Well-Known-Complexity-Classes-Collapse result.
Although compression and ranking classes are capturing something quite natural about the structure of
sets, it turns out that these classes are quite fragile with respect to closure properties, and many fail to
possess even the most basic of closure properties. For example, we show that with respect to the join
(aka disjoint union) operation: the P-rankable sets are not closed, whether the semistrongly P-rankable
sets are closed is closely linked to whether P = UP∩ coUP, and the strongly P-rankable sets are closed.

Key words: complexity theory, closure properties, compression, ranking, computability.

1 Introduction and Related Work

Loosely put, a compression function f for a set A is a function over the domain Σ∗ such that (a) f(A) = Σ∗

and (b) (∀a, b ∈ A : a 6= b)[f(a) 6= f(b)]. That is, f puts A in 1-to-1 correspondence with Σ∗. This is
sometimes described as providing a minimal perfect hash function for A: It is perfect since there are no
collisions (among elements of A), and it is minimal since not a single element of the codomain is missed.
Note that the above does not put any constraints on what strings the elements of A are mapped to, or even
about whether the compression function needs to be defined on such strings. A ranking function is similar,
yet stronger, in that a ranking function sends the ith string in A to the integer i; it respects the ordering of
the members of A.

∗A preliminary version of this paper appeared in the Proceedings of the Thirteenth International Conference on Language
and Automata Theory and Applications (LATA 2019) [AHMR19].
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The study of ranking was started by Allender [All85] and Goldberg and Sipser [GS91], and has (along
with, in some cases, the study of so-called unranking) been pursued in many papers since, e.g., [HR90,
Huy90, BGS91, ÁJ93, MM01, MR01, WCCL13, MT14, Tar15, CWCC19, HS19] (see also the related
study of census functions by Goldsmith, Ogihara, and Rothe [GOR00]). The study of ranking led to the
study of compression, which was started—in its current form, though already foreshadowed in a notion
of Goldberg and Sipser [GS91]—by Goldsmith, Hemachandra, and Kunen [GHK92] (see also Goldsmith
and Homer [GH96]). Proof techniques from that compression study [GHK92] have been interestingly
applied by Buhrman, Fortnow, and Laplante [BFL01] and Allender and Spakowski [AS12] in the study
of resource-bounded Kolmogorov complexity. Also, many papers in complexity theory look at aspects of
functions mapping, as compression functions do, “onto” Σ∗, see, e.g., [BFH78, FFNR03, HRW97, Rot99].

The abovementioned ranking and compression research focused on polynomial-time or logarithmic-space
ranking or compression functions. More recently, both compression and ranking have also been studied
in the recursion-theoretic context by Hemaspaandra and Rubery [HR19]; see the discussion therein about
related—though not identical—precursor notions in computability theory such as retraceable sets [DM58],
regressive sets [Dek62], and isolic reductions [Rog67, p. 124]. In particular, that paper [HR19] studies
compression and ranking for both the case of (total) recursive compression/ranking functions (which of
course must be defined on all inputs in Σ∗) and the case of partial-recursive compression/ranking functions
(i.e., functions that on some or all elements of the complement of the set being compressed/ranked are
allowed to be undefined). The prior work most closely related to the present paper is that paper and the
papers cited in the previous paragraph, which defined and explored complexity-theoretic compression and
ranking.

In the present paper, we continue the study of both complexity-theoretic and recursion-theoretic
compression and ranking functions. In particular, the earlier papers often viewed the compressible sets or
the rankable sets as a class. We take that to heart, and seek to learn whether these classes do, or do not,
possess key closure properties. Doing so gives insight into the structure and behavior of these classes. What
we learn is more nuanced than a blanket Yes or No as to the possession of the key closure properties; we
will show that even sibling classes can sharply differ in their closure properties. Our main contributions can
be seen in Table 1, where we obtain closure and nonclosure results for many previously studied variations of
compressible and rankable sets under boolean operations (Section 4). We also (as Section 5) study the issue
of the closure/nonclosure of these classes under additional operations, such as the join, aka disjoint union;
Table 2 summarizes our results on the closure/nonclosure under the join of each of the complexity-theoretic
rankability/nonrankability classes. The prior work on closure properties of complexity classes is too extensive
to list in full. It ranges for example from the familiar course exercise of showing that NP and coNP are
closed under union and intersection yet are closed under complementation if and only if NP = coNP to
work studying closure properties of other language/complexity classes such as automata-based classes
(e.g., [OS18, DFF19, MR19]), biology-operator-/counting-/formal-language-/selection-/space-based classes
(e.g., [Imm88, Sze88, HJ95, HT05, Iba16, LMN16, DRS17]), and much more. We mention that the authors
have obtained results [AHMR16, Appendix B.2], not covered in this paper, on compressibility in the context
of selectivity (see, e.g., [Sel79, HT03]) and honesty [GS88].

We also introduce the notion of compression onto a set and characterize the robustness of compression
under this notion. In particular, by a finite-injury priority argument with some interesting features we
show that there exist RE sets that each compress to the other, yet that nonetheless are not recursively
isomorphic (Section 3).
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Class ∩ ∪ Complement

strong-P-rankable P = P#P (Th. 4.2) P = P#P (Th. 4.2) Yes (Prop. 4.3)

semistrong-P-rankable P = P#P (Th. 4.2) P = P#P (Th. 4.2) ≈ P = UP∩ coUP (Th. 4.8, Th. 4.10)

P-rankable, P-compressible′,
FREC-rankable, FREC-com-
pressible, FPR-rankable, and
FPR-compressible

No (Th. 4.11) No (Th. 4.12) No (Th. 4.13)

strong-P-rankable∁ No (Th. 4.14) No (Th. 4.14) Yes (Prop. 4.3)

semistrong-P-rankable∁ No (Th. 4.14) No (Th. 4.14) ≈ P = UP∩ coUP (Th. 4.8, Th. 4.10)

P-rankable∁, P-compressible∁,
FREC-rankable

∁, FREC-com-
pressible∁, FPR-rankable

∁, and
FPR-compressible∁

No (Th. 4.14) No (Th. 4.14) No (Th. 4.13)

Table 1: Overview of our results for closure of these classes under boolean operations. If an entry does not
include “No” or “Yes,” then the class is closed under the operation if and only if the entry holds. A special
case is semistrong-P-rankable and semistrong-P-rankable∁, in which we deliberately use the ≈ symbol to
indicate that the implication is true in one direction and in the other direction currently is known to be
true only for a broad subclass of these sets. Specifically, if P = UP∩ coUP then the complements of all
“nongappy” semistrong-P-rankable sets are themselves semistrong-P-rankable.

2 Definitions

Throughout this paper, “P” when used in a function context (e.g., the P-rankable sets) will denote the
class of total, polynomial-time computable functions from Σ∗ to Σ∗. Additionally, throughout this paper,
Σ = {0, 1}. FREC will denote the class of total, recursive functions from Σ∗ to Σ∗. FPR will denote the
class of partial recursive functions from Σ∗ to Σ∗.

The symbol ǫ will denote the empty string. We use the standard notion of lexicographical order over Σ∗,
i.e., from lexicographically least string onward we have ǫ, 0, 1, 00, 01, 10, 11, 000, etc. When we use binary
comparison operators on strings—as for example is done in Definition 2.2 and many other places—the
comparison is with respect to lexicographical order. We define the function shift(x, n) for n ∈ Z. If n ≥ 0,
then shift(x, n) is the string n spots after x in lexicographical order, e.g., shift(ǫ, 4) = 01. For n > 0, define
shift(x,−n) as the string n spots before x in lexicographical order, or ǫ if no such string exists. We define
the symmetric difference A△ B = (A − B) ∪ (B − A). The symbol N will denote the natural numbers
{0, 1, 2, 3, . . . }.

We now define the notions of compressible and rankable sets.

Definition 2.1 (Compressible sets [HR19]).

