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1 Introduction

In this paper, we establish regularity for almost convex viscosity solutions of the σ2 equa-
tion

F
(

D2u
)

=σ2(λ)−1= ∑
1≤i<j≤n

λiλj−1=0, (1.1)

where λ′
is are the eigenvalues of the Hessian D2u.

Fully nonlinear equation (1.1) is the quadratic analogue of the Laplace equation σ1 =
∆u and the Monge-Ampère equation σn =detD2u. In dimension three, σ2 =1 if and only
if ∑

3
i=1arctanλi=±π/2, which is the special Lagrangian equation from calibrated geom-

etry. The equation σ2(κ)= 1 prescribes the scalar curvature of a Euclidean hypersurface
(x,u(x)) with principal curvatures (κ1,··· ,κn)=κ. Complex σ2-type equations arise from
the Strominger system in string theory, and the σ2 function of the Schouten tensor arises
in conformal geometry.
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Theorem 1.1. Let u be a semiconvex viscosity solution of σ2

(

D2u
)

= 1 on B1(0)⊂ R
n with

∆u>0 and D2u≥(δ−K)I for some δ>0 and K=[n(n−1)/2]−1/2 . Then u is analytic on B1(0)
and has the effective Hessian bound

∣

∣D2u(0)
∣

∣≤C(n)exp

[

C(n) osc
B1(0)

u

]2

.

One quick consequence is that every entire almost convex (such as in Theorem 1.1)
viscosity solution of (1.1) is a quadratic function; the smooth case was done in [5]. Recall
the classic rigidity results for the equations △u=1 and detD2u=1 : every entire convex
viscosity solution is quadratic. Our result shows that if a singular viscosity solution of
(1.1) exists, then it is not convex, or even almost convex.

The interior regularity for (1.1) in general dimensions is a longstanding problem. Six-
ty years ago, Heinze [8] achieved a priori estimates and regularity for two dimension-
al Monge-Ampère type equations including (1.1) with n = 2 by two dimensional tech-
niques. More than ten years ago, a priori estimates and regularity for (1.1) with n = 3
were obtained via the minimal surface structure of equation (1.1) in the joint work with
Warren [17]. Along this “integral” way, Qiu [12] has proved a priori Hessian estimates–
then regularity follows–for three dimensional (1.1) with C1,1 variable right hand side, and
even with left hand side λ replaced by the principal curvatures κ. Hessian estimates for
convex smooth solutions of general quadratic Hessian equations in general dimensions
have been obtained via a pointwise approach by Guan and Qiu [7]. Hessian estimates
for almost convex smooth solutions of (1.1) in general dimensions have been derived by
a compactness argument in [10], and recently for semiconvex smooth solutions in [13]
using new mean value and Jacobi inequalities.

In contrast, there are Pogorelov-like singular convex viscosity solutions of the sym-
metric Hessian equations σk (λ) = 1 with k ≥ 3 in dimension n ≥ 3. Under a strict k-
convexity assumption on weak/viscosity solutions of σk (λ) = 1, a priori Hessian esti-
mates and then regularity were obtained by Pogorelov [11] and Chou-Wang [6], for k=n
and 2≤ k< n respectively, using Pogorelov’s pointwise technique. Lastly, we also men-
tion a priori gradient estimates by Trudinger [14] and a priori Hessian estimates for so-
lutions of σk as well as σk/σn equations in terms of certain integrals of the Hessian by
Urbas [15, 16], Bao-Chen-Guan-Ji [1].

Extending the above a priori estimates to regularity statements about viscosity so-
lutions of (1.1) is more subtle. In dimensions two and three, one can smoothly solve
the Dirichlet problem on interior balls with smoothly approximated boundary data; a
limiting procedure combined with the a priori estimates then yields the desired interior
regularity for the viscosity solution. However, for dimension n≥4, a priori estimates are
not known for general solutions of (1.1). Because the smooth approximations may not
satisfy the convexity constraints, we cannot invoke the available a priori estimates while
taking the limit and deduce interior regularity.

