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Collidinium Salts

-an alternative to halides
*facilitate electron capture
*photocatalytically active

*bench stable

*easily removed

*water soluble by—product]
*commercially available

ABSTRACT: Photocatalysis can generate radicals in a controlled fashion and has
become an important synthetic strategy. Limitations owing to the reducibility of
alkyl halides, however, prevent their broader implementation. Herein, we explore
the use of nucleophiles that can substitute the halide and serve as an electron capture
motif that normalize the variable redox potentials across substrates. When used with
photocatalysis, bench stable, commercially available collidinium salts prove to be
excellent radical precursors with a broad scope.

The use of visible light to drive reactions has the potential to be
energy efficient, green, and can reveal new mechanistic possibili-
ties that enable synthesis.!* Often, central to these methods is the
controlled generation of radicals which are the critical reactive in-
termediates®'®> whose formation is enabled and governed by ab-
sorption of a photon by the photocatalyst.'* Some substrates that
can be reductively activated by SET include aryl halides'> and
pseudo-halides.!¢2° Reaction is possible due to the relatively low-
lying unoccupied pi* orbitals of the aromatic system into which an
electron is transferred. En route to radical formation, an intramo-
lecular electron transfer (ET) to the C—X sigma* orbital takes place,
allowing the critical mesolytic fragmentation which yields the hal-
ide ion and carbon centered radical.?'->* The rate of this intramo-
lecular ET is dependent on a number of factors, including the en-
ergy of the pi*-orbitals, and electronic overlap with the fragment-
ing groups, among other factors.?>?*-30 Practically speaking, useful
rates of radical anion fragmentation are observed for ipso substi-
tuted halides, and alpha halo species, but drops with greater struc-
tural separation, and represents a real mechanistic limitation of rad-
ical anion fragmentation mechanism. This sensitivity to structure
is particularly revealing in the case of benzylic halides in which the
rate of fragmentation becomes highly dependent on the structure
and functional groups attached to the aromatic component which
result in significant variation in the reduction potential and the na-
ture of the orbitals involved.?>?’ In general, the substantial varia-
tion in reduction potential (Scheme 1d) of the substrates prevents
the development of broadly applicable methodology.

Recently, several diverse strategies have been explored to engage
such aliphatic halides that would otherwise be hard to directly en-
gage photocatalytically. Evolution of the photocatalyst structure
aimed at pushing the reduction limits has been pursued by several
groups®'3* (Scheme 1a). Alternatively, Leonori has recently pro-
posed the use of alpha amino radicals to facilitate halogen transfer
(1b).3 More relevant to this work, Melchiorre has identified a
clever system that capitalizes on the electrophilicity of alkyl halides
to be displaced by a nucleophilic chromophore (1¢).3® Upon dis-
placement of the halide with a nucleophilic chromophore, the alkyl

substrate becomes photoactive, and upon absorption of a photon,
undergoes homolysis of the inherently weak C—S bond. One

Scheme 1. Emerging strategies for radical formation.
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potential liability of this conceptually elegant approach is the in-
herent coupling of the nucleophilic and the chromophoric capaci-
ties of the catalyst, which may limit both the scope of reactions and
the range of mechanistically diverse reactions that would be possi-
ble if these two aspects of the catalysts operated independently.

Thus, we set about to develop a conceptually related idea (1d) 3740
that capitalized on the electrophilicity of alkyl halides but one that
decoupled the photon absorbing aspects of the catalyst from its nu-
cleophilic aspects. Our objective was to identify a nucleophile that,
upon addition to the alkyl halide, would serve as the electron cap-
turing component where the halide failed, and ultimately, level sub-
strate reduction potentials. Thus, we began our studies by explor-
ing a Giese type reaction*!** using benzyl bromide derived salts
and conditions that have been used for reductive coupling in our
lab.45-48

We found that quaternary ammonium, imidazolium, and phospho-
nium salts showed no reactivity under these conditions. Calcula-
tion of the molecular orbitals using semi-empirical Hiickel calcula-
tions demonstrate that the LUMO orbital lies primarily on the
fluorobenzene fragment rather than on the added nucleophilic com-
ponent and explains a lack of reactivity (see SI). In contrast, pyri-
dinium 1d, which displays LUMO density on the pyridinium motif,
provided the product, albeit in low yield (12%).

