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ABSTRACT:  Photocatalysis can generate radicals in a controlled fashion and has 

become an important synthetic strategy.  Limitations owing to the reducibility of 

alkyl halides, however, prevent their broader implementation.  Herein, we explore 

the use of nucleophiles that can substitute the halide and serve as an electron capture 

motif that normalize the variable redox potentials across substrates.  When used with 

photocatalysis, bench stable, commercially available collidinium salts prove to be 

excellent radical precursors with a broad scope.

The use of visible light to drive reactions has the potential to be 

energy efficient, green, and can reveal new mechanistic possibili-

ties that enable synthesis.1-4 Often, central to these methods is the 

controlled generation of radicals which are the critical reactive in-

termediates5-13 whose formation is enabled and governed by ab-

sorption of a photon by the photocatalyst.14  Some substrates that 

can be reductively activated by SET include aryl halides15 and 

pseudo-halides.16-20 Reaction is possible due to the relatively low-

lying unoccupied pi* orbitals of the aromatic system into which an 

electron is transferred. En route to radical formation, an intramo-

lecular electron transfer (ET) to the C–X sigma* orbital takes place, 

allowing the critical mesolytic fragmentation which yields the hal-

ide ion and carbon centered radical.21-23  The rate of this intramo-

lecular ET is dependent on a number of factors, including the en-

ergy of the pi*-orbitals, and electronic overlap with the fragment-

ing groups, among other factors.22,24-30  Practically speaking, useful 

rates of radical anion fragmentation are observed for ipso substi-

tuted halides, and alpha halo species, but drops with greater struc-

tural separation, and represents a real mechanistic limitation of rad-

ical anion fragmentation mechanism.  This sensitivity to structure 

is particularly revealing in the case of benzylic halides in which the 

rate of fragmentation becomes highly dependent on the structure 

and functional groups attached to the aromatic component which 

result in significant variation in the reduction potential and the na-

ture of the orbitals involved.26,27  In general, the substantial varia-

tion in reduction potential (Scheme 1d) of the substrates prevents 

the development of broadly applicable methodology. 

Recently, several diverse strategies have been explored to engage 

such aliphatic halides that would otherwise be hard to directly en-

gage photocatalytically.  Evolution of the photocatalyst structure 

aimed at pushing the reduction limits has been pursued by several 

groups31-34 (Scheme 1a).  Alternatively, Leonori has recently pro-

posed the use of alpha amino radicals to facilitate halogen transfer 

(1b).35  More relevant to this work, Melchiorre has identified a 

clever system that capitalizes on the electrophilicity of alkyl halides 

to be displaced by a nucleophilic chromophore (1c).36  Upon dis-

placement of the halide with a nucleophilic chromophore, the alkyl 

substrate becomes photoactive, and upon absorption of a photon, 

undergoes homolysis of the inherently weak C–S bond.  One  

Scheme 1. Emerging strategies for radical formation.  
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potential liability of this conceptually elegant approach is the in-

herent coupling of the nucleophilic and the chromophoric capaci-

ties of the catalyst, which may limit both the scope of reactions and 

the range of mechanistically diverse reactions that would be possi-

ble if these two aspects of the catalysts operated independently.  

Thus, we set about to develop a conceptually related idea (1d) 37-40 

that capitalized on the electrophilicity of alkyl halides but one that 

decoupled the photon absorbing aspects of the catalyst from its nu-

cleophilic aspects.  Our objective was to identify a nucleophile that, 

upon addition to the alkyl halide, would serve as the electron cap-

turing component where the halide failed, and ultimately, level sub-

strate reduction potentials.  Thus, we began our studies by explor-

ing a Giese type reaction41-44 using benzyl bromide derived salts 

and conditions that have been used for reductive coupling in our 

lab.45-48  

We found that quaternary ammonium, imidazolium, and phospho-

nium salts showed no reactivity under these conditions.  Calcula-

tion of the molecular orbitals using semi-empirical Hückel calcula-

tions demonstrate that the LUMO orbital lies primarily on the 

fluorobenzene fragment rather than on the added nucleophilic com-

ponent and explains a lack of reactivity (see SI). In contrast, pyri-

dinium 1d, which displays LUMO density on the pyridinium motif, 

provided the product, albeit in low yield (12%). 