We circumvent this difficulty using the improved regularity properties of the equation
for the Legendre-Lewy transform ū(x̄) found in [5]. By the analytical definition of the
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transform valid for merely semiconvex functions, we show that ū(x̄) is indeed a viscosity
solution of a new concave and uniformly elliptic equation if u(x) is a viscosity solution of
(1.1). It follows that ū(x̄) is smooth. Then the boundedness of the original solution u(x)
combined with the constant rank of D2ū(x̄) in [3] implies u(x) is smooth, and in turn, the
a priori estimate in [13] provides the explicit estimate in Theorem 1.1. A similar approach
has lead to the interior regularity for convex viscosity solutions of the special Lagrangian
equation in our recent joint work [4].

It is still unclear to us whether semiconvex viscosity solutions of (1.1) are regular,
if only D2u ≥−KI for some large K > 0. Unlike in [4], where one can only justify the
rotated transform ū satisfying a phase decreased special Lagrangian equation for convex
viscosity solutions u, here the Legendre-Lewy transform ū is still a C1,1 viscosity solution
of a new uniformly elliptic equation, for any semiconvex viscosity solution. However,
as the new equation no longer has convex level set, for large K, we are unable to deduce
smoothness for ū at this point. Without the smoothness of ū, we are currently unable
to obtain a C1,1 version of the constant rank theorem to gain negative definiteness of
the negative semidefinite Hessian D2ū≤ 0, for the C1,1 solution ū of a uniformly elliptic
and inversely concave equation. Otherwise, the interior regularity for such semiconvex
viscosity solutions of (1.1) would be justified.

2 Preliminaries

2.1 Smooth functions and solutions

It was shown in [5] that smooth semiconvex solutions u of (1.1) solve a better equation
after the Legendre-Lewy transform. First adding a large quadratic to produce uniform-
ly convex ũ(x) = u(x)+ K

2 |x|
2, we reflect the “gradient” graph (x,Dũ(x)) ∈ R

n×R
n to

produce another “gradient” graph (−Dū(x̄), x̄)=(x,Dũ(x)) with potential ū(x̄). This po-
tential can be found using

−dū(x̄)=−Dū(x̄)·dx̄= x·dx̄=d(x· x̄)−Dũ(x)·dx=d(x· x̄−ũ(x)),

so up to a constant,
ū(x̄)=−(x· x̄−ũ(x)), x∈B1,

which is, in fact, negative the Legendre transform of striclty convex function f (x)= ũ(x),
formulated in extremal form as

f ∗(y)= sup
x∈B1

[x·y− f (x)] .

Here, the subdifferential y∈∂ f (B1). If f is smooth, then y=D f (x) and the analytic defini-
tion agrees with the geometric one. We finally add a minus sign, and define the Legendre-
Lewy transform of a semiconvex function u with D2u≥ (−K+δ)I by

ū(x̄)=−ũ∗(x̄)=−

[

u(x)+
K

2
|x|2

]∗

(x̄) (2.1)
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for those x̄∈∂ũ(B1).
The Hessians are related by

D2ū(x̄)=−(D2ũ(x))−1=−(D2u(x)+KI)−1,

so semiconvexity D2u≥ (−K+δ)I and uniform convexity D2ũ≥δI imply ū∈C1,1 with

−
1

δ
I≤D2ū(x̄)<0. (2.2)

Indeed, the tangent planes of (x,Dũ(x)) are formed by (e,D2ũ·e) with e∈R
n, so reflection

implies that (−(D2ũ)−1e,e) form tangent planes for (−Dũ∗(x̄), x̄). Consequently, equa-
tion (1.1) transforms to

F̄(D2ū)=σn

(

−λ̄
)

[

σ2

(

−
1

λ̄
−K

)

−1

]

=σn

(

−λ̄
)

F
(

D2u
)

=0, (2.3)

where λ̄′
is are the eigenvalues of the Hessian D2ū. It was shown in [5, p. 661–663] that

this equation, with an equivalent conformal factor

1
√

(

1+λ2
1

)

···(1+λ2
n)

C(n,K,δ)
≈ σn

(

−λ̄
)

,

is uniformly elliptic for all K>0, and has convex level set for K=[n(n−1)/2]−1/2 . More-
over, for smooth solutions, the constant rank theorem of [3] applies since the “inverse”
equation of F̄ also has convex level set:

{σ2(M)−1=0}=
{

tr(M)−
√

|M|2+2=0
}

.

These favorable properties were used in [10] to find an a priori estimate for smooth solu-
tions.