Scheme 2. Search for redox active salts.
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Inspection of the corresponding reaction mixtures by GCMS sug-
gested the formation of fluorobenzylated pyridine byproducts were
a major contributor to the mass balance. Thus, we speculated that
fluorobenzyl radical was forming under reaction conditions and ei-
ther attacking the pyridinium salt (1d ) or the resulting pyridine in
a Minisci-type reaction.*>*° Indeed, when the 4-position was
blocked (1e and 1f) we observed a slight improvement to the yield,
albeit meager. 1g resulted in the formation of a colored EDA com-
plex that was consumed, but did not result in product formation.
We next explored both collidinium (1h) and Katritzky>! (1i) salts,
whose susceptible positions were blocked. In both cases, the
Minisci-product could not be detected, and yields nearly doubled.
A direct comparison with the corresponding benzyl bromide re-
vealed the enhanced reactivity of the pyridinium derived salts, sug-
gesting electron capture could be enhanced by substitution.

Encouraged by the positive results of our initial exploration and
that of Glorius,>>* Lautens,>® and Aggarwal,> whose efforts to use
of Katritzky salts in deaminative couplings of primary amines via
photoredox catalysis, and related work>®>7 that provided strong
precedent, we set out to optimize the reaction conditions (Table 1).

While both the trimethyl- (1h) and triphenyl-pyridinium (1i) salts
resulted in the higher yields compared to less substituted versions,
a closer inspection of the 19F NMR spectra of the reaction mixtures
revealed that the trimethyl-pyridinium (1h) produced far fewer side
products (see SI). Given this and that triphenyl-pyridinium (1i) is
derived from the corresponding expensive oxopyrylium salt
($2,376/mol) rather than inexpensive collidine ($29/mol), we
elected to continue optimization using the collidinium salt, 1h.

With reductive conditions, that included catalytic Ir(ppy)s, DIPEA,
and blue light, we observed complete conversion within 6 h, but the
desired product was minor (23%, entry 1). While minor amounts
ofradical termination products were identified (3' and 3'"), we were
encouraged to see that the majority of the mass balance appeared
to derived from a benzyl radical that had formed the desired C—C
bond and could, if nudged in the right mechanistic direction, lead
to product. More specifically, it appeared that rather than terminat-
ing to give the desired product, it underwent one or two propagation
steps to give products 3a’ and 3a”. Dilution of the reaction mixture
(entry 2) helped somewhat and gave a corresponding higher yield,
but slowed the reaction. Together these experiments suggested that
controlling the rate of termination would be vital to achieving prod-
uct selectivity. We postulated that identification of the appropriate
catalyst could facilitate reduction of the intermediate radical.’®>
Indeed, a photocatalyst screen (see SI) showed that while iridium
catalyst Ir[dF(CF3)ppy]2(dtbbpy)PFs gave more sluggish conver-
sion (entry 3), the critical ratio of desired to undesired products had
improved by an order of magnitude. Furthermore, increasing or
decreasing the photocatalyst loading increased (entry 5) or de-
creased the product ratio (entry 6).

Table 1. Optimization table.

/dj\ CN  fac-Ir(ppy)3 (0.25 mol%) CN
r _ MeCN(oaM)  _ F
/©/\ DIPEA (2 equiv) N |
th By 4 equw tt, Ar, Blue LEDs 3a
entry  modification time conv%? 3a%? 3a/3a’+3a”
1 none 6h 100% 23% 0.37
2 MeCN (0.05 M) 10 h 100% 38% 1.36
3 Ir[dF(CF;)ppy],(dtbbpy)PFg 46 h 50% 38% 3.5
4 [Ru(bpy)s]PFg 44h 1% 0% 0
5 Entry 3 (0.5 mol% photocatalyst) 48 h 70% 52% 5.2
6 Entry 3 (0.05 mol% photocatalyst) 48 h 85% 19% 0.3
7 Entry 3 MeCN (0.05 M) 72h 39% 33% 5.2
8 Entry 3, NBu; instead of DIPEA 48 h 65% 34% 3.4
9 Entry 3, DIPEA 3 equiv 47 h 79% 66% 6.6
10 Entry 3, DIPEA 4 equiv 16 h 100% 77% 9.63
11 Entry 10, H,0 5 equiv 12h 100% 85% 21.25
12 Entry 10, H,0 10 equiv 12h 100% 88% 29.3
13 No amine, no photocatalyst, no light 24 h 0 0 0
2Conversion and product ratio determined by 19F NMR.
F
O CN CN CN CN CN
Radical termination Radical propagation