1. Given a set A ⊆ Σ∗, a (possibly partial) function f is a compression function for A exactly if

(a) domain(f) ⊇ A,

(b) f(A) = Σ∗, and
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Class Join (⊕)

strong-P-rankable Yes (Th. 5.5)

semistrong-P-rankable semistrong-P-rankable is closed under complementation (Th. 5.6)

P-rankable No (Th. 5.4)

strong-P-rankable∁ P = P#P (Th. 5.2)

semistrong-P-rankable∁ P = P#P (Th. 5.2)

P-rankable∁ No (Th. 5.3)

Table 2: Overview of our results for closure of the complexity-theoretic rankability classes, and their
complements, under the join operation. If an entry does not include “No” or “Yes,” then the class is
closed under the operation if and only if the entry holds. For example, the class semistrong-P-rankable
is closed under join if and only if it is closed under complementation; whether that class is closed under
complementation is itself partially characterized in this paper as per Table 1.

(c) for all a and b in A, if a 6= b then f(a) 6= f(b).

2. Let F be any class of (possibly partial) functions mapping from Σ∗ to Σ∗. A set A is F -compressible
if some f ∈ F is a compression function for A.

3. For each F as above, F-compressible = {A | A is F-compressible} and F-compressible′ =
F-compressible ∪ {A ⊆ Σ∗ | A is a finite set}.

4. For each F as above and each C ⊆ 2Σ
∗

, we say that C is F-compressible if all infinite sets in C are
F-compressible.

Note that a compression function f for A can have any behavior on elements of A and need not even be
defined. Finite sets cannot have compression functions as they do not have enough elements to be mapped
onto Σ∗. Thus part 4 of Definition 2 defines a class to be F-compressible if and only if its infinite sets are
F-compressible.

Ranking can be informally thought of as a sibling of compression that preserves lexicographical order
within the set. We consider three classes of rankable functions that differ in how they are allowed to
behave on the complement of the set they rank. Although ever since the paper of Hemachandra and
Rudich [HR90], which introduced two of the three types, there have been those three types of ranking
classes, different papers have used different (and sometimes conflicting) terminology for these types. Here,
we use the (without modifying adjective) terms “ranking function” and “rankable” in the same way as
Hemaspaandra and Rubery [HR19] do, for the least restrictive form of ranking (the one that can even “lie”
on the complement). That is the form of ranking that is most naturally analogous with compression, and
so it is natural that both terms should lack a modifying adjective. For the most restrictive form of ranking,
which even for strings x in the complement of the set A being ranked must determine the number of strings
up to x that are in A, like Hemachandra and Rudich [HR90] we use the terms “strong ranking function”
and “strong(ly) rankable.” And for the version of ranking that falls between those two, since for strings in
the complement it need only detect that they are in the complement, we use the terms “semistrong ranking
function” and “semistrong(ly) rankable.”
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Definition 2.2 ([All85, GS91]). rankA(y) = ‖{z | z ≤ y ∧ z ∈ A}‖.

Definition 2.3 (Rankable sets ([All85, GS91], see also [HR19])).

1. Given a set A ⊆ Σ∗, a (possibly partial) function f is a ranking function for A exactly if

(a) domain(f) ⊇ A and

(b) if x ∈ A, then f(x) = rankA(x).

2. Let F be any class of (possibly partial) functions mapping from Σ∗ to Σ∗. A set A is F-rankable if
some f ∈ F is a ranking function for A.

3. For each F as above, F-rankable= {A | A is F-rankable}.

4. For each F as above and each C ⊆ 2Σ
∗

, C is F-rankable if all sets in C are F-rankable.

Definition 2.4 (Semistrongly rankable sets ([HR90], see also [HR19])).

1. Given a set A ⊆ Σ∗, a function f is a semistrong ranking function for A exactly if

(a) domain(f) = Σ∗,

(b) if x ∈ A, then f(x) = rankA(x), and

(c) if x /∈ A, f(x) indicates “not in set” (e.g., via the machine computing f halting in a special
state; we still view this as a case where x belongs to domain(f)).

2. Let F be any class of functions mapping from Σ∗ to Σ∗. A set A is semistrong-F-rankable if some
f ∈ F is a semistrong ranking function for A.

3. For each F as above, semistrong-F-rankable = {A | A is semistrong-F-rankable}.

4. For each F as above and each C ⊆ 2Σ
∗

, we say that C is semistrong-F-rankable if all sets in C are
semistrong-F-rankable.

Definition 2.5 (Strongly rankable sets ([HR90], see also [HR19])).

1. Given a set A ⊆ Σ∗, a function f is a strong ranking function for A exactly if

(a) domain(f) = Σ∗ and

(b) f(x) = rankA(x) for all x ∈ Σ∗.

2. Let F be any class of functions mapping from Σ∗ to Σ∗. A set A is strong-F-rankable exactly if
(∃f ∈ F)[f is a strong ranking function for A].

3. For each F as above, strong-F-rankable = {A | A is strong-F-rankable}.

4. For each F as above and each C ⊆ 2Σ
∗

, we say that C is strong-F-rankable if all sets in C are
strong-F-rankable.

Although the above definitions let us use semistrong-F-rankable and strong-F-rankable as adjectives
(and also as nouns for the class of sets having those properties), to help the flow of the reading we
sometimes will when using the adjectival form add a “ly,” i.e., we will at times for the adjectival form write
semistrongly-F-rankable and strongly-F-rankable.

For almost any natural class of functions, F , we will have that F-rankable⊆ F-compressible′. In
particular, P, FPR, and FREC each have this property. If f is a ranking function for A (in the sense of
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part 1 of Definition 2.3), for our same-class compression function for A we can map x ∈ Σ∗ to the f(x)-th
string in Σ∗ (where we consider ǫ to be the first string in Σ∗) if f(x) > 0, and if f(x) = 0 what we map to
is irrelevant so map to any particular fixed string (for concreteness, ǫ).

For each class C ⊆ 2Σ
∗

, C∁ will denote the complement of C, i.e., 2Σ
∗

− C. For example, P-rankable∁ is
the class of non-P-rankable sets.

The class semistrong-P-rankable is a subset of P (indeed, a strict subset unless P = P#P [HR90]), but
there exist undecidable sets that are P-rankable. Clearly, the class of semistrong-FREC-rankable sets equals
the class of strong-FREC-rankable sets.

3 Compression onto B: Robustness with Respect to Target Set

A compression function for a set A is 1-to-1 and onto Σ∗ when the function’s domain is restricted to A. It
is natural to wonder what changes when we switch target sets from Σ∗ to some other set B ⊆ Σ∗. We now
define this notion. In our definition, we do allow strings in A to be mapped to B or to B, or even, for the
case of FPR maps, to be undefined. In particular, this definition does not require that f(Σ∗) = B. Recall
from Section 2 that, throughout this paper, Σ = {0, 1}.

Definition 3.1 (Compressible to B).

1. Given sets A ⊆ Σ∗ and B ⊆ Σ∗, a (possibly partial) function f is a compression function for A to B
exactly if

(a) domain(f) ⊇ A,

(b) f(A) = B, and

(c) for all a and b in A, if a 6= b then f(a) 6= f(b).

2. Let F be any class of (possibly partial) functions mapping from Σ∗ to Σ∗. A set A is F -compressible
to B if some f ∈ F is a compression function for A to B.

The classes F of interest to us in this section will be FREC and FPR. Clearly, compression is simply
the B = Σ∗ case of this definition, e.g., a function f is a compression function for A if and only if f is a
compression function for A to Σ∗, and set A is F-compressible if and only if A is F-compressible to Σ∗.
(Throughout this section, for clarity we will generally write out explicitly the “to Σ∗.” Doing so avoids
theorems where one side of an “if and only if” has a “to” and the other does not. Of course, in such cases
the “to Σ∗” could be omitted, e.g., Theorem 3.2’s part 1 could equivalently be phrased as “Let A and B be
infinite sets; if B ∈ REC, then A is FREC-compressible to B if and only if A is FREC-compressible.”)

A natural first question to ask is whether compression to B is a new notion, or whether it coincides
with our existing notion of compression to Σ∗, at least for sets B from common classes such as REC and
RE. The following result shows that for REC and RE this new notion does coincide with our existing one.

Theorem 3.2. Let A and B be infinite sets.

