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Abstract

Exterior problems for the maximal surface equation are studied. We obtain the
precise asymptotic behavior of the exterior solution at infinity. We also prove
that the exterior Dirichlet problem is uniquely solvable for admissible boundary
data and prescribed asymptotic behavior at infinity. © 2020 Wiley Periodicals
LLC.

1 Introduction

The maximal surface equation is

. Du
(1.1 le(—) =0
V1 —1|Dul?
or equivalently in the nondivergence form
(Du)/D2uDu

1—|Dul2
This equation arises as the Euler equation of the variational problem that maxi-
mizes the area functional [ /1 — |Du|? among the spacelike hypersurfaces in the
Lorentz-Minkowski space IL” ! (see the definitions in Section 2). The graph of a
solution to (1.1) is called a maximal hypersurface and the graph of a solution to the
variational problem is called an area-maximizing hypersurface.

Calabi [4] (n < 4) and Cheng-Yau [5] (all dimensions) proved that every entire
maximal hypersurface in IL” ™1 or every global solution u to the maximal surface
equation (1.1) with | Du(x)| < 1 on R” must be linear.

The Dirichlet problem for bounded domains was studied by Bartnik-Simon [2]
and the isolated singularity problem was studied by Ecker [6]. The exterior prob-
lem is a “complementary” one for elliptic equations; see, for example, [1, 14] for
minimal hypersurfaces, [3] for the Monge-Ampere equation, [11] for the special
Lagrangian equation as well as other fully nonlinear elliptic equations, and [10]
for infinity harmonic functions, besides the classic works such as [7] for linear

(1.2) Au +
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ones. We study the exterior problems for the maximal surface equation in this pa-
per. We obtain the precise asymptotic behavior of the exterior solution at infinity,
and we prove that the exterior Dirichlet problem is uniquely solvable.

Throughout the paper, we assume A C R” is a bounded closed set. We say that
u is an exterior solution in R”\ 4 if u € C2(R™\ A) with |Du(x)| < 1 solves the
equation (1.1) in R\ A. Given an exterior solution u, for any bounded C 1 domain
U D A, the integral

du/on

U +/1—|Dul?
is independent of the choices of U because of the divergence structure of the equa-

tion. The number Res[u] can be regarded as the residue of the exterior solution
u.

Res[u] :=

THEOREM 1.1. Let u be a smooth exterior solution in R™\ A with A being bounded.
Then there exists a vector a € By and a constant ¢ € R such that forn = 2

(1.3) |x[(a-x)  In|x|

+ Res[u]|al+/1 — |a|? .
[u]|a] la| @ 2 I

and forn > 3

(14) u(x)=a-x+c—(1—|a? Res[u](\/|x|2 —(a -x)2)2_" + Or(Ix|'™™)

as |x| > oo forallk = 0,1,.... The notation p(x) = O (|x|™) means that
|DKp(x)| = O(|x|™%).

On the other hand, for any bounded closed set 4, given an admissible boundary
value function g : dA — R and prescribed asymptotic behavior at infinity, the
exterior Dirichlet problem for maximal surface equation is uniquely solvable. We
say g is admissible if g is bounded and there exists a spacelike function v in R”\ A
such that ¥ = g on 04 in the sense of [2, (1.1)] (see Remark 2.2 in Section 2).

THEOREM 1.2. Let A C R” be a bounded closed set and g : A — R be an
admissible boundary value function. Then:

(1) n =2, givenanya € By and d € R, there exists a unique smooth solution
u of maximal surface equation on R?\ A such that u = g on dA and

u(x) =a-x+dny/|x|>?—(a-x)>+ 0(1) asx — oo;

(2) n > 3, givenany a € By and ¢ € R, there exists a unique smooth solution
u of maximal surface equation on R"\ A such that u = g on dA and

u(x) =a-x+c+o(l) asx — oo.

Of course, the function u enjoys finer asymptotic properties and the relation
d = (1 — |a|?) Res[u] holds by Theorem 1.1.
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Variational solutions over exterior domains has been studied in [9]. At present,
the related results for variational solutions are far from complete; see [9] for details.

The article is organized as follows. In Section 2, we set up some notations and
definitions, and we collect some results from [2, 5, 6] that are needed in the proofs
of the later sections. In Section 3, we prove that a spacelike function over an exte-
rior domain can be spacelike extended to the whole R”. This is the starting point
of our work. Interestingly there is a striking similarity between our argument and
the argument in [3, pp. 571-572] where Caffarelli and Li prove the locally convex
solution of det D?u = 1 over an exterior domain can be extended to a global con-
vex function (after finitely enlarging the bounded complementary domain in both
cases). In Section 4, we prove a growth control theorem for the exterior solution
u at infinity. This is the key content of this paper. Inspired by Ecker’s proof in [6]
and relying on his results there, our argument involves compactness, blowdown
analysis, and the comparison principle. In Section 5, we prove the gradient esti-
mate for u based on the growth control theorem and Cheng-Yau’s estimate on the
second fundamental form. In Section 6, we prove Theorem 1.1. Since the equation
(1.1) becomes uniformly elliptic by the gradient estimate of the previous section,
the standard tools such as the Harnack inequality and the Schauder estimate apply.
The known radially symmetric solutions play a key role in the proof. In Section
7, we prove Theorem 1.2. We solve the equation in a series of bigger and bigger
ring-shaped domains and use the compactness method to get an exterior solution.
We use the Lorentz transformations of radially symmetric solutions as barrier func-
tions to guarantee the prescribed asymptotic behavior of the exterior solution near
oc. The uniqueness of solutions follows from the comparison principle.

2 Notations and Preliminary Results

We denote the Lorentz-Minkowski space by L”T! = {X = (x,f) : x € R”,
¢ € R}, with the flat metric Y 7, a’xi2 —dt?, and (-, -) denotes the inner product
in L”*! with the signature (+, ..., 4+, —).

The light cone at Xo = (xg, fp) € LL”*! is defined by

Cx, = {X e "M (X — Xo, X — Xg) = 0}.

The upper and lower light cones will be denoted by C )}2 and C Xo respectively.
The Lorentz balls are defined by

Lr(Xo) ={X e L™ (X — X¢. X — Xp) < R?}.

Let M be an n-dimensional hypersurface in I.” 71 that can be represented as the
graph of u € C%1(Q), where Q is a open set in R”. We say that M (or u) is

o weakly spacelike if |Du| < 1 a.e.in Q,

e spacelike if |u(x) —u(y)| < |x — y| whenever x,y € Q, x # y, and the
line segment Xy C €2, and

o strictly spacelike if u € C'(Q) and |Du| < 1in Q.
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If M (or u) is strictly spacelike and u € C?(2), the Lorentz metric on L"”T!

induces a Riemannian metric g on M. Under the coordinates (xi,...,X,) € Q,
0X 00X 5
ii ={=—,=—) = 8;j —uju;,
8ij axi axj ij iuj

where X = (x,u(x)) is the position vector on the graph of u, and uy = uy, =
aaT”k fork =1,....n.Sog =1— Du(Du)’,detg = 1 — |Du|?,

_ Du(Du)’ y UjU;j
1 i g
=1+——=, and g"Y =6 +—"—.
& 1T Dup 8 =% T Dup
The second fundamental form is
ij okl
ujj > &Yg"uiruj;
II,;, = —— andso |lI|*=——*—
o J/detg = detg
(see [2, (2.3)]) where u;; = % and the summation convention on repeated
. 10X,

indices is used. Note that | D?u| < |II|.
The following fundamental results were achieved by Bartnik and Simon in [2].

THEOREM 2.1 (Solvability of variational problem on bounded domains [2, prop.
1.1]). Let Q C R” be a bounded domain and let ¢ : 022 — R be a bounded
function. Then the variational problem

(2.1 sup/ 1—|Dv|?

vekK JQ
where K = {v € C%Y(Q) : |Dv| < 1 a.e. in Q and v = ¢ on 022} has a unique
solution u if and only if the set K is nonempty.

