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Abstract

Exterior problems for the maximal surface equation are studied. We obtain the
precise asymptotic behavior of the exterior solution at infinity. We also prove
that the exterior Dirichlet problem is uniquely solvable for admissible boundary
data and prescribed asymptotic behavior at infinity. © 2020 Wiley Periodicals
LLC.

1 Introduction
The maximal surface equation is

(1.1) div
�

Dup
1 � jDuj2

�
D 0;

or equivalently in the nondivergence form

(1.2) 4uC .Du/
0

D2uDu

1 � jDuj2 D 0:

This equation arises as the Euler equation of the variational problem that maxi-
mizes the area functional

R p
1 � jDuj2 among the spacelike hypersurfaces in the

Lorentz-Minkowski space LnC1 (see the definitions in Section 2). The graph of a
solution to (1.1) is called a maximal hypersurface and the graph of a solution to the
variational problem is called an area-maximizing hypersurface.

Calabi [4] (n � 4) and Cheng-Yau [5] (all dimensions) proved that every entire
maximal hypersurface in LnC1 or every global solution u to the maximal surface
equation (1.1) with jDu.x/j < 1 on Rn must be linear.

The Dirichlet problem for bounded domains was studied by Bartnik-Simon [2]
and the isolated singularity problem was studied by Ecker [6]. The exterior prob-
lem is a “complementary” one for elliptic equations; see, for example, [1, 14] for
minimal hypersurfaces, [3] for the Monge-Ampere equation, [11] for the special
Lagrangian equation as well as other fully nonlinear elliptic equations, and [10]
for infinity harmonic functions, besides the classic works such as [7] for linear
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ones. We study the exterior problems for the maximal surface equation in this pa-
per. We obtain the precise asymptotic behavior of the exterior solution at infinity,
and we prove that the exterior Dirichlet problem is uniquely solvable.

Throughout the paper, we assume A � Rn is a bounded closed set. We say that
u is an exterior solution in RnnA if u 2 C 2.RnnA/ with jDu.x/j < 1 solves the
equation (1.1) in RnnA. Given an exterior solution u; for any bounded C 1 domain
U � A; the integral

Res�u� WD
Z
@U

@u=@Enp
1 � jDuj2

d�

is independent of the choices of U because of the divergence structure of the equa-
tion. The number Res�u� can be regarded as the residue of the exterior solution
u:

THEOREM 1.1. Let u be a smooth exterior solution inRnnAwithA being bounded.
Then there exists a vector a 2 B1 and a constant c 2 R such that for n D 2

(1.3)
u.x/ D a � x C .1 � jaj2/Res�u� ln

q
jxj2 � .a � x/2 C c

C Res�u�jaj
q
1 � jaj2 jxj.a � x/

jxj2 � .a � x/2 �
ln jxj
jxj COk.jxj�1/;

and for n � 3
(1.4) u.x/ D a � xC c � .1� jaj2/Res�u�

�q
jxj2 � .a � x/2

�2�nCOk.jxj1�n/
as jxj ! 1 for all k D 0; 1; : : : . The notation '.x/ D Ok.jxjm/ means that
jDk'.x/j D O.jxjm�k/.

On the other hand, for any bounded closed set A, given an admissible boundary
value function g W @A ! R and prescribed asymptotic behavior at infinity, the
exterior Dirichlet problem for maximal surface equation is uniquely solvable. We
say g is admissible if g is bounded and there exists a spacelike function  inRnnA
such that  D g on @A in the sense of [2, (1.1)] (see Remark 2.2 in Section 2).

THEOREM 1.2. Let A � R
n be a bounded closed set and g W @A ! R be an

admissible boundary value function. Then:
(1) n D 2, given any a 2 B1 and d 2 R, there exists a unique smooth solution

u of maximal surface equation on R2nA such that u D g on @A and

u.x/ D a � x C d ln
q
jxj2 � .a � x/2 CO.1/ as x !1I

(2) n � 3, given any a 2 B1 and c 2 R, there exists a unique smooth solution
u of maximal surface equation on RnnA such that u D g on @A and

u.x/ D a � x C c C o.1/ as x !1:
Of course, the function u enjoys finer asymptotic properties and the relation

d D .1 � jaj2/Res�u� holds by Theorem 1.1.
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Variational solutions over exterior domains has been studied in [9]. At present,
the related results for variational solutions are far from complete; see [9] for details.

The article is organized as follows. In Section 2, we set up some notations and
definitions, and we collect some results from [2, 5, 6] that are needed in the proofs
of the later sections. In Section 3, we prove that a spacelike function over an exte-
rior domain can be spacelike extended to the whole Rn. This is the starting point
of our work. Interestingly there is a striking similarity between our argument and
the argument in [3, pp. 571–572] where Caffarelli and Li prove the locally convex
solution of detD2u D 1 over an exterior domain can be extended to a global con-
vex function (after finitely enlarging the bounded complementary domain in both
cases). In Section 4, we prove a growth control theorem for the exterior solution
u at infinity. This is the key content of this paper. Inspired by Ecker’s proof in [6]
and relying on his results there, our argument involves compactness, blowdown
analysis, and the comparison principle. In Section 5, we prove the gradient esti-
mate for u based on the growth control theorem and Cheng-Yau’s estimate on the
second fundamental form. In Section 6, we prove Theorem 1.1. Since the equation
(1.1) becomes uniformly elliptic by the gradient estimate of the previous section,
the standard tools such as the Harnack inequality and the Schauder estimate apply.
The known radially symmetric solutions play a key role in the proof. In Section
7, we prove Theorem 1.2. We solve the equation in a series of bigger and bigger
ring-shaped domains and use the compactness method to get an exterior solution.
We use the Lorentz transformations of radially symmetric solutions as barrier func-
tions to guarantee the prescribed asymptotic behavior of the exterior solution near
1. The uniqueness of solutions follows from the comparison principle.

2 Notations and Preliminary Results
We denote the Lorentz-Minkowski space by LnC1 D fX D .x; t/ W x 2 Rn;

t 2 Rg, with the flat metric
Pn

iD1 dx2i � dt2, and h � ; � i denotes the inner product
in LnC1 with the signature .C; : : : ;C;�/.

The light cone at X0 D .x0; t0/ 2 LnC1 is defined by

CX0
D fX 2 LnC1 W hX �X0; X �X0i D 0g:

The upper and lower light cones will be denoted by CC
X0

and C�
X0

respectively.
The Lorentz balls are defined by

LR.X0/ D fX 2 LnC1 W hX �X0; X �X0i < R2g:
LetM be an n-dimensional hypersurface in LnC1 that can be represented as the

graph of u 2 C 0;1.�/, where � is a open set in Rn. We say that M (or u) is
� weakly spacelike if jDuj � 1 a.e. in �,
� spacelike if ju.x/ � u.y/j < jx � yj whenever x; y 2 �, x ¤ y, and the

line segment xy � �, and
� strictly spacelike if u 2 C 1.�/ and jDuj < 1 in �.
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If M (or u) is strictly spacelike and u 2 C 2.�/, the Lorentz metric on LnC1
induces a Riemannian metric g on M . Under the coordinates .x1; : : : ; xn/ 2 �,

gij D
�
@X

@xi
;
@X

@xj

�
D �ij � uiuj ;

where X D .x; u.x// is the position vector on the graph of u, and uk D uxk D
@u
@xk

for k D 1; : : : ; n. So g D I �Du.Du/0 , detg D 1 � jDuj2,

g�1 D I C Du.Du/
0

1 � jDuj2 ; and gij D �ij C uiuj

1 � jDuj2 :

The second fundamental form is

IIij D uijp
detg

and so jIIj2 D gijgkluikujl

detg

(see [2, (2.3)]) where uij D @2u
@xi@xj

and the summation convention on repeated

indices is used. Note that jD2uj � jIIj:
The following fundamental results were achieved by Bartnik and Simon in [2].

