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Abstract. We establish interior regularity for almost convex viscosity solutions of the
sigma-2 equation.
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1 Introduction

In this paper, we establish regularity for almost convex viscosity solutions of the o> equa-
tion

F(D*u)=0(A)—1= Y AiA;j—1=0, (1.1)

1<i<j<n

where Als are the eigenvalues of the Hessian D?u.

Fully nonlinear equation (1.1) is the quadratic analogue of the Laplace equation 1 =
Au and the Monge-Ampere equation ¢, = detD?u. In dimension three, o =1 if and only
if Y3 _,arctanA;=47r/2, which is the special Lagrangian equation from calibrated geom-
etry. The equation 0> (k) =1 prescribes the scalar curvature of a Euclidean hypersurface
(x,u(x)) with principal curvatures (k1,---,k,) =k. Complex 0»-type equations arise from
the Strominger system in string theory, and the o> function of the Schouten tensor arises
in conformal geometry.
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Theorem 1.1. Let u be a semiconvex viscosity solution of 0> (D*u) =1 on B1(0) C R" with

Au>0and D*u> (6—K)I for some §>0and K=[n(n—1) /2] "%, Then u is analytic on B1(0)
and has the effective Hessian bound

2
|D*u(0)| <C(n)exp [C(n) 0sC u} .
B1(0)

One quick consequence is that every entire almost convex (such as in Theorem 1.1)
viscosity solution of (1.1) is a quadratic function; the smooth case was done in [5]. Recall
the classic rigidity results for the equations Au =1 and detD?u =1: every entire convex
viscosity solution is quadratic. Our result shows that if a singular viscosity solution of
(1.1) exists, then it is not convex, or even almost convex.

The interior regularity for (1.1) in general dimensions is a longstanding problem. Six-
ty years ago, Heinze [8] achieved a priori estimates and regularity for two dimension-
al Monge-Ampére type equations including (1.1) with n =2 by two dimensional tech-
niques. More than ten years ago, a priori estimates and regularity for (1.1) with n =3
were obtained via the minimal surface structure of equation (1.1) in the joint work with
Warren [17]. Along this “integral” way, Qiu [12] has proved a priori Hessian estimates—
then regularity follows—for three dimensional (1.1) with C! variable right hand side, and
even with left hand side A replaced by the principal curvatures x. Hessian estimates for
convex smooth solutions of general quadratic Hessian equations in general dimensions
have been obtained via a pointwise approach by Guan and Qiu [7]. Hessian estimates
for almost convex smooth solutions of (1.1) in general dimensions have been derived by
a compactness argument in [10], and recently for semiconvex smooth solutions in [13]
using new mean value and Jacobi inequalities.

In contrast, there are Pogorelov-like singular convex viscosity solutions of the sym-
metric Hessian equations 0 (A) =1 with k > 3 in dimension n > 3. Under a strict k-
convexity assumption on weak/viscosity solutions of 0y (A) =1, a priori Hessian esti-
mates and then regularity were obtained by Pogorelov [11] and Chou-Wang [6], for k=n
and 2 <k <n respectively, using Pogorelov’s pointwise technique. Lastly, we also men-
tion a priori gradient estimates by Trudinger [14] and a priori Hessian estimates for so-
lutions of oy as well as 0y /0, equations in terms of certain integrals of the Hessian by
Urbas [15,16], Bao-Chen-Guan-Ji [1].

Extending the above a priori estimates to regularity statements about viscosity so-
lutions of (1.1) is more subtle. In dimensions two and three, one can smoothly solve
the Dirichlet problem on interior balls with smoothly approximated boundary data; a
limiting procedure combined with the a priori estimates then yields the desired interior
regularity for the viscosity solution. However, for dimension n >4, a priori estimates are
not known for general solutions of (1.1). Because the smooth approximations may not
satisfy the convexity constraints, we cannot invoke the available a priori estimates while
taking the limit and deduce interior regularity.

We circumvent this difficulty using the improved regularity properties of the equation
for the Legendre-Lewy transform 7(X) found in [5]. By the analytical definition of the
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transform valid for merely semiconvex functions, we show that 7(¥) is indeed a viscosity
solution of a new concave and uniformly elliptic equation if u(x) is a viscosity solution of
(1.1). It follows that i(X) is smooth. Then the boundedness of the original solution u(x)
combined with the constant rank of D?ii(%) in [3] implies #(x) is smooth, and in turn, the
a priori estimate in [13] provides the explicit estimate in Theorem 1.1. A similar approach
has lead to the interior regularity for convex viscosity solutions of the special Lagrangian
equation in our recent joint work [4].

