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SUMMARY

The elastic map, or generalized Hooke’s Law, associates stress with strain in an elastic
material. A symmetry of the elastic map is a reorientation of the material that does not
change the map. We treat the topic of elastic symmetry conceptually and pictorially.
The elastic map is assumed to be linear, and we study it using standard notions from
linear algebra—mnot tensor algebra. We depict strain and stress using the “beachballs”
familiar to seismologists. The elastic map, whose inputs and outputs are strains and
stresses, is in turn depicted using beachballs. We are able to infer the symmetries for
most elastic maps, sometimes just by inspection of their beachball depictions. Many
of our results will be familiar, but our versions are simpler and more transparent than
their counterparts in the literature.

Key words: Elasticity, seismic anisotropy. theoretical seis-
mology

1 Introduction

Elasticity is about the relation between strain and stress. We
refer to the function T from strain to stress as the elastic
map. It expresses the “constitutive relations” of the material
under consideration, or the “generalized Hooke’s Law” (Aki
& Richards 2002).

The map T describes the strain-stress relation at a par-
ticular point p in the material. A symmetry of T is a rotation
of the material, about p, that does not change T. We present
a treatment of elastic symmetry that we think is more con-
ceptual than the usual approach through tensor analysis.
Our approach has its beginnings in the work of William
Thomson (Lord Kelvin) (1856) in the mid-nineteenth cen-
tury. According to Helbig (1994, 2013) and Cowin et al.
(1991), Kelvin’s insights were largely forgotten by the elas-
ticity community until much later, when they were reintro-
duced by Rychlewski (1984). Most of the ideas—especially
the notion of eigensystem of a linear transformation—were
already routine for mathematicians and theoretical physi-
cists of the early twentieth century, so it is a bit surprising
that they were still regarded as novel in elasticity in the
1980s. Rychlewski himself apparently felt much the same:

Thus we deal with the linear symmetric operator &« — C - «
acting in a finite-dimensional space with a scalar product.. .. The
situation has been investigated as fully as possible, and it only
remains to translate the information available into the language
of mechanics. (Rychlewski 1984, p 305)

Thus, although our exposition of elasticity is non-traditional
vis-a-vis older expositions, it will be unremarkable to math-
ematicians and physicists. Our exposition does not use the

Voigt matrix (Eq. S13 of the Supporting Information), and
it requires no knowledge of tensors. What it does rely on
is introductory linear algebra, which we review. Specifically,
we rely heavily on orthogonality, on matrix representations
of the elastic map T, and on eigensystems of T.

Mathematically, strains and stresses are 3 X 3 symmet-
ric matrices and can therefore be depicted as “beachballs,”
as seismologists do for moment tensors. Because the strain-
stress relation is assumed to be linear, any elastic map T can
then be depicted using beachballs. The depiction in princi-
ple determines T completely, but of course one cannot just
glance at the depiction and expect to infer T quantitatively.

In Sections 4-9 we characterize elastic maps T that
have as a symmetry the rotation Z¢ through angle £ about
the z-axis. There are five cases to consider: £ = +2m/n for
n =1,2,3,4, as well as £ regular, meaning none of the pre-
ceding; see Fig. 1. For each case there is an intrinsic char-
acterization of T and a more conventional characterization
using matrices. Figs. 6, 9, 10, 11 illustrate the intrinsic char-
acterizations, and Table 1 lists the matrix characterizations.

In Section 14 we give a relatively elementary proof that
any material can be oriented so that its group of elastic
symmetries is one of eight reference groups. The proof is
largely a matter of looking at the intersections of circles on a
sphere, as in Figs. 16—18. Matrix characterizations for elastic
maps associated with the reference groups are given in Table
4, and intrinsic characterizations are given in Section 12.1.
The simplicity of the matrix characterizations relative to
their traditional counterparts (e.g., Nye 1957, 1985, pp 140—
141) is due to our use of the basis B defined in Eq. (3).

Nowhere do we assume that elastic symmetry groups
arise from crystallographic symmetry groups. We neverthe-
less find that if an elastic map T has a symmetry with ro-
tation axis v and rotation angle &, where ¢ is regular, then
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all rotations about v, regardless of rotation angle, are sym-
metries of T. We also find that if T has a 3-fold or 4-fold
symmetry with axis v, then it has three or four (respectively)
2-fold symmetries with axes perpendicular to v. These facts
go into deriving the eight reference groups mentioned above.

In Section 15 we show by example how to find the sym-
metry group of virtually any elastic map T. We say “vir-
tually,” because the method can be defeated by a carefully
and maliciously constructed T (Section 15.8). Our method
is related to that of Béna et al. (2007), but we think that
our beachball pictures offer a useful complement to the Bona
approach.

Many of our results will be familiar, at least to the ex-
perts. Fig. 6, for example, which characterizes elastic maps
that have symmetry Z¢ for some regular £, would have been
immediately recognizable to Rychlewski (1984). Likewise,
the number eight for the number of elastic symmetry groups
is now generally agreed upon (Forte & Vianello 1996; Chad-
wick et al. 2001).

An idealized seismic plane wave traveling in an arbi-
trary direction in an anisotropic elastic material is apt to
be neither a P-wave nor an S-wave. That is, the wave’s
vibration direction is neither parallel nor perpendicular to
the direction of travel. If, however, the direction of travel
is an elastic symmetry axis, then, with some unlikely excep-
tions, the wave must indeed be either a P-wave or an S-wave
(Fedorov 1968). If also the relevant elastic map T has for its
symmetry group one of the reference subgroups of Section
12, then in most cases both the vibration direction and the
speed of the wave are simply related to the intrinsic param-
eters for T. (We do not treat these topics here.)

Treatments of elasticity can be found in Fedorov (1968);
Nye (1957, 1985); Auld (1973); Musgrave (1970); Helbig
(1994); Chapman (2004); Slawinski (2015) and many others.
A reference for linear algebra is Hoffman & Kunze (1971).
Our Appendix G is a glossary of notation.

2 The elastic map
2.1 The elastic map and the c;ju

Expositions of elasticity are generally based on numbers
Cijkls 1,7, k, 0 = 1,2, 3, that are assumed to satisfy

Cijkl = Cjikl (1a)
Cijkl = Cijlk (1b)
Cijkl = Cklij (1c)

The c¢ijri determine a linear mapping T of the six-
dimensional space M of symmetric matrices to itself:

3
T(E) = F, fij = Z Cijkl €kl, (2)

k,1=1

where E = (e;;) and F' = (fi;) are 3 x 3 symmetric matrices
(Aki & Richards 2002, Eq. 2.18). If E is the strain matrix
at a point in some hypothetical material described by the
Cijki, then F' is the corresponding stress matrix. We refer to
T as the elastic map.

Egs. (1a) and (1b) arise from the symmetry of the strain
and stress matrices. Eq. (1c) is due to the assumed existence
of a strain-energy function (Aki & Richards 2002).

Since the elastic map T is linear, we consider its matrix
representation [T|gs with respect to a basis B for M. The
calculations will be simplest, and [T]gs will best express
T, if the basis vectors are chosen to be orthonormal. The
“vectors” must of course be 3 x 3 symmetric matrices, since
they are in M. We take B to be the basis whose elements are

P I
\/5010 \/5100
Y Y P
3\EOOO \/5000
RN R
\/600—2 \/3001

The B; are indeed orthonormal, that is, B; - B; = d; ;. Here
the dot is the inner product of matrices. The inner product
of 3 x 3 matrices M = (m;;) and N = (n;;) is defined by

3
M- N = Z Mij Nij (4)

4, j=1

(Juxtaposition of matrices, with no dot, signifies matrix mul-
tiplication.)

We let t;; be the ij*® entry of the 6 x 6 matrix [T]gp.
That is,

ti1 tiz ... tlis
tor to2 ... tog

[T]]B]B = . . . (5)
te1 te2 ... tles

We will find that [T]gs is symmetric. and hence the 21 en-
tries ¢;; with j > 4, in conjunction with the basis B, are
enough to determine T and thus to specify the elasticity of
the material under consideration. We think that those 21
numbers are better parameters to focus on than the c¢;jxi.
We nevertheless want to be able to translate between the ¢;;
and the ¢

As will be explained in Section 2.2, the entries in the
4™ column of the matrix [T]gp are the coordinates of T(B;)
with respect to the basis B. That is,

T(B;) =ti;Bi+...+ts; Bs (6)
Since the B; are orthonormal,
T(Bj) = (T(B)) - B1) Bi + ...+ (T(Bj) - Bs) Bs  (7)
Hence
tij = T(B;) - Bi (8)
As an example, we calculate t14. From Egs. (2) and (3),
C1122 — C1111  C1222 — C1211  C1322 — C1311
T(B4) = 7 C2122 — C2111 2222 — C2211  C2322 — C2311

C3122 — C3111 C3222 — C3211 C3322 — C3311

9)



Then
tig = T(B4) - B
1
= ) (c2322 — c2311 + C3222 — C3211)
= 2223 — C1123 (10a)
Similarly,
1
tag = 76 (*61111 — C1133 + C2222 + 62233) (10b)

1
tes = 3 (c1111 + c2222 + 3333 + 2c1122 + 2¢1133 + 2¢2233)
(10c)

Treating the other 33 entries t;; the same way, we would
eventually have [T]gs. Eq. (S29), however, in the Support-
ing Information has a less painful calculation of [T|zs from
the ¢k The main point at the moment is that [T|gs turns
out to be symmetric

The peculiar form of Egs. (10) may at first be regarded
as reflecting poorly on the ¢;;. Conceptually, however, the
t;; stand on their own. From Eq. (8), the entry ¢;; tells how
much the stress that is associated with strain B; resem-
bles the strain or stress B;. If anything, then, the form of
Egs. (10) calls for a conceptual justification of the c;;xi, not
of the ¢;;. In this paper we deal with T and [T]gs rather
than with the c¢;ji. If the ¢;; are known—through observa-
tion or otherwise—then, from a purely logical point of view,
the cijr can be dispensed with. If desired, the c;jr; can be
found from [T]gp using Eqgs. (1) and (S28).

2.2 Matrix representations of linear
transformations of M

Let F be a basis for M with elements (matrices) Fi,..., Fs.
For a matrix £ € M we denote its F-coordinate vector by
[E]r. Thus

[Elr = (21, ..
If the basis F is orthonormal, then

z, =E-F (F orthonormal) (12)

7336) <— EFE=x:F1+...+x6Fs (11)

Now let S be a linear transformation of M, and let F
and G both be bases for M. We define the 6 X 6 matrix [S]gr
to be the matrix that takes the F-coordinate vector of F to
the G-coordinate vector of S(E):

[Sler[E]r = [S(E)]e

(Think of coordinate vectors as column vectors when matrix
multiplication is concerned.) We refer to [S]gr as the matrix
of S with respect to the bases F and G.

If S; and So are linear transformations of M, and if
F, G, H are bases for M, then

[S2]uc [S1]er = [S2 © S1lur (14a)
[Mre = Texe (14b)

(E € M) (13)

where I is the identity transformation on M, where Igx6 is
the 6 x 6 identity matrix, and where the symbol o denotes
composition of functions:

(S2081)(E) = S2 (S1(E)) (15)

Thus Eq. (14a) says that matrix multiplication is the ma-
trix analog of composition of functions. Eqgs. (13) and (14)
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look innocent enough, but they are the key to many matrix
manipulations. Notice how their form suggests the correct
move.

To arrive at a more familiar description of [S]gr: From
Egs. (11) the coordinate vector for F; with respect to the
basis F is

[Fjlr = ej, (16)

where eq, ..., eg are the standard basis for RS. The jth col-
umn of the matrix [S]gr is therefore

[Slor e; = [Sler [Fj]r
= [S(Fy)le

(from Eq. 16)

(from Eq. 13) (17)
In words, the jth column of [S]gr consists of the coordinates
of S(F;) with respect to the basis G.

The diagram below summarizes the relation between
the linear transformation S and its matrix representation.

EeM —25 S(E)eM

1 (18)
[E]r € R® 2 [S(E))g € R

Finally, from Eq. (13) with F = G,
S(E) =AE <= [Slwr[E]r = A [E]r (19)

That is, the 3 x 3 symmetric matrix F is an eigenvector of
the transformation S if and only if the coordinate vector
[E]r is an eigenvector of the matrix [S]pr. The eigenvalues
are the same for both.

2.2.1 In terms of the elastic map T

We now take S in Section 2.2 to be the elastic map T, and
we take both of the bases F and G to be the basis B of
Eq. (3). From Egs. (3), (11), (12), the coordinate vector of
the matrix E = (e;;) € M with respect to the basis B is

[Els = (\/5623, V2es, V2ers,

e22 —e11 e11 +e22 —2e33 e1r +e22 + 633)

Vi B

(20a)

The matrix whose B-coordinate vector is (x1,...,x¢) is

x1B1+ ...+ 2B =

1 T5s — V3xa + V26 V33 V3o

— V33 x5 + V3 x4 + V26 V31

V6 V32 V3 V2x6 — 25
(20Db)

An important property of the B-coordinate mapping
E — [E]g is that it preserves the inner product, since the
basis B is orthonormal. Thus

[Er]g - [E2]s = E1 - B2 (E1, E2 € M) (21)

where the dots on the left and right sides of the equation
refer to the inner products in R® and M, respectively. The
inner product of 3 x 3 matrices was defined in Eq. (4).
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2.2.2  Example: calculation of the 3 x 3 matriz T (FE)

Let E be the strain matrix
1 0 0
E=10 1 0 (22)
0 0 4
and let T be the elastic map with

5 -2

[Tles = 3 (23)

\
I\
o

6

(Blank entries are understood to be zeros.) Then the stress
matrix T(F) is calculated in the following steps, using
Egs. (20):

[Elz = (0, 0,0, 0, —V6, 2/3) (24a)

(T(B))s = [Tlss[Els = ; (0, 216, 0, 0, ~6v6, 12V3)
(24b)

6 0 2v3
T(E) = 0 6 0 (24c)
23 0 24

2.3 A picture for the elastic map

Since the elastic map T : M — M is linear, it is determined
by its values on any basis for M. To depict T, it is therefore
enough to depict some basis elements Fi,..., Fs together
with the corresponding T(F1),..., T(Fs). This is done by
means of “beachballs,” as explained in Section 2.4. In Fig. 2
the basis is B of Eq. (3) and T is the elastic map whose
matrix with respect to B is that of Eq. (23).

2.4 Beachballs—a picture for strain and stress

Since the members of M are 3 x 3 symmetric matrices, they
can be depicted as beachballs as is done in seismology. The
radius of the beachball for £ € M is made proportional to
||E|| and, for any point v = (z,y, z) on the surface of the
ball,

red if (Ev)-v>0

L (25)
white if (Ev)-v <0

v is colored {
The nodal curves on the ball, which separate red from white,
are

(Bv)-v=0 (26)

See Fig. 3.

The beachball is thus a contour map of the function
v — (Ev) - v, but with only one contour, namely the zero
contour.

If the eigenvalues of the matrix F are of mixed sign,
then the beachball for E shows both red and white, and the
size and coloring of the ball determine E. If they are all of
one sign, though, the ball is all red or all white, and it does
not reveal E. In our figures, when we show a beachball for a
matrix E whose eigenvalues all have the same sign (but not

all equal), we therefore show not the beachball for E itself
but for the perturbed matrix

E+ el

El|l—— 27
Il o (27)

where [ is the 3 x 3 identity matrix and where the number
€, positive or negative and not necessarily small, is such as
to nudge the resulting beachball into the bicolored regime.
The ball then is not strictly correct, but it gives a sugges-
tion of the matrix E. In Fig. 19 the ball for G¢ has been
perturbed in this way; instead of being solid red, it has two
small white caps. The ball for G¢ in Fig. 21 has likewise
been perturbed, giving it the narrow white band. (The solid
red balls for Bg and T(Bs) in Fig. 2 are correct, since those
matrices are multiples of the identity.) We could have em-
ployed a more sophisticated coloring scheme that would have
made the perturbations unnecessary, but the existing binary
scheme seems enough for what we are trying to show. The
perturbations are only for display purposes; all calculations
are done with the unperturbed matrices.