THEOREM 2.1 (Solvability of variational problem on bounded domains [2, prop.
1.1]). Let � � R

n be a bounded domain and let ' W @� ! R be a bounded
function. Then the variational problem

(2.1) sup
v2K

Z
�

q
1 � jDvj2

where K D fv 2 C 0;1.�/ W jDvj � 1 a.e. in � and v D ' on @�g has a unique
solution u if and only if the set K is nonempty.

Remark 2.2. In above theorem, v D ' on @� means that, for every x0 2 @� and
every open straight line segment l contained in � and with endpoint x0,

lim
x!x0; x2l

v.x/ D '.x0/:

Regarding this definition and the existence of a weakly spacelike extension of ',
we refer the readers to the discussion in [2, p. 133, pp. 148–149] .

DEFINITION 2.3 (Area-maximizing hypersurface). A weakly spacelike function
u 2 C.�/ (� � R

n is not necessarily bounded) is called area maximizing if it
solves the variational problem (2.1) with respect to its own boundary values for
every bounded subdomain in �. The graph of u is called an area-maximizing
hypersurface.

LEMMA 2.4 (Closedness of variational solutions [2, lemma 1.3]). If fukg is a se-
quence of area-maximizing functions in � and uk ! u in � locally uniformly,
then u is also an area-maximizing function.
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One key result in [2, theorem 3.2] is that if an area-maximizing hypersurface
contains a segment of light ray, then it contains the whole of the ray extended all
the way to the boundary or to infinity. This implies the following conclusion.

THEOREM 2.5 (The relationship between the variational solutions and the solu-
tions of maximal surface equation). The solution u of (2.1) is smooth and solves
equation (1.1) in

regu WD � n singu

where

singu WD fxy W x; y 2 @�; x ¤ y; xy � �; and j'.x/ � '.y/j D jx � yjg:
Furthermore,

u.tx C .1 � t /y/ D t'.x/C .1 � t /'.y/; 0 < t < 1;

where x; y 2 @� are such that xy � � and j'.x/ � '.y/j D jx � yj.
Remark 2.6 (Solvability of maximal surface equation on bounded domains). If the
boundary data ' admits a weakly spacelike extension and satisfies j'.x/�'.y/j <
jx � yj for all x; y 2 @� with xy � � and x ¤ y, then singu D ¿ and hence
smooth u solves the equation (1.1) in �.

Bartnik proved the following:

THEOREM 2.7 (Bernstein theorem for variational solutions [6, theorem F]). Entire
area-maximizing hypersurfaces in LnC1 are weakly spacelike hyperplanes.

DEFINITION 2.8 (Isolated singularity [6, p. 382]). A weakly spacelike hypersur-
face M in LnC1 containing 0 is called an area-maximizing hypersurface with an
isolated singularity at 0 if M n f0g is area maximizing but M cannot be extended
as an area-maximizing hypersurface into 0.

For a weakly spacelike entire or exterior hypersurface M (i.e., u is defined on
R
n or an exterior domain Rn n A with A bounded), we define Mr D r�1M with

r > 0 to be the graph of ur.x/ D r�1.rx/. If for some rj ! C1, urj .x/
converges locally uniformly to a function u1.x/ on Rn or Rn n f0g, then u1 (its
graph M1) is called a blowdown of u (M ). Note that by weakly spacelikeness,
the Arzelà-Ascoli theorem always ensures the existence of blowdowns. By Lemma
2.4, u1.x/ (M1) is area maximizing on Rn or Rn n f0g and u1.0/ D 0.

Ecker proved that the isolated singularities of area-maximizing hypersurface are
light-cone like [6, theorem 1.5]. The following lemma will also be used in our
proof of Theorem 1.1.

LEMMA 2.9 ([6, lemma 1.10]). Let M be an entire area-maximizing hypersurface
with an isolated sigularity at 0 and assume that some blowdown of M also has an
isolated singularity at 0. Then M has to be either CC

0 or C�
0 .



594 G.-H. HONG AND Y. YUAN

We also need the following radial, catenoid-like solutions to the maximal surface
equation of (1.1) in Rn n f0g; used as barriers in [2, 6]. For � 2 R; set

(2.2) w�.x/ WD
Z jxj

0

�p
t2.n�1/ C �2

dt:

For n > 2, the integral
RC1
0

�p
t2.n�1/C�2 dt is bounded, and we denote this value

as M.�; n/. More precisely, by computation

(2.3)
Z r

0

�p
t2.n�1/ C �2

dt DM.�; n/ � �

n � 2r
2�n CO.r4�3n/

for large r . It is obvious that M.�; n/ D sign.�/j�j 1
n�1M.1; n/ ! �1 as � !

�1 and M.�; n/ ! 0 as � ! 0. For n D 2, the integral
RC1
0

�p
t2C�2 dt is

infinite and by computation

(2.4)
Z r

0

�p
t2 C �2

dt D m.�/C � ln r CO.r�2/

for large r , where m.�/ D R 1
0

�p
t2C�2 dt C

RC1
1

�
�p

t2C�2 �
�
t

�
dt .

DEFINITION 2.10 (Lorentz transformations, the speed of light is normalized to 1).
For a parameter � 2 .�1; 1/, the Lorentz transformation L� W LnC1 ! L

nC1 is
defined as

L� W .x0; xn; t /!
�
x0;

xn C �tp
1 � �2

;
�xn C tp
1 � �2

�
where x0 D .x1; : : : ; xn�1/.

The Lorentz transformations are isometries ofLnC1. L� maps spacelike (weakly
spacelike) surfaces to spacelike (weakly spacelike) surfaces and it maps maximal
surfaces (area-maximizing surfaces) to maximal surfaces (area-maximizing sur-
faces). Geometrically L� can be seen as a hyperbolic rotation. It maps the light
cone f.x; t/ 2 LnC1 W t D jxjg to itself, and it maps the horizontal hyperplanes to
the hyperplanes with slope �:

L�.f.x; t/ 2 LnC1 W t D T g/ D �
.x; t/ 2 LnC1 W t D

p
1 � �2T C �xn

	
for T 2 .�1;C1/.

More generally, for any vector a 2 B1 we define La WD TaLjajT �1a where Ta
is a rotation that keeps the t -axis fixed and transforms en to a

jaj in Rn (in case of
a D 0 we just define T0 WD id).