It is still unclear to us whether semiconvex viscosity solutions of (1.1) are regular,
if only D?*u > —KI for some large K > 0. Unlike in [4], where one can only justify the
rotated transform i satisfying a phase decreased special Lagrangian equation for convex
viscosity solutions u, here the Legendre-Lewy transform i is still a C!"! viscosity solution
of a new uniformly elliptic equation, for any semiconvex viscosity solution. However,
as the new equation no longer has convex level set, for large K, we are unable to deduce
smoothness for i at this point. Without the smoothness of i, we are currently unable
to obtain a CU! version of the constant rank theorem to gain negative definiteness of
the negative semidefinite Hessian D?i <0, for the C! solution 7 of a uniformly elliptic
and inversely concave equation. Otherwise, the interior regularity for such semiconvex
viscosity solutions of (1.1) would be justified.

2 Preliminaries

2.1 Smooth functions and solutions

It was shown in [5] that smooth semiconvex solutions u of (1.1) solve a better equation
after the Legendre-Lewy transform. First adding a large quadratic to produce uniform-
ly convex #i(x) = u(x)+X|x|2, we reflect the “gradient” graph (x,Dii(x)) € R" xR" to
produce another “gradient” graph (—Dii(%),X)=(x,Dii(x)) with potential i (X). This po-
tential can be found using

—di(x)=—Diu(x)-di=x-di=d(x-%)—Dii(x)-dx=d(x-x—ii(x)),
so up to a constant,
i(%)=—(x-x—ii(x)), x€By,

which is, in fact, negative the Legendre transform of striclty convex function f(x)=1i(x),
formulated in extremal form as

f(y)=supx-y—f(x)].
xX€B,
Here, the subdifferential y€df(By). If f is smooth, then y=D f(x) and the analytic defini-
tion agrees with the geometric one. We finally add a minus sign, and define the Legendre-
Lewy transform of a semiconvex function u with D?u > (—K+6)I by

*

a(f)=—i*(£) = [u<x>+§rx12] (%) @)
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for those x € 9ii(By).
The Hessians are related by
D%i(x)=—(D?i(x)) ' = —(D?u(x)+KI)7},

so semiconvexity D?u > (—K+4)I and uniform convexity D2 > 1 imply i € C1! with
1 2o
~51<Di(%) <0, (2.2)

Indeed, the tangent planes of (x,Dii(x)) are formed by (e, D?ii-¢) with e€IR", so reflection
implies that (—(D?i1) " 'e,e) form tangent planes for (—Dii*(%),%). Consequently, equa-
tion (1.1) transforms to

(D7) =0y (1) {0-2 (—%—K) _1} — 0 (“A)F (D) =0, 23)

where /_\fs are the eigenvalues of the Hessian D?ii. It was shown in [5, p. 661-663] that
this equation, with an equivalent conformal factor

V(42 (1422) '

is uniformly elliptic for all K >0, and has convex level set for K=[n(n—1) /2] ~1/2 More-
over, for smooth solutions, the constant rank theorem of [3] applies since the “inverse”
equation of F also has convex level set:

{o2(M)=1=0} = {tr(M) —\/|MP+2=0}.

These favorable properties were used in [10] to find an a priori estimate for smooth solu-
tions.

The first challenge is to show that i1 (X) is a viscosity solution of (2.3) if u(x) is one
for (1.1). The favorable regularity properties of (2.3) will then imply #(X) is a classical
solution of (2.3), after which the constant rank theorem will take over.

2.2 Convex functions and viscosity solutions

The Legendre-Lewy transform i in (2.1) still makes sense if u € C? is only semiconvex
with D?u>(6—K)I. Because ii=u+ % |x|? is uniformly convex D% >41, it follows that the
subdifferential map x+ 9l (x) is “distance increasing”, and we can show as in [4, Lemma
2.1] that QO =91i(B;) is an open connected set.

Moreover, the Legendre transform is order reversing and respects constants: f <g—
f*>g*and (f+c)* = f*—c. This means the transform respects uniform convergence: if
f—e<g<f+e then f*+e>g> f*—e. It follows that the Legendre-Lewy transform (2.1)
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obeys these same properties, except it is now order preserving: if u—e <v <u-+¢, then
n—e<v<ii+e.

By smooth approximation, it follows from (2.2) and the respect for uniform conver-
gence that concave i is C!'! from below with

1
—51§D2a§0.

Order preservation also implies preservation of the supersolution property.

Proposition 2.1. Let u be a semiconvex viscosity supersolution of (1.1) on B1(0) with D?*u >
(0—K)1. Then the Legendre-Lewy transform i in (2.1) is a corresponding viscosity supersolution
of (2.3) on Q=01 (By).