2.5 Matrix of S with respect to an arbitrary
orthonormal basis

Continuing from Section 2.2, we now assume that the basis G
for M is orthonormal. (An example of G would be the basis
B of Eq. 3.) Denoting the elements (i.e., matrices) of the
basis F by Fi, Fs, ..., Fs and those of G by G1,Ga,...,Gs,
we have, for any matrix £ € M,

EZ(EGl)G1++(EG6)G6, (28)
The G-coordinate vector for E is therefore
[Ele = (E-Gi,...,E-Gs) (29)

From Eq. (17) the j™ column of the matrix [S]er con-
sists of the coordinates of S(F};) with respect to the basis G.
From Eq. (29), the j*® column is therefore

[Slere; = (S(Fy) - G, ..., S(Fy) - Gs) , (30)

with the 6-tuples thought of as column vectors. Hence the

ij™ entry of [S]er is

([S]G]F)i]. = (S(Fj) . Gi) (G orthonormal) (31a)

Explicitly,

S(F) -G S(Fs) - G:
[Sler = : : (31b)

S(F1) - Ge S(Fs) - Ge

From Eq. (13) the matrix [IJgr takes F-coordinates to
G-coordinates. From Eq. (31) with S =1,

-Gy ... Fs-Gi

Ier = : : (G orthonormal)
F1-Gg ... Fg-Gg

(32)
The j* column of [Ijgr is thus the G-coordinate 6-tuple
of Fj.



2.6 Two special types of transformation

We consider a linear transformation S : V — V. Although
V can be any finite dimensional (real) inner product space,
the only relevant instances here are V = R® and V = RS
with the standard inner product, and V = M with the inner
product defined in Eq. (4).

The adjoint of S is the linear transformation S* : V — V

such that, for all 1, Fs €V,
S*(E1) - B2 = E1-S(E2)  (definition of S™) (33)

From Eq. (31) it follows that for any orthonormal basis G
of V,

[S*]ec = [Slée

where T'T = (t;;) is the transpose of the matrix T = (t;;).

(G orthonormal), (34)

2.6.1 Unitary transformations
A linear transformation U : V — V is said to be unitary if

UoU* =1 (definition of unitary) (35)

The unitary transformations are those that preserve in-
ner products, hence distances and angles. From Egs. (14)
and (34),

U is unitary <= [Ulge [Ulge =1 (G orthonormal)
(36)
For a square matrix to be orthogonal means that its trans-
pose is its inverse. Hence Eq. (36) says that U is a unitary
transformation if and only if [U]gg is an orthogonal matrix.
From Eq. (36), det [U]ge = %1 if U is unitary. We define
U to be a rotation of V if U is unitary and det [U]rr = +1.
Here F can be any basis for V, since changing F does not
change the determinant.

2.6.2 Self-adjoint transformations

A linear transformation S : V — V is said to be self-adjoint
if

S* =S  (definition of self-adjoint) (37)

From Eq. (34),

S is self-adjoint <= [S]gg is symmetric (G orthonormal)
(38)
Since the matrix [T|gs is symmetric and the basis B is

orthonormal, then the elastic map T is self-adjoint:

T =T (39)

2.6.3 Orthogonality terminology

Some terminology regarding orthogonality:
Vectors vi and va in V are orthogonal if v - vo = 0.
Subspaces W; and Wy of V are orthogonal, written
Wi L Wa, if every vector in one subspace is orthogonal
to every vector in the other:

W, LWy «<— (V1 c Wi and vo € Wy — V1-V2:0)
(40)
The orthogonal complement of a subspace W is

Wh={veV:v-w=0forallwe W}  (41)
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The subspace (Wi,...,W,) spanned by Wi,..., W,
consists of all the linear combinations of vectors from
Wi, ... W,.

A subspace W is the orthogonal direct sum of subspaces
Wi,..., W, written W=W; L ... L W,, if W is the span
of Wy,...,W,, and if Wy,..., W,, are pairwise orthogonal:

W=W; L...1LW,
— (W= (Wiy,...W,) and W; L W;, i#j) (42)

(The notation Wy L W is therefore ambiguous, with mean-
ings from both Eqgs. (40) and (42). We rely on context to
distinguish them.)

A subspace W of V is said to be invariant under U :
V = Vif UW) C W. A non-zero subspace W is prime for
U if W is invariant (under U) and has no proper subspaces
that are invariant. (The improper subspaces of W are {0}
and W itself.)

From Lemma 1 below, if U is unitary then the
whole space V is the orthogonal direct sum of subspaces
Wi, ..., W, that are prime for U. In that case, Wy,..., W,
are said to be prime summands (of V, for U):

Wi,...,W, are prime summands for U

{V—WlJ_...J_Wn

: (43)
Wi,...,W,, are prime for U

If, for example, U is rotation through 30° about the z-axis
in R3, then the prime subspaces would be the z-axis and the
zy-plane. Those two subspaces would also be prime sum-
mands. If, however, the rotation is through 180° then the
z-axis and every horizontal line through the origin would be
prime subspaces. The three coordinate axes would be prime
summands. So also would be the z-axis together with the
lines x = y and * = —y in the zy-plane.

Finally, when V is the orthogonal direct sum of non-

zero subspaces Wi,...,W,, we write T=W,; L ... L W,
A1 An
to mean that the linear transformation T : V — V is multi-

plication by A; on W;:

T=W;L...1W, <—

A1 An

V=W, L...1W,
T(v) = \iv (v eW,)

(44)

The numbers A1, ..., A, are then the eigenvalues of T, not

necessarily distinct. The eigenspace of T with eigenvalue A

(Section 3.4) is the orthogonal direct sum of the W; having
A=\

2.6.4 Orthogonality facts
From Egs. (41) and (42), for any subspace W of V,
V=W.1wW" (45)

If W is invariant under a unitary transformation U :
V — V, then so is W:

UW)cW = UW") cw (46)

Lemma 1. Let U :V — V be unitary and let W be a non-
zero subspace of V that is invariant under U. Then W is
the orthogonal direct sum of subspaces of V that are prime
for U.
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The lemma is proved in Appendix A.

IFT=W; L...1LW,andif U:V — V is unitary,
A An

1
then from Eq. (44),

UoToU"=U(W;) L... L UW,) (47)
A1 An

2.7 The Spectral Theorem applied to T

The Spectral Theorem (Hoffman & Kunze 1971, p 314)
states that for each self-adjoint transformation S : V — V
there is an orthonormal eigenbasis—a basis for V consisting
of orthonormal eigenvectors of S.

Since the elastic map T is self-adjoint, then, accord-
ing to the Spectral Theorem, there must be an ortho-
normal basis for M consisting of six eigenvectors of T. Since
T : M — M, an “eigenvector” is now an element of M—a
symmetric 3 X 3 matrix.

In terms of strain and stress: For any elastic map T,
there will be six independent 3 x 3 strain matrices G; such
that each of the corresponding stress matrices T(G;) is a
scalar multiple of its strain matrix.

Fig. 4 depicts T as did Fig. 2 but with the basis B
replaced by an eigenbasis for T.

2.7.1 Invertibility of T

An elastic map T is invertible if and only if its eigenvalues
are all non-zero. In that case the eigenvectors of T~! are
the same as those of T, and the eigenvalues of T! are the
reciprocals of those of T. For T as in Fig. 4, the beachball
depiction of T~ would appear just as in the figure except
that the radius of each ball T(G;) on the top row would
change from A; to 1/A;.

2.7.2 Matriz version of the Spectral Theorem

The Spectral Theorem implies that an n X n symmetric ma-
trix S can be written

A1
S=U U’ (48)
An

for some numbers A1,...,\, and for some n X n rotation
matrix U. The j*™ column of U is then an eigenvector of S
with eigenvalue A;.

2.8 Constructing T with a prescribed eigensystem

Given numbers Ai,...,A¢ and an orthonormal basis G =
{G1,...,Gs} of M, we can construct an elastic map T that
has A1,...,\¢ as its eigenvalues and has G1,...,Gg as the

corresponding eigenvectors. The matrix [T]ge of T with re-
spect to G must be diagonal with diagonal entries A1, ..., A¢.
The matrix with respect to B is then, from Eq. (14a),

[Tles = = [sc [Tlec [Tes
A1
= [{sc e, (49)
A6
where [I]gg is calculated from Eq. (32).

3 Symmetries of T
3.1 Conjugation by a rotation matrix

Recall that a square matrix U is orthogonal if UU " = I. If
also det U = 1 then U is said to be a rotation matrix. We
let U be the group of all 3 x 3 rotation matrices. Examples
of matrices in U would be the 3 x 3 rotations X¢, Ye, Z¢
through angle ¢ about the z, y, z axes, respectively:

1 0 0
Xe= |0 cosé —sing
0 sin¢ cosé

cosé 0 siné

Ye = 0 1 0
—sin§ 0 cosé
cosé —siné 0
Ze = |sing cos& 0O (50)
0 0 1

For U € U, we define a linear transformation

U:M — M by
UE)=UEU" (U eU, E €M) (51)

In words, U is conjugation by U.
From Eq. (51),

Uy oUy = U1 Uy (52)
Since
U(E)) By =(UE,U") - Ey
=FE - (U B U)=FE,-UT (Ea),

then by comparison with Eq. (33),

U =UuT (53)
That is, U~ is conjugation by U'. Then U is unitary
(Eq. 35), since

UoU =UoUT =UUT =T=1 (54)

8.1.1 The beachball for U(E)

For E € M the beachball for U(E) is the result of apply-
ing the rotation U to the beachball for E. To see this, let

E' =U(E) and v/ = Uv, with v = (z,y, 2) € R®. Then
(E'V)-v =(Ev)-v (55)

Thus, from Eq. (25), the rotated point v’ is red on the ball
for E' if and only if the original point v is red on the ball
for E. See Fig. 5.

The rotation U of R? operates on the material and op-
erates on the beachballs. The rotation U of M operates on
3 x 3 symmetric matrices (strains and stresses).

3.1.2 The matriz of U

Eqs. (14) and (54) imply [U)z [U]sr = Isxs, whether or
not the basis F is orthonormal. Hence

[T )er = [Uer (56)

If G is an orthonormal basis for M, then from Eq. (36)

FIG. 5



the matrix [U)ge is orthogonal, that is, [Ulec [Ulge = I-
Equivalently,

[Ulze = [Ulés

From Egs. (53), (56), (57),
[U"ee = [UT|ec = [Ulde (G orthonormal) (58)

The matrix [U]gg is found from Eq. (31); its ij*™® entry

(G orthonormal) (57)

([U}Gg)ij = (UG]-UT) -G; (G orthonormal)  (59a)

More explicitly,

(UGUT) -Gy (UGeUT) - Gy

[Ules = : : (59b)
UGLUT) - Gs (UGsUT) - Gs

If, for example, we take U = Z¢ (Eq. 50) and G = B (Eq. 3),
then
cos€ siné
—sin€é  cosé
— cos2¢{ —sin2¢

(Ze)ss = sin 2¢ cos 2& ’

(60)
with blank entries understood to be zero.
An arbitrary U € U has the form U = V Z¢ VT for some
VeUand (£ €R. Then U=V oZ;oVT and

det[ﬁ]m = det [V]B]B det[Z]BB det[ﬁ]mg

= det[ZdB]B =1 (61)

Since U is unitary, then it is a rotation (of M). Most rota-

tions U of M, however, do not have the form U = U, as can
be seen from Section 3.1.3.

3.1.3 Retrieving U from U

Given a rotation U of M, we ask whether U = U for some
UeU.

Let E be the diagonal matrix with diagonal entries
3,2,1. Let V € U be a TBP eigenframe for U(E), and let
w1, p2, p3 be the eigenvalues of U(E) in descending order.
(See Section 5 for TBP.) If U = U then

U(E) =U(E)
w0 0 300
V0o w o)Vvi=vufo 2 o|U" (62)
0 0 pu3 0 0 1
Then
(/”’17#23/}‘3) = (3723 1) (633’)

U=VRforoneof R=1,X.,Yr, Zr (63b)

Eq. (63b) is from Proposition 5 of Tape & Tape (2012).
It says that the matrices U and V differ at most by sign
changes of two columns.

Thus U cannot have the form U = U unless the eigen-
values of U(E) are 3,2,1. And when the eigenvalues are in
fact 3,2, 1 there are only four candidates for U; we need only
check to see whether U =VR for R=1, X, Yy, Zx.

Helbig (1994) and Mehrabadi & Cowin (1990) have
more complicated approaches to this problem.
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3.2 How T changes when the material is rotated

Let’s be clear that our entire enterprise deals only with a
specific point in some material; we are not interested in how
the elasticity is changing from one point to another. When
we speak of rotations, the rotations should be thought of,
intuitively, as rotations about the specified point. Strains
and stresses are likewise strains and stresses at the specified
point. We imagine the point to be at the origin in R3.

Suppose now that we use a rotation U € U to rotate
our material. We want to compare the elastic maps T and
T’ before and after the rotation. Suppose the strains before
and after the rotations are E and E’. Both of the matrices E
and E’ operate on vectors in R®. The output vector assigned
to the input vector v by E’ is

Ev=UEU'v  (veR?% (64)

Since Eq. (64) holds for all v, then, with the analogous fact
for stresses included,

E' =UEU" =U(E)
F' =UFU" =U(F) (65)

The maps T and T’ take strain matrices to stress matrices:
T(E) = F and T'(E’) = F'. Thus,

T(E')=F'
T(T(B)) = T(F)
T[T (B)) = T(T(E)) (66)
Since Eq. (66) holds for all E then
T oU=UoT
T =UoToU" (67)

If G is an orthonormal basis for M, then, from Egs. (14a)
and (58), the matrix equivalent of Eq. (67) is

[T')ec = [Ulee [T)ec [Ulde (G orthonormal) (68)

3.3 The notion of symmetry for T

We define V' € U to be a symmetry of an elastic map if the
map does not change when the relevant material is rotated
by V. More precisely, V is a symmetry of T if the two elastic
maps T and Vo T o V" (from Eq. 67) are the same.

Vis a symmetry of T <= VoToV =T (69)

We require V to be a rotation matrix—an orthogonal matrix
with determinant +1. We could have required V' to be only
an orthogonal matrix, so that perhaps detV = —1. But if
V is orthogonal with detV = —1, then —V is a rotation
matrix. Since —V = V, then V being a symmetry of T
would be equivalent to —V being a symmetry of T. Allowing

det V = —1 would gain nothing.

3.3.1 The A-test for a symmetry of T
From Eq. (69),

V is a symmetry of T <= A(V,T) =06xs, (70a)
where Ogxg 1s the 6 X 6 zero matrix and

AV, T) = [V]ee [Tlee [V]es — [Tlee (G orthonormal)

(70b)
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Suppose, for example, that we want to find the matrix [T]es
when Z, is a symmetry of T. If T were an arbitrary elastic
map, its matrix T with respect to B would be, say,

a g m q t v
g b h n r u
m h ¢ i o s
= g n i d j p (71)
t r o j e k
v u s p k f

With V = Z, (Eq. 50), we therefore want to find the entries
a,b,c,...of T so that V is a symmetry of T. From Eq. (60)
with & = m and from Eq. (71),

m q t v
h n r u

A(V,T) = —2 . (72

m
q
t
v

2 3 3

where blank entries are understood to be zero. From
Eq. (70a), the rotation V is a symmetry of T if and only
if A(V,T) is the zero matrix. Soh=m=n=q=r=1t=
u=v=0,and T in Eq. (71) becomes Tiono, Where

a g
g b
T]\IONO = : ; ;) ; (73)
o j e k
s p k f

3.4 Eigenspaces of T and their role in symmetry
For A € R we let
Mr(A\) ={FeM: T(E)=\E} (74)

If X is an eigenvalue of T, then its eigenspace is Mr(\); it
consists of the zero vector together with the eigenvectors of
T having eigenvalue .

Theorem 1. Let T be an elastic map and let V be a 3 x 3
rotation matrix. Then V' is a symmetry of T if and only if
all eigenspaces of T are invariant under V.

Proof. Suppose first that V' is a symmetry of T. Then T o
V =V oT, from Eq. (69). Hence if £ € Mt ()), then

T (V(E)) = V (T(E)) = V(AE) = AV(E),

so that V(E) € Mz (A). Hence V (M (X)) C Mz (X).