3 Extension of Spacelike Hypersurface with Hole
We start our proofs for the two main theorems by extending any spacelike func-

tion over an exterior domain to a global spacelike function after finitely enlarging
the bounded complementary domain.
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THEOREM 3.1. Let u be a spacelike function inRnnAwithA being bounded. Then
there exists R� > 0 such that ju.x/ � u.y/j < jx � yj for all x; y 2 Rn n BR� :

PROOF.
Step 1. We first show that there exists a ball BR0

.x0/ � A such that on the
boundary oscx2@BR0

.x0/u.x/ < 2R0: Without loss of generality we assume A �
B1. We suppose osc@B100

u.x/ � 200 with max@B100
u.x/ D u.100e1/, and we

will show that osc@B200.100e2/ u.x/ < 400.
Suppose max@B100

u.x/ D �min@B100
u.x/ because otherwise we can con-

sider u � .max@B100
u C min@B100

u/=2 in place of u. First, one can see that
osc@B100

u.x/ � 202 from the Lipschitz condition on u and the geometry of
xB100nB1. So 100 � u.100e1/ � 101 and min@B100

u.x/ 2 .�101;�100/. Sup-
pose u.x1/ D min@B100

u.x/ for some x1 2 @B100. Then jx1 � .�100e1/j � 3

because u.x/ > u.100e1/ � j100e1 � xj > 100 � 200 D �100 for any x 2
@B100nB3.�100e1/. Thus u.�100e1/ 2 .�104;�97/. Therefore

u.100e2/ > u.100e1/ � j100e1 � 100e2j � 100 � 100
p
2 > �42

and

u.100e2/ < u.�100e1/C j � 100e1 � 100e2j < �97C 100
p
2 < 45:

In the same way, u.�100e2/ 2 .�42; 45/. Denote u.100e2/ DM . Then

u.x/ 2 .M � 90;M C 90/ for all x 2 B3.�100e2/.
Let maxx2@B200.100e2/nB3.�100e2/ ju.x/ �M j WD Q < 200. Therefore

osc@B200.100e2/ u.x/ � 2max.Q; 90/ < 400:

(See Figure 3.1.)
Step 2. We show that there exists R1 > R0 such that for all R � R1 we have

ju.x/� u.y/j < jx � yj for all x; y 2 @BR.x0/ with x ¤ y: By making a suitable
transformation, we may assume x0 D 0, R0 D 1, and max@B1

u D �min@B1
u D

1��0 for some 0 < �0 < 1. Then forR > 1, max@BR
juj � R��0. For x; y 2 @BR

with x ¤ y, if the line segment xy � xBRnB1, then ju.x/ � u.y/j < jx � yj.
Otherwise, dist.0; xy/ < 1 and jx � yj > 2

p
R2 � 1. If

R � 1C �20
2�0

;

then ju.x/ � u.y/j � 2.R � �0/ � 2
p
R2 � 1 < jx � yj:

Step 3. SetR� WD jx0jCR1: Suppose the line segment xy\@BR1
.x0/ D fp; qg

and p is closer to x than q. Then

ju.x/ � u.y/j � ju.x/ � u.p/j C ju.p/ � u.q/j C ju.q/ � u.y/j
< jx � pj C jp � qj C jq � yj D jx � yj:

If p D q, the conclusion is also true. We have ju.x/ � u.y/j < jx � yj directly if
xy \ @BR1

.x0/ D ¿. �
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FIGURE 3.1. Shift the ball to hide the shadow.

For completeness, we include the promised full spacelike extension result here,
which is not needed in the proofs of our two main theorems.

THEOREM 3.2. Let u be a spacelike function inRnnAwithA being bounded. Then
there exists R� > 0 such that ju.x/ � u.y/j < jx � yj for all x; y 2 RnnBR� :
Moreover, there exists a spacelike function zu in Rn such that zu D u in RnnBR� :

PROOF. We only need to prove the second part of the theorem. By Remark
2.6, there exists a spacelike function w in BR� such that w D u on @BR� : Define
zu WD w in BR� and zu WD u in RnnBR� . For x; y 2 R

n with x ¤ y; if both
x and y are in xBR� or RnnBR� then ju.x/ � u.y/j < jx � yj. Otherwise, let
f´g D xy \ @BR� , then

ju.x/ � u.y/j � ju.x/ � u.´/j C ju.´/ � u.y/j < jx � ´j C j´ � yj D jx � yj:
If we assume the spacelike function u is also strictly spacelike jDu.x/j < 1

(to exclude spacelike functions such as arctan�), we can get a spacelike exten-
sion inside BR� directly, without relying on the singularity analysis of variational
solutions to the maximal surface equations of [2] contained in Remark 2.6.
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In fact (cf. [12, p. 61]), for x 2 xBR� set

w.x/ D inf
b2@BR�

fu.b/Cmjx � bjg

with m D kDukL1.@BR�/
< 1: Then w.x/ D u.x/ for x 2 @BR� , and for

x; y 2 xBR�
w.y/ D inf

b2@BR�

fu.b/Cmjy � bjg
� inf

b2@BR�

fu.b/Cmjx � bj Cmjy � xjg
� w.x/Cmjy � xj:

Symmetrically w.x/ � w.y/ C mjx � yj: Hence w is spacelike inside BR� ;
ju.x/ � u.y/j < mjx � yj < jx � yj:

There is another differential way to do this extension inside BR� : Without loss
of generality, we assume R� D 1; then oscjxjD1 u.x/ < 2: For x 2 xB1 set

w.x/ D jxj�u.x=jxj/ �m�Cm

with m D 1
2
�maxjxjD1 u.x/ C minjxjD1 u.x/�: Then w.x/ D u.x/ on @B1: For

x 2 B1 n f0g;
jDw.x/j D jDu.x=jxj/j < 1:

The Lipschitz norm of w at x D 0 is also less than 1 because

ju.x=jxj/ �mj � maxjxjD1 u.x/ � minjxjD1 u.x/
2

< 1:

We also reach the same spacelike conclusion of w inside B1: �

4 Growth Control of u at Infinity
In this section, we show that the linear growth rate of an exterior solution u at

infinity is uniformly less than one, that is to say, u is controlled not only by the
light cone but by a cone with slop less than one. Meanwhile we prove that the
blowdown of u is unique and is a linear function with slope less than one. We also
prove that the graph of u is supported by a hyperplane either from below or from
above.

THEOREM 4.1. Let u be an exterior solution in Rn n A with A being bounded.
Then there exist BR � A, 0 < � < 1, and c0 2 R such that

�.1 � �/jxj � u.x/ � c0 � .1 � �/jxj
in Rn n BR. Moreover, there exists a vector a 2 xB1�� such that

lim
r!1

u.rx/

r
D a � x locally uniformly in Rn n f0g:

The function u also enjoys the property that either for some c 2 R, u.x/ � a �xCc
in Rn n BR and u.y/ D a � y C c at some point y 2 @BR, or for some c 2 R,
u.x/ � a � x C c in Rn n BR and u.y/ D a � y C c at some point y 2 @BR.
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PROOF. We apply Theorem 3.1. For simplicity of notation, we assumeR� D 1.
So we have ju.x/� u.y/j < jx � yj for any x; y 2 Rn n B1 with x ¤ y. We also
assume max@B1

u D �min@B1
u D 1 � �1 for some 0 < �1 < 1. We will show

that �.1 � �/jxj � u.x/ � .1 � �/jxj in Rn n B1 for some 0 < � < 1.
It is easy to see that �jxj C �1 � u.x/ � jxj � �1 in Rn nB1. So there are four

possibilities for u:
(a) There is 0 < � < 1 such that u.x/ � �.1 � �/jxj in Rn n B1 and there is

a sequence of points fxj g with 1 < jxj j WD Rj ! C1 such that u.xj / >
.1 � 1

j
/jxj j.

(b) The function �u satisfies (a).
(c) There are two sequences of points fx�j g with 1 < jx�j j WD R�j ! C1

such that u.xCj / > .1 � 1
j
/jxCj j and u.x�j / < �.1 � 1

j
/jx�j j.

