
Chapter 1
A Heuristic Approach to Convex
Integration for the Euler Equations

Tristan Buckmaster and Vlad Vicol

Abstract The purpose of these lecture notes is to employ a heuristic approach
in designing a convex integration scheme that produces non-conservative weak
solutions to the Euler equations.

1.1 Convex Integration as a Mathematical Tool to Resolve
Onsager’s Conjecture

In these lecture notes, we aim to outline how a convex integration can be used to
construct non-conservative weak solutions to the Euler equations:

∂t v + div (v ⊗ v) + ∇p = 0 ,

div v = 0 .
(1.1)

We will restrict ourselves to considering the Euler equations on the periodic torus
T

3 for times t ∈ (−1, 1). It is easy to check, after a simple integration by parts, that
for smooth solutions to the Euler equation, the kinetic energy, defined by

E(t) := 1

2

∫
T3

|v(t)|2 dx ,

is conserved. This calculation however does not hold for weak solutions. Indeed,
the theory of turbulence naturally leads one to study the existence of dissipative
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weak solutions to the Euler equations. If one views the Euler equation as an inviscid
limit of the Navier–Stokes equations, then formally, if one takes the inviscid limit
of turbulent solutions, then one expects to obtain solutions to the Euler equations
that dissipate kinetic energy, and are therefore necessarily weak solutions (see for
example Section 2 of [5] and the references within for a more detailed discussion).
The postulate of dissipation of kinetic energy at the inviscid limit is sometimes
referred to in the literature as the zeroth law of turbulence.

In [20], Onsager famously conjectured the following dichotomy:

Conjecture 1.1 (Onsager’s Conjecture)

(a) Any weak solution v belonging to the Hölder space Cθ for θ > 1
3 conserves

kinetic energy.
(b) For any θ < 1

3 there exist weak solutions v ∈ Cθ which dissipate kinetic energy.

Part (a) was resolved by Constantin, E and Titi in [9], following a partial resolution
of Eyink in [16] (see also [7, 15] for more refined results). The first result towards
proving Part (b) was the construction of non-conservative L2 weak solution to
the Euler equations by Scheffer [21]. While the solutions constructed by Scheffer
were non-conservative, they could not be classed a dissipative since they did not
satisfy the property of non-increasing energy. The first example of dissipative weak
solutions to the Euler equations was due to Shnirelman in [22] (cf. [11, 12]).
Motivated in part by the convex integration scheme of Nash, employed in order
to construct exotic counter-examples to the C1 isometric embedding problem [19],
De Lellis and Székelyhidi Jr. in [13, 14], made significant progress towards Part (b)

by constructing dissipative Hölder C
1
10 − continuous weak solutions to the Euler

equations. Then after a series on advancements [1–3, 10, 17], Isett resolved the
conjecture in [18]. However, like the original paper of Scheffer [21], the weak
solutions constructed by Isett [18] were not strictly dissipative. This technical
issue was resolved in a paper by the authors in collaboration with De Lellis and
Székelyhidi Jr. [4], in which the precise statement of Part (b) was proven.

Instead of considering the more difficult problem of proving Part (b), let us
consider the simpler problem of constructing non-trivial, non-conservative, Hölder
continuous weak solutions:

Theorem 1.1 For some Hölder exponent β, there a non-trivial weak solution to the
Euler equations v ∈ C((−1, 1); Cβ(T3)) with compact support in time.

The purpose of these notes is to provide an outline of how to go about constructing
a convex integration scheme in order prove Theorem 1.1. The outline will track
closely with the approach taken in Section 5 of the review paper [5], which itself
is based on the works [2, 11, 12, 17]. In this presentation, we eschew mathematical
rigor in favor rough heuristics. This will allow us to better illustrate the main ideas
that go into designing a convex integration of the type pioneered by De Lellis and
Székelyhidi Jr. in [13], without getting caught up in the nitty gritty technicalities
that a rigorous approach entails.