Conversely, suppose V (Mr(\)) C My (A) for all eigen-
values A of T. Then if E is an eigenvector of T with eigen-
value A, so is V(E), and so

(ToV)(E) =T (V(E)) =AV(E)
=V(AE) =V (T(E)) = (Vo T)(E)

Since the eigenvectors E of T span M, then ToV =V o T,
by linearity. Then V is a symmetry of T, by Eq. (69). [

Theorem 1 was known to Rychlewski (1984).
If T is an elastic map, then, from the Spectral Theorem,

M is the orthogonal direct sum of the eigenspaces of T. Thus,
if g1, ..., ur are the distinct eigenvalues of T,

M:MT(ﬂl)J_ ...J_MT(/J,k) (75)

If V is a symmetry of T, then each Mr(u;) is invariant
under V. From Lemma 1, each subspace M (u;) is an or-
thogonal direct sum (Eq. 42) of subspaces prime for V.
In the hypothetical illustration in Eq. (76), the eigenspace
Mt (p1) is the orthogonal direct sum of the prime subspaces
W1, Wa, W3, whereas the eigenspace Mt (u) is itself prime.

M = MT(Ml) 1 J_MT(/J,k)
RN (76)
Wl W2 W3 Wn
Thus,
T=W,1l...1W, (77)
A An

(In this example, A1 = A2 = A3 = p1 and A, = ug.) This
means, as in Eq. (44), that M is the orthogonal direct sum
of the W;, and that on W; the linear transformation T is
multiplication by \;. Here, however, the W; are prime for V.
The converse is also seen to be true. Thus,

Theorem 2. A rotation matrix V' is a symmetry of an elas-
tic map T if and only if, for some numbers A1,..., A, and
for some subspaces Wy,..., W, of M,

(i) Each W; is prime for V.
(i) T=W; L..LW,

A1 An
Using Egs. (43) and (44), we can paraphrase conditions
(i) and (ii) as
Wi,...,W, are prime summands of M for V'
T(E)=\FE (EeWy) (78)

3.5 Some matrices, six-tuples, and subspaces
With By, ..., Bg the basis B given in Eq. (3), we define ma-
trices in M by
Bi2(r) = (cosr)Bi1 + (sinr)Bs
Bsy(s) = (cos s)Bs + (sins)Ba
Bsg(t) = (cost)Bs + (sint)Bg (79)
The corresponding elements of R® are
e12(r) = [Bi2(r)]s = (cosr,sinr,0,0,0,0)
es4(s) = [Bza(s)]e = (0,0, cos s, sin s, 0, 0)
es6(t) = [Bss(t)]z = (0,0,0,0, cost,sint) (80)
Thus r, s,t are the angular polar coordinates in the respec-
tive 122, r3x4, T5T6-planes.

With (S1, S2) denoting the subspace spanned by S; and
S2, we define subspaces of M by

Bia = (B1,B2), Bss = (B3, Bs), Bse= (Bs,Bs) (81)
The corresponding subspaces of R® are
Ei2 = (e1,e2) = {(21,22,0,0,0,0) : 21,22 € R}
Ess = (es,eq) = {(0,0,23,24,0,0) : 3,24 € R}
Es6 = (es,e6) = {(0,0,0,0,25,26) : 5,26 € R},  (82)



where e, ..., es is the standard basis for RS,

4 The symmetry Z; when £ is regular

4.1 Subspaces of M invariant under Z; when ¢ is
regular

The notion of a prime subspace was introduced in Section
2.6.3. If A is a 6 x 6 matrix, a non-zero subspace E of R®
is prime for A if it is invariant (under multiplication by A)
and if it has no proper invariant subspaces.

For the 6 x 6 matrix A = [Z¢|gs we can try to guess the
prime subspaces from inspection of the matrix, and we will

usually be right. From Eq. (60),

R(=¢€)

IZXQ

[Zelpe = (83)

where R(6) is the 2 x 2 rotation matrix from Eq. (F.1) of
Appendix F, and where I2x2 is the 2 x 2 identity matrix.
(Blank entries are understood to be zeros.)

From Egs. (82) and (83), the subspaces E12, Eg4, Ess of
RS are invariant under [Z]BB. Since on E5¢ the matrix [Z]m
is the identity, then Esq itself is not prime (for [Z¢]ss), but
all of its one-dimensional subspaces are prime. Each has the
form (ese(t)) for some t.

On the subspace Ei2 the matrix [Z¢|ps is rotation
through angle —¢, and on Es4 it is rotation through angle
2¢, so E12 and Es4 are prime for most choices of &. But
are they always prime, and might there be other prime sub-
spaces? Theorem 3 gives some answers, but in the context
of M rather than RS.

Recall from Fig.1 that £ is regular if rotations through
angle ¢ are neither 1-fold, 2-fold. 3-fold, nor 4-fold:

Eisregular < ¢ # +27/n (mod 27),n=1,2,3,4

(84)

Theorem 3. Regardless of ¢, Ee subspaces Bi2, Bsa,
(Bse(t)) of M are invariant under Z. If  is regular, they are
the prime subspaces for Z¢. (See Section 3.5 for notation.)

Proof. The proof relies on the B-coordinate mapping to go
back and forth between M and RS. Thus Bi2, Baa, (Bss(t))
are invariant under Z since E12, E34, (e56(t)) are invariant
under [Ze¢]sp. For & regular they are the prime subspaces
for Z¢, since E12,Ea4, {€56(t)) are then the prime subspaces

of R® for [Z¢|es; see Lemma 6 of Appendix B, [J

4.2 Prime summands for Z; when ¢ is regular

From Eq. (43), subspaces W1, ..., W, of M are prime sum-
mands for Z¢ if they are prime for Z¢ and if their orthogonal
direct sum is all of M.

If £ is regular, there is not much choice about the prime
summands for Z¢, due to Theorem 3. They can only be, for
some t,

Bi2, Bsa, (Bse(t)), (Bss (1)), (85a)
where
t'=t+m/2 (85b)

Note that, although there is a prime subspace (Bsg(t)) for
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each ¢, there is little choice regarding ¢’ in Eqs. (85)—it must
be t + 7/2, since Bsg(t) and Bse(t') are to be orthogonal.
The prime summands for Z; with ¢ regular are shown in
Fig. 6.

The figure illustrates the invariance of the prime sum-
mands under Z¢. Consider, for example, the beachball at
0 = 0 in the z1z2 plane (the 3:00 position), and rotate it
through & = 45° about its own vertical axis (perpendicular
to the page). The resulting ball is present in the diagram,
and the upper left 2 x 2 submatrix of [Z¢]es (Eq. 83), which
describes a rotation through —¢ about the origin in the x1z2
plane, tells where to find it. (It is at the 4:30 position.) The
balls in the xsxs-plane and zsxe-plane work analogously,
but in the z3xs-plane the matrix [Z¢]ss is rotation through
2¢, and in the zsxs-plane it is the identity.

The xyz spatial coordinates have no logical relation to
the B-coordinates x1 ...xs. In a diagram like Fig. 6, where
the xyz directions must be known in order to orient the
beachballs, some decision must therefore be made that re-
lates the two coordinate systems. We chose to have z point
out of the page and x to the right.

In the same vein, a beachball has no particular location
in zyz space. Alternatively, all beachballs can be thought
of as centered at the origin in xyz space. The location of a
beachball in a diagram like Fig. 6 only serves to indicate the
coordinate 6-tuple of the ball.

4.3 Elastic maps with symmetry Z; for regular ¢

According to Egs. (78), an elastic map T having sym-
metry V is determined by specifying prime summands
for V and by assigning a number to each of them. If
V = Z¢ with £ regular, then the prime summands are
]Blg,B34, <B56 (t)), <B56 (t/)>; they depend only on t. Hence T
is determined by giving t to specify (Bse(t)) and (Bss(t')),
and then by assigning respective numbers A1, A3, A5, Ag to
Bi2,Baa, (Bss(t)), (Bss(t')). That is, T = Tk (t), where, in
the notation of Eq. (44),

Theo(t) = Bia L Bas L (Bse(t)) L (Bss(t))
A1\ A3 A3 A5 A6

t/=t+71'/2, AI()\1,)\1,)\3,)\3,>\5,)\6) (86)

The repetitions A1 A1 and A3 A3 in the orthogonal direct sum
are reminders that dimB12 = 2 and dim B34 = 2.

For T = Tie(t) as in Eq. (86), its symmetry Z¢ is
seen in Fig. 6, though the figure itself does not involve T.
In Fig. 6b, for example, the effect of T would be to resize
the balls by the constant factor A\3. One can rotate a ball
through angle £ about its vertical axis, and then resize it, or
one can resize it and then rotate it. The result is the same,
but only because the rotated ball is in the same subspace as
the original ball, so that the resizing factor does not change.

Theorem 4. (The matrix for T, (t))
For T = Tiso(t),
A1

A1

[T]er = As

R(t) (AS M) R)T

FIG. 6
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Proof. Theorem 4 is the special case of Theorem 7 in which

I
T:O,U:<2X2 R(t)>,)\1:)\2,and>\3:)\4. D

The form of the matrix [T]gs in Theorem 4 dictates the
definition of the matrix Tkiso, namely,

a
a
TXISO = ¢ c (87)
e k
k f
The matrices Txiso and [T|ge are the same when
a = )\1, CcC = )\3

e=\s cos?t 4+ A6 sin? ¢
=X cos®t + Assin®t
k= (As — X¢)costsint (88)

Appealing to Egs. (F.2) of Appendix F, we see that Txiso
and [T|gs are also the same when

Ao =3 (e f 4/l P 4 4
)\6:%(6+f—\/(e—f)2+4k2)7 (89)

where 6(z,y) is the ordinary angular polar coordinate of the
point (z,y). (If e = f and k = 0 then 0. is undefined, but
t can be chosen arbitrarily.)

For T having symmetry Z¢ for £ regular, Eqgs. (88) give
the matrix entries a, ¢, e, f, k of Txso = [Tse in terms of the
“intrinsic” parameters t, A1, Az, As, A¢ of T, and Eqgs. (89) do
the reverse.

The intrinsic parameters are not unique, but it hardly
matters. From Appendix F we see that two 5-tuples of in-
trinsic parameters give the same T:

t A1 A3 A5 e

¢ [ ps ps Mo (90)

t+7m/2 1 ops pe ps
Thus the expressions for As and ¢ in Egs. (89) can be
swapped if ¢ = 0. is replaced by t = 6 + 7/2, but there is
generally no reason to do so. One tuple of intrinsic parame-
ters is enough.

We have shown that for & regular the following are
equivalent:

Z¢ is a symmetry of T (91a)
T= Tgso(t) for some t, A1, A3, A5, A6 (91b)
[Tlee = Txso(a, ¢, e, f, k) for some a,c, e, f,k (91¢)

We refer to the condition T = T2, (t) as an intrinsic char-
acterization of T, in order to distinguish it from the condi-
tion [T|ss = Txiso, which involves a basis for M. Although
the subspaces B12, B34, <B56 (t), <B56(t/) in the intrinsic char-
acterization appear to involve the basis B, in fact they can
be described without B; see Table 2 for B12 and Bs4, and see
Eq. (93) for B56(t).

Intrinsic characterizations of elastic maps go back at
least to Rychlewski (1984). Also see Béna et al. (2007).

4.4 Transverse isotropy

Theorem 5. If Z; is a symmetry of an elastic map T for
some regular &, then Z; is a symmetry of T for all &.

Proof. Let Z¢ be a symmetry of T. To show that the ro-
tation Zg is a symmetry of T, we need only show that the
eigenspaces of T are invariant under Zz (Theorem 1). To
that end, let W be an eigenspace of T. Then W is invariant
under Z¢, by Theorem 1. Hence W is an orthogonal direct
sum of prime subspaces for Z Since £ is regular, the prime
subspaces for Z are Bi2, B34, (Bss(t)). Those subspaces, by
Theorem 3, are invariant under Zg, hence so is W. []

Theorem 5 also follows from Egs. (91), since only Eq. (91a)
mentions &.

An elastic map T is said to be transverse isotropic (with
respect to the z-axis) if Z¢ is a symmetry of T for all &.
Theorem 5 says that If Z¢ is a symmetry of T for some
regular £, then T is transverse isotropic.

Herman (1945) has a weaker version of Theorem 5.
Where our version has £ regular, Herman has £ = 27 /n
for some integer n > 4. We need the stronger version in de-
riving the elastic symmetry groups (Section 14, especially
Lemma 3).

5 Subspaces of M described intrinsically

In Table 2 we list some subspaces of M that will be rele-
vant to elastic symmetry. To describe them we borrow ter-
minology from seismology, which we explain next. We do
not intend, however, to discuss applications to seismology.

As always, M is the space of 3 x 3 symmetric matrices.
A TBP frame for a matrix £ € M is a rotation matrix whose
first, second, and third columns are eigenvectors T, B, P of
E corresponding to the respective largest, intermediate, and
smallest eigenvalues of E.

A deviatoric matrix in M is one with trace equal to
zero. A double couple is a deviatoric matrix with determi-
nant zero. Its eigenvalues therefore have the form p,0, —pu.
The beachball for a double couple has the classic beach-
ball look, with the ball surface divided into four congruent
lunes having alternating colors (e.g., Bz in Fig. 3). The fault
planes of the double couple are the two planes that define
the boundaries of the lunes; the normal vectors to the fault
planes are THP. The null axis is the intersection of the two
fault planes; it is in the direction of B.

A crack matrix is a matrix in M with two equal eigen-
values (not three). Its c-axis is in the direction of the eigen-
vector with the simple (i.e., non-repeated) eigenvalue. The
beachball for a crack matrix has rotational symmetry about
the c-axis through all angles; if bicolored, it looks more like
a striped pool ball than a traditional beachball (e.g., Bs in
Fig. 3).

An isotropic matrix in M is a multiple of the identity.
Its beachball is all red or all white.

A generic matrix £ € M is neither a double couple
(DQC), a crack matrix, nor an isotropic matrix. Thus

FE is generic

<= F has distinct eigenvalues but is not a DC  (92)

The matrix for the beachball in Fig. 7(d) is generic.

FIG. 7
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The subspace Bi2 in Eq. (81) and Fig. 6a consists of
all double couples having a fault plane horizontal. See also
Fig. 7(a).

The subspace B34 in Eq. (81) and Fig. 6b consists of all
double couples with null axis vertical.

The subspace Bsg in Eq. (81) and Fig. 8 consists of all
crack matrices with c-axis vertical. They are the diagonal
matrices with diagonal entries of the form p, p, q. The red or
white band on the beachball for such a matrix has angular
half-width v given by tanv = /—p/q (from Eq. 26). The
angular half-width of the band for the crack matrix Bse(t)
is therefore, from Egs. (3) and (79),

1
by | == cot(ty — t)

V2
to = £((1,1,1),(0,0,1)) = tan " V2 (93)

v(t) =tan™

The subspace (Bs) consists of the isotropic matrices.
Its orthogonal complement (Bg)~ = (Bi,...,Bs) consists
of the deviatoric matrices. The subspace (Bu, Bs, Bs) con-
sists of the diagonal matrices, and (B, Bs) consists of the
deviatoric diagonal matrices.

6 Elastic maps with symmetry Z./,

If an elastic map T has the symmetry Z, /o then it also has
the symmetry Z, and so, from Section 3.3.1, its matrix with
respect to B has at least the form of Tyoxo in Eq. (73). With
V = Z, 2, we therefore look for the entries a, b, c, . . . of Tyono
such that V' is a symmetry of T. From Egs. (60) and (70b),

a—b 29
2g b—a
20 2s
20 2j

2s 2p

The rotation V is a symmetry of T if and only if A(V,T) is
the zero matrix. Settingb=acand g=j=0=p=s=0
in Tyono gives [T]ps = T4 with Ty as in Table 1.