The first challenge is to show that ū(x̄) is a viscosity solution of (2.3) if u(x) is one
for (1.1). The favorable regularity properties of (2.3) will then imply ū(x̄) is a classical
solution of (2.3), after which the constant rank theorem will take over.

2.2 Convex functions and viscosity solutions

The Legendre-Lewy transform ū in (2.1) still makes sense if u ∈ C0 is only semiconvex
with D2u≥(δ−K)I. Because ũ=u+ K

2 |x|
2 is uniformly convex D2ũ≥δI, it follows that the

subdifferential map x 7→∂ũ(x) is “distance increasing”, and we can show as in [4, Lemma
2.1] that Ω̄=∂ũ(B1) is an open connected set.

Moreover, the Legendre transform is order reversing and respects constants: f ≤ g→
f ∗≥ g∗ and ( f +c)∗= f ∗−c. This means the transform respects uniform convergence: if
f −ε≤ g≤ f +ε, then f ∗+ε≥ g≥ f ∗−ε. It follows that the Legendre-Lewy transform (2.1)



168 R. Shankar and Y. Yuan / J. Math. Study, 54 (2021), pp. 164-170

obeys these same properties, except it is now order preserving: if u−ε≤ v≤ u+ε, then
ū−ε≤ v̄≤ ū+ε.

By smooth approximation, it follows from (2.2) and the respect for uniform conver-
gence that concave ū is C1,1 from below with

−
1

δ
I≤D2ū≤0.

Order preservation also implies preservation of the supersolution property.

Proposition 2.1. Let u be a semiconvex viscosity supersolution of (1.1) on B1(0) with D2u≥
(δ−K)I. Then the Legendre-Lewy transform ū in (2.1) is a corresponding viscosity supersolution
of (2.3) on Ω̄=∂ũ(B1).

Proof. Let Q̄ be any quadratic function touching ū from below locally somewhere on the

open set Ω̄, say the origin. Already D2Q̄ ≤ D2ū ≤ 0. By subtracting ε|x̄|2 from Q̄, then
taking the limit as ε goes to 0, we assume D2Q̄< 0. This guarantees the existence of its
inverse transform, quadratic function Q. From the order preservation of the Legendre-
Lewy transform (2.1), which is also valid for the inverse operation, we see that Q touches
u from below somewhere. Because u is a supersolution, F(D2Q)≤0. Recalling −D2Q̄>0,
we conclude F̄(D2Q̄)=σn(−D2Q̄)F(D2Q)≤0.

The concavity pertaining to (1.1) implies the preservation of subsolutions under the
Legendre-Lewy transform.

Proposition 2.2. Let u be a semiconvex viscosity subsolution of (1.1) on B1.2(0) with D2u≥
(δ−K)I. Then the Legendre-Lewy transform ū in (2.1) is a corresponding viscosity subsolution
of (2.3) on Ω̄=∂ũ(B1).

Proof. Step 1. For convenience, we extend the semiconvex u(x) to an entire semiconvex
function on R

n. Set the standard convolution uε (x) = u∗ρε (x) with ρε (x) = ε−nρ(x/ε)
and nonnegative ρ(x)=ρ(|x|)∈C∞

0 (Rn) satisfying
∫

Rn ρ(x)dx=1. Given the C0 uniform
continuity of u, we have |uε (x)−u(x)|< o(1) for all small enough ε.

We claim that the smooth Legendre-Lewy transform ūε is defined at least on Ω̄ for
all small enough ε. We verify this by showing that for any ā∈∂ũ(a) with a∈B1(0) , there

exists b such that Dũε(b) = ā with ũε(x)= K
2 |x|

2+uε(x) and |b−a| ≤ o(1) as ε goes to 0.
Consequently, ∂ũ(B1(0))⊂Dũε(B1.1(0)) for all small enough ε.

Now for any ā∈∂ũ(a) , given the uniform convexity of ũε, D2ũε≥δI, there exists b∈R
n

such that Dũε (b)= ā. By subtracting linear function ā·x from both ũ and ũε, we assume
0∈∂ũ(a)∩∂ũε (b). Then coupled with the δ-convexity of ũ and ũε, we have

ũ(b)−ũ(a)≥
δ

2
|b−a|2 and ũε (a)−ũε (b)≥

δ

2
|a−b|2 .