Scheme 2. Search for redox active salts. 

 

 

Inspection of the corresponding reaction mixtures by GCMS sug-

gested the formation of fluorobenzylated pyridine byproducts were 

a major contributor to the mass balance.  Thus, we speculated that 

fluorobenzyl radical was forming under reaction conditions and ei-

ther attacking the pyridinium salt (1d ) or the resulting pyridine in 

a Minisci-type reaction.49,50  Indeed, when the 4-position was 

blocked (1e and 1f) we observed a slight improvement to the yield, 

albeit meager.  1g resulted in the formation of a colored EDA com-

plex that was consumed, but did not result in product formation.  

We next explored both collidinium (1h) and Katritzky51 (1i) salts, 

whose susceptible positions were blocked.  In both cases, the 

Minisci-product could not be detected, and yields nearly doubled.  

A direct comparison with the corresponding benzyl bromide re-

vealed the enhanced reactivity of the pyridinium derived salts, sug-

gesting electron capture could be enhanced by substitution. 

Encouraged by the positive results of our initial exploration and 

that of Glorius,52-54 Lautens,53 and Aggarwal,55 whose efforts to use 

of Katritzky salts in deaminative couplings of primary amines via 

photoredox catalysis, and related work56,57 that provided strong 

precedent, we set out to optimize the reaction conditions (Table 1).  

While both the trimethyl- (1h) and triphenyl-pyridinium (1i) salts 

resulted in the higher yields compared to less substituted versions, 

a closer inspection of the 19F NMR spectra of the reaction mixtures 

revealed that the trimethyl-pyridinium (1h) produced far fewer side 

products (see SI).  Given this and that triphenyl-pyridinium (1i) is 

derived from the corresponding expensive oxopyrylium salt 

($2,376/mol) rather than inexpensive collidine ($29/mol), we 

elected to continue optimization using the collidinium salt, 1h. 

With reductive conditions, that included catalytic Ir(ppy)3, DIPEA, 

and blue light, we observed complete conversion within 6 h, but the 

desired product was minor (23%, entry 1).  While minor amounts 

of radical termination products were identified (3' and 3''), we were 

encouraged to see that the majority of the mass balance appeared 

to derived from a benzyl radical that had formed the desired C–C 

bond and could, if nudged in the right mechanistic direction, lead 

to product.  More specifically, it appeared that rather than terminat-

ing to give the desired product, it underwent one or two propagation 

steps to give products 3a’ and 3a”.  Dilution of the reaction mixture 

(entry 2) helped somewhat and gave a corresponding higher yield, 

but slowed the reaction.  Together these experiments suggested that 

controlling the rate of termination would be vital to achieving prod-

uct selectivity. We postulated that identification of the appropriate 

catalyst could facilitate reduction of the intermediate radical.58,59  

Indeed, a photocatalyst screen (see SI) showed that while iridium 

catalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 gave more sluggish conver-

sion (entry 3), the critical ratio of desired to undesired products had 

improved by an order of magnitude.  Furthermore, increasing or 

decreasing the photocatalyst loading increased (entry 5) or de-

creased the product ratio (entry 6).   

Table 1. Optimization table. 

entry modification time conv%a 3a%a 3a/3a’+3a’’

1 none 6 h 100% 23% 0.37

2 MeCN (0.05 M) 10 h 100% 38% 1.36

3 Ir[dF(CF3)ppy]2(dtbbpy)PF6 46 h 50% 38% 3.5

4 [Ru(bpy)3]PF6 44 h 1% 0% 0

5 Entry 3 (0.5 mol% photocatalyst) 48 h 70% 52% 5.2

6 Entry 3 (0.05 mol% photocatalyst) 48 h 85% 19% 0.3

7 Entry 3  MeCN (0.05 M) 72 h 39% 33% 5.2

8 Entry 3, NBu3 instead of DIPEA 48 h 65% 34% 3.4

9 Entry 3, DIPEA 3 equiv 47 h 79% 66% 6.6

10 Entry 3, DIPEA 4 equiv 16 h 100% 77% 9.63

11 Entry 10, H2O 5 equiv 12 h 100% 85% 21.25

12 Entry 10, H2O 10 equiv 12 h 100% 88% 29.3

13 No amine, no photocatalyst, no light 24 h 0 0 0

 