We will see momentarily that the intrinsic character-
ization of elastic maps T having symmetry Z,,, is T =
T4 (s,t), where

T (s,t) = Bio L (Bsa(s)) L (Bsa(s')) L (Bss(t)) L (Bss(t))

A1 A1 A3 Ay A5 A6
s =s+m/2, t=t+m/2
A = (A1, A1, A3, A4, A5, X6) (95)

Theorem 6. (The matrix for T4 (s,t))
For T = T4 (s, 1),
A1

[T]es =

R(t) (A5 \ )R(t)T
Proof. The theorem is the special case of Theorem 7 in

. . _ [R(s) .
which r =0, U = < R(t)),and A =X [

6
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The matrix [T]es in Theorem 6 is the same as the matrix
Ty in Table 1 when

2 .2
¢ = MA3c0s8" s+ Asgsin” s

2 .2
d= Agcos” s+ Agsin” s

i = (A3 — A\4)cosssins

a, e, f,k are as in Eq. (88) (96)
The two matrices are also the same when
s=104= %é\(c—d, 21)
As = % (c +d+ \/m)
A= (et d— Ve dpTar)
t, A1, A5, Ag are as in Egs. (89) 97)

For T having symmetry Z./», Eqs. (96) give the matrix
entries a, c,d, e, f,i,k of Ty = [T]ge in terms of the intrinsic
parameters s,t, A1, Az, A1, As, A6 of T, and Egs. (97) do the
reverse.

The intrinsic parameters are not unique, but it rarely
matters. The following three 7-tuples all give the same T.

s t A1 A3 A A5 e
s t pH1 M3 4 p5 e (98)
s+mw/2 t H1 o pa M3 M5 U6
s t+m/2 p1 ps pa pe s

We have now shown that the following are equivalent:

Zr /2 is a symmetry of T (99a)
[Tlge = Tu(a,c,d, e, f,i, k) for some a,c,d,e, f,i,k (99b)
T= Tf?(s,t) for some s, t, A1, A3, A1, As, A6 (99¢)

To see that the five subspaces in the orthogonal di-
rect sum (Eq, 95) are invariant under Z,,, note that in-
variance has nothing to do with the A;. We can there-
fore assume for a moment that A1, As, A4, A5, A¢ are dis-
tinct, so that the five subspaces are eigenspaces of T. By
Theorem 1 they are therefore invariant under Z /5. The four
one-dimensional subspaces are then automatically prime
for Zr /3. The other subspace Bi2 is also prime, since its
only proper subspaces have the form (Bi2(r)), and they are
not invariant under Z.,, (e.g., Fig. 6a). Prime summands
for Z jo—one quintuple of summands for each s and t—are
therefore

Bia, (Bsa(s)), (Bsa(s")), (Bss(t)), (Bss(t'))

They are shown in Fig. 9 for s = 55° and ¢ = 40°.

An elastic map T having symmetry Z/; is determined
by specifying s and t to give the five prime summands and
by attaching a number A1, A3, A4, As, A\¢ to each.

(100)

7 Elastic maps with symmetry Z-

Let U = Usx4 be the 4 x 4 rotation matrix

uU33  U34 U35  U36
U= U43  Ug4a U445  U46
Us3  Us4 Us5  Us6
Ue3 Ue4 U5 U6

(101)

FIG. 9
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Let Ba = Ba(r, U) be the orthonormal basis of M whose ele-
ments are defined by their B-coordinate 6-tuples as follows:

B-coordinate 6-tuple  Element of basis Bz (r,U)

(cosr,sinr,0,0,0,0)

(—sinr, cosr,0,0,0,0) Bia(r")

(0,0, uzs, uas, uss, ugs) B3(U)

(0,0, us4, uaa, us4, Uss) B4(U)

(07 0, uss, uas, u557u65) Bs(U)

(0,0, usg, uas, use, Use) Bs(U)
(102)

where 7’ = r + 7/2. Thus

BJ(U) = U3jB3 + U4jB4 + ’U,5jB5 + u6jB6 (] =3,4,5, 6)
(103)

We will see momentarily that the intrinsic characterization
of elastic maps T having symmetry Z, is T = T4 (r,U),
where

T (r,U) =(Bua(r)) L (Bia(r')) L

(B:;(U» L <B4A(U)> L (BE;(U» L <B6A(U)>
P =r+m/2, A=(1...,N) (104)
Theorem 7. (The matrix for T3 (r,U))
For T = T (r,U),
re (M) R0
[T)er = A3 As .
U As U
A6

Proof. From Eq. (104) the matrix [T]g,s, is diagonal with
diagonal entries A1, ..., X¢. It is related to [T]es by

[Tles = [Mze, [Tle.e, I]BoB,

where [I|zg, is the matrix that takes By-coordinates to B-
coordinates. From Eq. (32) its j*® column is the B-coordinate
6-tuple of the 5" element of Bz (r, U). Hence from Eq. (102),

Mg,B, = (R(r) U4><4)

Eq. (105) therefore becomes
R(r) '
Uixa)

A1
[T]zs = (R(T) U4><4>
(107)

which is the same as in the theorem. [

(105)

(106)

A6

The matrix [T]gs in Theorem 7 has the same form as Tyono
in Table 1, but when are the two matrices equal? From the
theorem it is obvious how to find the entries a,b,c,... of
Tyvono in terms of the intrinsic parameters r, U, A\1,..., Xs
of T. Conversely, one gets r, A1, A2 from the submatrix
(ch g) of Twono using Egs. (F.2) or (F.3), and, in prin-
ciple, one gets U and As, A4, As, A¢ from an eigensystem for
the lower right 4 x 4 submatrix of Tyono. Getting the eigen-
system symbolically, however, is not appealing, since the
characteristic polynomial is quartic. (Finding it numerically
is not a problem.)

In Section 3.3.1 we showed that an elastic map T has
symmetry Z if and only if its matrix with respect to B has
the form Tyiono. The following are therefore equivalent:

Zr is a symmetry of T (108a)
[T)ee = Tuono(a, b, ...) for some a,b,... (108b)
T = T (r,U) for some r,U, A1, ..., N (108c¢)

Reasoning as we did from Eq. (95), we find from
Eq. (104) that the prime summands for Z.—one sextuple
for each choice of r and U—are

(Bi2(r)), (Bi2(r")), (Bs(U)), (Ba(U)), (Bs(U)), (Bs(U))
(109)
Fig. 10 shows the prime summands for one choice of r and U.
The 180° symmetry is obvious in the figure. (The color re-
versal produced by 180° rotation of the first and second
beachballs is acceptable, since the matrix —F is always in
the subspace (E).)
An elastic map T having symmetry Z, is determined by
a number r and a 4 x 4 rotation matrix U to specify the six
prime summands, and by numbers A1, ..., A¢ to be assigned
to them.

8 The symmetry Zs. /3
8.1 Prime summands for Z;. /3

Motivated by Eq. (C.1) of Appendix C, we define the matrix
B(0,u,v) by

cos [~ sinusinv sinwucosv 0
B(0,u,v) = sinucosv  sinusinv cosu
V2 0 cosu 0
. —sinucosv —sinusinv cosu
sin 0 . . .
—sinusinv  sinwucoswv 0
V2 cos u 0 0
(110)
Then
B(6,u,v) = (cosf) B(0,u,v) + (sinf) B(n/2,u,v) (111)

For each u and v there is a subspace of M spanned by
B(0,u,v) and B(w/2,u,v), namely,

B(u,v) = {rB(0,u,v) : 7,6 € R} (112)
The B-coordinate vector of B(0,u,v) is
(B(0,u,0)), = (0, u,v) (113)

where e(0,u,v) is from Eq. (C.1). Using Eq. (113) to trans-
late between M and R®, we conclude from Lemma 7 of Ap-
pendix C:

Theorem 8. The subspaces of M that are prime for m
are B(u,v) and (Bse(t)) (any t,u,v).
The prime summands of M for m are then
B(u,v), B(u',v), (Bss(t)), (Bss(t)) (114a)
where
t'=t+m/2,

u =u+7/2 (114b)

FIG. 10
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The prime summands for Z¢ with & = 27/3 are a general-
ization of those for regular £ in the sense that

B(O, U) = ]Blz, B(T{'/Q, U) = B34 (115)

We let B(t,u,v) be the orthonormal basis of M whose ele-
ments are

B(0,u,v), B(7/2,u,v)
B(0,v,v), B(r/2,u,v)
Bsg (t), B56(t/)

When feasible, we abbreviate B(t, u,v) to Bs.

For ¢ = 27/3 the 6 x 6 matrix of Z¢ with respect to
B(t,u,v) is found from Egs. (3) and (59) to be the same
as [Z¢|es in Eq. (83); it is independent of twuwv. Since for
& = 27/3 a rotation through 2¢ is the same as a rotation

through —¢,

(a basis for B(u,v))
(a basis for B(u’,v))

(a basis for Bsg) (116)

[Zelmsns = (€ =2m/3)

Iaxo

(117)

In Fig. 11 the coordinate planes are for coordinates with

respect to the basis B(¢, u, v). The figure illustrates the prime

summands and their invariance under Z,, 3. In Fig. 11(b),

for example, if the ball at 6 = 0 (the 3:00 position) is ro-

tated through an angle of 27/3 about its own vertical axis

(perpendicular to the page), the resulting ball is present in

the diagram. According to the middle 2 X 2 submatrix in

Eq. (117), it should be the ball at § = —27/3 (the 7:00
position).

8.2 The remarkable subspaces B(u,v)

Whereas the subspace Bi2 consists of the double couples
having a fault plane horizontal, and Bs4 consists of the dou-
ble couples with null axis vertical, the subspaces B(u.v) are
more subtle and intriguing.

Since the matrices B(0,u,v) and B(n/2,u,v) are both
orthogonal to Bs and Bg in the basis B (Egs. 3), the subspace
B(u,v) is a (two-dimensional) subspace of Biz L Bss. The
matrices in B(u, v) are therefore deviatoric, that is, each has
trace zero.

Recall that a double couple matrix is a deviatoric matrix
with determinant zero. From Eq. (110),

1 2 . .
det B(6,u,v) = — cos” usinusin(v + 360
( ) 7 ( )
Hence, for u # nw/2, a matrix B(#,u,v) is a double couple
if and only if 0 = —v/3 + nw/3.
From Eq. (110),

(118)

Zs B(0,u,v) Zg = B(6 — B,u,v + 38) (119)

A beachball pattern is determined by the eigenvalue triple
A of the beachball matrix, with the entries of A being in
descending order. Conjugating a matrix preserves its eigen-
values, hence, with 8 = —v/3 in Eq. (119),

A(B(0,u,v)) = A(B(0 +v/3,u,0)), (120)
and then

A(B(u,v)) = A(B(u,0)) (121)
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Thus the totality of beachball patterns in the subspace
B(u, v) is not affected by v.

To explain how w affects the patterns, we use the pa-
rameter y(A), which for a deviatoric eigenvalue triple A is
the signed angle between (1,0,—1) and A (Tape & Tape
2013, Section 2.3.2). In general, v varies between —7/6 and
/6, with v+ = 0 for double couples and |y| = =/6 for
CLVDs—crack matrices that are deviatoric. For matrices
in B(u,v), however, ~ varies between values —vyuax(u) and
Yaax(u). As shown in Fig. 12, the number vyax(u) ranges
from zero at u = nw/2 to 7/6 at u = up + nmw, where
uo = (1/2)tan™' /8 = 35.3°. Thus, for u near nmw/2 the
matrices in the subspace B(u, v) all resemble double couples,
while for u near +uo + nm, they vary from double couples
nearly to CLVDs.

The subspace B(ug, v) also has the special property that
its matrices all have a common eigenframe. See Section S3.

8.3 Elastic maps with symmetry Zs./3

We now give an intrinsic characterization of elastic maps T
that have symmetry Zs. /3. The reasoning is the same as for
regular £ in Section 4.3, but now the prime summands are
as in Eq. (114). From Egs. (78), the map T is determined
by giving t,u, v to specify the prime summands, and by as-
signing respective numbers Ai, A3, As, A¢ to them. That is,
T = T4 (¢, u,v), where

T3 (t,u,v) = B(u,v) L B(u',v) L (Bse(t)) L (Bss(t))
A1 A1 A3 A3 s A6

A = (A1, A1, A3, A3, A5, Ae) (122)
Theorem 9. (The matrix of T4 (¢, u,v))
For T = T4 (¢, u,v),
A1
A1
A3
[Tles = [Tles, s Mese  (123)
As
A6
where [I]gp, is the 6 x 6 matrix
(cosu)laxe —(sinu)lax2
Mer; = | (sinu)R(v)  (cosu)R(v) (124)
R(t)

Proof. From Eq. (122) the matrix of T with re-
spect to B(t,u,v) is diagonal with diagonal entries
A1, A1, A3, Az, As, Ag. It is related to [T]]B]Bg by [T]]B]B =
s [T]BsBs [IBsE, Where [I]gs, is the matrix that takes
B(¢, u, v)-coordinates to B-coordinates. From Egs. (32), (3),
(116), the matrix [I]gs, is as stated in Eq, (124). [

The matrix [T]gs in Theorem 9 dictates the definition of the
matrix 73 in Table 1. The two matrices are the same when

FIG. 12
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the entries of T3 are
2 . 2
a = A1cos” u+ Agsin” u

2 .2
c=MA3cos u+ A1sin” u

h = % (A3 — A1) sin 2usinwv

1
m=g (A1 — A3) sin 2u cosv
e, f,k are as in Eqgs. (88) (125)
The two matrices are also the same if A2 +m? # 0 and

uz@u:%é\(afc,Q h2+m2)

~

v =20, =60(m,—h)

1
AL = 3 (a+c+ \/(a—c)2+4(h2+m2))
Az = % (a+c— \/(a—c)2+4(h2+m2))
t, s, A¢ are as in Eqs. (89) (126)

Verification of Egs. (126) is just a calculation, though best
done by computer. (One might nevertheless wonder where
the equations come from. See Appendix D). For the case
h = m = 0 that is ruled out in Egs. (126), the matrix T3
becomes Tyiso and hence is covered by Egs. (89).

For T having symmetry Zy. 3, Egs. (125) give the ma-
trix entries a, ¢, e, f, h, k,m of T3 = [T|ge in terms of the in-
trinsic parameters t,u, v, A1, A3, A5, A¢ of T, and Egs. (126)
do the reverse. As usual, the intrinsic parameters are not
unique. The following 7-tuples of intrinsic parameters all
give the same T. One 7-tuple is usually enough, however.

t U v A A3 A5 e
t U v H1o p3 ps e
t —u VT p1 M3 fs e (127)
t u+m/2 v M3 M1 M5 M6
t+7/2 wu v M1 Q3 g6 s

We now have the three equivalent conditions:
Zary3 is a symmetry of T (128a)
T= Té,\(t,u,v) for some t,u, v, A1, A3, A5, A6 (128b)

[T)es = T5(a, ¢, e, f,h, k,m) for some a,c,e, f,h, k,m
(128¢)

9 Elastic maps with symmetry Z: when £ =0

It remains to treat £ = 0. The matrix Z¢ is then the iden-
tity matrix I. Since 7 is the identity transformation, all sub-
spaces of M are invariant under I, hence all one-dimensional
subspaces are prime for I. Any six one-dimensional and
mutually orthogonal subspaces are therefore prime sum-
mands for I. Basis elements for the subspaces can be spec-
ified by a 6 x 6 rotation matrix U; the columns of U are
the B-coordinate vectors for the basis elements, call them
Bi(U),...,Bs(U).

An elastic map T with symmetry I—that is, any elastic
map whatsoever—is therefore determined by specifying U
to give the prime summands (B1(U)),...,{Bs(U)) and by
specifying numbers A1, ..., \¢ to be assigned to them:

T=(B(U)L...L(Bs(U)) (U=Usxs) (129)

A1 A6

This is not new. The numbers A1, ..., A¢ are the eigenvalues
of T, and B1(U),...,Bs(U) are the eigenvectors.

The group of 6 x 6 rotation matrices has dimension 15,
and so 15 real parameters would be required to specify U.

10 How the symmetries change when the material
is rotated

Elastic maps T and T’ are defined to be equivalent if there
is a matrix U € U such that

T =UoToU" (130)

Section 3.2 gave some motivation for the definition; the maps
T and T’ can be regarded as describing the elasticity in
a material before and after rotating the material using U.
Section S2 has a test for equivalence of elastic maps whose
eigenvalues are simple.