1 A Heuristic Approach to Convex Integration for the Euler Equations 3

1.2 The Iteration

The general strategy for proving a theorem such as Theorem 1.1 is to construct a
sequence (vq, R̊q ) of solutions to the Euler–Reynolds system

∂tvq + div (vq ⊗ vq) + ∇pq = div R̊q, div vq = 0 (1.2)

such that R̊q → 0 uniformly and vq → v ∈ Cβ , whereby v is a non-trivial weak
solution to the Euler equations (1.1) with compact support in time. The tensor R̊q is
called the Reynolds stress, and is assumed to be symmetric and trace-free. At each
inductive step, the perturbation

wq+1 = vq+1 − vq

is designed such that vq+1 satisfies (1.2) with a smaller Reynolds stress R̊q+1. It will
prove helpful to split the Reynolds stress R̊q+1 into several components.*

div R̊q+1 = div
(
wq+1 ⊗ wq+1 + R̊q+1

)
+ ∇(pq+1 − pq)︸ ︷︷ ︸

oscillation error

+ ∂twq+1 + vq+1 · ∇wq+1︸ ︷︷ ︸
transport error

+ wq+1 · ∇vq︸ ︷︷ ︸
Nash error

.

(1.3)

The Reynolds stress R̊q+1 can be then be solved using a −1 order linear differential
operator R, defined as follows:

Definition 1.1 The operator R is defined on mean zero vector fields by

(Rv)k� = (∂k�
−1v� + ∂��

−1vk − 1

2
(δk� + ∂k∂��

−1)div �−1v .

The operator R is formally an inverse of the divergence equation, i.e. divRv = v

for any smooth, mean zero vector field v. Moreover, the matrix Rv is symmetric and
trace free.

Suppose we are given a smooth vector field b : T3 → R
3 and a smooth phase

function � : T3 → T
3 satisfying for all x ∈ T

3 the bound

C−1 ≤ |∇�(x)| ≤ C .

Since R̊q+1 is a −1 order linear differential operator, then for any α ∈ (0, 1), and λ

sufficiently large, we expect an estimate of the form

∥∥∥R
(
aeiλξ ·�(x)

)∥∥∥
Cα
�

‖a‖C0

λ1−α
+ error ,
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where the error can be made arbitrarily small by taking λ sufficiently large. See
for example [10, Lemma 2.2]) or [5, Lemma 5.6]), for a mathematically rigorous
statement. The implicit constant in the above inequality depends on α. In our scheme
we will take α to be sufficiently small, and thus for the matter of heuristics we will
ignore the loss of λα , as well as the additional ‘error’, and instead pretend that we
have the estimate

∥∥∥R
(
aeiλξ ·�(x)

)∥∥∥
C0
�

‖a‖C0

λ
. (1.4)

Roughly, the perturbation wq+1 will be of the form

wq+1 =
∑
ξ∈�

aξWξ,λq+1 (1.5)

where � is a finite set of directions, the vector fields Wξ,λq+1 are oscillatory building
blocks oscillating in direction ξ , and aξ are coefficient functions chosen such that

∑
ξ∈�

a2
ξ

⨏
T3

Wξ,λq+1⊗̊Wξ,λq+1 = −R̊q . (1.6)

Here ⊗̊ represents the projection of the outer product onto trace free tensors. The
building blocks Wξ,λq+1 will oscillate at a frequency parameterized by λq+1. The
cancellation (1.6) will be essential in estimated the oscillation error defined in (1.3).
Let us heuristically assume that the frequencies scale geometrically

λq = λq (1.7)

for some large λ ∈ N.1 Then for vq to converge in v ∈ Cβ , we roughly require

∥∥wq+1
∥∥

C0 ≤ λ
−β
q+1 . (1.8)

Recalling that vq = ∑q

q ′=0 wq ′ , where wq ′ oscillates at frequency λq ′ = λq ′
; then,

(1.8) roughly translates into the estimate

∥∥vq

∥∥
C1 ≤

q∑
q ′=0

λ
1−β

q ′ � λ1−β
q , (1.9)

1In practice is often simpler to assume that the frequencies grow super-exponentially (cf. [2, 5, 12,
17]). However, for the purpose of heuristics, geometric growth simplifies some of the calculations.
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assuming that λ is chosen sufficiently large. In view of (1.8), for such a cancellation
of the type (1.6) to occur, we would require the following estimate on R̊q

∥∥∥R̊q

∥∥∥
C0

≤ λ
−2β

q+1 . (1.10)

Utilizing that the building blocks Wξ,λq+1 oscillate at frequency λq+1, then by
heuristically using an estimate of the type (1.4), it is now possible to attain a heuristic
estimate on the Nash error defined in (1.3)

∥∥R(wq+1 · ∇vq)
∥∥

C0 �

∥∥wq+1
∥∥

C0

∥∥vq

∥∥
C1

λq+1
� λ

−1−β

q+1 λ1−β
q � λ

−2β

q+2λ3β−1 ,

where we used (1.8) and (1.9) in the second inequality, and (1.7) in the last
inequality.