Changing the catalyst to Ru(bpy)3 (entry 4) which has a similar re-

duction potential (E1/2(II/I) -1.33 V vs SCE)1a gave very sluggish 

conversion and no detectable product formation, suggesting that the 

photocatalyst plays a nuanced role in the reaction. Attempts to use 

NBu3 (entry 8) instead of DIPEA (entry 3) led to slightly faster 



 

conversion but gave substantial amounts of a compound derived 

from combination of the amine and nitrile.60,61  Speculating that the 

off cycle use of the amine was resulting in reaction retardation at 

higher conversions, we investigated the use of more amine (entry 3 

vs 9 and 10).  Indeed, moving from 2 to 4 equivalents increased the 

conversion from 50% to 100% and decreased the reaction time 

from 46 h to 16 h.  Importantly, as the desired reaction was able to 

take place throughout the entirety of the reaction, the product dis-

tribution shifted in favor of the desired product.  With evidence 

suggesting the involvement of photocatalyst in the termination step, 

we investigated the effect of water on the reaction (entry 11 and 

12).  Indeed, the inclusion of 10 equivalents of H2O further en-

hanced the product distribution to 29.3:1 and accelerated the reac-

tion (12 h), resulting in an 88% yield.  Finally, individual control 

studies evidenced the critical aspect of each reaction component 

(entry 13).  

Scheme 3. Scope studies. 

 

Having identified optimal conditions (entry 12 in Table 1), we ex-

amined the scope of collidinium salts with acrylonitrile (Scheme 

3). A broader range of collidinium salts was prepared (see SI).  The 

reaction worked well for benzylic collidinium salts with electron 

withdrawing - (3a, 3d, and 3f) neutral-groups (3b, 3c, and 3g) and 

electron-donating (3i and 3j)- which would have been a challenging 

feat for the corresponding halides.  This strategy could be extended 

to sterically demanding, ortho flanked, benzylic substrates (3e and 

3k) by use of the 4-methyl pyridine derived salts.  Apparently, the 

bulk of benzyl component, which made nucleophilic substitution 

more challenging, also served to protect these salts from undergo-

ing Minisci-type benzylation which we had observed earlier with 

less sterically demanding benzyl pyridinium salts. Furthermore, 4-

methyl pyridinium salt of a secondary benzylic substrate (3l) also 

gave a good yield, highlighting the ability to rapidly and signifi-

cantly modify the carbon framework of substrates. The mild reac-

tion conditions are compatible with a wide range of functional 

groups such as a nitrile (3f), ester (3d), ethers (3j) and bromides 

(3b and 3c).  Importantly, all of these substrates were engaged pho-

tocatalytically using the same conditions-a feat that would have 

been challenging using the corresponding halides. The collidinium 

salts offer protection to otherwise sensitive heterocycles such as 

thiophene62 (3m) and naphthalene63 (3h), which might be expected 

to undergo radical addition. We expect the broad functional group 

tolerance to facilitate further synthetic elaboration. Other electron 

deficient alkenes worked well in the reaction (3n-3s), with ester 

substituent of acrylates exhibiting minimal influence (3n and 3o), 

while methacrylate (3p) was slightly more prone to propagation.  