We denote the group of symmetries of T by St:

St ={V €U : Vis a symmetry of T} (131)

Then a group U of rotations is said to be an elastic symmetry
group if ¢ = St for some elastic map T. -
For U and V both in U, and with T =UoTo U ",

VoToV =T <= UVUToT o(UVUT)* =T (132)

Thus V is a symmetry of T if and only if UVU " is a sym-
metry of T’.

If T and T’ are equivalent, then their symmetry groups
St and S are conjugate. More precisely, if T = UoToU "
then

St =USxU ", (133)
where UStU consists of all matrices UVU ', V € St.

10.1 Orientation information in T%, T%, T2

From here up until Section 16, virtually all of the matrix rep-
resentations are with respect to the basis B. When feasible
we therefore drop the subscript and write [T] for [T|gs.
Recall that conjugation of T by U formally expresses
the effect on T of rotating the material using the matrix
U € U. Recall also that T4 (s, t), T4 (t,u,v), T5(r,U), and
TR (t) are the most general elastic maps having the respec-
tive symmetries Zr 2, Zar/3, Zx, and Zg for £ regular. Since
Zg is a symmetry of T, rotating by Zs has no effect on
T2, but for most A3 it does impact T4, T4, and T%. Thus

ZgoTi(s,t) 0 Zg" = T4 (s +28, t) (134)
Zs 0 T3 (t,u,v) 0 Zg~ = T5 (¢, u, v+ 3B) (135)

_ — R(2

Zﬁ OTQ(Tv U) © Zﬁ = TQ(T 7ﬁ7 ( ( ﬁ) IQ><2) U)

(136)

Egs. (134) and (136) follow by inspection of the matrix
[Zs]ss (Eq. 83) and the matrices of T4 and T% in Theo-
rems (6) and (7). Eq. (135) follows from Theorem 9 and
from the fact that (from Eqgs. 83 and 124)

(Zs]es BB (t,u0)

= [z B(t,u,v+38)
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From Eq. (134), the elastic mappings T4 (s,t) and
T (s +2B,t) are equivalent. They describe a material hav-
ing symmetry Z. /2, before and after being rotated by Zg.
The elastic maps T3 (t,u,v) and T4 (¢, u, v + 38) likewise
describe a material having symmetry Z5 3, before and after
being rotated by Zg. Section S1 has the very simple matrix
equivalents of Egs. (134) and (135).

11 Unanticipated but unavoidable symmetries

We have considered elastic maps T that have symmetry Ze.
Except when £ = nm, the map T turns out to have other
(non-trivial) symmetries as well, perhaps unexpected. Fig. 6,
for example, showed prime summands for Z¢ when € is regu-
lar. The beachballs for the prime summands obviously have
every horizontal (i.e., in the plane of the paper) axis as a
2-fold axis of symmetry. Thus,

Theorem 10. (A regular axis requires an orthogonal
2-fold axis.)

If an elastic map T has the symmetry Z, for some regular &,
then it also has as symmetries all 2-fold rotations about
horizontal axes. (It also has all rotations about the z-axis as
symmetries, by Theorem 5.)

11.1 Symmetries accompanying a 4-fold rotation

What about a map T that has symmetry Z. /27 Prime sum-
mands for Z, /o are shown in Fig. 9, and here again a hori-
zontal 2-fold axis is obvious, now that we think to look for
it. There are four of them, and Fig. 13 shows how to find
them; they are at § = s/2 + nx/4. Thus,

Theorem 11. (A 4-fold axis requires an orthogonal
2-fold axis.)

If an elastic map T has the symmetry Z. /3, so that T =
T4 (s,t) for some s,t, A, then it has four 2-fold symmetries
with horizontal axes at 0 = s/2 + nw /4.

In terms of the entries a, ¢, . . . of the matrix T the horizontal
2-fold axes of T are at § = 04/2+nn /4, where, from Eq. (97),
01 = 18(c—d, 2i).

As one might expect, there is nothing special about the
4-fold axis for T being vertical. If T has a 4-fold symmetry
with axis in the direction of v € R? then it also has four

2-fold symmetries with axes perpendicular to v.

11.2 Symmetries accompanying a 3-fold rotation

We consider T = T4 (t, u, v)—the most general elastic map
having a 3-fold symmetry with vertical axis. A 2-fold symme-
try with horizontal axis would have the form V = ZgY,,ZBT
for some (. Using Egs. (59) and (116), we calculate the
matrix [V]gsss = (ti;) of V with respect to the basis
B3 = B(¢,u,v) and find that it has the unwanted entry

t31 = sin2usin(v — 38) sin(v — ) (138)
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We therefore try setting 8 = v/3. The matrix [V]g 5, sim-
plifies to

2v . 2v
—COS ? Sin ?
. 2v
sin—  cos 3

2v . 20

—cos 5= sin (139)
. 2v 2v
Sin ? COS ?
1

1

The prime summands B(u,v), B(u',v), (Bss(t)), (Bss(t'))—
and hence the eigenspaces of T—are therefore invariant
under V, where V = Zv/gY,TZUT/3 = ZQXﬂ-Z;— is now the
180° rotation about the horizontal axis in the § = 7/2+4v/3
direction. The rotation V must be a symmetry of T, by
Theorem 1. Thus,

Theorem 12. (A 3-fold axis requires an orthogonal
2-fold axis.)

If an elastic map T has the symmetry Zs, /3, so that T =
T4 (t, u,v) for some t,u,v, A, then it has three 2-fold sym-
metries with horizontal axes at 8 = 7/2 + v/3 + nx /3.

In terms of the entries a,c, ... of the matrix T3, the 2-fold
axes of T are at 0 = w/2+0,/3+nn/3, where 0, = 0(m, —h)
(Bq. 126).

There must be a 2-fold axis (three in fact) in Fig. 11,
but it does not give itself away. Fig. 14 offers some help.

Consistent with Theorems 11 and 12, Fedorov (1968)
recognized that the distinctions between what are effectively
our matrices Ty and Trgr, and between our T35 and Tyg, are
only distinctions in orientation; it is a matter of where the
2-fold axes fall. (See Table 4 for Trur and Truia.)

A baseless division into two groups of the classes in the tetrago-
nal and trigonal systems is used in many works. . . (Fedorov 1968,
p 31)

11.3 A 2-fold axis requires no other 2-fold axes

An elastic map T with the 2-fold symmetry Z, may fail
to have a horizontal 2-fold axis, but it has an orienta-
tion marker nonetheless. For T = T (r,U), the eigenvector
Bis(r) is a double couple with a horizontal fault plane. Its
null axis, necessarily horizontal, is in the direction 0 = —r,
as for example in Fig. 10, where r = 30°.

11.4 The meaning of the parameters r,s,t,u,v

Egs. (91b), (99¢), (108c), (128b) were supposed to give con-
ceptual characterizations of elastic maps having various ro-
tational symmetries about the z-axis. We can now fulfill that
promise by explaining the parameters r, s, ¢, u, v that appear
in the equations. The numbers s and v are orientation pa-
rameters; they locate the respective 2-fold axes of T4 (s, t)
and T4 (t,u,v), as described in Sections 11.1 and 11.2. The
number 7 is also an orientation parameter, as explained in
Section 11.3, but rotating the hypothetical material about
the z-axis changes both r and U, as seen in Eq. (136). The
number u affects beachball patterns in the subspace B(u,v),

FIG. 14
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as explained in Section 8.2. The number ¢ determines the
pattern on the beachball for the crack matrix Bse(t); see
Eq. (93).

12 The reference subgroups of U

Table 3 lists eight “reference” subgroups of U; they are
U1, Unioxos - - -, Uiso. In Section 14 we will see that, for any
elastic map T, the group St of its symmetries is a conjugate
of one of the reference groups. In that sense there are only
eight elastic symmetry groups.

To elaborate on the reference groups:

The matrices in Uxiso are the rotational symmetries of
a vertical cylinder.

The 24 rotational symmetries of any cube (the “gyroid”
group) are the 4-fold rotations about the face centers of the
cube, the 2-fold rotations about the midpoints of the edges,
and the 3-fold rotations about the vertices. For Ucuss the
cube is oriented with its face centers on the zyz coordinate
axes. The matrices in Uqype are the 3 x 3 rotation matrices
having exactly one non-zero entry in each row and column,
and with that entry being £1.

The 8 members of U are the (rotational) symmetries
of a square prism. The 6 members of Urgi; are the symmetries
of an equilateral triangular prism. The four members of Uorr
are the symmetries of a brick. The two members of Uyoxo are
the symmetries of a wedge—an isosceles triangular prism.

From the third column of Table 3, the containments
among the reference groups are

Z/{ISO = U

I/{'[‘KIG 6 -
N T (140)
\\\\ Z/{OI(TH 4
Z/{I\IONO 2
U, = {I}

Solid arrows mean “is a subgroup of’ and dashed arrows
mean “is a subgroup of a group conjugate to.” The integers
give the number of elements in the group, if finite.

The subscripts MONO, ORTH, TET, TRIG are for the
terms monoclinic, orthorhombic, tetragonal, and trigonal,
which are relics from an era—mnot yet completely past—
when crystallographic symmetries were thought to deter-
mine elastic symmetries. More informative terms would
be wedge-like, brick-like, square-prismatic, and (equilateral)
triangular-prismatic. A material whose elastic symmetry is
square-prismatic, for example, can be sculpted into a square
prism whose geometric symmetries are the same as its elas-
tic symmetries. The term transverse isotropic would become
cylindrical, and isotropic would become spherical.

12.1 Elastic maps for each reference group

For each reference group U = Ui, Uniono, - - -, Uiso We now
give both an intrinsic and a matrix characterization of
elastic maps whose symmetries are at least those in U.
The matrix characterizations are the “reference” matrices
T, Thono, - - -, Tiso in Table 4.

Each matrix characterization can be verified using the
A-test of Egs. (70). In most cases the intrinsic character-
ization can then be found just by inspection of the ma-
trix characterization. A fancier approach is to appeal to
Theorem 7, which pertains to the vertical 2-fold symmetry
Zr. Since all of the reference groups except Ui and Urric con-
tain Z,, then the intrinsic characterizations associated with
the other six reference groups are special cases of that for
Uniovo (Eq. 147b). (Their six reference matrices are likewise
special cases of Tvono, as seen in Table 4.)

The intrinsic characterizations are indeed intrinsic, in
the sense that the subspaces in their orthogonal direct sums
can be described without mentioning B or any other basis
of M. See Table 2.

We have talked about the notion of prime summands for
an individual rotation matrix. The notion also makes sense
for a group of rotation matrices; “invariant” then means in-
variant under V for all V in the group. In each of the intrin-
sic characterizations below, the subspaces in the orthogonal
direct sum are prime summands for the relevant reference
group.

Recall that St is the group of symmetries of the elastic
map T.

12.1.1 Reference group Uiso

The condition St = Uiso is equivalent to each of

[T] = Tiso(a, f) for some a and f (141a)
T= (Bs)"™ L (Bs) for some \; and g (141b)
A1 A1 AL AL A X6

The subspace (Bg)* is (Bi, B2, Bs, By, Bs) in Table 2; it
consist of the deviatoric matrices.

12.1.2 Reference group Usxso

The condition St D Uxiso is equivalent to each of

[T] = Twso(a, ¢, e, f, k) for some a,c,e, f, k (142a)
T = Bz L Bsa L (Bss(t)) L (Bse(t))
A1 A1 A3 Az s X6
for some t, )\1, Ag, )\5, >\6 (142b)
12.1.8 Reference group Ucuss
The condition St D Ucuss is equivalent to each of
[T] = Touss(a, d, f) for some a,d, f (143a)

T = <Bl,Bz,Bg> 1 <B4,Bs> 1 <B()> for some )\17)\47/\6
A1 A1 AL YRV A6
(143b)



12.1.4 Reference group Urer
The condition St D Urer is equivalent to each of
[T] = Twer(a, ¢, d, e, f, k) for some a,c,d, e, f,k  (144a)

T = Bia L (Bs) L (Ba) L (Bss(t)) L (Bss(t'))
A1 A\ A3 A4 A5 A6

for some t, )\17 Ag, )\4, )\57 >\6 (144b)

The matrix Trer is the special case of T4 where the horizontal
two-fold axes are at 0 = nw/4.

12.1.5 Reference group Uorrn

Here U is a 3 x 3 rotation matrix U = (us;)i,j=4,5,6. Matrices
B;(U) are defined by
B](U) = u4jB4 + U5jB5 + uajBﬁ (] =4,5, 6) (145)

Then the condition St D Uorru is equivalent to each of

[T] = Torru(a, b, . ..) for some a,b, ... (146a)
T = (B1) L (B2) L (Bs) L (Ba(U)) L (Bs(U)) L (Bs(U))
A1 A2 A3 pvt As A6

for some U, A1, ... ¢ (146b)

Eq. (146b) is simpler than it appears, since the ma-
trices B4(U), Bs(U), Bs(U) are a basis for the subspace
(Ba, Bs, Bg) consisting of the diagonal matrices (Table 2).

12.1.6  Reference group Unoxo

The condition St O Unono 1S equivalent to each of

[T] = Tuono(a, b, . ..) for some a,b, ..., (147a)
T = (Buis(r)) L (Bia(r')) L (Bs(U)) L (Ba(U)) L
A1 A2 A3 A4
(Bs(U)) L (Bs(U)) for some r,U, A1,...A¢ (147b)

where in Eq. (147b) the matrix U is now a 4 X 4 rotation
matrix and where the B;(U) are as in Eq. (103). This is a
repetition of Egs. (108).

12.1.7 Reference group Urnic
The condition St D Ui is equivalent to each of
[T] = Trwe(a, ¢, e, f, k,m) for some a,c,e, f,k,m (148a)

T = B(u,0) L B(u',0) L (Bse(t)) L (Bse(t'))
A1 A1 A3 A3 s X6

for some t,u, )\17 )\37 )\5, )\6 (148b)

The matrix Trrie is the special case of T5 where the horizon-
tal 2-fold axes are at = /2 4+ nm/3. Thus the y-axis, not
the z-axis, is one of the 2-fold axes.

12.1.8 Reference group Uy = {1}
The condition St D U is satisfied for all T.
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12.1.9 Only a one-way test for St O Unono

Let
a
b
(& (2 o S
TI\?ONO = i d i p (149)
o j e k
s p k f

The matrix T\% is the matrix of T when St D Usono and
when the double couple eigenvectors Bi2(r) and Bi2(r') of T
are By and Bs (in either order), so that their null axes are in
the x and y coordinate directions. The condition [T] = Tyt
implies St D Unono, but the converse is false.

To describe all elastic maps having 2-fold symmetry
with axis vertical, one wants the matrix Tyono. On the other
hand, every T having 2-fold symmetry is equivalent to an
elastic map whose matrix with respect to B is Ty, (for
some a,b,...).

The matrices Tyoxo and T,0w, are comparable to the
matrices in Egs. (3.29) of Helbig (1994).

13 Symmetry for a subspace of M

When a subspace W of M is invariant under V we will also
say that V is a symmetry of W:

V is a symmetry of W <= V(W) C W (150)

We thus have two notions of symmetry: one for an elastic
map T (Eq. 69), and one for a subspace W of M. Theorem
13, next, relates the two notions. Due to the close relation,
subspace symmetry will be our key to identifying the sym-
metry of elastic maps, in Section 15. For example, a con-
sequence of Theorems 13 and 16 is that if an elastic map
T has a simple eigenvalue whose eigenvector (3 x 3 matrix)
is generic (Fig. 7d), then the symmetry of T can only be
orthorhombic, monoclinic, or trivial. Thus, trigonal, tetrag-
onal, cubic, transverse isotropic, and isotropic symmetry can
often be ruled out by casual inspection of the eigensystem
for T.

Theorem 13. A rotation V' € U is a symmetry of an elastic
map T if and only if V is a symmetry of each eigenspace
of T.

Proof. The theorem is just a paraphrase of Theorem 1. []

When V' is a symmetry of a one-dimensional subspace
W = (F), we will also say that V is a symmetry of E itself.
Theorems 14 and 16 show that the symmetries of E are easy
to recognize from the beachball for E.

Theorem 14. A rotation V' € U is a symmetry of £ € M
if and only if V(F) = +E.