1. If B ∈ REC, then A is FREC-compressible to B if and only if A is FREC-compressible to Σ∗.

2. If B ∈ RE, then A is FPR-compressible to B if and only if A is FPR-compressible to Σ∗.

Proof. We first prove part 1, beginning with the “if” direction.
Suppose A is FREC-compressible to Σ∗ by a recursive function f , and suppose B is recursive and

infinite. Let f ′(x) output the element y ∈ B such that rankB(y) = f(x). Then f ′ is recursive, and A is
FREC-compressible to B by f ′.
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For the “only if” direction, let B be an infinite recursive set. Suppose that A is FREC-compressible to
B by a recursive function f . Let f ′(x) = ǫ if f(x) is not in B. Otherwise, let f ′(x) = rankB(f(x)). Then f ′

is recursive, and A is FREC-compressible to Σ∗ by f ′.
Let us turn to part 2 of the theorem. Again, we begin with the “if” direction. Let B be an infinite RE

set, and let E enumerate the elements of B without repetitions. Suppose A is FPR-compressible to Σ∗ by a
partial recursive function f . Then f ′ does the following on input x.

1. Simulate f(x). This may run forever if x 6∈ domain(f).

2. If f(x) outputs a value, simulate E until it enumerates f(x) strings.

3. Output the f(x)-th string enumerated by E.

The function f ′ is partial recursive, and A is FPR-compressible to B via f ′.
For the “only if” direction, let B be infinite and RE and let E be an enumerator for B. Suppose A is

FPR-compressible to B via a partial recursive function f . On input x, our f ′ will work as follows.

1. Simulate f(x).

2. If f(x) outputs a value, run E until it enumerates f(x). This step may run forever if f(x) 6∈ B.

3. Suppose f(x) is the lth string output by E. Then output the lth string in Σ∗.

f ′ is partial recursive, and A is FPR-compressible to Σ∗ by f ′.

Theorem 3.2 covers the two most natural pairings of set classes with function classes: recursive sets B
with FREC compression, and RE sets B with FPR compression. What about pairing recursive sets under
FPR compression, or RE sets under recursive compression? We note as the following theorem that one and
a half of the analogous statements hold, but the remaining direction fails.

Theorem 3.3. 1. Let A and B be infinite sets and suppose that B ∈ REC. Then A is FPR-compressible
to B if and only if A is FPR-compressible to Σ∗.

2. Let A and B be infinite sets with B ∈ RE. If A is FREC-compressible to Σ∗, then A is
FREC-compressible to B. In fact, we may even require that the compression function for A to
B satisfies f(Σ∗) = B.

3. There are infinite sets A and B with B ∈ RE such that A is FREC-compressible to B but A is not
FREC-compressible to Σ∗.

Proof. The first part follows immediately from Theorem 3.2, part 2. The second part follows as a corollary
to the proof of Theorem 3.2, part 2. In particular, the proof of the “if” direction proves the second part,
since it is clear that if f is a recursive function the f ′ defined there is also recursive.

The third part follows from [HR19] in which it is shown that any set in RE − REC is not
FREC-compressible to Σ∗. Thus if we let A = B be any set in RE− REC, then A is FREC-compressible to
B by the function f(x) = x but A is not FREC-compressible to Σ∗.

Another interesting question is how recursive compressibility to B is, or is not, linked to recursive
isomorphism. Recall that two sets A and B are recursively isomorphic (notated A ≡iso B) if there exists a
recursive bijection f : Σ∗ → Σ∗ with f(A) = B. Although recursive isomorphism of sets implies mutual
compressibility to each other (Theorem 3.4), we prove (as Theorem 3.5) via a finite-injury priority argument
that the converse does not hold (even when restricted to the RE sets). The argument has an interesting
graph-theoretic flavor, and involves queuing infinitely many strings to be added to a set at once.
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Theorem 3.4. If A ≡iso B, then A is FREC-compressible to B and B is FREC-compressible to A.

Proof. A is FREC-compressible to B by simply letting our FREC-compression function be the recursive
isomorphism function f . Since each recursive isomorphism has a recursive inverse, B is FREC-compressible
to A by letting our FREC-compression function be the inverse of f .

Theorem 3.5. There exist RE sets A and B such that A is FREC-compressible to B and B is FREC-
compressible to A, yet A 6≡iso B.

Proof. We will prove this result via a finite-injury priority argument.
Before defining A and B, we will define a function f which will serve as both a compression function

from A to B and a compression function from B to A. First, fix a recursive isomorphism between
Σ∗ and {〈t, j, k〉 | t ∈ {0, 1, 2, 3} ∧ j, k ∈ N}. Now we will define f as follows. For each j, k ∈ N, let
f(〈3, j, k〉) = 〈3, j + 1, k〉. For each j, k ∈ N, j > 0, and t ∈ {0, 1, 2}, let f(〈t, j, k〉) = 〈t, j − 1, k〉. Finally,
for each k ∈ N, let f(〈0, 0, k〉) = 〈3, 0, k〉, f(〈1, 0, k〉) = 〈0, 0, k〉, and f(〈2, 0, k〉) = 〈3, 0, k〉. Then there is a
unique function ℓ : Σ∗ → {0, 1} such that ℓ(〈0, 0, k〉) = 0 for all k ∈ N and ℓ(f(x)) = 1− ℓ(x). Let Df be
the directed graph with edges (x, f(x)). Note that ℓ is a 2-coloring of Df if we treat the edges as being
undirected. See Figure 1.

...

〈3, 2, k〉

〈3, 1, k〉

〈3, 0, k〉

〈0, 0, k〉

〈0, 1, k〉

〈0, 2, k〉

...

〈1, 0, k〉

〈1, 1, k〉

...

〈2, 0, k〉

〈2, 1, k〉

〈2, 2, k〉

...

Figure 1: Df is the (disjoint) union, over all k ∈ N, of the above graph

Call a set C a path set if for all x ∈ C, f(x) ∈ C and there is exactly one y ∈ C such that f(y) = x.
Suppose C is a path set. Let Ci = {x ∈ C | ℓ(x) = i} for i ∈ {0, 1}. By the path-set property of C, we
have C0 and C1 are FREC-compressible to each other by f . Furthermore, if C is RE then so are C0 and C1

since Ci = C ∩ {x | ℓ(x) = i} is the intersection of an RE set with a recursive set. Thus if we provide an
enumerator for a path set C such that C0 6≡iso C1, we may let A = C0 and B = C1 and be done.

Our enumerator for C proceeds in two interleaved types of stages: printing stages Pi and evaluation stages
Ei. More formally, we proceed in stages labeled Ei and Pi for i ≥ 1, interleaved as E1,P1,E2,P2,. . . ,En,Pn,. . .
when running. We also build a set Q of elements of the form 〈t, k〉, where t ∈ {0, 1, 2} and k ∈ N. This set
Q will only ever be added to as the procedure runs. In addition to Q, we maintain an integer b (initialized
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at 1) and a set R of elements 〈n, k〉 where n, k ∈ N. If 〈n, k〉 ∈ R after stage Ei, it signifies that we have
not yet satisfied the condition that ϕn, the nth partial recursive function, is not an isomorphism function
between C0 and C1.

In a printing stage Pi, we do the following for every 〈t, k〉 in Q. Enumerate 〈3, j, k〉 and 〈t, j, k〉 for all
j ≤ i. If t = 1, additionally enumerate 〈0, 0, k〉. Looking at this procedure, we see that adding an element
〈t, k〉 to Q in some evaluation stage Ei is essentially adding an infinite path of nodes in Df to C.