Similarly, cinnamate (3s) gave the product in modest yield.  Cyclic 

enones proved competent (3q, and 3r), giving the fluorobenzylated 

products in good yield.  Other alkenes also proved competent (see 

SI).  Interestingly, the use of -methylstyrene resulted in the for-

mation of product (3t) and higher order oligiomers. The scope sug-

gests different reaction mechanisms may be operative depending 

on alkene.  The use of the bench stable, crystalline collidinium salts 

also facilitate workup of the reaction.  Simple extraction followed 

by acidic washes removes any excess DIPEA, collidine by-product, 

and, if present, any unreacted collidinium salts.  This is in stark 

contrast to the Katritzky salt which produces triphenyl pyridine 

which must be removed chromatographically.  Likewise, if the ben-

zyl halide were used, any excess would also be expected to need to 

be removed from the organic extracts. 

Our understanding of the reaction (Scheme 5) begins by absorption 

of a blue photon to give strongly oxidizing Ir(III)* [(Ir*(III)/(Ir(II) 

= 1.21 V vs SCE in CH3CN)],64 followed by reductive quenching 

by the amine65,66 (NR3 ~0.50 V).67,68 This is supported by Stern-

Volmer analysis (5a).   

Scheme 4.  Isotope experiments. 

 

Next, the reduced Ir(II) undergoes SET to the collidinium salt 

1h,69,70 (Ir(II/III) = -1.37 V vs SCE64 E1/2 = estimated -1.27 V vs 

SCE in DMF)71 giving the collidinium radical, I, and completing 

Cycle A. Subsequently, I undergoes unimolecular fragmentation72 

to give collidine and benzylic radical, II. Addition of II to acrylo-

nitrile generates radical intermediate III. HAT from the amine rad-

ical cation yields product (path a). However, several observations 

called this explanation into question, namely, the effect of photo-

catalyst loading on the product distribution (Table 1, entries 1, 5 

and 6), and enhanced rate and selectivity upon addition of water 

(entry 12). Indeed, we observed a solvent kinetic isotope effect of 

kH/kD = 2.0 when we used 10 equivalents of D2O (Scheme 4).  Fur-

thermore, the deuterium incorporation experiment (Scheme 4) re-

vealed that use of D2O resulted in only partial incorporation of the 

deuterium (30%) in the alpha position of the nitrile product. Given 

the O–H bond strength of water (118.8 kcal/mol)73 and the Calpha–

H bond strength of the product (89.0 kcal/mol),74 HAT from water 

is improbable.  However, protium incorporation (70%) in the pres-

ence of D2O, suggests that HAT (path a) is indeed occurring-the 

likely donor being the DIPEA radical cation.3,75  The observed rate 

enhancement of the desired reaction upon inclusion of water may 

be due to a proton-coupled electron transfer (path B) that facilitates 

a reduction of the radical to carbanion IV (estimated reduction po-

tential ~ -0.9- -1.1).76,77  The photocatalyst concentration is ex-

pected to influence the lifetime of III, which may also undergo ol-

igimerization, therefore, it is expected to impact product distribu-

tion- which we observe.  

Returning to our initial goal of dual catalysis, in a preliminary cat-

alytic experiment with 2-(chloromethyl)-1,3,5-trimethylbenzene 



 

(Scheme 6), we have seen that 20 mol% of 4-methylpyridine is ca-

pable of achieving catalytic turnover and significantly enhancing 

Scheme 5.  Working mechanism. 

 

the rate of benzylation.  While some background reaction was ob-

served, it was substantially slower (38% vs 100% conversion, see 

SI for more details). This result supports the validity of the under-

lying concept and provides an initial point for further investigation 

of nucleophiles that can strike the appropriate balance of nucleo-

philicity and reducibility to allow the catalytic transformation of 

non-redox active electrophiles. 

Scheme 6. Preliminary attempt to achieve catalytic activation. 

 

In conclusion, we have demonstrated that the use of commercially 

available collidiniums salts are a viable strategy that enable photo-

redox catalysis to mildly and efficiently engage previously sluggish 

and unreactive alkyl halides.  While this study focused on the stoi-

chiometric work, we have shown that dual catalysis is feasible, and 

further development is warranted.  Pragmatically, collidinium salts 

are easy to make, handle, photochemically- and bench-stable, crys-

talline salts, which are redox active alternatives to halides.  Further-

more, all reaction components are water soluble which facilitates 

product isolation, and potentially allows their use in complex set-

tings. 
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