Proof. First suppose V is a symmetry of E. Since E € (E)
then so is V(E). Since (E) is one-dimensional, then, for some
number ¢,

V(E)=tE (151)
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Since V is unitary, then |V (E)|| = ||E|. Hence
V(B = [ItE]
IEI= [t E]
t=+1 (152)
Hence V(E) = +E. -
Conversely, suppose V(E) = xE. If I' € (E), then
F =tF for some t, and V(F) = V(tE) =tV (E) = £tE €
(E). Hence V is a symmetry of (E). [

The condition V(E) = —E severely constrains E. If
Wi, 2, 3 are the eigenvalues of E in descending order, then
—ps, —i2, —p1 are the eigenvalues of —FE' in descending or-
der. Since for any V € U the matrices E and V(E) have the

same eigenvalues, then V(E) = —F implies p3 = —pu; and
w2 = 0. Thus,
V(E) = —E = E is a double couple (153)

We mentioned in Section 3.1.1 that the beachball for
V(E) is the result of applying the rotation V to the beach-
ball for E. Informally, Theorem 14 says that V is a symmetry
of E if and only if the rotated ball differs from the original
ball by at most a swapping of red with white. This of course
assumes that the ball for E is bicolored, not just one solid
color.

Fig. 9 illustrates Theorem 14 and Eq. (153). The ro-
tation Zp,; is a symmetry of each of the five subspaces
in the figure. The one-dimensional subspaces are (Bsa(s)),
(Bsa(s")), (Bse(t)), and (Bse(t')). Using Z, /2 to rotate the
beachballs for the matrices Bsg(t) and Bse(t') has no effect
on the appearance of the balls. Doing the same for Bsa(s)
and Basa(s’), which are double couples, has the effect of re-
versing red and white on each ball.

We denote the group of symmetries of E € M by S(E):

S(E)={V €U:V is a symmetry of E} (154)
For a subspace W of M, we likewise use the notation S(W)

to refer to the group of symmetries of W. Given W, we can
consider the elastic map T such that

T=W.LW" (155)

1 2
Since the symmetries of W are the same as those of W+
(Eq. 46), they are also the symmetries of T, by Theorem

13. The group S(W) is therefore an elastic symmetry group.
There are not many possibilities for a symmetry V of E.

Theorem 15. (S(FE) for diagonal E)

I
E= I = S(F) = Uso (156a)
I
1
E= 1 = S(E) =Uuaso (1 # ps) (156b)
3
I
E = —u = S(E) = Urmr (156¢)
0
If E is diagonal and generic (Eq. 92) then S(E) = Uorrn
(156d)

Proof. The theorem should seem plausible just from beach-
ball pictures. For algebraic proofs of Egs. (156b) and (156d)

see Appendix A of Tape & Tape (2012). A variation of the
argument for Eq. (156d) shows that if E is a double cou-
ple then the rotations V that give V(E) = —F are the
two 180° rotations about the fault plane normals, together
with the £90° rotations about the null axis. Together with
Eq. (156d), this gives Eq. (156¢). [

From Theorem 15 we get, more generally,

Theorem 16. (S(F) for arbitrary F)

(i) If F is generic then its symmetry group S(E) is con-
jugate to Uorru. The non-trivial members of S(E) are the
three 2-fold rotations about the principal axes of E.

(ii) If E is a double couple, then S(E) is conjugate to Urer.
The null axis of E is the 4-fold axis of S(E), and the T and
P axes of F are two of the 2-fold axes of S(E).

(iii) If F is a crack matrix, then S(F) is conjugate to Uxiso-
The c-axis of E is the regular axis of S(E).

Thus the symmetry of E is obvious from the (perhaps per-
turbed) beachball for E.

Symmetry groups S(W) for selected subspaces W of M
were given in Table 2. As an example, we derive S(W) for
W = (By, Bs). The subspace W is (Bs)* N (Ba, Bs, Bs)—
the diagonal matrices that are deviatoric. Since conjuga-
tion preserves matrix trace, then S(Ba4, Bs,Bs) C S(W).
Conversely, S(W) C S(Bu, Bs, Bs), since if V € S(W) and
F € (B4,Bs,Bs), then F = E + tI for some E € W and
t € R, and

V(F)=V(E+tl) = V(E)+tV(I) = V(E) +tI € (Ba, Bs, Bs)
——
ew
(157)
Hence S(W) = S§(Bu4, Bs, Bg). From Proposition 1 of Tape
& Tape (2016) we know that S(By, Bs, Bs) = Ucuss. Thus

S(Ba, Bs) = S(Bs, Bs, Bs) = Uouns (158)

Theorem 17. The eight reference groups are elastic sym-
metry groups. That is, for each reference group U (Table 3)
there is an elastic map T for which St = U.

Proof.

(i)—(v) Each of Uiso, Usiso, Urer, Uorrs, Ucuss is the sym-
metry group of a subspace of M (Theorem 15 and Eq. 158)
and hence is an elastic symmetry group; see Eq. (155).

(vi) For U = Unono. We can take

T = (Bi1) L (B2) L(Bsa(s)) L (Bsa(s")) L (Bse(t)) L (Bss(t)),
A1 Ao A3 A4 As A6

(159)
where, say, s = 55°, t = 40°, and where A1, ..., \¢ are dis-
tinct, so that each of (Bi),...,(Bss(t')) is an eigenspace
of T. The beachballs for By, ..., Bss(t') appear in Fig. 9,
the balls for B; and Bz being at (z1,z2) = (1,0) and
(z1,22) = (0,1). The symmetries common to all six beach-
balls are Z, and I, hence St = Uyono-

(vil) For U = Urnie. We can take T as in Eq. (148b) with
AM=X=12A3=2 A=3,t=v=0, and u =7/4. Then
(Bs) is an eigenspace of T and has symmetry group Usiso,
hence St C Uxiso. The members of Uxso are the rotations Z¢
(any €) and the horizontal 2-fold rotations Zg X, Z, (any ).
Which of them are in St?7 The matrix of T with respect to



B is

(160)

2

Using the A-test, we find that Z¢ is a symmetry of T if and
only if £ = n27/3, and ZoXnZg is a symmetry of T if and
only if 0 = 7/2 + nn/3. Hence St = Urnic.

(viii) For U/ = U;. Let T be as in Eq. (23). The eigenvalues
of T are 3/5,4/5,...,8/5. Eigenvectors for eigenvalues 3/5
and 4/5 are

-1 0 0 1 0 V3
G=|l0 1 1|, G.=[l0 1 0 (161)
0 1 0 V3 0 =2

The matrices G; and G2 are generic and have no principal
axis in common. The non-trivial symmetries of any generic
matrix are the three 2-fold rotations about its principal axes,
so the only symmetry common to the eigenspaces (G1) and
(G2) of T is the identity. Hence St = U;. Fig. 4 is the
beachball picture for T.

14 The elastic symmetry groups

In Theorem 18 below we show that the symmetry group of
every elastic map is the conjugate of some reference group
(Table 3). Together with Theorem 17 this means that the
elastic symmetry groups are exactly the conjugates of the
eight reference groups.

In a tour de force in their Section 6, Forte & Vianello
(1996) detail the long history of the problem of determining
the number of elastic symmetry groups. We cannot possi-
bly do justice to their recounting of it. We only mention
that in the older literature the seemingly natural groups
{I,Zz)2,Zx, Z3r 2} and {1, Zor/3, Zsny3} were incorrectly
considered to be elastic symmetry groups (e.g., Nye 1957,
1985; Cowin et al. 1991). (The discussions were not explic-
itly in terms of elastic symmetry groups, so our paraphrase
is loose.) This would bring the number of elastic symmetry
groups to ten, not eight. This of course counts conjugate
groups as the same.

Forte & Vianello (1996) gave a proof concluding that
the correct number was eight, and other proofs appeared
later, also concluding eight (e.g., Chadwick et al. 2001; Béna
et al. 2007). Our proof, also concluding eight, may neverthe-
less be of interest, due to its pedestrian approach. It mainly
involves circles on a sphere, as in Figs. 16, 17, 18. The proof
is tedious, however, in that Lemma 4 requires consideration
of various cases.

Fortunately, the ideas in the proof of Lemma 4 are not
needed elsewhere in the paper, so the proof can be skipped
if desired. Neither Theorem 17 nor Theorem 18, however,
should be regarded as mere formalities. Their conclusions are
not obvious, as illustrated by the historical confusion over
the two groups {I, Z. /2, Zx, Z3r 2} and {1, Zar 3, Zar3} al-
luded to above.

In connection with Lemma 2, a point v on the unit
sphere is a “regular axis” for a group U of rotations if all
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rotations about v are in ¢. Thus v = +001 are the regular
axes for Uxiso.

Lemma 2. If a group U}, is conjugate to Usso, then there
is no group U strictly between Uy,s, and Usso. That is,

u)/(ISO C L{ C ulso —— (u = u)l(ISO or Z/{ = Z/[ISO)

Proof. Suppose Usso C U C Uiso. If U = Uyso, then we are
done. If not, there is a rotation U in U —Uys,. If v1 is one of
the two regular axes for Uy, then both vi and vo = Uv;
are regular axes for U, with vi # £vo. Then U is all of Uiso,
as illustrated in Fig. 15.

Lemma 3. Let U be an elastic symmetry group contain-
ing distinct 2-fold rotations V4 and V2. Let a be the angle
between their rotation axes, here considered as lines rather
than vectors, so that o < 90°. If « # 45, 60, 90°, then U is
either Uiso or a conjugate of Usxiso.

Proof. Since Vi and V, are 2-fold, the product rotation
Vi V2 has rotation angle 2a. (So does V> Vi; as vectors,
the rotation axes of Vi Vo and Vo Vi are oppositely di-
rected.) Since « # 0, 45, 60, 90°, then 2« is regular. Since
V1 Va € U, then U has a subgroup Uy, conjugate to Usiso, by
Theorem 10. Thus U%s, C U, and so U must be Uy,s, or Usso,
from Lemma 2. [

We define a point v of the unit sphere to be an avail-
able 2-fold point for a group U of rotations if the angular
distances between v and the axes of all 2-fold rotations in
U are 45°, 60°, or 90°. Note that if v is an available 2-fold
point for U then so is —v.

Lemma 4. For a subgroup U of U and for a 2-fold rotation
V, let U(V) be the smallest elastic symmetry group that
contains U and V. Then if U is a conjugate of a reference
group (Table 3), so is U(V).

Proof. Let v be one of the two points where the rotation
axis of V intersects the unit sphere.

(i) The case where v is not an available 2-fold point
for U. There is a 2-fold rotation V' € U with rotation axis
v’ such that v/ -v > 0 and Z(v,v’) # 45, 60, 90°.

If V' =V, then V € U and U(V) = U. (Note that
U is itself an elastic symmetry group, by Theorem 17 and
Eq. 133.)

If V! # V, then applying Lemma 3 to U(V') shows that
U(V) is either Uiso or a conjugate of Uxso.

(ii) The case where v is an available 2-fold point for U.

If U = U, the group U(V) is a conjugate of Usiono-

If U = Uniono, then the point v is 45°, 60°, or 90° from
the north or south pole, and the group U(V) is a conjugate
of Urgr, Urria, Or Uorrn, respectively. (If U is only a conjugate
of Uniono Tather than being Uyiono itself, the conclusion does
not change.)

If U = Uorru the available 2-fold points for U are shown
in Fig. 16; the point v must be one of them. From the fig-
ure, the points vi = 101 and vy = 11y/2 are the only two
essentially different possibilities for v.

The case v = vi: Since Z(v,100) = 45° and v x 100
010, then U(V') has a 4-fold axis at 010. The group U (V) is
then the conjugate of Uy that has 2-fold axes at 101, 100,
101, and 001. (It is a subgroup of the group of symmetries
of the dashed cube in Fig. 16b.)

The case v = vs: Since v and the three 2-fold axes for

FIG. 15
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U are edge midpoints or face centers of the dashed cube in
Fig. 16c, then U (V) must be a subgroup of the rotational
symmetry group of the cube. Since Z(v,001) = 45° and
v x 001 o< 110, then U(V') has a 4-fold rotation with axis at
(the face center) 110. Since Z(v,100) = 60° and v x 100
0v/21, then U(V) has a 3-fold rotation with axis at (the
lower right cube vertex) 0v/2 1. The group U (V) is therefore
a conjugate of Ucyps.

If U = Urgr the group U(V) is a conjugate of Usyps. The
argument is similar to that for U = Uorru.

If U = Urric then U(V) is a conjugate of Ueupe or Usiso-
See Fig. 17.

If U = Ucuse there are no available 2-fold points for U;
see Fig. 18.

If U = Uxiso there are also no available 2-fold points

fortd. O

Theorem 18. (The elastic symmetry groups are con-
jugates of the reference groups.)

For any elastic map T the group St of its symme-
tries is a conjugate of one of the eight reference groups
Uy, Unono, - - -, Uiso in Table 3. That is, for each T there
is a reference group U and a rotation matrix U such that
Sr=0uUU".

Proof. The idea of the proof is to start with the trivial group
{I} and add 2-fold rotations from St one-by-one, and then
to see what groups are generated.

More precisely, we construct subgroups U* of U by

u' = {1}

U =UF(Vir), Vie1r € St —UY, Vi is 2-fold

(162)

The construction terminates when St — U* contains no
2-fold rotation Vj41 to add. Until then, we have

U cu’cu’ c... (163)
Each U* is a subgroup of St, and each U* is a conjugate
of some reference group, by Lemma 4. Then, since the sub-
group containments in Eq. (163) are strict, there can be at
most eight of the U*. (If U* is a conjugate of Usso, then
U = Uiso, by Lemma 2). Thus, for some k < 8,

U cutc...cu” (164a)

St —U" contains no 2-fold rotations (164b)

Theorems 10, 11, 12 then tell us that the set St — U* is
not just devoid of 2-fold rotations, it is in fact empty. Then
St = U and so St is a conjugate of a reference group. [

With St = UUUT as in the theorem, we refer to U as
the reference group for T. We then call the symmetry of T
trivial, monoclinic, ..., isometric according to whether the
reference group is U1, Uniono, - - -, Uiso. Although T uniquely
determines its reference group, the rotation matrix U is
not unique, since U can always be replaced by UV, where
vuv’ =u.

For each elastic map T there is a “characteristic solid”
whose group of (rotational) geometric symmetries is St. If
the solid is sculpted out of the material whose elasticity
is described by T, without reorienting it, then its elastic
symmetries are the same as its geometric symmetries. In
Fig. 20 (next section), for example, the characteristic solid

for T’ is the brick at the upper right. The elastic symmetries
of T’ are obvious from the brick.

If the material being considered is reoriented, its elastic
map T is apt to change, and its elastic symmetry group
St = UUUT is apt to change, but its reference group U
will not.

15 Finding the symmetries of elastic maps

In Sections 15.1-15.7 we find the symmetries of seven elastic
maps T’. To get an impression of the method, it is enough to
read just one or two of the seven sections. Readers wanting
to use the method themselves, however, will want the full
repertoire of seven examples.

Given an elastic map T’, we know from Theorem 18
that its symmetry group has the form St/ = UUU ", where
U € U and where U is one of the eight reference groups. For
most T’ the reference group U can be found just by inspec-
tion of the beachball picture for T'. Initially, we therefore
recommend ignoring the main text and just looking at the
beachball figures and their captions (e.g., Figs. 19 and 20).
First, however, review Theorem 16, so as to be able to rec-
ognize beachball symmetries.

In the figures the rotation U gives the orientation of
the beachballs. Although U can usually be guessed approxi-
mately and informally from the figure, the analytic approach
described in the text is needed to find the matrix U explic-
itly and thus to give a complete description of the symmetry
group St.

We treat the entries in our matrices [T'] as exact. Thus
we are ignoring the important practical problem of how to
incorporate observational uncertainties into our analyses.
See, for example, Danek et al. (2015).

Many authors have treated the problem of identi-
fying the symmetries of given elastic maps. See Backus
(1970); Helbig (1994); Baerheim (1998); Béna et al. (2007);
Abramian et al. (2019).