Remark 2.2. In above theorem, v = ¢ on d$2 means that, for every xo € dQ2 and
every open straight line segment / contained in Q and with endpoint x,
lim v(x) = ¢(xp).
xX—>x0,Xx€l
Regarding this definition and the existence of a weakly spacelike extension of ¢,
we refer the readers to the discussion in [2, p. 133, pp. 148-149] .

DEFINITION 2.3 (Area-maximizing hypersurface). A weakly spacelike function
u € C(R2) (2 C R™ is not necessarily bounded) is called area maximizing if it
solves the variational problem (2.1) with respect to its own boundary values for
every bounded subdomain in €2. The graph of u is called an area-maximizing
hypersurface.

LEMMA 2.4 (Closedness of variational solutions [2, lemma 1.3]). If {uy} is a se-
quence of area-maximizing functions in Q2 and uy — u in Q2 locally uniformly,
then u is also an area-maximizing function.



EXTERIOR MAXIMAL HYPERSURFACES 593

One key result in [2, theorem 3.2] is that if an area-maximizing hypersurface
contains a segment of light ray, then it contains the whole of the ray extended all
the way to the boundary or to infinity. This implies the following conclusion.

THEOREM 2.5 (The relationship between the variational solutions and the solu-
tions of maximal surface equation). The solution u of (2.1) is smooth and solves
equation (1.1) in

regu 1= Q \ singu

where
singu :={Xy : x,y € 0Q,x # y,Xy C Q,and |p(x) —p(y)| = [x — y[}.
Furthermore,
uitx + (1—=0y) =tex)+ 1 —-=0ep(y), 0<t<l,
where x,y € 02 are such that Xy C Q and |p(x) — ()| = |x — y|.

Remark 2.6 (Solvability of maximal surface equation on bounded domains). If the
boundary data ¢ admits a weakly spacelike extension and satisfies |@(x) —@(y)| <
|x — y| forall x,y € dQ with Xy C Q and x # y, then singu = @ and hence
smooth u solves the equation (1.1) in 2.

Bartnik proved the following:

THEOREM 2.7 (Bernstein theorem for variational solutions [6, theorem F]). Entire
area-maximizing hypersurfaces in L™+ are weakly spacelike hyperplanes.

DEFINITION 2.8 (Isolated singularity [6, p. 382]). A weakly spacelike hypersur-
face M in L"T! containing 0 is called an area-maximizing hypersurface with an
isolated singularity at 0 if M \ {0} is area maximizing but M cannot be extended
as an area-maximizing hypersurface into 0.

For a weakly spacelike entire or exterior hypersurface M (i.e., u is defined on
R” or an exterior domain R” \ 4 with 4 bounded), we define M, = r—' M with
r > 0 to be the graph of u,(x) = r~!(rx). If for some rj — +oo, ur; (x)
converges locally uniformly to a function u,(x) on R” or R” \ {0}, then u (its
graph M) is called a blowdown of u (M). Note that by weakly spacelikeness,
the Arzela-Ascoli theorem always ensures the existence of blowdowns. By Lemma
2.4, Uxo(X) (M) is area maximizing on R” or R” \ {0} and us(0) = 0.

Ecker proved that the isolated singularities of area-maximizing hypersurface are
light-cone like [6, theorem 1.5]. The following lemma will also be used in our
proof of Theorem 1.1.

LEMMA 2.9 ([6, lemma 1.10]). Let M be an entire area-maximizing hypersurface
with an isolated sigularity at 0 and assume that some blowdown of M also has an
isolated singularity at 0. Then M has to be either COJr or Cy.
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We also need the following radial, catenoid-like solutions to the maximal surface
equation of (1.1) in R”™ \ {0}, used as barriers in [2,6]. For A € R, set

|| A J
22 wy(x) = ———dt
(2.2) A (x) o JaeD e
A

For n > 2, the integral f0+°° dt is bounded, and we denote this value

V12=D 432
as M (A, n). More precisely, by computation

2.3) p2n + 0(r4—3n)

-2

A
/ -
0 1/l‘2(”_1) +AZ

for large r. It is obvious that M(A,n) = sign(k)|k|n%1M(l,n) — tooas A —
. . +oo

.j:oo‘and M(A,n) — O’as A — 0. For n = 2, the integral | mdt is

infinite and by computation

(2.4) dt =mA) + Alnr + 0O(r™?)

A
/0 V2 4+ A2
for large r, where m(1) = fo «/ﬁdt + f (\/tz);;xz - %)dt'

DEFINITION 2.10 (Lorentz transformations, the speed of light is normalized to 1).
For a parameter k € (—1, 1), the Lorentz transformation L, : L"T1 — L7+1 is
defined as

K- (x,axn’[) - (.X/,

where x' = (x1,...,Xp—1).

Xn + Kt Kxn+t)
V1—«2 J1—«2

The Lorentz transformations are isometries of L” 1. L, maps spacelike (weakly
spacelike) surfaces to spacelike (weakly spacelike) surfaces and it maps maximal
surfaces (area-maximizing surfaces) to maximal surfaces (area-maximizing sur-
faces). Geometrically L, can be seen as a hyperbolic rotation. It maps the light
cone {(x,?) € L”t1 : ¢ = |x|} to itself, and it maps the horizontal hyperplanes to
the hyperplanes with slope «:

Le({(x,t) eL" M ir =T = {(x,0) e L' 1t = V1= k2T + kxn)

for T € (—o0, +00).

More generally, for any vector a € By we define L, := TaL|a|Ta_1 where T,
is a rotation that keeps the ¢-axis fixed and transforms e;, to |Z—| in R” (in case of
a = 0 we just define Ty := id).

3 Extension of Spacelike Hypersurface with Hole

We start our proofs for the two main theorems by extending any spacelike func-
tion over an exterior domain to a global spacelike function after finitely enlarging
the bounded complementary domain.
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THEOREM 3.1. Let u be a spacelike function in R™\ A with A being bounded. Then
there exists R* > 0 such that |u(x) —u(y)| < |x — y|forall x,y € R" \ Bgx.

PROOF.

Step 1. We first show that there exists a ball Bg,(xg) D A such that on the
boundary oscyegp Ro (xo)#(X) < 2Ro. Without loss of generality we assume A C
B1. We suppose 0scyp, o, U(X) > 200 with maxyp,, u(x) = u(100e1), and we
will show that 0scyp, ., (100e,) U(X) < 400.

Suppose maxjp,,, #(x) = —minyp,,, u(x) because otherwise we can con-
sider u — (maxyp,,, ¥ + mingp,,, #)/2 in place of u. First, one can see that
0SCB o U(X) =< 202 from the Lipschitz condition on u and the geometry of
B1oo\B1. So 100 < u(100e;) < 101 and mingp, ., #(x) € (—101,—-100). Sup-
pose u(x1) = minyp,,, u(x) for some x; € dB1go. Then |[x; — (—100e1)| < 3
because u(x) > u(100e1) — |100e; — x| > 100 — 200 = —100 for any x €
0B100\B3(—100e7). Thus u(—100e;) € (—104, —97). Therefore

u(100e2) > u(100e1) — |100e; — 100e5| > 100 — 1004/2 > —42
and
u(100e3) < u(—100e1) + | — 100e; — 100es| < —97 + 100+/2 < 45.
In the same way, u(—100e;) € (—42, 45). Denote u(100e;) = M. Then
u(x) e (M —90, M + 90) forall x € B3(—100e32).
Let MaxedB,0(100e2)\ B3(—100ey) [U(X) — M| := Q < 200. Therefore
0SCHB,00(100ey) U(X) < 2max(Q, 90) < 400.

(See Figure 3.1.)

Step 2. We show that there exists Ry > Ry such that for all R > R; we have
[u(x) —u(y)| < |x —y|forall x,y € dBr(xp) with x # y. By making a suitable
transformation, we may assume xo = 0, Ro = 1, and maxyp, ¥ = —mingg, u =
1—€g forsome 0 < €g < 1. Then for R > 1, maxpp, |u| < R—ep. Forx,y € dBg
with x # y, if the line segment Xy C Bpg\By, then |u(x) —u(y)| < |x — y|.
Otherwise, dist(0,xy) < l and |x — y| > 2/ RZ — 1. If

2
RZI—i—eO

260
then Ju(x) —u(y)] <2(R —€9) <2vVRZ—1< |x—y]|.