(d) There is 0 < � < 1 such that �.1 � �/jxj � u.x/ � .1 � �/jxj in Rn n B1.
We will show that the cases (a)–(c) cannot happen.
Suppose that u satisfies (a). Let

yx WD lim
k!1

xjk
Rjk

2 @B1

for some subsequence fjkg. We assume yx D en and consider fjkg as fj g. Define
vj .x/ WD u.Rjx/

Rj
. A subsequence of vj .x/ (still denoted as vj .x/) converges

locally uniformly to a function V.x/ in Rn n f0g. By Lemma 2.4, V.x/ is area
maximizing in Rn n f0g. It is obvious that V.0/ D 0, V.en/ D 1 and V.x/ �
�.1��/jxj. By weakly spacelikeness of u, we know that V.ten/ D t for t 2 �0; 1�.
Theorem 2.5 says that once the null line (sing u) appears, it can not stops at an
interior point. So we have V.ten/ D t for t 2 �0;C1/. If 0 is a removable
singularity for V , then V is a plane by Theorem 2.7 and V has to be V.x/ D xn

that contradicts V.x/ � �.1� �/jxj. So 0 is an isolated singularity for V . Let V1
be a blowdown of V , then V1.ten/ D t for t 2 .0;C1/ and V1.x/ � �.1��/jxj.
So 0 is an isolated singularity for V1: By Lemma 2.9, we have V.x/ D jxj.

Let ´ 2 @B1 be such that u.´/ D min@B1
u WD �. For small � > 0, consider

w.x/ WD � � 1C � C .1 � �/jxj. Since limj!1
u.Rjx/

Rj
D jxj uniformly on @B1,

u.x/ � w.x/ on @BRj for j � j0.�/. But u.x/ � � D w.x/ on @B1 and w.x/
is a subsolution to (1.1) in Rn n xB1, so u.x/ � w.x/ in Rn n xB1. Let � ! 0, we
get u.x/ � � � 1C jxj in Rn n xB1. Especially, u.2´/ � � � 1C j2´j D �C 1

and hence u.2´/ � u.´/ � 1 D j2´ � ´j. This contradicts the obvious fact that u
is spacelike “in Rn n B1”, included in Theorem 3.1.

The case (b) cannot happen for the same reason.
Now we suppose u satisfies (c). For each j , let wj be the solution of (1.1)

in Bj with wj D u on @Bj . The existence of wj is due to Remark 2.6. For
each j , either max@B1

.wj � u/ � 0 or min@B1
.wj � u/ � 0 (or both). Thus
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max@B1
.wj � u/ � 0 or min@B1

.wj � u/ � 0 happens for infinitely many j . We
assume max@B1

.wj � u/ WD �j � 0 happens for infinitely many j . Let j́ 2 @B1
be such that wj . j́ / � u. j́ / D �j and consider zwj D wj � �j for these j . So
zwj � u in Bj n B1 and zwj . j́ / D u. j́ /. Note that j zwj .0/j � j zwj . j́ /j C 1 D
ju. j́ /j C 1 � 2 for all these j . Therefore, by Arzelà-Ascoli a subsequence zwjk
converges locally uniformly to a function W in Rn. By Lemma 2.4, W is an area
maximizing surface. So it is a plane with slope less than or equal to 1 by Theorem
2.7. Furthermore, we know W � u in Rn n B1 and W.´/ D u.´/ by continuity,
where ´ is an accumulating point of f j́kg.

By assumption of (c), there are fx�j g with jx�j j ! C1 such that W.x�j / �
u.x�j / < �.1 � 1

j
/jx�j j. Thus W has to be a plane with slope 1. We assume

DW.x/ D en, soW.x/ D xnCu.´/�´n. If ´n < 0, then denote ź D .´0;�´n/ 2
@B1 and we have u.ź/ � W.ź/ D �2´nCu.´/ D u.´/Cjź�´j. This contradicts
the fact that ju.x/ � u.y/j < jx � yj for any x; y 2 @B1 with x ¤ y, proved in
Theorem 3.1. If ´n � 0, then consider the point ´ C en 2 Rn n xB1 and we have
u.´C en/ � W.´C en/ D u.´/C 1 D u.´/C j.´C en/ � ´j. This contradicts
the obvious fact that u is spacelike “in RnnB1”, included in Theorem 3.1.

If it is the case that min@B1

�
wj � u

� � 0 happens for infinitely many j , we
move up wj by �min@B1

�
wj � u

�
and get a plane �W above u by the same pro-

cess. This time by the assumption that there are fxCj g with jxCj j ! C1 such that�W .xCj / � u.xCj / > .1 � 1
j
/jxCj j, we also know the slope of �W is one. Further-

more, �W also touches u at some point of @B1. Again, this contradicts the obvious
fact that u is spacelike “in RnnB1”, included in Theorem 3.1.

Therefore only the case (d) can (and must) happens and we have proved the
first part of the theorem. In this case we can also construct the plane W in the
same way just as we did in the first paragraph when we proved the impossibility
of case (c). That is to say, we can place a plane (with slope less than or equal
to 1 � �) either below or above the graph of u in Rn n B1 and the plane touches
u at some point of @B1. This property implies that the blowdown of u must be
unique and equal to the blowdown of W . We show this as follows. Assume that
W.x/ D c C a � x � u in Rn n B1 where jaj � 1 � �. Let V be any blowdown
of u, then a � x � V.x/ � .1 � �/jxj in Rn, which implies that 0 is a removable
singularity of V by the fact that the isolated singularities of an area-maximizing
hypersurface are light-cone-like [6, theorem 1.5]. Then V is an entire solution and
must be a plane. The only possible situation is V.x/ D a � x. �
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5 Gradient Estimate
With the strong growth control achieved in the previous section and the known

curvature estimate, we can establish the gradient estimate and ascertain Du.1/
in this section. We state the curvature estimate of Cheng-Yau [5] in the following
improved extrinsic form carried out by Schoen [6, theorem 2.2]).

THEOREM 5.1. Let M D .x; u.x// be a maximal hypersurface, x0 2 M , and
assume that for some � > 0, L2�.x0/\M bM . Then we have for all x 2 L�.x0/

(5.1) jIIj2.x/ � c.n/�2

.�2 � l2x0.x//2
where c.n/ is a constant depending only on the dimension n and

lx0.x/ D .jx � x0j2 � ju.x/ � u.x0/j2/ 12 :
If M is an entire maximal hypersurface, then � in (5.1) can be chosen to be

arbitrarily large by properness of the function lx0.x/ onM [5, prop. 1], so jIIj � 0

and hence the Bernstein theorem follows. But the following corollary is what we
need.

COROLLARY 5.2. For any 0 < � < 1, there exists a positive constant C.�; n/ such
that if u solves the equation (1.1) in Rn n xB1 and satisfies �.1 � �/jxj � u.x/ �
.1 � �/jxj in Rn n B1, then

jIIj.x/ � C.�; n/

jxj for jxj � 8

�
:

PROOF. Fix a point x 2 Rn with jxj � 8
�

; for any y 2 @B1
ju.x/ � u.y/j � ju.x/j C ju.y/j � .1 � �/jxj C .1 � �/

and
jx � yj � jxj � 1:

So

lx.y/ D .jy � xj2 � ju.y/ � u.x/j2/ 12 >
r
�

2
jxj:

Similarly, we also have

lx.´/ >

r
�

2
j´j >

r
�

2
jxj for j´j � 8

�
jxj:

This means that
Lp �

2
jxj.x/ \M bM

or the former is compactly contained in the latter. So by letting x D x0 and

2� D
q

�
2
jxj in (5.1) we get

jIIj.x/ �
p
c.n/q
�
8
jxj

D C.�; n/

jxj : �
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THEOREM 5.3. Let u be an exterior solution in Rn n A. For any open set U � A

there is � > 0 such that jDuj � 1� � in Rn nU . Moreover, limx!1Du.x/ D a;

where a is given by Theorem 4.1.