We say that a node 〈t, j, k〉 is currently queued at some point in the procedure if it would be enumerated
if we had only printing stages from that point on. We can check if a node is queued by simulating stage Pj

given the current state of Q, since no elements are ever removed from Q.
In an evaluation stage Ei, we perform the following. Add 〈i, b〉 to R. Increment b by one. For each

〈n, k〉 ∈ R, run ϕn on 〈0, 0, k〉 for i steps. If none of these machines halt in their allotted time, end the
stage. Otherwise, let ni be the smallest number such that ϕni

produced an output wi = 〈xi, yi, zi〉 on its
respective input 〈0, 0, ki〉. We now break into cases:

1. If ℓ(wi) = 0 add 〈0, ki〉 to Q.

2. If zi 6= ki and ℓ(wi) = 1 and wi is not currently queued, add 〈0, ki〉 to Q.

3. If zi 6= ki and ℓ(wi) = 1 and wi is currently queued, do nothing.

4. If zi = ki and ℓ(wi) = 1 and xi = 0, add 〈1, ki〉 to Q.

5. If zi = ki and ℓ(wi) = 1 and either xi = 1 or xi = 2, add 〈0, ki〉 to Q.

6. If zi = ki and ℓ(wi) = 1 and xi = 3, add 〈2, ki〉 to Q.

Set b = max(ki, zi) + 1. Remove all pairs 〈n, k〉 with n ≥ ni from R. Then for each n from ni + 1 to i,
perform the following: first add 〈n, b〉 to R, then increment b by 1.

We will first prove that C is a path set. If x ∈ C, then it is printed in some printing stage Pi. By tracing
the definition of f and the procedure for printing stages, one can verify that both f(x) and exactly one y
such that f(y) = x will be printed in stage Pj for j ≥ i. This string y will be the only one ever printed,
since no two elements with the same second coordinate will ever be added to Q, as every element added to
Q has the current state of b as its second coordinate, and b only ever strictly increases between additions to
Q.

Let Fn be the condition that ϕn fails to be a recursive isomorphism of C0 onto C1. Fix n. Say during
Ei we have ni = n. In cases 1, 2, 4, and 5, we force ϕn to map 〈0, 0, ki〉 ∈ C0 to something out of C1. In
cases 3 and 6, we force ϕn to map 〈0, 0, ki〉 /∈ C0 to something in C1. Thus whenever in stage Ei we have
ni = n, condition Fn becomes satisfied, though perhaps not permanently. Specifically, in case 2, w could
be printed later to satisfy some other Fm and in doing so “injure” Fn. However, note that during Ei the
variable b is set to max(ki, zi), thus Fn can only be injured when satisfying conditions Fm for m < n. Pairs
with first coordinate n will only ever be added to R when after satisfying some such Fm, in addition to
once initially, so in total only a finite number of times. If ϕn always halts, Fn will eventually be satisfied
and never injured again.

This proves that C is a path set such that C0 6≡iso C1. Thus C0 and C1 are RE sets that are
FREC-compressible to each other by f , but are not recursively isomorphic.

For those interested in the issue of isomorphism in the context of complexity-theoretic functions, which
was not the focus above, we mention that: Hemaspaandra, Zaki, and Zimand [HZZ96] prove that the
P-rankable sets are not closed under ≡p

iso
; Goldsmith and Homer [GH96] prove that the strong-P-rankable

sets are closed under ≡p
iso

if and only if P = P#P; and [HZZ96] notes that the semistrong-P-rankable sets
similarly are closed under ≡p

iso
if and only if P = P#P.
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4 Closures and Nonclosures under Boolean Operations

We now move on to a main focus of this paper, the closure properties of the compressible and the rankable
sets. We explore these properties both in the complexity-theoretic and the recursion-theoretic domains.
Table 1 on page 3 summarizes our findings.

Lemma 4.1. Let A and B be strong-P-rankable. Then A ∪B is strong-P-rankable if and only if A ∩B is.

Proof. The identity rankA∩B(x)+rankA∪B = rankA(x)+rankB(x) allows us to compute either of rankA∩B(x)
or rankA∪B(x) from the other.

Theorem 4.2. The following conditions are equivalent:

1. the classes strong-P-rankable and semistrong-P-rankable are closed under intersection,

2. the classes strong-P-rankable and semistrong-P-rankable are closed under union, and

3. P = P#P.

Proof. It was proven in [HR90] by Hemachandra and Rudich that P = P#P implies P = strong-P-rankable =
semistrong-P-rankable. Since P is closed under intersection and union, this shows that 3 implies 1 and 2.
To show, in light of Lemma 4.1, that either 1 or 2 would imply 3, we will construct two strong-P-rankable
sets whose intersection is not P-rankable unless P = P#P.

Let A1 be the set of x1y1 such that |x| = |y|, x encodes a boolean formula, and y (padded with 0s so
that it has length |x|) encodes a satisfying assignment for the formula x. Let A0 be the set of x1y0 such
that |x| = |y|, and x1y1 /∈ A1. Let A2 be the set of strings x0|x|+11. Let A = A0 ∪ A1 ∪ A2. For every
x, and every y such that |x| = |y|, exactly one of x1y0 and x1y1 is in A0 ∪ A1. Thus, for any z, we can
find rankA0∪A1

(z) in polynomial time. Clearly A2 is strong-P-rankable. Since A0 ∪A1 and A2 are disjoint,
rankA0∪A1∪A2

(z) = rankA0∪A1
(z) + rankA2

(z), so A is strong-P-rankable.
Let B = Σ∗1. Then A ∩B = A1 ∪A2 is the set of x1y1 such that y encodes a satisfying assignment for

x, along with all strings x0|x|+11. If A1 ∪A2 were P-rankable, then we could count satisfying assignments of
a formula x in polynomial time by computing rankA∩B(shift(x, 1)0

| shift(x,1)|+11)− rankA∩B(x0
|x|+11)− 1.

Thus #SAT is polynomial-time computable and so P = P#P.

Proposition 4.3. The class strong-P-rankable is closed under complementation.

Proof. The identity rankA(x) + rankA(x) = rankΣ∗(x) allows us to compute either of rankA(x) or rankA(x)
from the other.

Corollary 4.4. The class strong-P-rankable∁ is also closed under complementation.

Lemma 4.5. The class semistrong-P-rankable is closed under complementation if and only if semistrong-
P-rankable = strong-P-rankable.

Proof. The “if” direction follows directly from Proposition 4.3. For the “only if” direction, let A be a
semistrong-P-rankable set with ranking function rA, and suppose A is semistrong-P-rankable with semistrong
ranking function rA. Then rankA(x) = rA(x) if x ∈ A, and equals rankΣ∗(x) − rA(x) otherwise. The
function rA decides membership in A, so we can compute rankA(x) in polynomial time.

The proof of the “only if” direction of the above proof is in fact showing the following, which we will
soon draw on.

Corollary (to the proof) 4.6. If A and A are semistrong-P-rankable, then A is strong-P-rankable.
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Definition 4.7. A set is nongappy if there exists a polynomial p such that, for each n ∈ N, there is some
element y ∈ A such that n ≤ |y| ≤ p(n).

Theorem 4.8. If the complement of each nongappy set in the class semistrong-P-rankable is itself in
semistrong-P-rankable, then P = UP∩ coUP. (Thus if semistrong-P-rankable is closed under complemen-
tation, then P = UP∩ coUP.)

Proof. Suppose that the complement of each nongappy set in the class semistrong-P-rankable is itself in
semistrong-P-rankable.

Let A be in UP∩ coUP. Then there exists a UP machine U recognizing A, and a UP machine V
recognizing A. If x ∈ A, let f(x) be the unique accepting path of U on input x. Otherwise, let f(x) be the
unique accepting path of V on input x. Choose a polynomial p such that, without loss of generality, p(x) is
monotonically increasing and |f(x)| = p(|x|) (we may pad accepting paths with 0s to make this true).

The language B = {xf(x)1 | x ∈ Σ∗} ∪ {x0p(|x|)+1 | x ∈ Σ∗} is semistrong-P-rankable since
rankB(x0

p(|x|)+1) = 2rankΣ∗(x)− 1 and rankB(xf(x)1) = 2rankΣ∗(x). Also, note that B is nongappy. Since
B is semistrong-P-rankable and nongappy, by our supposition we have that B is semistrong-P-rankable.
By Corollary 4.6, we thus have that B is strong-P-rankable. Let x be a string, and let y = shift(x, 1). We
can binary search on the value of rankB in the range from x0p(|x|)+1 to y0p(|y|)+1 to find the first value xz
where |z| = p(|x|) + 1 and rankB(xz) = 2rankΣ∗(x). See that f(x) must equal z. We then simulate U on
the path z and V on the path z. Now z must be an accepting path for one of these machines, so either U
accepts and x ∈ A, or V accepts and x /∈ A.