Step 3. Set R* := |xo|+ R1. Suppose the line segment XyNdBR, (x0) = {p.q}
and p is closer to x than g. Then

lu(x) —u(y)| < lu(x) —u(p)| + lu(p) —u(@)| + [u(q) —u(y)|
<lx—=pl+lp—ql+tlg—yI=Ix—yl

If p = g, the conclusion is also true. We have |u(x) — u(y)| < |x — y| directly if
Xy N0BR, (x0) = @. O
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M+Q
Q<200

1006, | u(100e2) =M € (—42,45)

2

—100¢,
w(—100e; ) € (—104, —07)

100e4

u(100e, )€ (100,101)

—100e;
u(—100eq) € (=42, 45)

M +90

FIGURE 3.1. Shift the ball to hide the shadow.

For completeness, we include the promised full spacelike extension result here,
which is not needed in the proofs of our two main theorems.

THEOREM 3.2. Let u be a spacelike function in R™\ A with A being bounded. Then
there exists R* > 0 such that [u(x) —u(y)| < |x — y| for all x,y € R*\ Bg+.
Moreover, there exists a spacelike function i in R” such that i = u in R\ Bg~.

PROOF. We only need to prove the second part of the theorem. By Remark
2.6, there exists a spacelike function w in Bg= such that w = u on dBg=. Define
# := win Br+ and 4 := u in R*\Bg+. For x,y € R" with x # y, if both
x and y are in B+ or R?\Bg= then |u(x) — u(y)| < |x — y|. Otherwise, let
{z} = Xy N 0BR~+, then

[u(x) —u()| = ulx) —u@)] + Ju@) —u()| <lx —z[+lz -yl =[x -yl

If we assume the spacelike function u is also strictly spacelike |Du(x)| < 1
(to exclude spacelike functions such as arctan A), we can get a spacelike exten-
sion inside B~ directly, without relying on the singularity analysis of variational
solutions to the maximal surface equations of [2] contained in Remark 2.6.
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In fact (cf. [12, p. 61]), for x € Bp~ set
= inf b) + —b
w(x) bela%R*{u( ) +mlx —b|}

with m = ”Du”LOO(aBR*) < 1. Then w(x) = u(x) for x € dBg+*, and for
X,y € ER*

= inf b) +mly —b

w(y) belanR*{”( ) |y 1}
< inf b)+m|x—b|+m|ly —x
= belan R*{u( ) | | |y 1}

< w(x) +mly — x|.

Symmetrically w(x) < w(y) + m|x — y|. Hence w is spacelike inside Bpr=,
u(x) —u(y)| <mlx —y| <|x -yl

There is another differential way to do this extension inside Bgr+. Without loss
of generality, we assume R* = 1; then osc|x|—; u(x) < 2. For x € By set

w(x) = |x|[ulx/|x]) —m] +m
with m = %[maxm:l u(x) + minjy=y u(x)]. Then w(x) = u(x) on dB;. For
X € By \{O},
[Dw(x)| = [Du(x/[x]] < 1.

The Lipschitz norm of w at x = 0 is also less than 1 because
max|x|=1 %(x) — minjx|= u(x)
2
We also reach the same spacelike conclusion of w inside Bj. U

lu(x/|x]) —m| < < 1.

4 Growth Control of « at Infinity

In this section, we show that the linear growth rate of an exterior solution u at
infinity is uniformly less than one, that is to say, u is controlled not only by the
light cone but by a cone with slop less than one. Meanwhile we prove that the
blowdown of u is unique and is a linear function with slope less than one. We also
prove that the graph of u is supported by a hyperplane either from below or from
above.

THEOREM 4.1. Let u be an exterior solution in R" \ A with A being bounded.
Then there exist B D A, 0 < € < 1, and co € R such that

—(1=¢|x|<ulx)—co < (1—¢e)lx|
in R™ \ Br. Moreover, there exists a vector a € By_¢ such that
. u(rx)
lim

r—oo r

=a-x locally uniformly in R" \ {0}.

The function u also enjoys the property that either for some ¢ € R, u(x) > a-x+c
in R" \ Br and u(y) = a -y + c at some point y € 0BR, or for some ¢ € R,
u(x) <a-x+cinR*\ Brandu(y) = a -y + ¢ at some point y € dBRg.
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PROOF. We apply Theorem 3.1. For simplicity of notation, we assume R* = 1.
So we have |u(x) —u(y)| < |x — y| forany x, y € R” \ By with x # y. We also
assume maxpp, ¥ = —mingp, U = 1 — € for some 0 < €; < 1. We will show
that —(1 — €)|x| < u(x) < (1 —¢)|x|in R” \ By for some 0 < € < 1.

It is easy to see that —|x| + €; < u(x) < |x| — €y in R™ \ Bj. So there are four
possibilities for u:

(a) There is 0 < € < 1 such that u(x) > —(1 — €)|x| in R” \ B; and there is

a sequence of points {x;} with 1 < |x;| := R; — o0 such that u(x;) >
(1= Hlxl.

(b) The function —u satisfies (a).

(¢) There are two sequences of points {xji} with 1 < |x Ji| = RJjF — 400

such that u(x;r) > (1 — %)|xJ7L| and u(xj_) < —(1-— %)|xl_|

(d) Thereis 0 < € < 1 such that —(1 — €)|x| < u(x) < (1 —¢)|x| in R" \ Bj.

We will show that the cases (a)—(c) cannot happen.

Suppose that u satisfies (a). Let

£i= lim & 9B,
k—o0 I
for some subsequence { j; }. We assume X = e, and consider {j;} as {j }. Define
vi(x) = u(R;x)
J R

locally uniformly to a function V(x) in R” \ {0}. By Lemma 2.4, V(x) is area
maximizing in R" \ {0}. It is obvious that V(0) = 0, V(e,) = 1 and V(x) >
—(1—¢)|x|. By weakly spacelikeness of u, we know that V(te,) = ¢ fort € [0, 1].
Theorem 2.5 says that once the null line (sing u) appears, it can not stops at an
interior point. So we have V(te,) = t for ¢t € [0,4+00). If 0 is a removable
singularity for V, then V is a plane by Theorem 2.7 and V has to be V(x) = x,
that contradicts V' (x) > —(1 — €)|x|. So 0 is an isolated singularity for V. Let Vo
be ablowdown of V', then Vo (te,) =t fort € (0, +00) and Voo (x) > —(1—€)|x|.
So 0 is an isolated singularity for V.. By Lemma 2.9, we have V(x) = |x]|.

Let z € 0By be such that u(z) = mingp, u := A. For small § > 0, consider
w(x) := A — 148+ (1 —8)|x|. Since lim; 00 “Ri2 — || uniformly on 3B,
u(x) > w(x) on dBg; for j > jo(d). But u(x) > j\ = w(x) on dB; and w(x)
is a subsolution to (1.1) in R” \ By, so u(x) > w(x) in R” \ B;. Let§ — 0, we
get u(x) > A — 1 + |x|in R” \ By. Especially, u(2z) > A — 1+ [2z] = 1 + 1
and hence u(2z) —u(z) > 1 = |2z — z|. This contradicts the obvious fact that u
is spacelike “in R” \ B;”, included in Theorem 3.1.

The case (b) cannot happen for the same reason.

Now we suppose u satisfies (c). For each j, let w; be the solution of (1.1)
in B; with w; = u on dB;j. The existence of w; is due to Remark 2.6. For
each j, either maxyp, (w; —u) > 0 or mingg, (w; — u) < O (or both). Thus

A subsequence of vj(x) (still denoted as v;(x)) converges
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maxyp, (w; —u) > 0 or mingp, (w; —u) < 0 happens for infinitely many j. We
assume maxyp, (w; —u) := A; > 0 happens for infinitely many ;. Let z; € 9By
be such that w;(z;) — u(z;) = A; and consider W; = w; — A; for these j. So
w; < wuin B; \ By and W;(z;) = u(z;). Note that |w;(0)| < |[W;(z;)| + 1 =
lu(zj)| + 1 < 2 for all these j. Therefore, by Arzela-Ascoli a subsequence Wj,
converges locally uniformly to a function W in R”. By Lemma 2.4, W is an area
maximizing surface. So it is a plane with slope less than or equal to 1 by Theorem
2.7. Furthermore, we know W < y in R” \ By and W(z) = u(z) by continuity,
where z is an accumulating point of {z;, }.