PROOF. Assume A � B1 and �.1 � �/jxj � u.x/ � .1 � �/jxj in RnnB1.
Denote yR WD 10

�
. Since jDu.x/j < 1 for x 2 RnnU , if jDuj � 1 � � is not true,

then there is a sequence of points fxj g such that jDu.xj /j > 1 � 1
j

and jxj j !
C1. Define Rj WD yR�1jxj j and vj .x/ WD u.Rjx/

Rj
(assume Rj > 1). Then by

Theorem 4.1, we have vj .x/! V.x/ D a � x.
On the other hand, by Corollary 5.2, the curvature jIIj is uniformly bounded

for all vj .x/ on the compact set xB yRC1nB yR�1, so is jD2vj .x/j. This means
Dvj .x/! DV.x/ D a in xB yRC1 n B yR�1. Denote

lim
k!1

yRxjk
jxjk j

D yx 2 @B yR

for some subsequence jk . Then

DV.yx/ D lim
k!1

Dvjk

� yRxjk
jxjk j

�
:

But ����Dvjk� yRxjk
jxjk j

����� D jDu.xjk /j > 1 �
1

jk
and then the last inequality implies jDV.yx/j D 1. This is a contradiction.

The conclusion limx!1Du.x/ D a can be proved in the same compactness
way as above.

There is another Harnack way to show the existence of Du.1/; once jDuj is
uniformly bounded away from 1, jDuj � 1� �: Indeed, each bounded component
um of Du satisfies a uniformly elliptic equation

@xi
�
Fpipj .Du/@xjum

� D 0 in Rn n A

with F .p/ D
q
1 � jpj2: By Moser’s Harnack [13, theorem 5], limx!1Du.x/

exists. �

Because we will use Moser’s results again in the next section, we state them
here in the needed form for convenience.

THEOREM 5.4 (Harnack inequality [13, theorem 1]). Let w be a nonnegative so-
lution of

(5.2) .aij .x/wj /i D 0

in Rn n BR0
; where ��1I � .aij .x// � �I for a constant � 2 �1;1/: Then for

any R � 10R0

(5.3) sup
@BR

w � � inf
@BR

w
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for � D �.n;�/:

THEOREM 5.5 (Behavior at 1 [13, theorem 5]). Let w be a bounded solution to
the uniformly elliptic equation (5.2) in Rn n B1. Then limjxj!1w.x/ exists.

6 Asymptotic Behavior: Proof of Theorem 1.1
Now we are ready to prove Theorem 1.1. We present the proof in the following

four subsections. We first treat the special caseDu.1/ D a D 0. The general case
can be transformed to this special case by a suitable hyperbolic rotation (Lorentz
transformation).

6.1 Case a D 0, n D 2

Step 1. ju.x/j � c C d ln jxj for large c and d .
We still assume R D 1 in Theorem 4.1. By Theorem 4.1 and Theorem 5.3, we

known that limr!1 u.rx/
r

D 0 and limx!1 jDu.x/j D 0. Moreover, we have
either u.x/ � c for some c 2 R in Rn n B1 and u.y/ D c at some point y 2 @B1,
or u.x/ � c for some c 2 R in Rn nB1 and u.y/ D c at some point y 2 @B1. We
assume the former case happens and c D 0, y D e1. That is, u.x/ � 0 in Rn n B1
and u.e1/ D 0. Recall the radial barrierw� in (2.2). Set ��.x/ WD w�.x/�w�.e1/
and  �.x/ WD ��.x/C max@B1

u. As the first step of the proof, we want to show
that u.x/ �  �.x/ in Rn n B1 for sufficiently large �.

We observe that as long as � is large enough, ��.2e1/ can be arbitrarily close
to 1. Since u.2e1/ < 1, we can choose �0 such that ��0.2e1/ > u.2e1/. Now
we claim that u.x/ �  �1.x/ in Rn n B1, where �1 WD .� C 1/�0 and the
constant � is from Theorem 5.4 for u. It is easy to see that  �0.x/ > ���0.x/ in
R
nnBR for someR D R.�0; �/ large enough. If u.x/ �  �1.x/ inRnnBR, then

u.x/ �  �1.x/ inRnnB1 by the comparison principle since u � max@B1
u D  �1

on @B1. Suppose u.´/ >  �1.´/ at some point ´ 2 Rn n BR; then u > ��0 on
@Bj´j by Theorem 5.4. Since u � 0 D ��0 on @B1, we have u � ��0 inBj´jnB1 by
the comparison principle, especially u.2e1/ � ��0.2e1/. This is a contradiction.
So we proved that u.x/ �  �1.x/ in Rn n B1.

Step 2. u.x/ D c C d ln jxj C o.1/ for some c and d .
We still assume u � 0 as above. Denote

�� WD inff� � 0 W u �  � in Rn n B1g:
By continuity, u �  �� inRnnB1. If �� D 0, then 0 � u � max@B1

u inRnnB1.
By Theorem 5.5, u has a limit at infinity. Now we assume �� > 0 and our aim is
to show that also u � ��� in Rn n B1.

For all positive integers k > maxf10; 2
��
g, there exist yk such that jykj � ek

2

,
jykC1j > jykj, and u.yk/ >  ���.1=k/.yk/. By (2.4), there exists yk such that for
all k � yk, we have

 ��.y
k/ � u.yk/ <  ��.yk/ �  ��� 1

k
.yk/ <

2

k
ln jykj:
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The function w.x/ WD  ��.x/ � u.x/ satisfies equation (5.2) with

(6.1) aij .x/ D
Z 1

0

�ijp
1 � jDwt j2

C
wt
iw

t
j

.
p
1 � jDwt j2/3

dt

wherewt WD .1�t /uCt �� . By Theorem 5.4, we have ��.x/�u.x/ < 2��
k

ln jxj
on @Bjyk j for all k � yk. Fix any small � > 0. Note that  ��.x/ � �����.x/ >
�
2

ln jxj outside some ball. So there exists zk such that u.x/ > �����.x/ on @Bjyk j
for all k � zk. Thus u � ����� in Rn n B1 by the comparison principle. By
continuity, we have u � ��� in Rn n B1.

