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Abstract—This is an extended abstract for a Research Demo
Session based on our published article [1]. Physiological signals
inside the human body depend on various factors. One of those
important factors is psychological stress. Long term exposure
to stress has many negative effects which may lead to major
health issues such as cancer. Monitoring such long term, high
impact stress is very important to maintain a healthy emotional
balance. Keeping this in mind, Stress-Lysis, a smart healthcare
framework is proposed. Through Stress-Lysis, an approach is
proposed to not just monitor stress but also allow the user to
live a happy, stress-free life. This is achieved with a wearable,
edge level processing device.

Index Terms—Smart Healthcare, Internet of Medical Things
(IoMT), Stress Level Detection, Machine Learning

I. INTRODUCTION

Stress in humans can be classified into eustress, neustress
and distress. Eustress is considered to be “good” stress and can
motivate a person to elevated performance [2]. Neutral stress
is called neustress. Distress can have negative impact on the
human body. Depending on its duration, it can be classified
as acute or chronic stress. Acute stress lasts for short periods
of time with low intensity, while chronic stress is experienced
for longer intervals of time with more intensity. Prolonged
chronic stress can cause many disorders including insomnia
[3] and overeating [4]. Stress has a significant impact on the
quality of life [5].

Using the concepts of Internet-of-Medical-Things (IoMT),
Stress-Lysis, a stress detection device is introduced in this
work. Stress-Lysis has the potential of extending its applica-
tions by being able to integrate with other real-time devices
existing in the market. Though there are a good number of
marketable devices in the literature, the relationships between
chronic stress and methods to monitor stress are not utilized.

II. THE PROPOSED IOMT-BASED STRESS DETECTION
SYSTEM - STRESS-LYSIS

A. Proposed Novel IoMT Based Architecture

Fig. 1 represents the architectural description of the pro-
posed model. The input sensors take the signal data which
is transferred to the unit where the stress state classification
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to low , medium and high states is performed. The previously
analyzed data along with the present data is stored in the cloud,
using the Internet. Fig. 2 shows the flow of training and testing
the machine learning models.

Train Deep Neural Network (DNN)
to accurately represent stress data
]

L Classify the stress values
into specific stress

Store the stress values in Stress-Lysi
cloud database for future analysis

Fig. 2. The proposed algorithm for stress detection in Stress-Lysis [1].

B. Design of Stress-Lysis Sensing Wrist Band

1) Sensor for measuring Body Temperature Variability: The
mental state along with the physical condition of a human body
can be analyzed by observing the body temperature variations.
The fluctuations in temperature for a specific period of time
are known as its rate. A contact sensor to monitor this rate is
used in Stress-Lysis.
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(b) CE Cloud Server Connectivity.

Fig. 3. Stress data analysis using the developed Stress-Lysis prototype [1].

TABLE I
RANGE OF SENSOR VALUES [1].

| Sensor Low Stress ~ Normal Stress ~ High Stress |
| Accelerometer (steps/min) 0-91 02-129 130-200 |
| Humidity (mg/min) 10.00-15.00 15.01-20.00 20.01-30.00 |
| Temperature (°F) 79.01-84.00 84.01-95.00 95.01-99.00 |

2) Sensor for Sweat Analysis: A physical component which
is released from the skin of a human body is sweat. Reasons
for the secretion of sweat include physical exercise, stress,
exposure to heat, etc. A humidity sensor is used to detect the
moisture released in the palm area in Stress-Lysis.

3) Sensor for Activity Monitoring: The rate of change in
velocity under certain forces is defined as acceleration. The
causing forces for the velocity change could be static or
dynamic. Here, the steps taken by the person along with the
other body movements like sitting, standing, walking, running
etc. are considered.

C. Deep Learning Modeling of Physical Activity Monitoring

A Deep Neural Network (DNN) model is trained and tested
with a total of 26,000 samples which are acquired from
three different data sources. The data samples are of size

2,000, 4,000 and 20,000 taken from [6]. [7], [8]. The machine
learning model uses the stress ranges with appropriate sensors.
as shown in Table L

III. CONSUMER ELECTRONIC PROOF-OF-CONCEPT USING
OFF-THE-SHELF COMPONENTS

In order to not overwhelm the performance of the single
board computer (SBC) used, 2,000 data samples have been
used for testing and training the DNN model. The outcome
from the SBC analysis along with the 10T storage can be ob-
served in Fig. 3. A minimum accuracy of 98.3% and maximum
accuracy of 99.7% are observed. The cost of implementation,
easiness in design, no human entry methodology and low
power usage are advantages of this implementation.

IV. CONCLUSIONS

A new methodology to monitor the stress level fluctuations
is presented through Stress-Lysis which has the potential of
controlling and monitoring chronic stress from an early stage.
A total of 16,000 data samples have been used to train and
test the model with an accuracy approximately in the range of
98.3% to 99.7% and a loss of less than 1%.
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