By assumption of (c), there are {xj_} with |xj_| — +o00 such that W(xj_) <
u(xj_) < —(1 - %)|xj_|. Thus W has to be a plane with slope 1. We assume
DW(x) = ey, 50 W(x) = xp +u(z)—2z,. If 2, <0, thendenote Z = (z/, —z,) €
0B and we have u(Z) > W(Z) = =2z, +u(z) = u(z) +|Z —z|. This contradicts
the fact that |u(x) — u(y)| < |x — y| forany x, y € 0By with x # y, proved in
Theorem 3.1. If z,, > 0, then consider the point z + ¢, € R” \ By and we have
u(z +ey) > Wz +e,) = u(z) + 1 = u(z) + |(z + e,) — z|. This contradicts
the obvious fact that u is spacelike “in R"\ B;”, included in Theorem 3.1.

If it is the case that minyp, (w_,' — u) < 0 happens for infinitely many j, we
move up w; by —minyp, (w i — u) and get a plane W above u by the same pro-
cess. This time by the assumption that there are {x;r} with |x ;r| — +o00 such that
Ijl\/(x;r) > u(x;r) > (1-— %)|x;r|, we also know the slope of W is one. Further-
more, W also touches u at some point of dB1. Again, this contradicts the obvious
fact that u is spacelike “in R™\ By”, included in Theorem 3.1.

Therefore only the case (d) can (and must) happens and we have proved the
first part of the theorem. In this case we can also construct the plane W in the
same way just as we did in the first paragraph when we proved the impossibility
of case (c¢). That is to say, we can place a plane (with slope less than or equal
to 1 — €) either below or above the graph of # in R” \ B; and the plane touches
u at some point of dBy. This property implies that the blowdown of u must be
unique and equal to the blowdown of W. We show this as follows. Assume that
W(x) =c+a-x <uinR"\ By where |a] < 1— €. Let VV be any blowdown
of u,thena - x < V(x) < (1 —¢)|x| in R”, which implies that O is a removable
singularity of V' by the fact that the isolated singularities of an area-maximizing
hypersurface are light-cone-like [6, theorem 1.5]. Then V is an entire solution and
must be a plane. The only possible situationis V(x) = a - x. O
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5 Gradient Estimate

With the strong growth control achieved in the previous section and the known
curvature estimate, we can establish the gradient estimate and ascertain Du(00)
in this section. We state the curvature estimate of Cheng-Yau [5] in the following
improved extrinsic form carried out by Schoen [6, theorem 2.2]).

THEOREM 5.1. Let M = (x,u(x)) be a maximal hypersurface, xo € M, and
assume that for some p > 0, L1,(xo) "M & M. Then we have for all x € L,(xo)

2 c(n)p?
(5.1) % (x) < m

where ¢ (n) is a constant depending only on the dimension n and

1
Lo () = (|x = xo[? = [u(x) — u(x0)|*)2.

If M is an entire maximal hypersurface, then p in (5.1) can be chosen to be
arbitrarily large by properness of the function /x,(x) on M [5, prop. 1], so |II| = 0
and hence the Bernstein theorem follows. But the following corollary is what we
need.

COROLLARY 5.2. Forany 0 < € < 1, there exists a positive constant C (e, n) such
that if u solves the equation (1.1) in R" \ By and satisfies —(1 — €)|x| < u(x) <
(1 —e)|x| in R" \ By, then
C(e,n)
| x|

PROOF. Fix a point x € R” with |x| > %; forany y € dB;
() —u)] < fu@x)| + [u(y)| = A =e)lx|+ (1 —e€)

II|(x) <

8
for|x| = —.
€

and
lx —y| > |x| - L
So

L) = (ly — x> = [u(y) —u)?)? > \@m.

Similarly, we also have

€ € 8
lx(z) > \/j|z|> \/jIX| for |z] > —|x|.
2 2 €

L\/§|x|(X) NMeM

This means that

or the former is compactly contained in the latter. So by letting x = Xx¢ and
2p = \/§|x| in (5.1) we get

) (x) < Y _ Clen), -

Jewr o
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THEOREM 5.3. Let u be an exterior solution in R" \ A. For any open set U D A
there is 0 > 0 such that |Du| < 1—60 in R* \ U. Moreover, limy_,o, Du(x) = a,
where a is given by Theorem 4.1.

PROOF. Assume A C B and —(1 — €)|x| < u(x) < (1 — €)|x| in R"\ B;.
Denote R := 10 . Since |Du(x)| < 1 for x € R"\U, if |Du| < 1 — 6 is not true,
then there is a sequence of points {x;} such that |[Du(x;)| > 1 — —. and |x;| —
+o00. Define R; := R xj| and vj(x) := u(R’x
Theorem 4.1, we have v; (x) — V(x) =a - x.

On the other hand, by Corollary 5.2, the curvature |II] is uniformly bounded
for all vj(x) on the compact set BR+1\BR 1> SO is |D2v] (x)|. This means

Dvj(x) = DV(x) =ain BRJrl \ Bg_,- Denote

(assume R; > 1). Then by

for some subsequence j. Then
Rxj,
DV(x) = lim Dvj, (—J")
k—o00 X

But

X |
and then the last inequality implies | DV (X)| = 1. This is a contradiction.

The conclusion limy_—,oc Du(x) = a can be proved in the same compactness
way as above.

There is another Harnack way to show the existence of Du(c0), once |Du| is
uniformly bounded away from 1, | Du| < 1 — 6. Indeed, each bounded component
U, of Du satisfies a uniformly elliptic equation

dx; [ Fpip; (DU)dx, 1| =0 inR" \ A

with F(p) = /1 — |p|2. By Moser’s Harnack [13, theorem 5], limy— 00 Du(x)
exists. O

Because we will use Moser’s results again in the next section, we state them
here in the needed form for convenience.

THEOREM 5.4 (Harnack inequality [13, theorem 1]). Let w be a nonnegative so-
lution of

(5.2) (aij(x)w;);i =0

in R" \ Bg,, where A™'1 < (aij (x)) < Al for a constant A € [1,00). Then for
any R > 10Rg

(5.3) supw <" inf w
dBR IBR
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forI' =T(n,A).

THEOREM 5.5 (Behavior at oo [13, theorem 5]). Let w be a bounded solution to
the uniformly elliptic equation (5.2) in R" \ By. Then lim|y|_,oc w(X) exists.

6 Asymptotic Behavior: Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. We present the proof in the following
four subsections. We first treat the special case Du(co) = a = 0. The general case
can be transformed to this special case by a suitable hyperbolic rotation (Lorentz
transformation).

6.1 Casea =0,n =2

Step 1. |u(x)| <c + dIn|x| forlarge c and d.

We still assume R = 1 in Theorem 4.1. By Theorem 4.1 and Theorem 5.3, we
known that lim, s a0 urx) — ( and limy— 0o |Du(x)| = 0. Moreover, we have
either u(x) > ¢ for some ¢ € R in R” \ By and u(y) = ¢ at some point y € dBj,
oru(x) < c¢ for some ¢ € R in R” \ By and u(y) = ¢ at some point y € dB;. We
assume the former case happens and ¢ = 0, y = e;3. Thatis, u(x) > 0in R” \ B
and u(e1) = 0. Recall the radial barrier wy, in (2.2). Set ¢, (x) := wy (x)—wy (e1)
and ¥4 (x) := ¢, (x) + maxyp, u. As the first step of the proof, we want to show
that u(x) < ¥, (x) in R” \ B, for sufficiently large A.