Since the Nash error forms part of the Reynolds stress error R̊q+1, in order that
(1.10) is satisfied (with q replaced by q + 1), we require that β < 1

3 .

1.2.1 Beltrami Flows

We are yet to define the building blocks Wξ,λq+1 used in the definition of the
perturbation wq+1. There a number of different options depending on the goals
of the convex integration schemes: Beltrami flows, were first utilized in the
context of a convex integration scheme by De Lellis and Székelyhidi Jr. in [13];
Mikado flows, introduced by Daneri and Székelyhidi Jr. in [10], were essential in
resolving Onsager’s conjecture; intermittent Beltrami flows, were used in the first
non-uniqueness result for weak solution to the Navier–Stokes equations [6]; and
intermittent jets, were introduced as an improvement on intermittent Beltrami flows
[8]. For the purpose of this note, we will employ Beltrami flows as our building
blocks, as in [13].

A stationary divergence free vector field v is called a Beltrami flow if it satisfies
the Beltrami condition:

λ(x)v(x) = curl v(x), λ(x) > 0 ,

for all x. The function λ is called the Beltrami coefficient. For the purpose of these
notes, we will assume that the Beltrami coefficient is a constant.

Given a Beltrami flow v, from the divergence free condition we have the
following identity

div (v ⊗ v) = v · ∇v = ∇ |v|2
2

− v × (curl v) = ∇ |v|2
2

− λv × v = ∇ |v|2
2

.
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In particular setting p := |v|2
2 , then (v, p) is a stationary solution to the Euler

equations. Note that trivially, any linear sum of Beltrami flows with the same
Beltrami coefficient λ, is itself a Beltrami flow with the Beltrami coefficient λ. This
later property will be used to create a large family Beltrami flows, which will be
necessary in order to achieve the cancellation (1.6).

Let us now define Wξ,λq+1 . We will suppose that ξ ∈ S
2∩Q

3 is such that λq+1ξ ∈
Z

3. We define Aξ ∈ R
3 and Bξ ∈ C

3 by

Aξ · ξ = 0, A−ξ = Aξ and Bξ = 1√
2

(
Aξ + iξ × Aξ

)
.

We then observe that Bξ satisfies the following properties

|Bξ | = 1, Bξ · ξ = 0, iξ × Bξ = Bξ , B−ξ = Bξ .

Hence the vector field

Wξ,λq+1(x) := Bξe
iλq+1ξ ·x (1.11)

is T
3 periodic (using that λq+1ξ ∈ Z

3), divergence free, and is an eigenfunction
of the curl operator with eigenvalue λ. That is, Wξ,λq+1 is a complex Beltrami
plane wave with Beltrami coefficient λq+1. A real valued Beltrami plane wave with
Beltrami coefficient λq+1 is then attained by summing Wξ,λq+1 with its complex
conjugate. In view of this, we define

W−ξ,λq+1 = Wξ,λq+1 .

Then in order to ensure the right-hand-side of (1.5) is real valued, it will suffice that
aξ = a−ξ ; or more simply, aξ = a−ξ , if we further assume the coefficients aξ to be
real valued. Now, for the moment let us assume that the coefficients aξ are chosen to
be real valued constants—later, we will allow dependence on x. We further suppose
that � is a finite subset of S2 ∩ Q

3 such that −� = �, and moreover λq+1� ⊂ Z
3.

Then the vector field

W(x) =
∑
ξ∈�

aξBξ e
iλq+1ξ ·x

is a real-valued, divergence-free Beltrami vector field satisfying curl W = λq+1W .
Moreover, from the identity Bξ ⊗B−ξ +B−ξ ⊗Bξ = 2Re (Bξ ⊗B−ξ ) = Id−ξ ⊗ξ ,
we have

⨏
T3

W ⊗ W dx = 1

2

∑
ξ∈�

a2
ξ (Id − ξ ⊗ ξ) . (1.12)
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We refer the reader to Proposition 3.1 in [13] for additional details regarding the
computations above.

1.3 Oscillation Error

In this section, we demonstrate how the Beltrami flows of the previous section can
be used in order the minimize the oscillation error defined in (1.3).

In order to maintain notational consistency with previous convex integration
schemes in the literature, we introduce the amplitude parameter

δq+1 = λ
−2β
q+1 .

