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Abstract: Previous dynamical methods to map the stability region boundary of cnoidal 
waves were semi-automatic due to sharp corners. We present a fully automatic method that 
accounts for corners due to Hopf bifurcations. 

OCIS codes: (230.5750) Resonators; (190.5530) Pulse propagation and temporal solitons.

Broadband frequency combs can be created by coupling a laser into a microresonator to create single solitons,
but the standard approaches for soliton generation are not deterministic [1, 2].The generation of cnoidal waves is
one potential approach, but studying their use requires exploring a large parameter space. Since cnoidal waves
must stay stable as the system parameters vary, it is necessary to identify the region in the parameter space where
stable solutions exist. Dynamical methods have been developed to find the boundaries of the stable regions, but
these methods are only semi-automatic due to sharp corners that appear on the boundary when the instability
mechanism changes [2]. Here, we present methods that can continuously track the boundary through a corner in
which two different Hopf bifurcations occur.

We first solve the Lugiato-Lefever Equation (LLE) to obtain a cnoidal wave solution. We write the LLE as [3]

∂ψ

∂ t
= i

∂ 2ψ

∂x2 + i |ψ|2 ψ− (iα +1)ψ +F, (1)

where ψ is the field envelope, t is the normalized time, x is the normalized azimuthal coordinate, α is the normal-
ized damping rate, and F is the normalized pump power. We start with a highly stable, stationary cnoidal wave
solution. This solution satisfies Eq. (1) with its time derivative set equal to zero,

0 = i
∂ 2ψ

∂x2 + i |ψ|2 ψ− (iα +1)ψ +F. (2)

We then solve Eq. (2) while allowing α and F to vary and examine the stability of the solutions by computationally
solving for the set of all eigenvalues {λ j} of the linearized LLE [2]. We define λ j = ρ j + iσ j, where ρ j = Re(λ j)
and σ j = Im(λ j). Aside from a single eigenvalue always located at zero, all eigenvalues corresponding physically
to time in a stable cnoidal wave solution satisfy ρ j < 0. Therefore we look at the maximum ρ j value of these
eigenvalues to determine the stability of the solution. As we allow α and F to vary, we will eventually encounter
a stability boundary where the solution will either cease to exist or become unstable. When the solution crosses
the stability boundary via a Hopf bifurcation, the real parts of a complex conjugate pair of eigenvalues will cross
over the imaginary axis to become positive, and an unstable cnoidal wave solution will continue to exist.

We first reach the stability boundary by increasing F while fixing α = αk and tracking max(ρ j). Eventually
we reach a point c1 = (αk,F1) where we cross the stability boundary as the solution becomes unstable via a Hopf
bifurcation. As shown in Fig. 1(a), we then use two nearby stable points, c2 = (αk,F2) and c3 = (αk,F3), to find the
boundary using quadratic interpolation. At a nearby value of α = αk+1, we repeat this method to obtain another
point on the stability boundary. This allows us to calculate the slope of the stability boundary dα/dF , which then
lets us predict the location of the three values of F surrounding the stability boundary at the next value of α ,
αk+2 [4]. We then interpolate to find the actual boundary. In Fig. 1(b), we illustrate this procedure.

When a corner is encountered, the last point on the stability boundary is set as the pivot, with the previous point
treated as the endpoint of a line from the pivot of distance r0 and angle θ0. We then increase θ relative to θ0
through the nearby stable region until we reach an point p1 = (r0,θ1) where a new stability boundary is crossed
via a Hopf bifurcation. We then use two nearby stable points, p2 = (r0,θ2) and p3 = (r0,θ3), to determine the
value of θ where the new stability boundary exists. In Fig. 2(a), we illustrate this procedure, which is analogous to
the procedure that we show in Fig. 1(a). At a nearby value of r = r1, we repeat this method to obtain another point
on the new stability boundary, then use these values of r and θ to predict the location of the points surrounding the
new stability boundary at r = r2. We then follow the new stability boundary further from the corner as shown in
Fig. 2(b). As r increases, the angle will deviate from the first calculated value on the boundary when r = r0. Since
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this method assumes that the new stability boundary will be relatively straight, we use the θ -value of the predicted
points surrounding the boundary at the previous r to verify the boundary location. Once the stability boundary
has moved outside of the predicted surrounding points, the corner region is assumed to have been passed and the
standard method of interpolation is applied again.
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Fig. 1: (a) Quadratic interpolation polynomial constructed from two stable and one unstable cnoidal wave solutions
with the same value of α and increasing F . (b) Calculation of the next discretized segment of the stability boundary
(dotted-blue line) from the known stability boundary (solid red line) using the predicted points that surround the
boundary (blue dots). The blue arrows indicate the predictions.
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Fig. 2: (a) Quadratic interpolation polynomial constructed from two stable and one unstable cnoidal wave solutions
obstained by increasing θ . (b) The location of the new stability boundary (dotted red line) after the corner is found
by increasing θ when r = rk and is indicated by the row of blue dots. The next segment of the new stability
boundary (dotted blue line) is found using the predicted points surrounding the boundary
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