Theorem 4.9. If P = UP∩ coUP then each nongappy, semistrong-P-rankable set is strong-P-rankable.

Proof. Let A be a nongappy semistrong-P-rankable set, and let p be a polynomial such that, for each
n ∈ N, there is y in A such that n ≤ |y| ≤ p(y). Let r be a polynomial-time semistrong ranking function
for A. The coming string comparisons of course will be lexicographical. Let L be the set of 〈x, b〉 such that
there exists at least one string in A that is less than or equal to x and b a prefix of the greatest string in
A that is lexicographically less than or equal to x. L is in UP∩ coUP by the following procedure. Let x0
be the lexicographically first string in A. If x < x0 output 0. Otherwise, guess a string z > x such that
|z| ≤ p(|x|+1). Then guess a y ≤ x. If y and z are in A and r(y)+1 = r(z), then we know that y and z are
the (unique) strings in A that most tightly bracket x in the ≤ and the > directions. Since L ∈ UP∩ coUP,
it follows from our P = UP∩ coUP hypothesis that L ∈ P. So we can in our current case build the greatest
string less than or equal to x that is in A bit by bit, querying potential prefixes, in polynomial time. Since
rankA(x) = rankA(y), we can compute rankA(x) in polynomial time for arbitrary x.

Theorem 4.8 (by which we mean the “if-then” claim of that theorem; we are not speaking of the
parenthetical remark that is the final sentence of that theorem) and Theorem 4.9 in fact are each other’s
converses—although this might not be immediately apparently simply from looking at the results’ statements.
The fact that they are each other’s converses, though, follows from the equivalence of parts 2 and 3 of
the following result, which makes clear that we already have implicitly established the equivalence of four
statements.

Theorem 4.10. The following are equivalent:

1. P = UP∩ coUP.

2. The complement of each nongappy, semistrong-P-rankable set is semistrong-P-rankable.

3. Each nongappy, semistrong-P-rankable set is strong-P-rankable.

4. The complement of each nongappy, semistrong-P-rankable set is strong-P-rankable.
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Proof. Part 3 implies part 4 by Proposition 4.3. Part 4 implies part 2 since each strong-P-rankable set is
semistrong-P-rankable. Part 2 implies part 1 by Theorem 4.8. Part 1 implies part 3 by Theorem 4.9.

Though we thus have established the converse of the main claim of Theorem 4.8, what we unfortunately
have not proven the converse of is the parenthetical remark that is the final sentence of Theorem 4.8.
Theorem 4.9, however, establishes in some sense a weakened (due to the “nongappy” restriction; see also
the comments in the caption of Table 1) version of a converse.

The next three theorems are about intersections, unions, and complements of P -rankable sets, with
regard to compressibility.

Theorem 4.11. There exist P-rankable sets A and B such that A∩B is infinite but not FPR-compressible.

Proof. This paragraph gives an informal sense of the approach used in this proof. This proof will, by
an inductive stage construction, define sets A and B in such a way as to ensure that A and B are both
P-rankable and A ∩B is infinite. However, the ith stage of our inductive construction will ensure that the
partial recursive function computed by the ith Turing machine is not a compression function for A∩B; and
so, since each Turing machine will have been eliminated from being able to provide a compression function
for A ∩B, the construction will ensure that A ∩B is not FPR-compressible. Let us now turn to executing
this approach.

In particular, in this proof we will define a set A not containing the empty string and satisfying the
condition that for all x ∈ Σ∗, exactly one of x0 and x1 is in A. Then clearly A is P-rankable by a compression
function sending x1 and x0 to rankΣ∗(x). Let A0 and B0 be empty, and let m0 = ǫ. We will define Ai, Bi,
and mi inductively for i > 0. Let ϕi be the ith Turing machine in some enumeration of all Turing machines.

1. Suppose that ϕi is defined on mi−10, and that for all x ∈ (Ai−1 ∩Bi−1) ∪ {y | y > mi−10} we
have ϕi(x) 6= ϕi(mi−10). In this case, we set Ai = Ai−1 ∪ {mi−10, shift(mi−1, 1)0} and Bi =
Bi−1 ∪ {mi−11, shift(mi−1, 1)0} and set mi = shift(mi−1, 2), so that neither mi−10 nor mi−11 is in
Ai ∩Bi. Note that shift(mi−1, 1)0 ∈ Ai ∩Bi but shift(mi−1, 1)0 /∈ Ai−1 ∩Bi−1.

2. Suppose ϕi is either undefined on mi−10, or that for some x ∈ Ai−1∩Bi−1 we have ϕi(x) = ϕi(mi−10).
In this case, set Ai = Ai−1∪{mi−10}, Bi = Bi−1∪{mi−10}, andmi = shift(mi−1, 1). Note in particular
that x and mi−10 are both in Ai ∩Bi and lexicographically less than mi0, and take the same value
under ϕi.

3. Suppose that the above cases do not hold and there is some x > mi−11 such that ϕi(x) = ϕi(mi−10).
Let y be the lexicographically largest string such that y0 ≤ x, and let mi = shift(y, 1). Set
Ai = Ai−1∪{z0 | mi−1 ≤ z < y}∪{x} and Bi = Bi−1∪{z0 | mi−1 ≤ z < y}∪{x}. Note in particular
that x and mi−10 are both in Ai ∩Bi and lexicographically less than mi0, and take the same value
under ϕi.

Finally, let A =
⋃

i≥0Ai and B =
⋃

i≥0Bi. Notice that stage i only adds elements to Ai or Bi that are
lexicographically greater than or equal to mi−10, so if x < mi0 and x /∈ Ai ∩Bi, then x /∈ A ∩B. In case 1,
we see that ϕi fails to be surjective (i.e, onto Σ∗) when restricted to A ∩B, since there is no x < mi0 in
A ∩B mapping to ϕi(mi−10), and also no x > mi−11 mapping to ϕi(mi−10), and neither mi−10 nor mi−11
is in A ∩B. In case 2, we see either that ϕi is undefined on an element of A ∩B or that two elements of
A ∩B map to the same element. In case 3, we see that two elements in A ∩B map to the same element
under ϕi. Thus ϕi fails to compress A ∩B, and no partial recursive function can compress A ∩B. The set
A ∩B is infinite since at least one new element is added to Ai ∩Bi during stage i. We also maintain the
condition that, for all x < mi, exactly one of x0 and x1 is in Ai (resp., Bi). Each Ai (resp. Bi) consists
of exactly all strings in A (resp. B) lexicographically less than mi0, and so clearly since this statement
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holds for each Ai (resp. Bi) it holds for all of A (resp. B) as well. Thus A and B are P-rankable, but their
intersection is not FPR-compressible.

Theorem 4.12. There exist infinite P-rankable sets A and B such that A ∪B is not FPR-compressible.

Proof. Let a set A not containing the empty string satisfy the condition that for all x ∈ Σ∗, exactly one of
x0 and x1 is in A. Then clearly A is P-rankable by a function sending x1 and x0 to rankΣ∗(x).

Let A0 and B0 be empty, and let m0 = ǫ. We will construct Ai, Bi, and mi inductively for i > 0. Let
ϕi be the ith Turing machine in some enumeration of all Turing machines.

1. Suppose that ϕi is defined on mi−10, and that for all x in Ai−1 ∪ Bi−1 ∪ {y | y > mi−10} we have
ϕi(x) 6= ϕi(mi−10). In this case, we set Ai = Ai−1 ∪ {mi−11} and Bi = Bi−1 ∪ {mi−11}, and we set
mi = shift(mi−1, 1).

2. Suppose ϕi is either undefined on mi−10, or that for some x ∈ Ai−1∪Bi−1 we have ϕi(x) = ϕi(mi−10).
In this case, set Ai = Ai−1 ∪ {mi−10}, Bi = Bi−1 ∪ {mi−10}, and mi = shift(mi, 1).

3. Suppose that the above cases do not hold and there is some x ≥ mi−10 such that ϕi(x) = ϕi(mi−10).
Let mi be the lexicographically smallest string such that mi0 > x. Set Ai = Ai−1 ∪ {y0 | mi−1 ≤ y <
mi} and Bi = Bi−1 ∪ {y1 | mi−1 ≤ y < mi}. Note that both mi−10 and x are in Ai ∪Bi.