Applying a little bit of linear algebra, it is not difficult to construct a finite set
� ⊂ S

2 ∩ Q
3 and coefficient functions aξ for each ξ ∈ � whose amplitude is

proportional to the square root of the uniform norm of R̊q , that is by (1.10) we have

aξ = O(δ
1
2
q+1), in such a way as to achieve the cancellation (1.6). More specifically,

we define

aξ (x, t) = δ
1
2
q+1γξ

(
Id − R̊q(x, t)

δq+1

)
(1.13)

where γξ are smooth functions whose domain consists of a small ball around the
identity matrix within the space of symmetric matrices. We refer the reader to
Lemma 3.2 in [13] (alternatively Lemma 1.3 in [2]) for the precise definition of
γξ . Technically, in order that the definition (1.13) makes sense, we require a slightly

stronger bound than (1.10) in order to ensure that Id − R̊q (x,t)

δq+1
lies in the image of

γξ . For the purpose of this note, we ignore this minor technicality.
Assuming uniform bounds on the functions γξ , we obtain the following bounds

on aξ

∥∥aξ

∥∥
C0 � δ

1
2
q+1 (1.14)

∥∥∇aξ

∥∥
C0 � δ

− 1
2

q+1

∥∥∥R̊q

∥∥∥
C1

(1.15)

We now define our perturbation wq+1 to be

wq+1 =
∑
ξ∈�

aξWξ,q+1 . (1.16)
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Then by construction, we have (1.6). Let us now compute the term div (wq+1 ⊗
wq+1 + R̊q ) that appears in the oscillation error, defined in (1.3)

div
(
wq+1 ⊗ wq+1 + R̊q

)

=
∑
ξ∈�

div
(
a2
ξ (Id − ξ ⊗ ξ) + R̊q

)
+

∑
ξ+ξ ′�0, ξ,ξ ′∈�

div
(
aξaξ ′Wξ ⊗ Wξ ′

)

= ∇r1 +
∑

ξ+ξ ′�0, ξ,ξ ′∈�

(
Wξ ⊗ Wξ ′

)∇ (
aξaξ ′

)
︸ ︷︷ ︸

:=I

+ 1

2

∑
ξ+ξ ′�0, ξ,ξ ′∈�

aξaξ ′div
(
Wξ ⊗ Wξ ′ − Wξ ′ ⊗ Wξ

)
︸ ︷︷ ︸

:=II

where the pressure r1 is implicitly defined. Applying the estimate (1.4) with �(x) =
x and ξ replaced by ξ + ξ ′, together with (1.14) and (1.15), we obtain

‖R(I)‖C0 �
1

λq+1

∑
ξ+ξ ′�0, ξ,ξ ′∈�

∥∥∇(aξaξ ′)
∥∥

C0

�
1

λq+1

∑
ξ+ξ ′�0, ξ,ξ ′∈�

∥∥aξ

∥∥
C0

∥∥∇aξ ′
∥∥

C0

�
1

λq+1

∥∥∥R̊q

∥∥∥
C1

.

Thus, this error can be made small by assuming λq+1 to be sufficiently large. Now
consider II . We write

II = ∇r2 − 1

2

∑
ξ+ξ ′�0, ξ,ξ ′∈�

∇(aξ aξ ′)
(
Wξ · Wξ ′

)
︸ ︷︷ ︸

:=III

with the pressure r2 again being implicitly defined. Then III can be estimated in
the same manner as I . Hence, setting pq+1 = pq − r1 − r2, we are able to attain
suitable bounds on the contribution of the oscillation error to R̊q+1.

An issue with the definition (1.16), is the vector field wq+1 is not necessarily
divergence free. To fix this, we relabel the right-hand-side of (1.16) to be the
principal perturbation w

(p)

q+1, i.e.

w
(p)

q+1 :=
∑
ξ∈�

aξWξ,q+1 . (1.17)
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We then define a corrector w
(c)
q+1 by

w
(p)
q+1 := 1

λq+1

∑
ξ∈�

∇aξ × Wξ,q+1 . (1.18)

Finally, defining

wq+1 = w
(p)

q+1 + w
(c)
q+1 , (1.19)

then a simple calculation yields

wq+1 = 1

λq+1

∑
ξ∈�

curl
(
aξWξ,q+1

)
,

from which it follows that wq+1 is divergence free. Moreover, assuming λq+1

is sufficiently large, the corrector w
(c)
q+1 is small, and hence can be made to

have a suitably small contribution to the Reynolds stress R̊q+1 resulting from the
perturbation defined in (1.19) .