Now we have established that ��� � u �  ��.x/ in Rn n B1. That is 0 �
 ��.x/ � u � max@B1

u. So by Theorem 5.5,  ��.x/ � u has a limit at infinity.
Denote this �� D d , then we have

u.x/ D c C d ln jxj C o.1/

as jxj ! 1 for some constant c. Since we assumed u is bounded below, the
constant d � 0. If u is bounded above, then we have u.x/ D c C d ln jxj C o.1/

with d � 0.
Step 3. Improve o.1/ to O.jxj�1/.
We still assume u � 0 as above. Suppose d > 0. Choose R0 > 10 such

that jDu.x/j < 1
10

and u.x/ < 2d ln jxj when jxj � R0. For any point x with
jxj WD 2R � 2R0, define v.y/ WD u.xCRy/

R
. Since u satisfies the nondivergence

form equation (1.2), v.y/ satisfies the equation aij .y/vij .y/ D 0 for y 2 B1

with aij .y/ D �ij C vivj
1�jDvj2 . By Morrey-Nirenberg’s C 1;� estimate for the two-

dimensional uniformly elliptic nondivergence form equation [8, theorem 12.4], for
some � > 0 we have

(6.2) kvkC1;�.B1=2/
� CkvkL1.B1/ �

C ln jxj
jxj

where the first C is a universal constant independent of u, the second (and here-
after) C depends on the residue Res�u� D d .

(6.3) jDu.x/j D jDv.0/j � C ln jxj
jxj for t jxj � 2R0:

Let e be any unit vector, then ve satisfies the equation .aij .y/.ve/j /i D 0 in
B1, with aij D �ijp

1�jDvj2 C
vivj

.
p
1�jDvj2/3 . By (6.2), kaij kC�.B1=2/ is bounded by

a universal constant. By Schauder estimate [8, theorem 8.32],

jDve.0/j � CkvekL1.B 1
2
/ �

C ln jxj
jxj :
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Note that Ruee.x/ D vee.0/, so we have

(6.4) jD2u.x/j � C ln jxj
jxj2 for jxj � 2R0:

In fact, using a bootstrap argument, we have

(6.5) jDku.x/j � C ln jxj
jxjk for jxj � 2R0;

for all k D 1; 2; : : : .
We write equation (1.2) as

4u D �.Du/0D2uDu

1 � jDuj2 WD f .x/ in Rn n B2R0
:

Then jf .x/j � C.ln jxj/3
jxj4 by (6.3) and (6.4). Define K�u�.x/ WD u. x

jxj2 / for x 2
B1=.2R0/ n f0g. Then

4K�u� D jxj�4f
�
x

jxj2
�
WD g.x/ in B1=.2R0/ n f0g

with jg.x/j � C.� ln jxj/3. LetN�g� be the Newtonian potential of g in B1=.2R0/.
Since g is in Lp.B1=.2R0// for any p > 0, N�g� is in W 2;p for any p and hence
is in C 1;� for any 0 < � < 1. Now K�u� � N�g� is harmonic in B1=.2R0/ n f0g.
Notice that jK�u�.x/j � �2d ln jxj C C in B1=.2R0/ n f0g, so jK�u� � N�g�j �
�2d ln jxj C C in B1=.2R0/ n f0g. Therefore K�u� � N�g� is the sum of c1 ln jxj
(for some constant c1) and a harmonic function in B1=.2R0/. So K�u�.x/ is the
sum of c1 ln jxj and a C 1;� function in B1=.2R0/. Fix an � 2 .0; 1/; for some affine
function c2 C b � x, we have jK�u�.x/ � .c1 ln jxj C c2 C b � x/j � C jxj1C� in
B1=.2R0/ n f0g. Go back to u and we have ju.x/ � .�c1 ln jxj C c2 C b � x

jxj2 /j �
C jxj�1�� for jxj � 2R0. From the result of Step 2, we must have �c1 D d and
c2 D c. Thus

u.x/ D c C d ln jxj CO.jxj�1/:
The same (but easier) argument also applies to the case d D 0.

Step 4. Improve O.jxj�1/ to Ok.jxj�1/.
Since  d .x/ D zc C d ln jxj C Ok.jxj�1/ for some zc, we consider w.x/ WD

 d .x/ � u.x/ � zc C c D O.jxj�1/. The function w satisfies .aijwj /i D 0 with
aij given by (6.1). In view of (6.5) and jDk d .x/j � C

jxjk , we have

jDkwt .x/j � C ln jxj
jxjk :

By differentiating (6.1) directly one sees that for any k � 1 there exists Rk �
4.R0 C 1/ such that jDkaij .x/j � jxj�.kC1/ for x 2 R

n n BRk
. We assume
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Rk is nondecreasing with respect to k. Fix k, let x 2 Rn n B2Rk
and 4R D jxj,

and define v.y/ WD w.RyCx/
R

for y 2 B1. The function v satisfies the equation
.zaij vj /i D 0 in B1 with zaij .y/ D aij .x C Ry/. We have kDl zaij kC0.B1/

D
RlkDlaij kC0.BR.x//

� C.k/ for l D 0; 1; : : : ; k and so kzaij kCk.B1/
� C.k/.

Then by the Schauder estimate,

Rk�1jDkw.x/j D jDkv.0/j � C.k/kvkL1.B1/ �
C.k/

jxj2 ;

and hence jDkw.x/j � C.k/

jxjkC1 for jxj � 2Rk . This means w.x/ D Ok.jxj�1/ and
hence

u.x/ D c C d ln jxj COk.jxj�1/:
Step 5. Ascertain the value of d .

Res�u� D 1

2�

Z
@Br

@u=@Enp
1 � jDuj2

ds

D 1

2�

Z 2�

0

�
d

r
CO.r�2/

�
r d� D d CO.r�1/:

Letting r !1, we have d D Res�u�.

6.2 Case a D 0, n � 3

Step 1. ju.x/j � c for large c.
We still assume u � 0 and define �� and  � as above. Using the same method,

we can prove u.x/ �  �.x/ for some large � in Rn n B1. But in the dimensions
n � 3,  � is bounded.

Step 2. u.x/ D u1 CO.jxj2�n/.
Since u is bounded, applying Theorem 5.5 directly to u, we have u.x/ D u1C

o.1/ where u1 WD limx!1 u.x/. Define ��.x/ WD w�.x/ � w�.e1/C min@B1
u

and  �.x/ WD w�.x/ � w�.e1/C max@B1
u for � 2 .�1;C1/. We can choose

�1 and �2 such that

lim
x!1��1.x/ D u1 D lim

x!1 �2.x/:

By the comparison principle,

��1.x/ � u.x/ �  �2.x/;
and this means that

u.x/ D u1 CO.jxj2�n/:
Step 3. u.x/ D u1 � d jxj2�n CO.jxj1�n/ for some d .
We adopt the same strategy as in the step 3 of above subsection: establish the

decay rate of jDu.x/j and jD2u.x/j, apply the Kelvin transform to u.x/ � u1,
and estimate the Newtonian potential of the right-hand side. The only difference
is that when we estimate the decay rate of jDu.x/j, we cannot use Morrey’s C 1;�
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estimate, which is only true for two dimensions; alternatively, the first-order deriva-
tives of u (also v.y/ WD u.xCRy/�u1

R
) satisfy a uniformly elliptic divergence form

equation and thus we can apply De Giorgi–Nash’s theorem (see [8, chap. 8]) to
Dv.

kDvkC�.B 1
2
/ � CkDvkL2.B 3

4
/

� CkvkL2.B1/
(Caccioppoli)

� CkvkL1.B1/ � C jxj1�n:
This treatment also fits the two-dimensional case. We leave the remaining details
to the readers.

Step 4. Improve O.jxj1�n/ to Ok.jxj1�n/.
Do the same thing to u.x/ � u1 as in step 4 of above subsection.
Step 5. Ascertain the value of d .