We observe that as long as A is large enough, ¢, (2e1) can be arbitrarily close
to 1. Since u(2e1) < 1, we can choose A¢ such that ¢,,(2e1) > u(2e1). Now
we claim that u(x) < ¥, (x) in R” \ By, where 11 := (I" + 1)A¢ and the
constant I" is from Theorem 5.4 for u. It is easy to see that ¥, (x) > ¢y, (x) in
R™\ Bg for some R = R(A¢, I') large enough. If u(x) < ¥, (x) in R\ Bg, then
u(x) < ¥y, (x)in R™\ By by the comparison principle since ¥ < maxyp, u = ¥,
on dB7. Suppose u(z) > V¥, (z) at some point z € R” \ Bg; then u > ¢, on
0Bz by Theorem 5.4. Sinceu > 0 = ¢, on dBy, wehave u > ¢, in B|;|\ By by
the comparison principle, especially u(2e1) > ¢,,(2e1). This is a contradiction.
So we proved that u(x) < ¥, (x) in R" \ By.

Step 2. u(x) =c +dlIn|x| 4+ o(1) for some ¢ and d.

We still assume u > 0 as above. Denote

A¥ :=inf{A > 0:u < ¥, inR" \ By}

By continuity, u < ¥« in R”\ B1. If A* = 0, then 0 < u < maxyp, u in R"\ By.
By Theorem 5.5, u has a limit at infinity. Now we assume A* > 0 and our aim is
to show that also u > ¢« in R” \ Bj.

For all positive integers k > max{10, %*}, there exist y* such that |y¥| > ekz,
|y 1| > |y¥|, and u(y*) > WA*—(l/k)()’k)- By (2.4), there exists k such that for
all k > k, we have

2
Yar (V) —u(y") < ¥ae ) = ¥pe L OF) < TInly¥|
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The function w(x) := 3+ (x) — u(x) satisfies equation (5.2) with

il + L B
1 —|Dw!]?2 (J1—|Dw'|?)3
where w! := (1—t)u+ty;«. By Theorem 5.4, we have ¥/ « (x)—u(x) < % In |x|
on 0B,k for all k > k. Fix any small § > 0. Note that ¥y« (x) — ¢dp+_s(x) >
‘%ln |x| outside some ball. So there exists k such that u(x) > ¢px—g(x) on 9B x|

(6.1) ajj(x) =

for all k > k. Thus u > ¢)+_g in R" \ By by the comparison principle. By
continuity, we have u > ¢+ in R" \ Bj.

Now we have established that ¢+« < u < ¥;«(x) in R” \ By. Thatis 0 <
VYax(x) —u < maxpp, u. So by Theorem 5.5, ¥+ (x) — u has a limit at infinity.
Denote this A* = d, then we have

u(x) =c+dlnjx| + o(l)

as |x| — oo for some constant ¢. Since we assumed u is bounded below, the
constant d > 0. If u is bounded above, then we have u(x) = ¢ + d In|x| + o(1)
withd < 0.

Step 3. Improve o(1) to O(|x|™").

We still assume u > 0 as above. Suppose d > 0. Choose Ry > 10 such
that |Du(x)| < % and u(x) < 2d In|x| when |x| > Ry. For any point x with
|x] := 2R > 2Ry, define v(y) := W. Since u satisfies the nondivergence
form equation (1.2), v(y) satisfies the equation a;;(y)v;j(y) = 0 for y € B;
with a;; (y) = 8;; + % By Morrey-Nirenberg’s C % estimate for the two-
dimensional uniformly elliptic nondivergence form equation [8, theorem 12.4], for
some o > 0 we have

Cln|x]
|x|

where the first C is a universal constant independent of u, the second (and here-
after) C depends on the residue Res[u] = d.

(6.2) [vllcrecs, ) = CllvliLe(s)) =

Cln|x
(6.3) |Du(x)| = | Dv(0)] < |n| | for x| > 2Ro.
X
Let e be any unit vector, then v, satisfies the equation (a;; (y)(ve)j); = 0in
. L 8ij vV Mora .
By, with a;; NEDIE + oD By (6.2), ||aijllce (B, ») is bounded by

a universal constant. By Schauder estimate [8, theorem 8.32],

C In |x]|
| x|

|Dve(0)| < CllvellLeB,) =
2
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Note that Ruee(x) = vee(0), so we have
Cln|x]|
|x[2

In fact, using a bootstrap argument, we have

(6.4) |D?u(x)| <

for |x| > 2Ry.

Cl
(6.5) |DFu(x)| < | n|]|€x| for |x| > 2Ry,
X
forallk =1,2,....
We write equation (1.2) as
—(Du)'DzuDu ) .
Au = T [Dup? = f(x) inR"\ Bap,.

Then | f(x)| < Clnlx)? by (6.3) and (6.4). Define K[u](x) := u(#) for x €

x4

Bl/(ZRo) \ {O} Then

X

AK[] = IXI“‘f(—) — g(0) in Byjary \ 10}

x|

with |g(x)| < C(—1In|x|)3. Let N[g] be the Newtonian potential of g in B1/@2R0)-
Since g is in L?(By/2R,)) for any p > 0, N[g] is in W 2P for any p and hence
isin C1* for any 0 < a < 1. Now K[u] — N|[g] is harmonic in B1/Rre) \ 105
Notice that |K[u](x)] < —2d In|x| + C in By/aRry) \ {0}, so [K[u] — N[g]| <
—2d In|x| + C in By/2R,) \ 10}. Therefore K[u] — N|[g] is the sum of cj In |x]|
(for some constant ¢1) and a harmonic function in By;2R,). So K[u](x) is the
sum of ¢y In |x| and a C 1 function in B1/@2Ry)- Fixana € (0, 1); for some affine
function ¢ + b - x, we have |K[u](x) — (c1In|x| + ¢z + b-x)| < C|x|'T* in
B1/@2R,) \ 10}. Go back to u and we have |u(x) — (—cyIn|x|+ ¢z + b - #ﬂ <
C|x|~'=* for |x| > 2R¢. From the result of Step 2, we must have —c; = d and
¢y = c. Thus
u(x) =c +dlnlx| + O(|x|™Y).

The same (but easier) argument also applies to the case d = 0.

Step 4. Improve O(|x|™') to O (]x|™1).

Since Y4(x) = € + dIn|x| + Or(|x|™!) for some ¢, we consider w(x) :=
Va(x) —u(x) — ¢ + ¢ = O(|x|™1). The function w satisfies (a;;w;); = 0 with
ajj given by (6.1). In view of (6.5) and |D*yg(x)| < ﬁ, we have

C In|x]|
xlk

By differentiating (6.1) directly one sees that for any k > 1 there exists R >
4(Rp + 1) such that |Dka,-j(x)| < |x|7%+D for x € R\ Bg,. We assume

|D*w! (x)] <
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Ry is nondecreasing with respect to k. Fix k, let x € R" \ Byg, and 4R = |x],
and define v(y) = W for y € Bjp. The function v satisfies the equation
(5,-_,-1)_,-),- = 0 in By with 5,-J-(y) = a,-j(x 4+ Ry). We have ||DlZz',-.,- ”CO(Bl) =
RYID!ajjllcogriry < Ck) for I = 0,1.....k and so 1@ llck g,y < Clk).
Then by the Schauder estimate,

C(k)

R¥=Y D*w(x)| = |D*v(0)| < Ck)|v|zoo(my) < I’

and hence | D¥w(x)| < |xC|/E—k+)1 for |x| > 2Ry This means w(x) = O (|x|~") and

hence
u(x) = c +dln|x| + O(|x|™D).
Step 5. Ascertain the value of d.

Res[u] 1 ou/on S
€S = — —_—
27 JoB, /1 —|Dul?
1 [ (d
= — (— + O(r_z))r do =d+ o@™).
21 Jo r

Letting r — oo, we have d = Res[u].
6.2 Casea=0,n>3

Step 1. |u(x)| < c for large c.

We still assume u# > 0 and define ¢, and v, as above. Using the same method,
we can prove u(x) < i, (x) for some large A in R” \ B;. But in the dimensions
n > 3, ¥, is bounded.