1.4 Transport Error

We now consider the transport error

(∂t + vq · ∇)︸ ︷︷ ︸
Dt

wq+1 ,

defined in (1.3), where here Dt represents the material derivative associated with
vq . Ignoring the contribution of the corrector to the transport error, by definition
(1.19), applying (1.4), we heuristically attain

∥∥∥R(Dtw
(p)

q+1)

∥∥∥
C0
�

1

λq+1

∑
ξ∈�

∥∥Dtaξ

∥∥
C0

∥∥Wξ,q+1
∥∥

C0

+ 1

λq+1

∑
ξ∈�

∥∥aξ

∥∥
C0

∥∥vq · ∇Wξ,q+1
∥∥

C0 .

The second term is unfortunately not small, since ∇Wξ,q+1 = O(λq+1). To rectify
this issue we will replace Wξ,q+1 in the ansatz (1.17) with

W(ξ) = Wξ,j,q+1 = Wξ,q+1 ◦ �j
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where �j are phase functions solving the transport equation

Dt�j ≡ 0, �(x, j�) = x

for some small parameter � > 0 to be chosen later and j ∈ Z. With this definition,
we have

DtW(ξ) ≡ 0 .

The trade-off with using W(ξ) in place of Wξ,q+1, is that W(ξ) is no longer an exact
eigenfunction of curl . Let us write

W(ξ) = Bξ e
iλq+1ξ ·�j = eiλq+1ξ ·(�j−x)︸ ︷︷ ︸

:=�(ξ)

Wξ

then

curl W(ξ) = λq+1Wξ + ∇φ(ξ) × Wξ,q+1 . (1.20)

Thus in order to quantity how well W(ξ) approximates an eigenfunction of curl , we
need to estimate ∇φ(ξ). By standard transport estimates we obtain

∥∥∇�j − Id
∥∥

C0 ≤ exp

(∫ t

j�

∥∥vq(s)
∥∥

C1 ds

)
.

In particular, if |t − j�| ≤ ∥∥vq

∥∥−1
C1 , we have

∥∥∇�j − Id
∥∥

C0 � |t − j�| ∥∥vq

∥∥
C1 .

From which we deduce

∥∥∇φ(ξ)

∥∥
C0 � λq+1 |t − j�| ∥∥vq

∥∥
C1 . (1.21)

Thus W(ξ) is Beltrami like so long that |t − j�| is suitably small. To achieve this,
we partition time, and replace aξ with new coefficient functions a(ξ) with small
temporal support. We introduce cut-off functions χj : (−1, 1) → R with support
contained in the interval (�(j−2), �(j+2)), such that the squares χ2

j form a partition
of unity, i.e.

∑
j

χ2
j ≡ 1 .

In place of �, we will require two disjoint finite subsets �(0),�(1) ⊂ S
2 ∩ Q

3. The
set �(0) can be taken to be �, and �(1) can be defined in terms of a rational rotation
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of �. Similarly in place of the family of smooth functions γξ , we will require two

families of smooth functions {γ (0)
ξ | ξ ∈ λ(0)} and {γ (1)

ξ | ξ ∈ λ(1)}. Again, we refer
to Lemma 3.2 in [13] (alternatively Lemma 1.3 in [2]) for the precise definitions of
the sets �(j) and functions γ

(j)
ξ . We then define

a(ξ) = δ
1
2
q+1χjγ

(j)
ξ

(
Id − R̊q(x, t)

δq+1

)
,

where by an abuse of notation we write γ
(j)
ξ = γ

(j mod 2)
ξ . With these definitions,

we replace the definitions w
(p)

q+1 and w
(c)
q+1 given in (1.17) and (1.18) respectively

with the new definitions

w
(p)

q+1 :=
∑
j

∑
ξ∈�j

a(ξ)W(ξ)

w
(c)
q+1 := 1

λq+1

∑
j

∑
ξ∈�j

∇(a(ξ)φ(ξ))W(ξ)

(1.22)

where we use the notation �j = �j mod 2. The functions γ
(j)
ξ are again defined

in such a way that we achieve a cancellation analogous to (1.6). More precisely, in
place of (1.6), we have

∑
j

∑
ξ∈�j

a2
ξ

⨏
T3

Wξ,λq+1⊗̊Wξ,λq+1 = −R̊q .