Res�u� D 1

.n � 2/j@B1j
Z
@Br

@u=@Enp
1 � jDuj2

d�

D 1

.n � 2/j@B1j
Z
@B1

�
.n � 2/d
rn�1

CO.r�n/
�
rn�1 dSn�1 D d CO.r�1/:

Letting r !1, we have d D Res�u�.

6.3 Case jaj > 0, n D 2

By a rotation, we can assume a D �en with � 2 .0; 1/. Make the Lorentz
transformation L�� W L2C1 ! L

2C1,

L�� W .x1; x2; t /!
�
x1;

x2 � �tp
1 � �2

;
��x2 C tp
1 � �2

�
WD .zx1; zx2; zt /:

Then the plane ft D �x2g is transformed to the plane fzt D 0g and the graph of u
over R2 n A is transformed to another maximal hypersurface that is the graph of
some function (say zu) defined on R2 n zA for some bounded closed set zA. The
blowdown of zu is the 0 function. So zu has the asymptotic expansion

(6.6) zu.zx/ D zc C zd ln jzxj CO.jzxj�1/:
Transforming back and making some direct computations, we can establish the
asymptotic expansion of u. The details are as follows.

The Lorentz transformation

L� W .zx1; zx2; zu.zx1; zx2//!
�
zx1; zx2 C �zup

1 � �2
;
�zx2 C zup
1 � �2

�
D .x1; x2; u.x1; x2//:

(6.7)
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Using the polar coordinates x1 D r cos � , x2 D r sin � and substituting (6.6) into
(6.7), we get

zx2 C �zc C � zd
2

ln
�
r2 cos2 � C zx22

�CO

�
1q

r2 cos2 � C zx22

�

D r sin �
q
1 � �2:

(6.8)

We want to solve zx in (6.8) and substitute it into (6.6) and the third equality of (6.7);
then we will get the expansion of u. We need to solve zx three times iteratively.

First, we assume sin � ¤ 0. From (6.8) we can see

zx2 D r sin �
q
1 � �2

�
1CO

�
ln r
r

��
as r !C1:

Then

r2 cos2 � C zx22 D r2.1 � �2 sin2 �/
�
1CO

�
ln r
r

��
;

and hence

(6.9) ln.r2 cos2 � C zx22/ D 2 ln
�
r

q
1 � �2 sin2 �

�
CO

�
ln r
r

�
whereO.ln r=r/ is independent of small sin � . Substitute (6.9) into (6.8) and solve
zx2 again,

(6.10) zx2 D r sin �
q
1 � �2 � �zc � � zd ln

�
r

q
1 � �2 sin2 �

�
CO

�
ln r
r

�
:

Now we have

r2 cos2 � C zx22 D r2.1 � �2 sin2 �/
�
1 � 2�

p
1 � �2 zd sin � ln r
.1 � �2 sin2 �/r

CO

�
1

r

��
and

ln
�
r2 cos2 � C zx22

�
D 2 ln

�
r

q
1 � �2 sin2 �

�
� �

p
1 � �2 zd sin �

.1 � �2 sin2 �/
� ln r
r

CO

�
1

r

�
:

(6.11)

Substitute (6.11) into (6.8) and solve zx2 again:

(6.12)
zx2 D r sin �

q
1 � �2 � �zc � � zd ln

�
r

q
1 � �2 sin2 �

�
C �

p
1 � �2 zd sin �

.1 � �2 sin2 �/
� ln r
r

CO

�
1

r

�
:
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Substitute (6.11) into (6.6) and then substitute (6.6) and (6.12) into the third equal-
ity of (6.7), we have

(6.13)
u.r; �/ D �r sin � C

q
1 � �2 zc C

q
1 � �2 zd ln.r

q
1 � �2 sin2 �/

C �2 zd sin �
.1 � �2 sin2 �/

� ln r
r

CO

�
1

r

�
:

Notice that we get (6.13) with the assumption sin � ¤ 0. If sin � D 0, then (6.8)
becomes

zx2 C �zc C � zd
2

ln.r2 C zx22/CO

 
1q

r2 C zx22

!
D 0:

Then we have

zx2 D �� zd ln r.1C o.1//;

r2 C zx22 D r2
�
1CO

�
1

r

��
;

ln.r2 C zx22/ D 2 ln r CO

�
1

r

�
;

zx2 D �� zd ln r � �zc CO

�
1

r

�
;

and hence

u.r; �/ D
q
1 � �2 zc C

q
1 � �2 zd ln r CO

�
1

r

�
:

This means (6.13) is also true for sin � D 0.
Let

p
1 � �2zc WD c and

p
1 � �2 zd WD d . In x-coordinates, we have

u.x1; x2/ D �x2 C c C d ln
q
x21 C .1 � �2/x22

C �2d jxjx2p
1 � �2.x21 C .1 � �2/x22/

� ln jxj
jxj CO.jxj�1/:

Getting rid of the assumption a D .0; �/, it is not hard to see that

u.x/ D a � x C c C d ln
q
jxj2 � .a � x/2

C d jajjxj.a � x/p
1 � jaj2.jxj2 � .a � x/2/

� ln jxj
jxj CO.jxj�1/:

By the method in step 4 of Section 6.1, we can improve O.jxj�1/ to Ok.jxj�1/.
We omit the details.
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The remaining task is to compute d in terms of Res�u� and jaj. For simplicity,
we still assume a D .0; �/. Consider the ellipse

E� WD
�
x21 C .1 � �2/x22 D �2

	
:

Use the polar coordinates, but this time we set x1 D r cos � ,
p
1 � �2x2 D r sin � .

So E� D f.r; �/ W r D �; 0 � � < 2�g. On E�,

Du.�/ D
�
d cos �
�

C o.��1/; �C d
p
1 � �2 sin �
�

C o.��1/
�
;

the unit outward normal vector

En.�/ D
 

cos �q
1 � �2 sin2 �

;

p
1 � �2 sin �q
1 � �2 sin2 �

!
;

and the length element

ds D
q
1 � �2 sin2 �p
1 � �2

� d�:

So
@u=@Enp
1 � jDuj2

D � sin �q
1 � �2 sin2 �

C d

�
p
1 � �2

q
1 � �2 sin2 �

C o.��1/

and hence

Res�u� D 1

2�

Z
E�

@u=@Enp
1 � jDuj2

ds

D 1

2�

Z 2�

0

�� sin �p
1 � �2

d� C 1

2�

Z 2�

0

d

1 � �2 d� C o.1/

D d

1 � �2 C o.1/:

Letting �!C1, we have

d D .1 � �2/Res�u� D .1 � jaj2/Res�u�:

6.4 Case jaj > 0, n � 3

We do the same things as above. Assuming a D �en with � 2 .0; 1/, make the
Lorentz transformation L��: graph of u! graph of zu, then

zu.zx/ D zc � zd jzxj2�n CO.jzxj1�n/
and

L� W .zx0; zxn; zu.zx0; zxn//!
�
zx0; zxn C �zup

1 � �2
;
�zxn C zup
1 � �2

�
D .x0; xn; u.x0; xn//:
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Use the polar coordinates x0 D r cos ��, xn D r sin � with ��
2
� � � �

2
and

� 2 Sn�2 the unit sphere in Rn�1. Then we are going to solve zxn from

zxn C �zc � � zd�r2 cos2 � C zx2n
� 2�n

2 CO
��
r2 cos2 � C zx2n

� 1�n
2
� D r sin �

q
1 � �2:

Suppose sin � ¤ 0. We have

zxn D r sin �
q
1 � �2

�
1CO

�
1

r

��
;

r2 cos2 � C zx2n D r2.1 � �2 sin2 �/
�
1CO

�
1

r

��
;�

r2 cos2 � C zx2n
� 2�n

2 D r2�n.1 � �2 sin2 �/
2�n
2 CO.r1�n/;

where O.r1�n/ is independent of small sin � . So

zu D zc � zdr2�n.1 � �2 sin2 �/
2�n
2 CO.r1�n/;

and

zxn D r sin �
q
1 � �2 � �zc C � zdr2�n.1 � �2 sin2 �/

2�n
2 CO.r1�n/:

Therefore, denoting
p
1 � �2zc WD c and

p
1 � �2 zd WD d ,

u.x/ D �xn C c � d.jxj2 � �2x2n/
2�n
2 CO.jxj1�n/

D a � x C c � d.jxj2 � .a � x/2/ 2�n2 CO.jxj1�n/:
One can verify that the above expansion is also true in the case of sin � D 0. Also
O.jxj1�n/ can be improved to Ok.jxj1�n/. We omit the details.