Finally, let A =
⋃

i≥0Ai and B =
⋃

i≥0Bi. Stage i only adds elements to Ai or Bi that are lexicograph-
ically greater than or equal to mi−10, so if x < mi0 and x /∈ Ai ∪ Bi, then x /∈ A ∪ B. In case 1, we see
that ϕi fails to be surjective (i.e., onto Σ∗) when restricted to A ∪B, since there is no x < mi−10 in A ∪B
mapping to ϕi(mi−10), and also no x > mi0 mapping to ϕi(mi−10), so no element in A ∪B compresses to
ϕi(mi−10). In case 2, we see either that ϕi is undefined on mi−10 ∈ A ∪B or that mi−10 and some other
element in A ∪B map to the same element, so injectivity when restricted to A ∩B fails. Similarly, in case
3, we see that mi−10 and some other element in A ∪B will map to the same value under ϕi. Thus for all i
we see that ϕi fails to compress A ∪B, and so no partial recursive function compresses A ∪B. Note that
we maintain the condition that for all x < mi, exactly one of x0 and x1 is in Ai (resp., Bi). This condition
holds in A (resp., B), and this property carries over to A and B as well. Each Ai (resp. Bi) consists of
exactly all strings in A (resp. B) lexicographically less than mi0, and so clearly since this statement holds
for each Ai (resp. Bi) it holds for all of A (resp. B) as well. Thus A and B are P-rankable, but A ∪B is
not FPR-compressible.

Theorem 4.13. There exists an infinite P-rankable set whose complement is infinite but not FPR-
compressible.

Proof. We will construct a set A consisting of strings with length at least 2, with the property that for
every x ∈ Σ∗, exactly one of x00, x01, x10, and x11 is in A. Clearly A will be infinite, and its complement
is infinite as well. Also, A will be P-rankable by sending x00, x01, x10 and x11 to rankΣ∗(x). Let A0 = 0
and m0 = ǫ. We will construct Ai and mi inductively for i > 0. Let ϕi be the ith Turing machine in some
enumeration of all Turing machines.

1. Suppose ϕi halts on mi−100, and there is no x ∈ Ai−1 where x < mi−100 such that ϕi(x) = ϕ(mi−100),
and that there is no x > mi−100 such that ϕi(x) = ϕ(mi−100). Then set Ai = Ai−1 ∪ {mi00} and set
mi = shift(mi−1, 1).

2. Suppose ϕi is undefined on mi−100, or that there is some x < mi−100 where x ∈ Ai−1 and ϕ(x) =
ϕ(mi−100). Then set Ai = Ai−1 ∪ {mi−101} and set mi = shift(mi−1, 1).
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3. Suppose that the above cases do not hold, ϕi is defined on mi−100, and ϕi(mi−100) = ϕ(x) for some
x ∈ {mi−101, mi−110, mi−111}. Then set Ai = Ai−1 ∪ {z}, where z is a fixed arbitrary element in
{mi−101, mi−110, mi−111} − {x}, and set mi = shift(mi−1, 1). Note that mi−100 and x are both in
A and below mi00, and take the same value under ϕi.

4. Suppose the above cases do not hold and ϕi is defined on mi−100 and ϕi(mi−100) = ϕ(x) for
some x > mi11. Let y be equal to x without its last two characters, and set mi = shift(y, 1). Let
Ai = Ai−1∪{mi−101}∪{z11 | mi < z < y}∪{w}, where w is some element in {y00, y01, y10, y11}−{x}.
Note that mi−100 and x are both in Ai and lexicographically less than mi00, and take the same value
under ϕi.

Finally, let A =
⋃

i≥0Ai. Notice that stage i adds to A only elements that are lexicographically greater

than or equal to mi−100, so if x < mi00 and x ∈ Ai, then x ∈ A. In case 1, we see that ϕi fails to be
surjective (i.e., onto Σ∗) when restricted to A, since there is no x < mi00 in A mapping to ϕi(mi−100),
and also no x ≥ mi0 mapping to ϕi(mi−100). In case 2, either ϕi does not halt on mi00 ∈ A or there
are two elements in A that take the same value under ϕi. In cases 3 and 4, we see that there are two
elements in A that take the same value under ϕi. Thus in all cases ϕi fails to compress A and so A is not
FPR-compressible.

Theorem 4.14. There exist sets A and B that are not FPR-compressible, yet A ∪B is strong-P-rankable.
In addition, there exist sets A and B that are not FPR-compressible, yet A ∩B is strong-P-rankable.

Proof. Let C be a set such that A = C0 ∪ Σ∗1 is not FPR-compressible. Such a set can be constructed
using a similar method to those of Theorems 4.12, 4.13, and 4.14. Then B = C1 ∪ Σ∗0, A′ = C00 ∪ Σ∗1,
and B′ = C10 ∪ Σ∗1 are all also not FPR-compressible, since clearly they are all recursively isomorphic.
Note that A ∪B = Σ∗ and A′ ∩B′ = Σ∗1, both of which are strong-P-rankable.

5 Additional Closure and Nonclosure Properties

How robust are the polynomial-time and recursion-theoretically compressible and the rankable sets? Do
sets lose these properties under join, or subtraction, addition, or (better yet) symmetric difference with
finite sets? Or even with sufficiently nice infinite sets? The following section addresses these questions.

5.1 Complexity-Theoretic Results

We focus on the join (aka disjoint union), giving a full classification of the closure properties (or lack thereof)
of the P-rankable, semistrong-P-rankable, and strong-P-rankable sets, as well as their complements, under
this operation. The literature is not consistent as to whether the low-order or high-order bit is the “marking”
bit for the join. Here, we follow the classic computability texts of Rogers [Rog67] and Soare [Soa87] and
the classic structural-complexity text of Balcázar, Dı́az, Gabarró [BDG95], and define the join using
low-order-bit marking: The join of A and B, denoted A⊕B, is A0 ∪B1, i.e., {x0 | x ∈ A} ∪ {x1 | x ∈ B}.
For classes invariant under reversal, which end is used for the marking bit is not important (in the sense
that the class itself is closed under upper-bit-marked join if and only if it is closed under lower-bit-marked
join). However, the placement of the marking bit potentially matters for ranking-based classes, since those
classes are based on lexicographical order.

The join is such a basic operation that it seems very surprising that any class would not be closed under
it, and it would be even more surprising if the join of two sets that lack some nice organizational property
can have that property. After all, the join of two sets is the least upper bound for them with respect
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to ≤p
m [Sch86] and, informally put, the join in some sense captures the power-as-a-target-of-reductions of

both sets.
Nonetheless, we will now prove, as Theorem 5.1, that from a weak complexity-theoretic hypothesis it

follows that the join of two sets in fact can, regarding rankability, be “simpler” than either of the sets. In
particular, our Theorem 5.1 shows that if P 6= P#P, then there are two sets that are not P-rankable yet
their join is P-rankable (and indeed is even strong-P-rankable). (We mention in passing that there is in the
literature already an example of behavior showing that the join can be “simpler” than either of the joined
sets. In particular, with EL2 denoting the second level of the so-called extended low hierarchy [BBS86],
Hemaspaandra et al. [HJRW98] proved that there are two sets neither of which belongs to EL2 yet the sets’
join does belong to EL2, i.e., (EL2)

∁ is not closed under the join.) We now state and prove Theorem 5.1,
which is slightly broader than just indicated, since it addresses not only the join but also intersection and
union.

Theorem 5.1. If P 6= P#P then there exist sets A ∈ P and B ∈ P that are not P-rankable yet A ∩ B,
A ∪B, and A⊕B are strong-P-rankable.