15.1 Example: monoclinic

We will find the symmetry group St of the elastic map T’
whose matrix with respect to B is

222 —12v/6 —82 21v6 —39v2 0

196 12v6 30 10v/3 —16

=L | - . 222 9v6 -51v2 0
80 | .. .. .. 242 —6v3 —24
254 83

304

(165)

An eigensystem of T’ is shown in Fig. 19. From the figure,
T = (G1) L (G3) L (G4) L (G2,G5,Ge) (166)
1 2 3

4,4,4

The one-dimensional eigenspaces are (G1), (G3), (G4). The
matrix G is a double couple and therefore has tetragonal
symmetry, whereas G3 and G4 are generic and therefore
have orthorhombic symmetry; see Theorem 16. Orthorhom-
bic symmetry is more informative than tetragonal symme-
try, in the sense that it puts more constraints on the symme-
try of T'. We will consider G3—the eigenvector of T’ with
eigenvalue equal to 2.

FIG. 19



From Eq. (165),

-3 V2 -3V3
Gs=| v2 23 V2 (167)
-3v3 —V2 -3

(We have omitted the normalizing factor 1/(4+/5), which is
inessential.) Diagonalizing gives G3 = UH3U ", where

V341
H3 =2 V3—1 (168a)
_2\/§
L[ L 1 V2
U=3|-v2 -2 0 (168b)
1 -1 V2

The matrix of the elastic map T = U o T’ oU with respect
to B is

[T] = [0]" [T] [U]

50 + 15v/3 —15
—15 50 — 15v/3
_ 1 64 0 0 -8
20 0o 76 12 o0 [’
0 12 44 0
-8 0 0 76
(169)
And from Egs. (166) and (47),
T = (Hy) L (H3) L (Hy) L (Ho, Hs, He)
1 2 3 4,4,4
(H;=U"TG;U) (170)

From Eq. (168a) the matrix Hs is diagonal and generic.
Hence from Eq. (156d) the group S(Hs) of symmetries of
Hs is Uorrn = {1, Xx,Yr, Z=}. Since (Hs) is an eigenspace
of T, then from Theorem 13,

St C{I, X, Y, Zx}, (171)
—_———

S(Hg)

Using Eq. (169) and applying the A-test to X, Yx, Zx, we
find that only I and Z, are symmetries of T. Thus St =
{I, Zz} = Uyono, and then Str = Uldyono U " ; the symmetry
of T is monoclinic. (Here U can be replaced by the more
transparent matrix Yy 4, since UZsz,/y = Yn/4.) The two
matrices in the group St/ are

1 0 0 0 0 1
0 1 0)and [0 -1 O
0 0 1 1 0 0

The wedge at the upper right in Fig. 19 is the characteristic
solid for T". If it had been sculpted out of the hypothetical
material under consideration, without reorienting the ma-
terial, then its geometric symmetries would be the same as
its elastic symmetries. (All symmetries are understood to be
rotational, as usual.)

Elastic symmetry with beachball pictures 21

15.2 Example: orthorhombic

We next find the symmetry group Sy of the elastic map T'
whose matrix with respect to B is

38 18 3v2 —5v2 —v6 —8
38 3vV2 52 V6 -8
/ 11.. .. 4 0 —7V3 6
[T}_To . 20 0 0
27 —2V3
56

(172)

An eigensystem of T’ is shown in Fig. 20. From the figure,
T = (G1) L (G2) L (G3) L (G4) L (Gs,Ge) (173)
1 2 3 4

6,6
The one-dimensional eigenspaces are (G1), (G2), (G3), (G4).
The matrices G1,G2,G3s are double couples and therefore
have tetragonal symmetry, whereas G4 is generic and there-
fore has the more informative orthorhombic symmetry. We
therefore consider G4— the eigenvector of T’ with eigen-
value equal to 4.
From Eq. (172),

VB+V3 V2T V6

Gi=| —v27T V8+V3 V6 (174)
V6 V6 VB—-V12
Diagonalizing gives G4 = UH4U ", where
1+v6
Hy=+38 1 (175a)
1-6

) V21—l
U=3 -2 1 -1 (175b)

0 V2 V2

The matrix of the elastic map T = U" 0T oU with respect
to B is

(T] = [U] " [T'][U]
10
15
1 5
5 28 23 2 ,  (176)
23 24 —2V/3
2 —2v/3 28
And from Egs. (173) and (47),
T = (H,) L (Hs) L (H3) L (Hy) L (Hs, Hg)

(H;=U"@G,;U) (177)

The matrix Hy is diagonal and generic (Eq. 175a), and so the

group S(H4) of symmetries of Hy is Uorrs = {I, X, Yr, Zx },
from Eq. (156d). Then

Z/[ORTH C ST - Z/[ORTH

——

S(Hy)

(178)

The first subset containment is due to the matrix [T] in
Eq. (176) having the form of the reference matrix Torrs in
Table 4, and the second is due to (H4) being an eigenspace
of T; see Theorem 13. From Eq. (178) we have St = Uoru
and then St = UlormuU T; the symmetry of T’ is orthogo-
nal.

FIG. 20
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The brick at the upper right in Fig. 20 is the charac-
teristic solid for T’. If it had been sculpted out of the hypo-
thetical material under consideration, without reorienting
the material, then its geometric symmetries would be the
same as its elastic symmetries.

15.3 Example: tetragonal

Next we find the symmetry group St for the map T’ whose
matrix with respect to B is

168 4v6 —40 6vV6 62 0

324 —4V6 —42 —14V3 16V3

[T’}:i . . 168 —6v6 —6v2 0
64 | .. . . 233 35v/3 —8V3
163 -8

352
(179)

An eigensystem of T’ is shown in Fig. 21. From the figure,
T' = (G1,G2) L (Gs) L (Ga) L (Gs) L (Ge)
3 4 5 6

2,2

(180)

The one-dimensional eigenspaces are (G3), (G4), (Gs), (Ge).
The matrices G3 and G4 are double couples, and G5 and G
are crack matrices. The double couples are more informative
than the crack matrices. We consider Gs—the eigenvector
of T/ with eigenvalue equal to 3.

From Eq. (179),

-1 V6 1
Gs=|v6 2 —V6], (181)
1 —v6 -1
Diagonalizing gives Gs = UH3U ', where
4 L 1 =3 2
ng( —4 > U:7 V6 V2 0 (182)
0 8 -1 V3 2

The matrix of the elastic map T = U~ o T’ o U with respect
to B is

[T] = [0]" [T] U]

4
4
1 8
-1 . L sy
11 -1
-1 11
And from Egs. (180) and (47),
T = (Hy,Hs) L (Hs) L (Ha) L (Hs) L (H)
2,2 3 4 5 6
(H;=U'"G,U) (184)

From Eq. (182) the matrix Hs is a double couple of the form
in Eq. (156¢), and so S(H3) = Urer. Then

Z/[TET C ST C Z/[TET (185)
~—~

S(Hz)
The first subset containment is due to the matrix [T] in

Eq. (183) having the form of the reference matrix Ther, and
the second is due to (Hs3) being an eigenspace of T; see

Theorem 13. From Eq. (185) we have St = Uqer, and then
Str = Uldysr U ; the symmetry of T’ is tetragonal.
For example, a 4-fold rotation in St/ is

1 =2 1
UZpUT =5 (V2 0 V2 (186)
1 V2 1

The square prism in Fig. 21 is the characteristic solid for T".

15.4 Example: transverse isotropic

Next we find the symmetry group St/ of the map T’ whose
matrix with respect to B is

532 92v/3 122 —2v3  —60 48

348  —2v/3 126  —20v/3 163

[T,]:i . . 349 31v3  -126 24
128 | .. . . 287 —42v/3 83
212 —-16

704

(187)

An eigensystem of T’ is shown in Fig. 22. From the figure,
T = (G1,G2) L (G3,G4) L {G5) L (Gg)
3,3 5 6

1,1

(188)

The one-dimensional eigenspaces are (Gs) and (Ges). Both
G5 and G are crack matrices. We consider Gs—the eigen-
vector of T’ with eigenvalue equal to 5.

From Eq. (187),

8245 —v27 —6
Gs=| —v27 8/2-1 —6v3 |, (189)
—6 —6v3 8v/2-4
Diagonalizing gives G5 = UHsU ", where
V2+1
Hs =8 V2+1 (190a)
V2-2
L 1 =6 1
v=—1[v3 v2 3 (190b)
vBl\ly o 2

We always require U to be a rotation matrix, but here, with
G5 being a crack matrix, independent eigenvectors of G5
are not necessarily orthogonal, so some care was required in
getting U.

The matrix of the elastic map T = U" o T' o U with
respect to B is

[T] = [U]"[T] [U]

! S a9
1 -1
-1 11

And from Egs. (188) and (47),

T = (Hi,H2) L (Hs,Hs) L (Hs) L (Hg)
1,1 3,3 5 6

(Hi=U"G,U) (192)

FIG. 22
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From Eq. (190a) the matrix Hs has the form in Eq. (156b),
and so S(Hs) = Uxiso. Then

uXISO C ST C z/{XIso (193)
N~
S(Hs)

The first subset containment is due to the matrix [T] in
Eq. (191) having the form of the reference matrix Txso, and
the second is due to (Hs) being an eigenspace of T. From
Eq. (193) we have St = Uxiso, and then St = UL{XISOUT;
the map T’ is transverse isotropic.

The cylinder in Fig. 22 is the characteristic solid for T’.
If it had been sculpted out of the hypothetical material
under consideration, without reorienting the material, then
its geometric symmetries would be the same as its elastic
symmetries.

If the matrix [T] in Eq. (191) had not had the form
of Txiso, we would not have had the benefit of the first con-
tainment in Eq. (193). We would then test the rotations
in Uxiso to see which are symmetries of T. The proof of
Theorem 17(vii) describes a comparable calculation.

15.5 Example: cubic

Next we find the symmetry group St/ of the map T’ whose
matrix with respect to B is

52 4 16 —6 —2v3 0
. 64 4 12 43 0
11.. .. 52 —6 —-2v/3 0
T = — 194
Tl=%|. . . 3vV3 0 (194)
39 0
108

One eigensystem of T’ is shown in Fig. 23 and given in
Appendix E. From the figure,

T = W 1 (G4,Gs) L (Ge), (195)

1,1,1 2,2 3

where W' = (G1,G2,G3). The lone one-dimensional eigen-
space is (Gg) = (I), whose symmetry puts no constraints on
the symmetry of T'. All is not lost, however. From Fig. 23,
the matrices G4 and G5 appear to have a common eigen-
frame U. Analytically, we find from Eq. (194) that

Gys=UH,U", Gs=UHsU" (196a)
where Hy and Hs are given in Egs. (E.1) and where
V3 -1 V2
1
U=—1 o0 2 V2 (196b)

Ve\_vs 1 w2

Since H4 and Hs are diagonal, then U is indeed a common
frame for G4 and Cﬁ .

Letting T = U™ o T/ o U, we have, from Eqs. (195)
and (47),

T= W L (Hs Hs) L)

1,1,1 2,2 3

(H;=U"G,U) (197)

The two-dimensional subspace (Ha, Hs), being orthogonal
to (I), consists of deviatoric matrices, and since they are
diagonal, then (H4, Hs) must be (Ba, Bs), whose symmetry
group is Uevss (Eq. 158). Then W must be (B47B5,B6)J‘7
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whose symmetry group is also Uouse. Writing the appropri-
ate symmetry group above each summand, we have, from
Eq. (197),

Ucuse Ucuse Uiso
T= W L (B4 Bs) L (I) (198)

1,1,1 2,2 3

Thus St = Ucuss (Theorem 13) and then St/ = Uldouse U',
the map T’ is cubic. The cube in Fig. 23 is the characteristic
solid for T’.

The matrix [T], not used here, would be diagonal with
diagonal entries 1,1,1,2,2, 3.

15.5.1 Cubic symmetry in general

We have now found the symmetry group of T' in Eq. (194).
We can see from that example how cubic symmetry can
arise more generally. For an arbitrary T” and for U € U, the
map T’ has symmetry group St = Uldeuss U if one of the
following holds (for some subspace W' and some numbers
A1, A2, Ag):

T = W LUBLBU' L{I) (M, A2, Az distinct)

AL A A2 A2 A3
(199a)
T = W 1 U(B4 Bs,Bs)U" (A1 # Xa)  (199b)
AL A A2 A2 A2
T = W  LU(By,BU" (A1 #X2)  (199¢)
A1 A1 A1 A1 A2 Ao

The equations are not as daunting as they appear, since
matrices in U(Bu, Bs, Be)U " and U(Ba, B5)U " all have the
common eigenframe U. The subspace U(B4, Bs, Bs)U " con-
sists of all such matrices, and U(By, Bs)U " consists of those
that are deviatoric. Both subspaces are therefore relatively
easy to recognize.

Eqgs. (199) are the only possibilities for cubic symme-
try, as follows from Egs. (47), (143b), and Theorem 13.
Hence, from Eq. (199a), if an elastic map T’ has exactly
three eigenspaces, a necessary and sufficient condition for
S’ to be a conjugate of Ucuse is that one of the eigenspaces
be (I) and that another be two-dimensional and consist of
matrices all with a common eigenframe. (Fig. 23 is typical.)
This is Theorem 4.2 of Béna et al. (2007).

Similarly, if T” has exactly two eigenspaces, a necessary
and sufficient condition for Sr’r to be a conjugate of Ucusr is
that one of the eigenspaces be three-dimensional and consist
of matrices having a common eigenframe (Eq. 199b), or that
one of the eigenspaces be two-dimensional and consist of
deviatoric matrices having a common eigenframe (Eq. 199¢).

15.6 Example: trigonal

Next we find the symmetry group St/ of the map T’ whose
matrix with respect to B is [T'] =

4(8 — V/3) -8 3v2 —6v2 —-3v6 0
484v3) 3vV2 6v2 -3v6 0

1 . - 6 —2v3 12v3 43
16 . - . 24 6 0
52 4
88
(200)
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An eigensystem of T’ is shown in Fig. 24. From the figure,
T = (G1,G2) L {G3,G4) 1 {G5) L (Gg) (201)
1,1 3,3 5 6

The one-dimensional eigenspaces are (Gs) and (Gg). Both
G5 and Gg are crack matrices. We consider Gs—the eigen-
vector of T’ with eigenvalue equal to 5.

From Eq. (200),

V8—1 -3 0

Gs = -3 V/8-1 0 (202)
0 0 V842
Diagonalizing gives
Gs = UoHsU, , (203a)
where
V241
Hs =2 V241 (203b)
V2 -2
1 0 -1 1
U= —= 11 (203c)

The matrix of the elastic map To = Uy o T’ o Uy with
respect to B is

[To] = [Uo] " [T'] (U]

6 0 3 V3
0 6 —/3 3
113 —=v3 10 0
== . (204
41v3 3 0 10 (204)
22 -2
-2 22

The matrix [To] has the form of T3 in Table 1, so To
has a vertical 3-fold axis. Its horizontal 2-fold axes, from
Theorem 12, are at 0 = 7/2+ /18 4+ nm /3. We therefore let

1 —sint —cost 1
U=UyZ: = — sint cost 1 (t =m/18)
V2 —V2cost +/2sint 0
(205)
and
T=27 oTooZ; (t=mn/18)
=U " oT oU (206)

The map T has its horizontal 2-fold axes at § = 7/2+nmn /3.
Its matrix is

[T] = [U]"[T'][U]
3 V3

1(v3 5
== 207
3 3 5 (207)
11 -1
-1 11
And from Eq. (201),
T = (H1,H2) L (Hs,Hs) L (Hs) L (Hg)
1,1 3,3 5 6
(H;=U"TG;U) (208)

Eq. (203a) remains correct when U is substituted for Uy,
since ZgHsZg— = Hs. (In changing Uy to U, we are only
rotating the eigenframe for the crack matrix G5 about its
c-axis.) From Eq. (203b) the matrix Hs has the form in
Eq. (156b), and so S(Hs) = Uxiso. Then

ST C Z/{XISO (209)
~—~—~

S(Hs)

Using the A-test and Eq. (207) we then examine the mem-
bers of Uxiso to see which are symmetries of T. (The proof
of Theorem 17(vii) describes a comparable calculation.) The
result is St = Urnic. The map T’ is therefore trigonal, with
St/ = Ul UT. The triangular prism in Fig. 24 is the
characteristic solid for T”.

15.7 Example: trivial symmetry

Let T be the elastic map with [Tz as in Eq. (23). In item
(viii) in the proof of Theorem 17 we noted that the eigenval-
ues A1 and A2 of T were simple and that their eigenvectors
G1 and G2 were generic, with no principal axis in common.
Hence T had only the trivial symmetry.