Proof. Let Q be any quadratic function touching ii from below locally somewhere on the
open set Q), say the origin. Already D2Q < D2i < 0. By subtracting ¢|%|* from Q, then
taking the limit as ¢ goes to 0, we assume D>Q < 0. This guarantees the existence of its
inverse transform, quadratic function Q. From the order preservation of the Legendre-
Lewy transform (2.1), which is also valid for the inverse operation, we see that Q touches
u from below somewhere. Because u is a supersolution, F (DzQ) <0. Recalling —D?Q>0,
we conclude F(D?Q) =0, (—D?*Q)F(D?*Q) <0. O

The concavity pertaining to (1.1) implies the preservation of subsolutions under the
Legendre-Lewy transform.

Proposition 2.2. Let u be a semiconvex viscosity subsolution of (1.1) on B1,(0) with D?*u >
(0—K)I. Then the Legendre-Lewy transform i in (2.1) is a corresponding viscosity subsolution
of (2.3) on Q=01 (By).

Proof. Step 1. For convenience, we extend the semiconvex u(x) to an entire semiconvex
function on R". Set the standard convolution u,(x) = u*p.(x) with pe(x) =€ "p(x/¢)
and nonnegative p(x) =p(|x|) € C5 (R") satisfying [.p(x)dx=1. Given the C* uniform
continuity of u, we have |u,(x) —u(x)| <o(1) for all small enough «.

We claim that the smooth Legendre-Lewy transform i, is defined at least on Q) for
all small enough e. We verify this by showing that for any 4 € dii (a) with a € B; (0), there
exists b such that Dii,(b) =a with i (x) = & |x|*+ 1, (x) and [b—a| <o(1) as & goes to 0.
Consequently, 9ii (B; (0)) C Dii,(B11(0)) for all small enough «.

Now for any @€91 (a), given the uniform convexity of i, D*il>J1, there exists b€ R"
such that Dii, (b) = a. By subtracting linear function 4-x from both 7 and 7., we assume
0€9ii(a)Naii; (b). Then coupled with the d-convexity of i and 7., we have

ii(b)—ii(a) zg]b—ayz and . (a) — 11, (b) zgm—byz.

For small enough ¢, we always have

(a)~fic(a) > ~[o(1)] and 7 (b) ~(b) >~ lo(1)]-
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Adding all the above four inequalities together, we get
lb—al*<2|o(1)] /6.

for small enough ¢. Therefore, we have proved that ii, is defined on ) =0ii(B1(0)) C
Dii;(B11(0)) for all small enough .

Step 2. Note that the equivalent form y/02(A)—1=0 of equation (1.1) is concave.
By the well-known result in [2, p. 56], the solid convex average ux*p, (instead of the
hollow spherical one there) is still a subsolution of (1.1) in B ; (0) for small enough £ > 0.
For smooth subsolutions u,, the corresponding smooth Legendre-Lewy transform i, is
a subsolution of (2.3) on Q) from Step 1 and o, ( —Dzﬁg) > 0. The viscosity solutions are
stable under C° uniform convergence. Hence uniformly convergent limit lim,_,oil, =i is
a viscosity subsolution of (2.3) on Q). O

Remark 2.1. We shrank B;,(0) to B;(0) in the conclusion of Proposition 2.2 for clarity
of exposition. If we instead mollify on small balls centered near the boundary, then s-
traightforward modifications of the above yield the result on all of 97i[B; »(0)], not just on

0i[B1(0)].

3 Proof of Theorem 1.1

By Propositions 2.1 and 2.2, the Legendre-Lewy transform (%) is a viscosity solution
of transformed equation (2.3) on open and connected set =09 (u+ 1K ]x]2> (B1(0)) (we

may assume u is defined on B;,(0) by scaling, 1.2%u(x/1.2) ). Moreover,
1 2
— Sl <D-u<0.

By [5, p. 661-663], equation (2.3) with K = [(n—1) /2] "'/? is uniformly elliptic and has
convex level set, so the Evans-Krylov theorem implies that i1 € C?*in Q) (see [2, Theorem
6.6]), hence smooth in ().

We now show D?ii < 0 on the open and connected set (), which then implies that
the original u satisfies D?u < +o0, and hence is smooth and even analytic on By (0). If
not, then D?il is not full rank somewhere. By the constant rank theorem of the Hessian
Dzﬂ(f) in [3, Theorem 1.1], D21 is nowhere full rank (nowhere negative definite).

But we can arrange a “large” quadratic function Q = % |x|?+t touching u from above
at an interior point of B1(0). By the order preservation of the Legendre-Lewy transform,

1

it follows that Q = ey |%|?>+t touches @ from above somewhere. Since D?Q < 0, it

follows that D% < 0 somewhere on (), and we obtain a contradiction.
We thus deduce u is smooth on Bj, and even analytic [9, p. 203]. The effective Hessian
bound then follows from [13].
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