Proof. This paragraph gives an informal sense of this proof’s approach. In this proof we construct a set A1

whose members, in a way that we will make formal in the next paragraph, are encodings of a satisfiable
boolean formula accompanied by a satisfying assignment of the formula. We will build our set A (of the
theorem’s statement) by unioning A1 with a collection of strings that we will call beacons, and that are
set up in such a way that subtracting the ranks of certain beacons would let us determine the number of
satisfying assignments of formulas. In particular, we will ensure that A will thus be such that if we were
able to efficiently rank A, then we could efficiently compute the number of satisfying assignments of boolean
formulas. The set B (which is not formally the complement of A, but is in some sense a quasi-complement
of A) is constructed similarly, but in a way that helps us ensure that A ∪B, A ∩B, and A⊕B are easily
seen to be strong-P-rankable.

As in the rest of the paper, Σ = {0, 1}. Let A1 = {α01β | α, β ∈ Σ∗ ∧ |α| = |β| ∧ α is a valid
encoding of boolean formula F that has (without loss of generality) k ≤ |α| variables, the first k bits of β
encode a satisfying assignment of F , and the rest of the |β| − k bits of β are 0}. Note that given a string
x = α01β ∈ A1, we can unambiguously extract α and β because they must have length (|x| − 2)/2. Let
B1 = {α01β | α, β ∈ Σ∗ ∧ |α| = |β| ∧ α01β /∈ A1}. Let Beacons = {α000|α| | α ∈ Σ∗} ∪ {α110|α| | α ∈ Σ∗}.
Similarly to A1, strings in B1 and Beacons can be parsed unambiguously. Let A = A1 ∪ Beacons. Let
B = B1 ∪ Beacons . Note that A and B are both in P because checking if an assignment satisfies a boolean
formula is in P and Beacons is clearly in P.

We will now demonstrate that if either A or B were P-rankable, then #SAT would be in polynomial-time
computable. Suppose that A is P-rankable and let f be a polynomial-time ranking function for A. Let α be
a string encoding a boolean formula F . Then we can compute j = f(α110|α|)− f(α000|α|) in polynomial
time. Both α110|α| and α000|α| are in Beacons and thus in A, so f gives a true ranking for these values.
Every string in A between (and not including) these Beacons strings is from A1 and thus represents a
satisfying assignment for F , and every satisfying assignment for F is represented by a string between these
Beacons strings. Because the last |β| − k bits of β are 0, where k is the number of variables in F , each
satisfying assignment for F is represented exactly once between the two Beacons strings. Thus j − 1 is the
number of satisfying assignments of F . We can compute j in polynomial time, so #SAT is polynomial-time
computable and thus P = P#P, contrary to our P 6= P#P hypothesis.

Now suppose that B is P-rankable and similarly to before we will let f be the P-time ranking function
for it. Again we will let α be the encoding for some boolean formula F and j = f(α110|α|)− f(α000|α|). In
this case the strings in B between α110|α| and α000|α| are the strings of the form α01Σ|α| except for those
that are in A1 (and recall that those that are in A1 are precisely the padded-with-0s satisfying assignments
for F ). Because we know the number of strings of the form α01Σ|α|, we can again find the number of
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satisfying assignments for F . Namely, we have that j = 1 + 2|α| − s, where s is the number of satisfying
assignments of F . Thus if B is P-rankable, then we can find s in polynomial time and thus P = P#P,
contrary to our P 6= P#P hypothesis.

Finally, we show that A∪B, A∩B, and A⊕B are strong-P-rankable. The set A∩B is simply Beacons ,
which is strong-P-rankable as follows. Any string lexicographically below 00 has rank 0. For any α ∈ Σ∗,
the rank of α000|α| is 2rankΣ∗(α)− 1 and the rank of α110|α| is 2rankΣ∗(α). For every other string, it is
easy to find the lexicographically greatest string in Beacons that is lexicographically less than the given
string in polynomial time, and so it is possible to rank the string in polynomial time.

The set A ∪ B = {α01β | α ∈ Σ∗ ∧ β ∈ Σ∗ ∧ |α| = |β|} ∪ {α000|α| | α ∈ Σ∗} ∪ {α110|α| | α ∈ Σ∗},
and is also strong-P-rankable, as follows. Any string lexicographically below 00 has rank 0. For any
α ∈ Σ∗, the rank of α000|α| is 1 +

∑

x<lexα
(2|x| + 2), where x <lex α denotes that x is lexicographically

less than α. Note that although the sum is over an exponentially sized set, it still can be computed in
polynomial time because the summands depend only on the length of the element in the set. Let b(x) be
the number of strings lexicographically less than α but with the same length as α. Then we have that

1 +
∑

x<lexα
(2|x| + 2) = 1 + b(α)(2|α| + 2) +

∑|α|−1
i=0 (2i(2i + 2)).

The rank of α110|α| is
∑

x≤lexα
(2|x| + 2), where x ≤lex α denotes that x is lexicographically less than or

equal to α. For any α, β ∈ Σ∗ where |α| = |β|, the rank of α01β is b(β) + 2 +
∑

x<lexα
(2|x| + 2), where n

is the integer such that β is the nth string of its length. As above, each term is only dependent on the
length of x, and is computable in polynomial time. For any other not string in A ∪B, it is easy to find the
greatest string in A ∪B lexicographically less than the given string in polynomial time, and thus it is easy
to rank that string.

We can show that A ⊕ B = {a0 | a ∈ A} ∪ {b1 | b ∈ B} is strong-P-rankable simply by using the
already-established facts that both A ∪ B and A ∩ B are strong-P-rankable and that both A and B
are in P. The rank of ǫ is 0. The rank of 0 is 1 if ǫ ∈ A and otherwise is 0. For x ∈ Σ∗, we have
rankA⊕B(x1) = rankA∪B(x)+rankA∩B(x). For x 6= ǫ, we have rankA⊕B(x0) = rankA⊕B(x1)−δB(x), where
δB(x) = 1 if and only if x ∈ B.

Theorem 5.2. The following are equivalent:

1. strong-P-rankable∁ is closed under join,

2. semistrong-P-rankable∁ is closed under join, and

3. P = P#P.

Proof. Theorem 5.1 shows that either of 1 or 2 would imply 3. Now we show that 3 implies 1 and
2, or equivalently the negation of either 1 or 2 would imply the negation of 3. Suppose that strong-
P-rankable∁ (resp., semistrong-P-rankable∁) is not closed under join. Then there are two sets A and B that
are in strong-P-rankable∁ (resp., semistrong-P-rankable∁) but A⊕B is strong-P-rankable (resp., semistrong-
P-rankable∁). Then both A and B are in P. This is because A ⊕ B ∈ P and to test x for membership
in A, for example, we can just test x0 for membership in A ⊕ B. It was shown by Hemachandra and
Rudich [HR90] that P = P#P, P = semistrong-P-rankable, and P = strong-P-rankable are equivalent.
Since A and B are in P but not strong-P-rankable (resp., semistrong-P-rankable), P 6= strong-P-rankable
(respectively P 6= semistrong-P-rankable) and thus P 6= P#P.

Theorem 5.3. The class P-rankable∁ is not closed under join.

Proof. Let A by any language that is not P-rankable and whose complement is not P-rankable. An
example of such a set is A = {x000 | x ∈ Σ∗} ∪ {x001 | x ∈ B} ∪ {x010 | x ∈ Σ∗} ∪ {x100 | x ∈
B}, where B is any undecidable set. This set is not even FREC-rankable. Note x ∈ B if and only if
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rankA(x010)− rankA(x000) > 1, so if A were FREC-rankable, we could decide B. Similarly, x /∈ B if and
only if rankA(x101)− rankA(x011) > 1, so if A were FREC-rankable, B would be decidable, but this is a
contradiction.

Then A ⊕ A = A0 ∪ A1 is P-rankable. It can be ranked by any function mapping x0 and x1 to
rankΣ∗(x).

Theorem 5.4. The class P-rankable is not closed under join.

Proof. Let A be some undecidable set. Let A′ = A⊕A. Then A′ is P-rankable by any function mapping
x0 and x1 to rankΣ∗(x). Now let B = Σ∗ ⊕ A′. Then B is the join of two P-rankable sets. Suppose B
were P-rankable, then we can query rankB(x0) for all strings x. If rankB(x0) + 2 = rankB(shift(x, 1)0), we
know that x1 ∈ B, and thus x ∈ A′. Otherwise, x1 /∈ B so x1 /∈ A′. Since we can test membership in A′,
we can test membership of x in A by asking whether x0 ∈ A′. This is a contradiction as A was assumed
undecidable; thus B cannot be P-rankable.