The principal reason for introducing the two families �(0), �(1) was to reduce the
interactions between the oscillatory Beltrami waves across the neighboring temporal
regions where the cut-off functions χj overlap.

Due to the small prefactor in the definition of w
(c)
q+1, the term Dtw

(p)
q+1 will be the

the main contribution of Dtwq+1 to the transport error. Hence, in order to estimate
the transport error, we will need bounds on

Dta(ξ)W(ξ) = (Dta(ξ))W(ξ) .

By definition

∥∥Dtχj

∥∥
C0 � �−1 .

The material derivative falling on the cut-off is expected to produce the main
contribution to the transport error. Conversely, owing to the calculation (1.20), the
main contribution to the new oscillation error associated with the new perturbation
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definition (1.22) occurs when derivatives fall on φ(ξ). Recalling (1.21), we have

∥∥∇φ(ξ)

∥∥
C0 � λq+1 |t − j�| ∥∥vq

∥∥
C1

Thus in order to balance the transport and oscillation error, it is necessary to
optimize our choice of �. Making the appropriate choice, we can simultaneously
obtain effective bounds on the oscillation, transport and Nash errors in (1.3) in order
to ensure that (1.10) holds with q + 1 replacing q .2

1.5 Mollification and Loss of Derivative Problem

Recall that (vq, R̊q ) are defined inductively. In order to ensure convergence to a
solution, one needs to inductively keep track of estimates on (vq, R̊q ). As the current
scheme is currently defined above, the definition of R̊q involves derivatives of R̊q−1
(for example when a derivative falls on a(ξ) in the oscillation error), which in turn
involves higher order derivatives on R̊q−2, and so forth. Thus in order for the scheme
to close, one would have to keep track of estimates on infinitely many derivatives
of (vq , R̊q). To avoid this loss of derivative problem, we introduce an addition step
where we replace (vq , R̊q ) with the mollified (v�, R̊�) defined by

v� = (vq ∗x ψ�)) ∗t ϕ�, and R̊� = (R̊q ∗x ψ�)) ∗t ϕ�

where ψ� and ϕ� are standard space and time mollifiers respectively. Then we have

∂v� + div (v� ⊗ v�) + ∇p� = div
(
R̊� + v�⊗̊v� − ((vq⊗̊vq) ∗x ψ�))∗t︸ ︷︷ ︸

Rcommutator

)
.

The new error Rcommutator can be made small by assuming � to be sufficiently small.
With (v�, R̊�) defined above, in the definition of wq+1 described above, we replace
all references of vq and R̊q with v� and R̊�. Then the new velocity field vq+1 is
defined by

vq+1 := v� + wq+1 .

With this additional mollification step, we no longer need to keep track of infinitely
many derivatives of (vq, R̊q ), indeed it will suffice to keep track of C0 and C1

estimates on (vq , R̊q ).

2It should be noted however that in order for the scheme described here to close, one should replace
the geometric growth of frequencies λq described in (1.7) with superexponential growth. A scheme
involving geometric growth of frequencies is slightly more delicate to describe.
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1.6 Compact Support in Time

We close out these notes by outlining an argument in order to achieve non-trivial
weak solutions with compact support in time.

In order to ensure v = limq vq has compact support in time, we inductively
assume that

supp t vq ∪ supp t R̊q ⊂
[
−1

2
+ 2−q−2,

1

2
− 2−q−2

]
. (1.23)

The mollification step, will increase the temporal support, assuming the temporal
mollifier ϕ� is suitably defined, we have

supp t v� ∪ supp t R̊� ⊂
[
−1

2
+ 2−q−2 − �,

1

2
− 2−q−2 + �

]
.

Then in order to correct the Reynolds stress R�, we need only sum j in the definition
(1.22), for j satisfying

supp t χj ⊂
[
−1

2
+ 2−q−2 − 4�,

1

2
− 2−q−2 + 4�

]
.

Hence choosing � sufficiently small we have

supp t vq+1 ∪ supp t R̊q+1 ⊂
[
−1

2
+ 2−q−2 − 4�,

1

2
− 2−q−2 + 4�

]

⊂
[
−1

2
+ 2−q−3,

1

2
− 2−q−3

]
,

and thus we attain (1.23) with q + 1 replacing q . Hence for v = limq vq we have

supp t v ⊂
[
−1

2
,

1

2

]
.
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