Step 2. u(x) = uso + O(|x[>7).

Since u is bounded, applying Theorem 5.5 directly to u, we have u(x) = U +
o(1) where uoo 1= limy o0 u(x). Define ¢, (x) := wy(x) — wy(er) + mingg, u
and ¥ (x) := wy(x) —wy(e1) + maxyp, u for A € (—oo, +00). We can choose
A1 and A, such that

xll)ngo ¢/11 (X) = U = xll)ngo ‘/sz(x)-
By the comparison principle,

P, (¥) = u(x) < Y, (x).
and this means that
U(x) = Uoo + O(Ix[*™).

Step 3. u(X) = Uoo —d|x|*™" + O(|x|'™™) for some d.

We adopt the same strategy as in the step 3 of above subsection: establish the
decay rate of |Du(x)| and |[D?u(x)|, apply the Kelvin transform to u(x) — teo,
and estimate the Newtonian potential of the right-hand side. The only difference
is that when we estimate the decay rate of | Du(x)|, we cannot use Morrey’s C 1%
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estimate, which is only true for two dimensions; alternatively, the first-order deriva-
tives of u (also v(y) := %) satisfy a uniformly elliptic divergence form

equation and thus we can apply De Giorgi—Nash’s theorem (see [8, chap. 8]) to
Dv.

”DUHCO‘(B%) = C||Dv||L2(33)
)
< ClvllL2csy) (Caccioppoli)
< Cllv)lpoocpy) < Clx|' ™.

This treatment also fits the two-dimensional case. We leave the remaining details
to the readers.

Step 4. Improve O(|x|'™") to O (|x|'™").

Do the same thing to u(x) — # as in step 4 of above subsection.

Step 5. Ascertain the value of d.

Res[u] = ! Ju 9 do
(n —2)|0B1| Jap, /1 —|Du|?
= + 0™ )" dS " =d +00G™).
(n —2)|9B1| BBl( -t " )

Letting r — 00, we have d = Res[u].

6.3 Casela| >0,n=2

By a rotation, we can assume a = ne, with n € (0,1). Make the Lorentz
transformation L_, : L2T! — L.2+1,

Xo =Nt —Nx2 +1 ~ ~
Ly (x1,x2,1) —> (xl, L ) = (X1, %2.1).
Vi-n? Ji-?
Then the plane {f = nx,} is transformed to the plane {f = 0} and the graph of u
over R? \ A is transformed to another maximal hypersurface that is the graph of

some function (say #) defined on R? \ A for some bounded closed set A. The
blowdown of # is the O function. So % has the asymptotic expansion

(6.6) X)) =¢+dIn|x|+ o(x™).

Transforming back and making some direct computations, we can establish the
asymptotic expansion of #. The details are as follows.
The Lorentz transformation

~ o~ o~~~ - Xot+nu nxXo+1u
Ly : (X1,%2,u(X1,X2)) = (xl, 1 , 1 )
Vi-nt Jy1-p?

= (x1, x2, u(x1,x2)).

6.7)
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Using the polar coordinates x; = r cos @, x» = r sin 6 and substituting (6.6) into
(6.7), we get

-~ ond N 1
xz—l—nc—l—%ln(rzcosZG—i-x%)—i-O( )

\r2cos? 6 + X2

(6.8)
=rsinf4/1—n2.

We want to solve X in (6.8) and substitute it into (6.6) and the third equality of (6.7);
then we will get the expansion of . We need to solve X three times iteratively.
First, we assume sin 8 # 0. From (6.8) we can see

- ) 1
Xp =rsinf 1—772(1—1—0(2)) asr — +o0.
r
Then
2.2 ~2 2 2.2 Inr
recos“0 + X3 =r*(1—n“sin“O){ 1+ 0| — ] ]
’

and hence

1
(6.9) In(r? cos? 6 + ¥2) = 21n(r,/1 — 2 sin? 9) + O(K)
;

where O(Inr/r) is independent of small sin §. Substitute (6.9) into (6.8) and solve
X again,

~ 1
(6.100 Xy =rsinf4/1—n2—nc—nd ln(r\/I — 52 sin® 9) + 0(2)
r

Now we have

2ny/1—n2dsinf1 1
r200529+35%=r2(1—n2sin29)(1— il ¢ o nr—l—O(—))

(1 —n2sin? O)r r

and

In(r? cos® 6 + X3)

(6.11) V1=n2dsin6 1 1
:21n(r\/1—172sin219)—77 d 'dzsma.ﬂ—i—O(—).
(1 —n2sin“@) r r

Substitute (6.11) into (6.8) and solve X» again:

Xy = rsinf 1—nz—nE—ngln(r\/l—nzsin29)

(6.12) ~ .
1 —n2dsinf 1 1
IR e (1)

(1 —n2sin? 6) o r
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Substitute (6.11) into (6.6) and then substitute (6.6) and (6.12) into the third equal-
ity of (6.7), we have

u(r,0) = nrsinf 4+ /1 —n2¢+ /1 —n2d In(r\/1 — n2sin? 6)
27 -
n=d sin 6 Inr (1)
+—F———-—+0|-).
(1—n2sin?6) r r

Notice that we get (6.13) with the assumption sin 6 # 0. If sin 8 = 0, then (6.8)
becomes

(6.13)

. nd -
xz+n0+%ln(r2+x§)+0<

v/ 1 )
— | =0.
r2 4+ %3

Xy = —nc?ln r(l +o(1)),

1
1’24—55% 27’2(] + 0(;))»

In(r*> + ¥3) =2Inr + O( ),

~ 1
u(r,0) = \/1—n25+ \/l—nzdlnr + O(;)

This means (6.13) is also true for sin6 = 0.

Let +/1— 12¢ := ¢ and v/1 — n2d := d. In x-coordinates, we have

M(XI,XZ) =nNxz2+c+ dln \/x% + (1 _ n2)x§

Then we have

N | =

N | =

% =-ndlnr —n¢ + 0(

and hence

n n*d|x|x, ' In | x|
VI=n2(2 + (1 —nH)x2) x|

Getting rid of the assumption @ = (0, 1), it is not hard to see that

u(x)=a-x+c+dln/|x|?> —(a-x)?

n d|al|x|(a - x) In x|
V1—lal2(x]? = (a-x)?)  |x]

By the method in step 4 of Section 6.1, we can improve O(|x|™1) to Ox(|x|™1).
We omit the details.

+ O(]x|™h.

+0(|x|7h.
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The remaining task is to compute d in terms of Res[u] and |a|. For simplicity,
we still assume a = (0, 7). Consider the ellipse

E, = {x? + (1 —n?)x3 = p*}.
Use the polar coordinates, but this time we set x; = r cos 6, /1 —n%x; = rsinf.
SoEp,={(r.0):r =p,0=<60 <2m}.OnE,,

d+/1—n?sinf
o

dcos @ _
+o(p Hn+

Du(0) = (
the unit outward normal vector
’_1,(9):< cos 6 \/l—r)zsiHQ)’

\/l—nzsinze’ \/l—nzsinze

+ O(p_l)),

and the length element

V1 —n2%sin® 6
ds = ————

pdb.
1 —n?
So
du /o in ¢ d
u/on - n sin n To(p™h
V1 —|Dul \/1—n2sin29 p\/l_n2v1—n2sin29
and hence
1 ou/on
Resfu] = [ 0w/
2 JE, /1 —|Dul?
1 27 3 9 1 2 d
_ L md9+_/ 4461 o(1)
2 Jo  J1— 2 2 Jo 1—n?
d

Letting p — 400, we have
d = (1 —n*)Res[u] = (1 — |a]?) Res[u].

6.4 Casela|>0,n>3

We do the same things as above. Assuming a = ne, with n € (0, 1), make the
Lorentz transformation L_: graph of u — graph of i, then

H(X) =& —d|FP" + o(x|")
and

Ly: (& Fn 07 %) — (~/ X 4 11X + 1

x’ 9
Vi-n J1-p?