Changing the catalyst to Ru(bpy)s (entry 4) which has a similar re-
duction potential (E12(I/I) -1.33 V vs SCE)'? gave very sluggish
conversion and no detectable product formation, suggesting that the
photocatalyst plays a nuanced role in the reaction. Attempts to use
NBus (entry 8) instead of DIPEA (entry 3) led to slightly faster



conversion but gave substantial amounts of a compound derived
from combination of the amine and nitrile.®*®! Speculating that the
off cycle use of the amine was resulting in reaction retardation at
higher conversions, we investigated the use of more amine (entry 3
vs 9 and 10). Indeed, moving from 2 to 4 equivalents increased the
conversion from 50% to 100% and decreased the reaction time
from 46 h to 16 h. Importantly, as the desired reaction was able to
take place throughout the entirety of the reaction, the product dis-
tribution shifted in favor of the desired product. With evidence
suggesting the involvement of photocatalyst in the termination step,
we investigated the effect of water on the reaction (entry 11 and
12). Indeed, the inclusion of 10 equivalents of H2O further en-
hanced the product distribution to 29.3:1 and accelerated the reac-
tion (12 h), resulting in an 88% yield. Finally, individual control
studies evidenced the critical aspect of each reaction component

(entry 13).
Scheme 3. Scope studies.
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Having identified optimal conditions (entry 12 in Table 1), we ex-
amined the scope of collidinium salts with acrylonitrile (Scheme
3). A broader range of collidinium salts was prepared (see SI). The
reaction worked well for benzylic collidinium salts with electron
withdrawing - (3a, 3d, and 3f) neutral-groups (3b, 3¢, and 3g) and
electron-donating (3i and 3j)- which would have been a challenging
feat for the corresponding halides. This strategy could be extended
to sterically demanding, ortho flanked, benzylic substrates (3e and
3k) by use of the 4-methyl pyridine derived salts. Apparently, the
bulk of benzyl component, which made nucleophilic substitution
more challenging, also served to protect these salts from undergo-
ing Minisci-type benzylation which we had observed earlier with
less sterically demanding benzyl pyridinium salts. Furthermore, 4-
methyl pyridinium salt of a secondary benzylic substrate (31) also
gave a good yield, highlighting the ability to rapidly and signifi-
cantly modify the carbon framework of substrates. The mild reac-
tion conditions are compatible with a wide range of functional
groups such as a nitrile (3f), ester (3d), ethers (3j) and bromides
(3b and 3¢). Importantly, all of these substrates were engaged pho-
tocatalytically using the same conditions-a feat that would have

been challenging using the corresponding halides. The collidinium
salts offer protection to otherwise sensitive heterocycles such as
thiophene®? (3m) and naphthalene® (3h), which might be expected
to undergo radical addition. We expect the broad functional group
tolerance to facilitate further synthetic elaboration. Other electron
deficient alkenes worked well in the reaction (3n-3s), with ester
substituent of acrylates exhibiting minimal influence (3n and 30),
while methacrylate (3p) was slightly more prone to propagation.
Similarly, cinnamate (3s) gave the product in modest yield. Cyclic
enones proved competent (3q, and 3r), giving the fluorobenzylated
products in good yield. Other alkenes also proved competent (see
SI). Interestingly, the use of a-methylstyrene resulted in the for-
mation of product (3t) and higher order oligiomers. The scope sug-
gests different reaction mechanisms may be operative depending
on alkene. The use of the bench stable, crystalline collidinium salts
also facilitate workup of the reaction. Simple extraction followed
by acidic washes removes any excess DIPEA, collidine by-product,
and, if present, any unreacted collidinium salts. This is in stark
contrast to the Katritzky salt which produces triphenyl pyridine
which must be removed chromatographically. Likewise, if the ben-
zyl halide were used, any excess would also be expected to need to
be removed from the organic extracts.