Theorem 5.5. The class strong-P-rankable is closed under join.

Proof. Let A and B be strong-P-rankable. The rank of x0 in A⊕B is rankA(x) + rankB(shift(x,−1)), and
the rank of x1 is rankA(x) + rankB(x). The rank of ǫ is 0. All of these values can clearly be computed in
polynomial time so A⊕B is strong-P-rankable.

Theorem 5.6. The class semistrong-P-rankable is closed under complementation if and only if it is closed
under join.

Proof. Suppose semistrong-P-rankable is closed under complementation. Then semistrong-P-rankable is
equal to strong-P-rankable, so semistrong-P-rankable is closed under join.

Now suppose semistrong-P-rankable is closed under join. Let set A be semistrong-P-rankable by
ranking function h. Let X = Σ∗ ⊕ A. Then X is the join of two semistrong-P-rankable sets and thus is
semistrong-P-rankable by some ranking function f . The ranking function for A does the following. Given
x, if h(x) returns a rank (rather than an indication that x /∈ A) then return an indication that x /∈ A.
Otherwise let y = shift(x, 1) and return 2rankΣ∗(x) + 1− f(y0). There are a total of 2rankΣ∗(x) + 2 strings
lexicographically less than or equal to y0 in Σ∗. All those missing in X correspond to either ǫ or strings not
in A that are strictly less than y. Since y0 ∈ X, we know that f(y0) of these are in X. The rest are in
Σ∗ −X = {x1 | x ∈ A} ∪ {ǫ}. Thus the number of strings in A below x is 2rankΣ∗(x) + 1− f(y0). Thus A
is semistrong-P-rankable, so semistrong-P-rankable is closed under complementation.

Theorem 5.7. The class P-compressible′ is closed under join.

Proof. Let A and B be two P-compressible′ sets. Let f and g be the compression functions for A and B
respectively. Let h(x0) = f(x)0 and h(x1) = shift(f(x)0,−1). Now h is a compression function for A⊕B
since the image of h restricted to A0 is Σ∗0, and the image of h restricted to B1 is Σ∗1 ∪ {ǫ}. Each of A0
and B0 maps injectively because f and g are compression functions, and together they map injectively on
all of A⊕B to all of Σ∗. The function h is clearly polynomial time, and so A⊕B is P-compressible′.

5.2 Recursion-Theoretic Results

Theorem 5.8. 1. If A is an FREC-rankable set, B1 ⊆ A is a recursive set, and B2 ⊆ A is a recursive
set, then A△ (B1 ∪B2) (equivalently, (A−B1) ∪B2) is FREC-rankable.

2. If A is FREC-compressible, B1 ⊆ A is recursive, and A−B1 has an infinite RE subset, then A−B1

is FREC-compressible.
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3. If A is an FREC-compressible set and B2 ⊆ A is a recursive set, then A∪B2 is an FREC-compressible
set.

Proof. For the first part of this theorem, let f be an FREC-ranking function for A. Since B1 and B2

are recursive, their ranking functions rankB1
and rankB2

are in FREC. Our FREC ranking function for
A △ (B1 ∪ B2) is f ′(x) = f(x) + rankB2

(x) − rankB1
(x). This directly accounts for the additions and

deletions done by B1 and B2.
We now prove the second part of the theorem. The statement is clearly true if B1 is finite, even in the

case that A−B1 does not have an infinite RE subset (as long as A−B1 is still infinite). This is because
the image of A−B1 under a compression function for A is cofinite, and cofinite sets are compressible. Thus
composing a compression function for the cofinite image of A−B1 with a compression function for A, we
obtain a compression function for A−B1.

So from this point on we assume that B1 is infinite. Let h be an FREC-compression function for A. By
the hypothesis of the theorem, there is an infinite RE subset of A−B1, call it C. Since every infinite RE
set has an infinite recursive subset, let B2 ⊆ C be infinite and recursive. Let b1 < b2 < b3 < · · · be the
elements in B1, and let c1 < c2 < c3 < · · · be the elements in B2. Consider the following function.

g(x) =























x if x 6∈ B1 ∪B2,

ǫ if x ∈ B1,

b⌈i/2⌉ if x = ci and i is odd, and

ci/2 if x = ci and i is even.

Let f(x) = h(g(x)). We claim that f is a compression function for A − B1. We do this by showing g is
a compression function for A − B1 onto A, since we already know that h compresses A to Σ∗. See that
g is the identity on A − (B1 ∪ B2). See also that g(B2) = B1 ∪ B2 injectively and surjectively. Since
(A − B1) − B2 and B2 are disjoint and have disjoint images, and since g is injective and surjective on
both these domains onto their respective images, it follows that g is injective and surjective on A−B1 to
the image g((A− B1)− B2) ∪ g(B2) = A. Thus g is a compression function for A− B1 to A, and h is a
compression function for A to Σ∗, so f is a compression function for A−B1 to Σ∗. In other words, A−B1

is FREC-compressible.
We now prove the third part of the theorem. Let f be an FREC-compression function for A. If

B2 is finite, our FREC compression function for A ∪ B2 is f ′(x) = shift(f(x), ‖B2‖) for x 6∈ B2 and
f ′(x) = shift(ǫ, rankB2

(x)) for x ∈ B2.
On other hand, if B2 is infinite, let g be an FREC compression function for B2, e.g., g can be taken

to be (recall that B2 is recursive) defined by g(x) being the max(rankB2
(x), 1)-st string in Σ∗. We define

f ′(x) as follows. (Recall that for us Σ is always fixed as being {0, 1}.) If x 6∈ B2 then f ′(x) = 1f(x) (i.e.,
f(x) prefixed with a one). If x ∈ B2 and g(x) = ǫ then f ′(x) = ǫ. And, finally, if x ∈ B2 and g(x) 6= ǫ
then f ′(x) = 0 shift(g(x),−1). (The shift-by-one treatment of the x 6∈ B case is because we must ensure
that ǫ is mapped to by some string in A ∪B2.) Now, f ′ maps A ∪B bijectively onto Σ∗, so f ′ is an FREC

compression function for A ∪B, so A ∪B is FREC-compressible.

Corollary 5.9. 1. The class of FREC-rankable sets is closed under symmetric difference with finite sets
(and thus also under removal of finite sets and under addition of finite sets).

2. The class of FREC-compressible sets is closed under removal of finite sets and under addition of finite
sets.
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6 Conclusions

Taking to heart the work in earlier papers that views as classes the collections of sets that have (or lack)
rankability/compressibility properties, we have studied whether those classes are closed under the most
important boolean and other operations. For the studied classes, we in almost every case were able to
prove that they are closed under the operation, or to prove that they are not closed under the operation, or
to prove that whether they are closed depends on well-known questions about the equality of standard
complexity classes. Additionally, we have introduced the notion of compression onto a set and have showed
the robustness of compression under this notion, as well as the limits of that robustness.

As a final comment, we mention that the results of Hemaspaandra and Rubery [HR19] and the results
of the present paper all relativize in a straightforward manner.1 We include a few examples. This justifies
our limitation to FREC and FPR: By relativization, we get analogous results about more powerful function
classes, such as F∆2

.2

Theorem 6.1. For each i ≥ 1, ∆i = Σi ∩ F∆i
-compressible′.

Proof. Relativization of [HR19, Theorem 5.3] (see also [GHK92]).

Since, for i ≥ 1 F∆i
⊇ FREC, we get the following easy corollary.

Corollary 6.2. For each i ≥ 1, Σi ∩ FREC-compressible′ ⊆ ∆i.

Theorem 6.3. For each i ≥ 1, Πi ∩ F∆i
-rankable = Πi ∩ F

Σi−1

PR -rankable.

Proof. Relativization of [HR19, Theorem 4.6].

Theorem 6.4. For each i ≥ 1, there exist Σi sets A and B such that A is F∆i
-compressible to B and B is

F∆i
-compressible to A, yet A 6≡i

iso
B.

Proof. Relativization of Theorem 3.5.
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