Now we compute d . Assume a D �en with � 2 .0; 1/ and

E� WD
�
x02 C .1 � �2/x2n D �2

	
:

Use the coordinates x0 D r cos ��,
p
1 � �2xn D r sin � . So

E� D
�
.r; �; �/ W r D �;��

2
� � � �

2
; � 2 Sn�2

�
:

On E�:

ui D .n � 2/dxi
rn

CO.r�n/ for i D 1; : : : ; n � 1
and

un D �C .n � 2/d.1 � �2/xn
rn

CO.r�n/:

The unit outward normal vector is

En D
 

x1

r

q
1 � �2 sin2 �

; : : : ;
xn�1

r

q
1 � �2 sin2 �

;
.1 � �2/xn

r

q
1 � �2 sin2 �

!
;
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and the surface element is

d� D
q
1 � �2 sin2 �p
1 � �2

�n�1 cosn�2 � d� dSn�2:

So

@u=@Enp
1 � jDuj2

D � sin �q
1 � �2 sin2 �

C .n � 2/d�1�np
1 � �2

q
1 � �2 sin2 �

CO.��n/;

and hence
Res�u�

D 1

.n � 2/j@B1j
Z
E�

@u=@Enp
1 � jDuj2

d�

D jSn�2j
.n � 2/j@B1j

Z �
2

��
2

��n�1 cosn�2 � sin �p
1 � �2

C .n � 2/d cosn�2 �
1 � �2 CO.��1/d�

D d

1 � �2 CO.��1/:

We used the fact thatZ �
2

��
2

jSn�2jcosn�2� d� D jSn�1j D j@B1j:

Letting �!C1, we have

d D .1 � �2/Res�u� D .1 � jaj2/Res�u�:

7 Exterior Dirichlet Problem: Proof of Theorem 1.2
Recall that w� is the radial solution defined by (2.2). Let a 2 B1; we use wa

�
.x/

to denote the representation function of the hypersurface La(graph of w�), where
the Lorentz transformation La D TaLjajT �1a is defined at the end of Section 2.
Then the function wa

�
.x/ has the following properties: wa

�
.0/ D 0, wa

�
.x/ solves

equation (1.1) in Rn n f0g, and (from the argument in the previous section or by
direct calculation) for n D 2

wa
�.x/ D a � x C

q
1 � jaj2m.�/C

q
1 � jaj2� ln

q
jxj2 � .a � x/2 C o.1/

and for n � 3

wa
�.x/ D a �xC

q
1 � jaj2M.�; n/�

p
1 � jaj2�
n � 2 .jxj2�.a �x/2/ 2�n2 Co.jxj2�n/

as x !1. The numbers m.�/ and M.�; n/ are from (2.4) and (2.3).
Now we prove Theorem 1.2. We do this in the following two subsections corre-

sponding to the cases n D 2 and n � 3 respectively.
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7.1 Case n D 2

Let A, g, a, and d be given as in Theorem 1.2 and
p
1 � jaj2� D d . Choose

constants c� � 0 � cC such that wa
�
.x/C c� � g.x/ � wa

�
.x/C cC on @A. We

claim that there exists MR.A; g; a; d/ > 0 such that for any R � MR there exists a
solution uR of maximal surface equation in BR n A satisfying uR D g on @A and
uR D wa

�
on @BR.

In fact, let  be a spacelike extension of g into R2 n A. By Theorem 3.1, there
exists R� such that j .x/ �  .y/j < jx � yj for any x; y 2 @BR� and x ¤ y.
Assume j j � G on @BR� . Let R � MR > R� for any x 2 @BR� and y 2 @BR,��wa

�.y/ �  .x/
�� � ��wa

�.y/
��CG <

jaj C 1

2
.R �R�/ � jaj C 1

2
jx � yj

provided MR is chosen to be sufficiently large. So we can find a spacelike function
vR on @BR n BR� such that vR D  on @BR� and vR D wa

�
on @BR. Define �R

by �R D  in BR� n A and �R D vR in BR n BR� . It is not difficult to see that
�R is a spacelike function defined on BR n A possessing boundary values g and
wa
�

on @A and @BR respectively. Hence by Remark 2.6, we can get uR by solving
the Dirichlet problem. The above claim is proved.

By the comparison principle, wa
�
.x/C c� � uR.x/ � wa

�
.x/C cC in BR nA.

Choose any sequence of MR < Rj ! 1, by compactness, there exists a sub-
sequence of fuRj g converging to a function u locally uniformly in Rn n A. By
Lemma 2.4, u is area maximizing. If u is not maximal, then graph u contains a
segment of light ray and hence the whole of the ray in .Rn nA/�R, contradicting
the fact wa

�
.x/C c� � u.x/ � wa

�
.x/C cC. Therefore u solves equation (1.1) in

R
n n A. Moreover, u D g on @A and

u.x/ D a � x C d ln
q
jxj2 � .a � x/2 CO.1/

as x !1.
Finally, we prove the uniqueness of u. Suppose there is another such solution v

also satisfying v D g on @A and

v.x/ D a � x C d ln
q
jxj2 � .a � x/2 CO.1/:

Then w WD u� v satisfies a divergence form elliptic equation in Rn nA, w D 0 on
@A, and w is bounded. By [7, theorem 7], w � 0 in Rn n A.

7.2 Case n � 3

Given A, g, a, and c as in Theorem 1.2, choose zR and G such that A � B zR and
jgj � G on @A. Choose �� > 0 such that

p
1 � jaj2M.��; n/ � jcj C zR C G.

Denote

��.x/ WD wa
��.x/ �

q
1 � jaj2M.��; n/C c;

�C.x/ WD wa
���.x/C

q
1 � jaj2M.��; n/C c:
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One can verify that

��.x/ � a � x C c � �C.x/ in Rn;

��.x/ D a � x C c C o.1/ as x !1;
��.x/ � g � �C.x/ on @A:

For the same reason as in the two-dimensional case in the previous subsection,
there exists MR such that for any R � MR there exists a solution uR in BR n A
satisfying uR D g on @A and uR D a � x C c on @BR. Hence ��.x/ � uR �
�C.x/ in BR n A. In the same way, we can construct a solution u in Rn n A
satisfying u D g on @A and

u.x/ D a � x C c C o.1/

as x !1.
The uniqueness of u follows from the comparison principle directly.
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