Our understanding of the reaction (Scheme 5) begins by absorption
of a blue photon to give strongly oxidizing Ir(III)* [(Ir*(II1)/(Ir(I1)
= 1.21 V vs SCE in CH3CN)],** followed by reductive quenching
by the amine®>% (NR3 ~0.50 V).¢”-® This is supported by Stern-
Volmer analysis (5a).

Scheme 4. Isotope experiments.
Ir[dF(CF,)ppyl,(dtbbpy)PF (0.25 mol%) H/D

"
/@/\N z ] CN MeCN (0.1 M) /@/\/\CN
F S / DIPEA (4 equiv), D,O (10 equiv) F 3a-H/D

1h Br . rt, Ar, Blue LEDs
2a, 4 equiv

ky/ kp=2.0at2h
30% D at full conversion

Next, the reduced Ir(Il) undergoes SET to the collidinium salt
1h,%70 (Ir(II/11) = -1.37 V vs SCE® Ei2 = estimated -1.27 V vs
SCE in DMF)’! giving the collidinium radical, I, and completing
Cycle A. Subsequently, I undergoes unimolecular fragmentation’
to give collidine and benzylic radical, II. Addition of II to acrylo-
nitrile generates radical intermediate III. HAT from the amine rad-
ical cation yields product (path a). However, several observations
called this explanation into question, namely, the effect of photo-
catalyst loading on the product distribution (Table 1, entries 1, 5
and 6), and enhanced rate and selectivity upon addition of water
(entry 12). Indeed, we observed a solvent kinetic isotope effect of
kr/kp= 2.0 when we used 10 equivalents of DO (Scheme 4). Fur-
thermore, the deuterium incorporation experiment (Scheme 4) re-
vealed that use of D20 resulted in only partial incorporation of the
deuterium (30%) in the alpha position of the nitrile product. Given
the O—H bond strength of water (118.8 kcal/mol)” and the Caipha—
H bond strength of the product (89.0 kcal/mol),”* HAT from water
is improbable. However, protium incorporation (70%) in the pres-
ence of D20, suggests that HAT (path a) is indeed occurring-the
likely donor being the DIPEA radical cation.>’> The observed rate
enhancement of the desired reaction upon inclusion of water may
be due to a proton-coupled electron transfer (path B) that facilitates
a reduction of the radical to carbanion IV (estimated reduction po-
tential ~ -0.9- -1.1).7%77  The photocatalyst concentration is ex-
pected to influence the lifetime of I1I, which may also undergo ol-
igimerization, therefore, it is expected to impact product distribu-
tion- which we observe.

Returning to our initial goal of dual catalysis, in a preliminary cat-
alytic experiment with 2-(chloromethyl)-1,3,5-trimethylbenzene



(Scheme 6), we have seen that 20 mol% of 4-methylpyridine is ca-
pable of achieving catalytic turnover and significantly enhancing

Scheme 5. Working mechanism.
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the rate of benzylation. While some background reaction was ob-
served, it was substantially slower (38% vs 100% conversion, see
SI for more details). This result supports the validity of the under-
lying concept and provides an initial point for further investigation
of nucleophiles that can strike the appropriate balance of nucleo-
philicity and reducibility to allow the catalytic transformation of
non-redox active electrophiles.

Scheme 6. Preliminary attempt to achieve catalytic activation.
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In conclusion, we have demonstrated that the use of commercially
available collidiniums salts are a viable strategy that enable photo-
redox catalysis to mildly and efficiently engage previously sluggish
and unreactive alkyl halides. While this study focused on the stoi-
chiometric work, we have shown that dual catalysis is feasible, and
further development is warranted. Pragmatically, collidinium salts
are easy to make, handle, photochemically- and bench-stable, crys-
talline salts, which are redox active alternatives to halides. Further-
more, all reaction components are water soluble which facilitates
product isolation, and potentially allows their use in complex set-
tings.
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