) - (x/, Xn, u(x,’ Xn)).
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Use the polar coordinates x” = r cos 0§, x, = rsinf with —% <60 < % and

£ € S"72 the unit sphere in R”~!. Then we are going to solve X, from

fn+n5—na7(r200529+)7 )25’ +O((r cos’f + X )%) =rsinf,/1 —n2.

Suppose sin 6 # 0. We have

1
Xp = rsinf 1—n2(1 + 0(—)),
.
1
r2cos? 0 —i—)"c',% = r2(1 — n?sin® 9)(1 + O(—)),
.

(r2 cos? 6 + fi)% = r27"(1 — n? sin? 9)% +0@r'™),
where O(r1™") is independent of small sin 6. So
i=C—dr2(1 — g?sin2 )2 + o(r' ™,
and

%, =rsinfy/1—n2—n¢+ ndr>(1 — n?sin® 9)% + O0@rl™).
Therefore, denoting /1 — 72¢ := ¢ and /1 — n2d :=d,
u(x) = nxy + ¢ —d(|x]? = 2x2) 7" + O(lx|' ™)
=a-x+c— d(|x|2 —(a-x)?)2" + 0(x|'™).
One can verify that the above expansion is also true in the case of sinf = 0. Also
O(]x|*™) can be improved to O (|x|'™"). We omit the details.
Now we compute d. Assume a = ne, with n € (0, 1) and
Ep = {x?+ (1 -n*)xi = p*}.
Use the coordinates x” = r cos 0&, /1 — n%2x, = rsinf. So
Ep—;(FQS) V—P’—§§9<— Ee S 2}
On E,:
2)d
U = ﬂ—i—O( "y fori=1,...,.n—1
rt
and

—2)d(1 — n?
in =t ORI )

The unit outward normal vector is

ﬁ:< xi - (1—1)xn )
r,/l—nzsinze \/1—77 sin? @ r\/l—n sin® @
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and the surface element is

— n2qin2
da:wl n? sin” 0 el

" Leos® 2 0dodS™ 2.

1 —n?
So
ou/on sin 0 n—2)dp'™"
/ = = 1 + ( )dp + 0(p™),
V1 —|Du| \/1—n2sin20 V1 =121 —n2sin* @
and hence
Res[u]
1 /3
= o
(n —2)|0B1] JE, /1 — |Du|?
_ |S"2| 3 pp"Lcos" 20 sinf N (n —2)d cos" 26 L 0(Y)d6
w-20B )z Jiip =
d
=——+0(ph.
2 (™)
‘We used the fact that

T

/2 157 2|cos"26 d6 = |S""| = 3By,

2

Letting p — 400, we have

d = (1 —n?*)Res[u] = (1 — |a]?) Res[u].

7 Exterior Dirichlet Problem: Proof of Theorem 1.2

Recall that w, is the radial solution defined by (2.2). Leta € By; we use w§ (x)
to denote the representation function of the hypersurface L,(graph of w,), where
the Lorentz transformation L, = TaL|a|Ta_1 is defined at the end of Section 2.
Then the function w{(x) has the following properties: w4 (0) = 0, wf(x) solves

equation (1.1) in R” \ {0}, and (from the argument in the previous section or by
direct calculation) forn = 2

w§(r) = a-x + /1 laPm@) + /1= [aPAlny/[x = (@ x)2 + o(1)

and forn > 3

1_ 2A1 —n
w§) = a-x /1~ M)~ () o)

as x — 00. The numbers m(A) and M (A, n) are from (2.4) and (2.3).
Now we prove Theorem 1.2. We do this in the following two subsections corre-
sponding to the cases n = 2 and n > 3 respectively.
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7.1 Casen =2

Let A, g, a, and d be given as in Theorem 1.2 and /1 — |a|2A = d. Choose
constants ¢~ < 0 < ¢ such that wi(x) + ¢ < glx) < wi(x) + ¢t on dA. We
claim that there exists R(A4, g,a,d) > 0 such that for any R > R there exists a
solution u g of maximal surface equation in Bg \ A4 satisfying ux = g on d4 and
ur = w4 on dBg.

In fact, let ¥ be a spacelike extension of g into R? \ A. By Theorem 3.1, there
exists R* such that |/ (x) — ¥ (y)| < |x — y| for any x,y € dBg* and x # y.
Assume || < G on dBg+. Let R > R > R* for any x € dBg= and y € 0BRg,

a | al+1
0§ () ()| = ] + 6 < al
provided R is chosen to be sufficiently large. So we can find a spacelike function
vg on dBR \ Br+ such that vg = ¢ on dBg= and vg = wz on dBR. Define Wp
by Wr = ¥ in Brx \ A and Vg = vg in Br \ Bg=. It is not difficult to see that
Wr is a spacelike function defined on Bg \ A possessing boundary values g and
w4 on 94 and dBR respectively. Hence by Remark 2.6, we can get u g by solving
the Dirichlet problem. The above claim is proved.

By the comparison principle, wi(x) + ¢ Sup(x) < wi(x) + ¢t in BR\ A.
Choose any sequence of R < R; — oo, by compactness, there exists a sub-
sequence of {ug;} converging to a function u locally uniformly in R"” \ A. By
Lemma 2.4, u is area maximizing. If u is not maximal, then graph u contains a
segment of light ray and hence the whole of the ray in (R” \ A) x R, contradicting
the fact w4 (x) + ¢~ < u(x) < wi(x) + ¢T. Therefore u solves equation (1.1) in
R™ \ A. Moreover, u = g on dA and

u(x) =a-x+dln/|x]>?—(a-x)>+ 0(1)
as x — 00.

Finally, we prove the uniqueness of u. Suppose there is another such solution v
also satisfying v = g on d4 and

v(x) =a-x+dIny/|x]?—(a-x)?+ O(1).

Then w := u — v satisfies a divergence form elliptic equation in R” \ A, w = 0 on
04, and w is bounded. By [7, theorem 7], w = 0 in R” \ A.
7.2 Casen >3

Given A, g, a, and ¢ as in Theorem 1.2, choose R and G such that A C B R and

lg| < G on dA. Choose A* > 0 such that /1 — [a|2ZM(A*,n) > |¢| + R + G.
Denote

(R—R") <

lx — |

U (x) i= wha(x) — /1 —[a]2M(A*,n) +c,

W (x) = w? . (x) + /1= |a2MQ*,n) +c.
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One can verify that
U (x)<a-x+c<¥T(x) inR",
UE(x)=a-x +c+o(1) as x —> 0o,
U (x) < g <¥T(x) on 0A.

For the same reason as in the two-dimensional case in the previous subsection,
there exists R such that for any R > R there exists a solution u Rin BR\ A
satisfying up = gon d4d and ur = a - x + ¢ on dBg. Hence V™ (x) < ugp <
Ut (x)in Bg \ A. In the same way, we can construct a solution u in R” \ A
satisfying u = g on d4 and

u(x) =a-x+c+o(l)

as x — oo.
The uniqueness of u follows from the comparison principle directly.

Acknowledgment. Part of this paper was completed during Hong’s visit to the
University of Washington (Seattle). This visit was funded by the China Scholarship
Council. Yuan is partially supported by an NSF grant.