For small enough ε, we always have

ũ(a)−ũε (a)≥−|o(1)| and ũε (b)−ũ(b)≥−|o(1)|.
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Adding all the above four inequalities together, we get

|b−a|2≤2|o(1)|/δ.

for small enough ε. Therefore, we have proved that ūε is defined on Ω̄ = ∂ũ(B1(0))⊂
Dũε(B1.1(0)) for all small enough ε.

Step 2. Note that the equivalent form
√

σ2(λ)−1 = 0 of equation (1.1) is concave.
By the well-known result in [2, p. 56], the solid convex average u∗ρε (instead of the
hollow spherical one there) is still a subsolution of (1.1) in B1.1(0) for small enough ε>0.
For smooth subsolutions uε, the corresponding smooth Legendre-Lewy transform ūε is
a subsolution of (2.3) on Ω̄ from Step 1 and σn

(

−D2ūε

)

≥ 0. The viscosity solutions are
stable under C0 uniform convergence. Hence uniformly convergent limit limε→0 ūε = ū is
a viscosity subsolution of (2.3) on Ω̄.

Remark 2.1. We shrank B1.2(0) to B1(0) in the conclusion of Proposition 2.2 for clarity
of exposition. If we instead mollify on small balls centered near the boundary, then s-
traightforward modifications of the above yield the result on all of ∂ũ[B1.2(0)], not just on
∂ũ[B1(0)].

3 Proof of Theorem 1.1

By Propositions 2.1 and 2.2, the Legendre-Lewy transform ū(x̄) is a viscosity solution

of transformed equation (2.3) on open and connected set Ω̄= ∂
(

u+ 1
2 K |x|2

)

(B1(0)) (we

may assume u is defined on B1.2(0) by scaling, 1.22u(x/1.2) ). Moreover,

−
1

δ
I≤D2ū≤0.

By [5, p. 661–663], equation (2.3) with K=[n(n−1)/2]−1/2 is uniformly elliptic and has
convex level set, so the Evans-Krylov theorem implies that ū∈C2,α in Ω̄ (see [2, Theorem
6.6]), hence smooth in Ω̄.

We now show D2ū < 0 on the open and connected set Ω̄, which then implies that
the original u satisfies D2u <+∞, and hence is smooth and even analytic on B1(0). If
not, then D2ū is not full rank somewhere. By the constant rank theorem of the Hessian
D2ū(x̄) in [3, Theorem 1.1], D2ū is nowhere full rank (nowhere negative definite).

But we can arrange a “large” quadratic function Q= A
2 |x|

2+t touching u from above
at an interior point of B1(0). By the order preservation of the Legendre-Lewy transform,
it follows that Q̄=− 1

2(K+A) |x̄|
2+t touches ū from above somewhere. Since D2Q̄< 0, it

follows that D2ū<0 somewhere on Ω̄, and we obtain a contradiction.
We thus deduce u is smooth on B1, and even analytic [9, p. 203]. The effective Hessian

bound then follows from [13].
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[11] A. V. Pogorelov, The Minkowski Multidimensional Problem, translated from the Russian by
Vladimir Oliker, introduction by Louis Nirenberg, Scripta Series in Mathematics, Winston &
Sons V H, Washington D C, Halsted Press [John Wiley & Sons], New York-Toronto-London,
1978.

[12] G. Qiu, Interior curvature estimates for hypersurfaces of prescribing scalar curvature in di-
mension three, arXiv:1901.07791.

[13] R. Shankar and Y. Yuan, Hessian estimate for semiconvex solutions to the sigma-2 equation,
Calc. Var. Partial Differential Equations, to appear.

[14] N. S. Trudinger, Weak solutions of Hessian equations, Commun. Partial Differentail Equa-
tions, 22(7/8) (1997), 1251–1261.

[15] J. Urbas, Some interior regularity results for solutions of Hessian equations, Calc. Var. Partial
Differential Equations, 11 (2000), 1–31.

[16] J. Urbas, An interior second derivative bound for solutions of Hessian equations, Calc. Var.
Partial Differential Equations, 12 (2011), 417–431.

[17] M. Warren and Y. Yuan, Hessian estimates for the sigma-2 equation in dimension three,
Commun. Pure Appl. Math., 62(3) (2009), 305–321.