Bibliography

[1] Bers, L. Isolated singularities of minimal surfaces. Ann. of Math. 53 (1951), 364-386.
[2] Bartnik, R.; Simon, L. Spacelike hypersurfaces with prescribed boundary values and mean
curvature. Comm. Math. Phy. 87 (1982), 131-152.
[3] Caffarelli, L. A.; Li, Y.-Y. An extension to a theorem of Jorgens, Calabi, and Pogorelov. Comm.
Pure Appl. Math. 56 (2003), 549-583.
[4] Calabi, E. Examples of Bernstein problems for some nonlinear equations. Proc. Symp. Pure
Math. 15 (1970), 223-230.
[5] Cheng, S.-Y.; Yau, S.-T. Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces.
Ann. of Math. 104 (1976), 407-419.
[6] Ecker, K. Area maximizing hypersurfaces in Minkowski space having an isolated singularity.
Manus. Math. 56 (1986), 375-397.
[7] Gilbarg, D.; Serrin, J. On isolated singularities of solutions of second order elliptic differential
equations. J. Analyse Math. 4 (1955/56), 309-340.
[8] Gilbarg, D.; Trudinger, N. S. Elliptic partial differential equations of second order. Reprint of
the 1998 edition. Springer-Verlag, Berlin, 1998.
[9] Hong, G.-H. Remarks on area maximizing hypersurfaces over R” \ {0} and exterior domains.
Manus. Math., available online, doi:10.1007/s00229-019-01139-4.
[10] Hong, G.-H.; Zhao, Y.-Z. Infinity harmonic functions over exterior domains. Int. Math. Res.
Not. IMRN, available online, doi:10.1093/imrn/rnz366
[11] Li, D.-S.; Li, Z.-S.; Yuan, Y. A Bernstein problem for special Lagrangian equations in exterior
domains. Adv. Math. 361 (2020), available online, https://doi.org/10.1016/j.aim.2019.106927.
[12] Lin, E-H.; Yang, X.-P. Geometric measure theory—an introduction. Advanced Mathematics
(Beijing/Boston), Vol. 1. Science Press, Beijing; International Press, Boston, MA, 2002.
[13] Moser, J. On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14
(1961), 577-591.
[14] Simon, L. Asymptotic behaviour of minimal graphs over exterior domains. Ann. Inst. H.
Poincaré Anal. Non Linéaire 4 (1987), 231-242.


http://dx.doi.org/doi:10.1007/s00229-019-01139-4
http://dx.doi.org/doi:10.1093/imrn/rnz366

614 G.-H. HONG AND Y. YUAN

GUANGHAO HONG YU YUAN

School of Mathematics and Statistics Department of Mathematics
Xi’an Jiaotong University University of Washington

Xi’an, Shaanxi Province Seattle, WA 98195

710049 USA

P.R. CHINA E-mail: yuan@

E-mail: ghhongmath@xjtu.edu.cn math.washington.edu

Received March 2019.


mailto:\protect \chardef \@currsizeindex 5\relax \edef cpam{\relax \let \chardef \@currsizeindex 6\relax \edef cpam{\@setfontsize \normalsize {10.95}{13}}cpam\bigskipamount .7\baselineskip plus.7\baselineskip \medskipamount \bigskipamount \divide \medskipamount \tw@ \smallskipamount \medskipamount \divide \smallskipamount \tw@ \abovedisplayskip \medskipamount \belowdisplayskip \abovedisplayskip \abovedisplayshortskip \abovedisplayskip \advance \abovedisplayshortskip -1\abovedisplayskip \belowdisplayshortskip \abovedisplayshortskip \advance \belowdisplayshortskip 1\smallskipamount \jot \baselineskip \divide \jot 4 \relax \let \leftmargin \leftmargini \parsep \z@skip \topsep \listisep \itemsep \z@skip \listparindent \normalparindent \leftmargin \leftmargini \parsep \z@skip \topsep \listisep \itemsep \z@skip \listparindent \normalparindent \protect \chardef \@currsizeindex 5\relax \edef cpam{\@setfontsize \small {10.95}{13}}cpam\bigskipamount .7\baselineskip plus.7\baselineskip \medskipamount \bigskipamount \divide \medskipamount \tw@ \smallskipamount \medskipamount \divide \smallskipamount \tw@ \abovedisplayskip \medskipamount \belowdisplayskip \abovedisplayskip \abovedisplayshortskip \abovedisplayskip \advance \abovedisplayshortskip -1\abovedisplayskip \belowdisplayshortskip \abovedisplayshortskip \advance \belowdisplayshortskip 1\smallskipamount \jot \baselineskip \divide \jot 4 \relax \protect \afterassignment \edef 10.95{10.95}\afterassignment \edef 13.0pt{3.25pt}\edef {}\let \def \size@update {\baselineskip 13.0pt\relax \baselineskip \baselineskip \normalbaselineskip \baselineskip \setbox \strutbox \hbox {\vrule height.7\baselineskip depth.3\baselineskip width\z@ }\let \size@update \relax }\protect \xdef \T1/ptm/m/sc/10.95 {\T1/ptm/m/n/10.95 }\T1/ptm/m/sc/10.95 \size@update \enc@update }cpam\bigskipamount .7\baselineskip plus.7\baselineskip \medskipamount \bigskipamount \divide \medskipamount \tw@ \smallskipamount \medskipamount \divide \smallskipamount \tw@ \abovedisplayskip \medskipamount \belowdisplayskip \abovedisplayskip \abovedisplayshortskip \abovedisplayskip \advance \abovedisplayshortskip -1\abovedisplayskip \belowdisplayshortskip \abovedisplayshortskip \advance \belowdisplayshortskip 1\smallskipamount \jot \baselineskip \divide \jot 4 \relax ghhongmath@xjtu.edu.cn
mailto:\protect \chardef \@currsizeindex 5\relax \edef cpam{\relax \let \chardef \@currsizeindex 6\relax \edef cpam{\@setfontsize \normalsize {10.95}{13}}cpam\bigskipamount .7\baselineskip plus.7\baselineskip \medskipamount \bigskipamount \divide \medskipamount \tw@ \smallskipamount \medskipamount \divide \smallskipamount \tw@ \abovedisplayskip \medskipamount \belowdisplayskip \abovedisplayskip \abovedisplayshortskip \abovedisplayskip \advance \abovedisplayshortskip -1\abovedisplayskip \belowdisplayshortskip \abovedisplayshortskip \advance \belowdisplayshortskip 1\smallskipamount \jot \baselineskip \divide \jot 4 \relax \let \leftmargin \leftmargini \parsep \z@skip \topsep \listisep \itemsep \z@skip \listparindent \normalparindent \leftmargin \leftmargini \parsep \z@skip \topsep \listisep \itemsep \z@skip \listparindent \normalparindent \protect \chardef \@currsizeindex 5\relax \edef cpam{\@setfontsize \small {10.95}{13}}cpam\bigskipamount .7\baselineskip plus.7\baselineskip \medskipamount \bigskipamount \divide \medskipamount \tw@ \smallskipamount \medskipamount \divide \smallskipamount \tw@ \abovedisplayskip \medskipamount \belowdisplayskip \abovedisplayskip \abovedisplayshortskip \abovedisplayskip \advance \abovedisplayshortskip -1\abovedisplayskip \belowdisplayshortskip \abovedisplayshortskip \advance \belowdisplayshortskip 1\smallskipamount \jot \baselineskip \divide \jot 4 \relax \protect \afterassignment \edef 10.95{10.95}\afterassignment \edef 13.0pt{3.25pt}\edef {}\let \def \size@update {\baselineskip 13.0pt\relax \baselineskip \baselineskip \normalbaselineskip \baselineskip \setbox \strutbox \hbox {\vrule height.7\baselineskip depth.3\baselineskip width\z@ }\let \size@update \relax }\protect \xdef \T1/ptm/m/sc/10.95 {\T1/ptm/m/n/10.95 }\T1/ptm/m/sc/10.95 \size@update \enc@update }cpam\bigskipamount .7\baselineskip plus.7\baselineskip \medskipamount \bigskipamount \divide \medskipamount \tw@ \smallskipamount \medskipamount \divide \smallskipamount \tw@ \abovedisplayskip \medskipamount \belowdisplayskip \abovedisplayskip \abovedisplayshortskip \abovedisplayskip \advance \abovedisplayshortskip -1\abovedisplayskip \belowdisplayshortskip \abovedisplayshortskip \advance \belowdisplayshortskip 1\smallskipamount \jot \baselineskip \divide \jot 4 \relax yuan@\math.washington.edu

	1. Introduction
	2. Notations and Preliminary Results
	3. Extension of Spacelike Hypersurface with Hole
	4. Growth Control of u at Infinity
	5. Gradient Estimate
	6. Asymptotic Behavior: Proof of Theorem 1.1
	7. Exterior Dirichlet Problem: Proof of Theorem 1.2
	Bibliography