Fig. 4 is the beachball picture for T. The characteristic
solid for T, not shown, would be an irregularly shaped solid.

A sufficient condition for trivial symmetry of an arbi-
trary elastic map is that it have simple eigenvalues \; and
A; with eigenvectors G; and G; that have only the trivial
symmetry in common.

15.8 Example: a defeat

Here is an example of an elastic map T’ where our method
fails to identify its symmetry. The matrix of T' with respect
to B is

252 —12v6 =52 16V6 —24v2 0

180 126 6 2v/3 —32
1] . 252 4V6 -36v2 0
160 | .. . . 211 —23v3  —48
257 —16V3
288
(210)

Two eigensystems of T’ are shown in Fig. 25, one with
orthonormal eigenvectors G, ...,Gs. the other with ortho-
normal eigenvectors Ji, ..., Js. From the figure,

T = W; L W, (211a)
11,1 2,22
where
Wi = (G1,G2,G3) = (J1, J2, J3)
Wo = (G4, G5,Ge) = (Ja, J5, Js) (211Db)

As always, the symmetry group Spv of T/ is the inter-
section of the symmetry groups of the eigenspaces of T'.
Neither of the eigenspaces W; and Ws, however, is one-
dimensional, which makes their symmetries harder to rec-
ognize. In fact in Fig. 25(a) we do not recognize either
(G1,G2,Gs) or (G4, G5, Gs) as conjugates of any of the sub-
spaces in Table 2, whose symmetry groups are known and
would have helped. With only Fig. 25(a) to work with, we
are at a dead end.

In Fig. 25(b), however, 2-fold symmetry for T’ is

FIG. 25



clear. Given analytic expressions for Ji,...,Js, we can
confirm that the symmetry of T’ is monoclinic, with
St = Ulhyoxo UT and U = Y, /a—the same as for T' in
Section 15.1. Mathematical software, however, when asked
for eigenvectors of T’ here, is not apt to be so kind as to
return Ji, ..., Js. (We only know Ji, ..., Js because we our-
selves constructed T” from them.) Our method would there-
fore fail to find the symmetry of T'.

16 Stability
An elastic map T is said to be stable if

T(E)-E>0 (E€M, E#03x3) (212a)

Equivalently, the matrix of T with respect to an orthonormal
basis G should satisfy

([Tleew) - w>0 (weR’ w#0), (212b)

Either of Egs. (212) is equivalent to the eigenvalues of T
being positive. Thus the elastic map T in Fig. 4 is stable, as
seen from its eigenvalues. Had it been unstable, there would
have been a color reversal between the beachballs for G; and
T(G;) for at least one of the eigenvectors Gi.

Using intrinsic characterizations of elastic maps—e.g.,
Egs. (143b) or (147b)—we can easily make up examples of
stable elastic maps T that have prescribed symmetries; see
Eq. (49).

Attempting the same using matrix characterizations
will usually fail. If, for example, we choose each matrix entry
a,b,...,p of Togrn randomly between —1 and 1, the proba-
bility of getting a stable matrix is only =~ 0.001. We can get
some insight into why this should be so by considering the

probability of getting a stable matrix T" = (g g) when

choosing each of the entries a,b, g randomly between —1
and 1. The fractional volume of the unit abg-cube occupied
by stable matrices T can be visualized and then found to
be only about 0.1. If the same experiment is performed with
the arbitrary 6 x 6 symmetric 7' = T3 of Table 4, thus choos-
ing each entry a,b,...,v randomly between —1 and 1, the
probability of getting a stable T is for all practical purposes
zero; you cannot construct a stable matrix that way.

Either of Egs. (212) is equivalent to the more traditional
characterization of stability in terms of the 6 x 6 Voigt ma-
trix C. That is, T is stable if and only if

(w € R°, w #0), (213)

where C' is from Egs. (S13). Slawinski (2015) explains the
physical meaning of Eq. (213).

Cw-w >0

17 Summary and afterthoughts

Two reminders: All of our elastic symmetries are rotational.
The vector space M consists of all 3 x 3 symmetric matrices;
its members can be thought of as strains or stresses.

The elastic map T : M — M, assumed to be linear,
relates strain and stress at a point p in some material. A
symmetry of T is a rotation of the material about p that
leaves T unchanged. Given an arbitrary T, we wish to find
the group St of all its symmetries.
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In Sections 4-9 we describe elastic maps having the
symmetry Z¢—rotation through angle £ about the z-axis.
In Section 11, however, we find that the seemingly natural
group {(Z¢)" : n € Z} of integral powers of Z¢ is not an
elastic symmetry group unless the angle £ is 0 or w. That
is, unless £ = 0 or m, there is no elastic map T such that
{(Zg)n tn e Z} = St.

This raises the question of what in fact are the elastic
symmetry groups. That is, when is a group of rotations also
the group of symmetries of some elastic map? The answer is
given in Theorems 17 and 18: The elastic symmetry groups
are the conjugates of the eight reference groups in Table 3.
The proof of this fact does not assume that elastic sym-
metries arise from crystallographic symmetries; it is purely
mathematical.

We have two notions of symmetry for a rotation. One is
as a symmetry of an elastic map, as above, and the other is
as a symmetry of a subspace W of M. In beachball terms, a
rotation V' is a symmetry of W if using V' to rotate beachballs
whose matrices are in W gives only beachballs whose matri-
ces are also in W. The symmetries of an elastic map T turn
out to be the symmetries that are common to its eigenspaces
(Theorem 13). Since the symmetries of a subspace are often
relatively easy to recognize, we are usually able to realize
our original goal of finding the group St of symmetries of T
(Section 15).

For more of a summary than that, we recommend the
introduction. In this concluding section we only add a few
comments that would not have made sense in the introduc-
tion.

The orthonormal basis B of M (Eq. 3) makes the refer-
ence matrices simple (Table 4). In the literature, one encoun-
ters the basis @ defined in our Eq. (S23); see, for example,
Eq. (2.5) of Mehrabadi & Cowin (1990) or Egs. (4) and (5)
of Béna et al. (2007). The basis ® plays the same role as B,
but it is less suited than B for the study of symmetry. His-
torically, ® arose because it was orthonormal and because
the matrix [T]ss was closely related to the Voigt matrix
for T. The traditional Voigt matrix, defined in Eq. (S13),
is still used by some authors, but it is undesirable for rea-
sons explained in Section S4.5.3. It has been an obstacle to
understanding.

The fact that the groups {I,Z:/2,Zx,Z5:/2} and
{I,Z27/3, Zans3} are not elastic symmetry groups was not
always recognized and can cause some confusion. Nye (1957,
1985), for example, has ten matrices, not eight, that would
be the analogs of our reference matrices.

The significance of Theorem 5 is apt to be missed. For
an elastic map T, the theorem says that if Z¢ is a symme-
try of T for some regular £ (Fig. 1), then Z¢ is a symmetry
of T for all £&. We used the theorem in deriving the elas-
tic symmetry groups. The proof of the theorem looks easy,
but the work had already been done in Lemmas 5 and 6 of
Appendix B.

We are intrigued by the prime subspaces B(u.v) for Z,
& = 27/3. The contrast with their tame counterparts for
& = 7/2 is striking; compare Fig. 11 with Fig. 9. We suspect
that we are still missing some insights.

The results in this paper depend only on the elastic
map being linear and self-adjoint. No other assumptions are
involved.
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APPENDIX A: Proof of Lemma 1 of Section 4.3

Lemma 1 Let U : V — V be unitary and let W be a
non-zero subspace of V that is invariant under U. Then
W is the orthogonal direct sum of subspaces of V that are
prime for U.

Proof. The proof is by induction. Let P(n) be the statement
that if W is a non-zero subspace of V with dim < n and if W
is invariant under U, then W is the orthogonal direct sum
of subspaces that are prime for U.

The statement P(1) is true, vacuously.

Assume P(n) and prove P(n + 1): Let W be a non-zero
subspace with dim < n 4 1 that is invariant (under U). If
W is prime, then the sought-after orthogonal direct sum is
W = W. If W is not prime, then, among the non-zero invari-
ant subspaces of W, let W; be one of smallest dimension.
We note: (i) The orthogonal complement Wi of Wi in W
is invariant by Eq. (46). (i) dim Wi < n. (iii) Wi # {0}.
Thus P(n) can be applied to Wi, so that Wi is the orthog-
onal direct sum of prime subspaces Wa, ..., W;. Since W is
also prime, then

W=W; LWy =W, LWy Ll...1lW;
Wi, ... W, are prime (A1)

APPENDIX B: Prime subspaces for [Z|zz when &
is regular

Let A be a 6 x 6 matrix and let w € R® be non-zero. In
Appendices B and C we will be considering the smallest



subspace w of R® that contains w and that is invariant under
A. If w,Aw, ..., A’w are linearly dependent, then

W= (w,Aw, ..., AT w) (B.1)
a b

acosé 4+ bsiné bcosé —asiné
K(k) = acos2€ +bsin2f  bcos2€ — asin 2§

acoské +bsinkf  bcos k€ — asin k&

Lemma 5. Let £ be regular, that is, £ # £27/n, n =
1,2,3,4. Let the subspace E of RS be invariant under

(multiplication by) [Z¢]ge, and let dimE < 3. If w =
(a,b,¢c,d,e, f)y € Ethena=b=0o0rc=d=0.

Proof. Let A = [Z¢]ss, and consider the matrix with rows
w, Aw, A*w, A®w—it is K(3) in Eq. (B.2). The determinant
of its left-hand 4 x 4 submatrix is found to be

—16(a® + b*)(¢® + d*)(1 4 2 cos €)* sin 2¢ sin € sin” g (B.3)

Since E is invariant, then w, Aw, A’>w, A3w are all in E,
and since dim E < 3 they are linearly dependent. The de-
terminant in Eq. (B.3) must therefore be zero. The factors
involving &, however, are non-zero, since ¢ is regular. Hence
a=b=0orc=d=0. [

Lemma 6. If ¢ is regular, the prime subspaces of RS for

(multiplication by) [Z¢|se are Ei2, Es4, and (ese(t)) (any t).

Proof. Let A = [Z¢]gs. We look first for the subspaces of
dim < 3 that are prime for A. From Eq. (83) we can see
that the following subspaces are invariant under A.

dim 3 Ei2 L (es6(t)) Esa L (ess(t))

dim 2 Ei2 Esq Ese
dim 1 (ess(t)) * (BY)
dim 0 {0}

But are they prime, and have we found all of them?

To that end, suppose that a subspace E has dim < 3
and is prime (for A). Since it is prime, it contains a non-
zero element w = (a, b, ¢, d, e, f). Again since E is prime, the
smallest invariant subspace w containing w must be all of E.
Since dim E < 3 then W = (w, Aw, A’w), from Eq. (B.1).
The rows w, Aw, A’w of the matrix K (2) in Eq. (B.2) there-
fore span E, and the same will be true for the rows of any
matrix that is row equivalent to K(2).

(i) The case ¢? 4+ d*> # 0 (and necessarily @ = b = 0,
from Lemma 5): The matrix K (2) is row equivalent to

00100 0
00010 0 (B.5)
0000 e f

The subspace E is therefore spanned by es, e4, and
ees + feg. If €2 4+ f2 # 0, then E is the three-dimensional
subspace Es4 L (es6(t) for some ¢, but it is not prime, since
it has proper invariant subspaces. If e = f = 0, then E is
the two-dimensional space Es4.

(ii) The case a? 4 b* # 0: Similar to (i). The only can-
didate for a prime subspace is Ejs.

c d e f
ccos 2§ — dsin 2€ dcos2 +csin2 e f
f

ccos4& — dsin4é

ccos2kg — dsin2k§  dcos2k€ + csin 2kE
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We will also need the matrix K (k) whose rows are
w,Aw, ..., APw. For A = [Z¢|ps and w = (a,b, ¢, d, e, f) €
RS, it is (from Eq. 83)

dcos4€ + csindé e

[

(iii) The case a = b = ¢ = d = 0: The subspace E must
be (es6(t)) for some ¢.

Thus the only possible prime subspaces of dim < 3 are
Ei2, Es4, and (ess(t)). Since no one of them contains an-
other, they are indeed prime.

Could there be a prime subspace with dim > 37 If so, it
would have dimension 4 or 5 (RS is not prime) and it would
then have to be the orthogonal complement of an invariant
subspace of dimension 1 or 2. But the invariant subspaces
of dimension 1 and 2 are now known (bottom two rows of
Eq. B.6), and their orthogonal complements, shown above
them, are not prime:

dim 5 E12 1 E34 1 <E56 (t/)>
dim 4 ]E34 1 E56 E12 1 ]E55 E12 1 E34
dlm 2 E12 E34 E56 ’
dim 1 <e56 (t)>

(B.6)

APPENDIX C: Prime subspaces for [Z¢|gz when
&=2m/3

We define the unit vector e(f,u,v) in RS by

e(f,u,v) =(cosb) (cosu, 0, sinucoswv, sinusinv, 0, 0) +

(sin@) (0, cosu, — sin usin v, sinucoswv, 0, 0)

(C.1)
Then
e(0,u,v) = (cos ) e(0,u,v) + (sinf) e(n/2,u,v) (C.2)

For each uw and v we define E(u,v) to be the subspace
of R® spanned by the orthonormal vectors e(0,u,v) and
e(m/2,u,v):

E(u,v) = {re(f,u,v) : r,0 € R} (C.3)

Note that in the two-dimensional space E(u,v) the angle 0
is indeed the usual angular polar coordinate with respect to
the basis vectors e(0,u,v) and e(7/2,u,v). And on E(u,v)

multiplication by [Z¢|ge is rotation through angle —&:

[Z]]B]B(e(g, u, U)) = e(@ - 57 U, U) (€ = 27T/3) (04)

Hence E(u,v) is not only invariant under [Z¢]gg, it is prime.

Lemma 7. Let £ = 27/3. The subspaces of RS that are
prime for (multiplication by) [Z¢|gs are E(u,v) and esq(t)
(any t,u,v).

Proof. Let E be prime for A = [Z¢|ps with { = 27/3, and
choose a non-zero point w = (a,b,c,d,e, f) in E. Since E
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is prime then W = E, and since A*>w = w (Eq. 83) then
W = (w, Aw, A>w). As in the proof of Lemma 6, we consider
the matrix K = K(2) whose rows are w, Aw, A?w. Tts rows
span E and hence so do the rows of any matrix that is row
equivalent to it. From Eq. (B.2) with & = 27/3, the matrix
K is

a b c d e f
—a+vV3b —vV3a—-b —-c++v3d —3c—d
2 2 2 2 ¢/
—a—+vV3b V3a—-b —c—+3d V3c—d e f
2 2 2 2
(C.5)

The matrix K is row equivalent to

a? +b? 0 ac+bd ad—bc 0 O
K = 0 a>+b bec—ad ac+bd 0 0
0 0 0 0 e f

(C.6)

The rows of K’ are
(a® + b, 0, ac + bd, ad — be, 0, 0) = he(0,u,v)
(0, a® + b, bc — ad, ac + bd, 0, 0) = he(n/2,u,v)
(0,0,0,0,¢, f) = Ve* + f? esq(t) (C.7)

where
h=+/(a? 4 b)(a® + b2 + 2 + d?)
u = 3(\/ a? + b2, v/ + d?)
v = 0(ac + bd, ad — be)
t="0(e, f) (C.8)

-~

and where 0(z,y) is the usual angular polar coordinate of a
point (z,y) in the plane.

The subspace E is therefore spanned by he(0,u,v),
he(r/2,u,v), and y/e2+ f2ess(t). If h = 0 then E =
(es6(t)) (w was non-zero), which is prime. If ¢* 4+ f2 = 0
then E = (e(0,u,v), e(r/2,u,v)) = E(u,v), which is prime
by Eq. (C.4). If h and e® + f? are both non-zero, then E
is three dimensional and has the proper invariant subspaces
E(u,v) and (es6(t)), so E is not prime. [

APPENDIX D: Motivation for Eqgs. (89) and (126)

To arrive at Eqgs. (89) and (126), we assume [T]gg = 75 and
then look for ¢, u, v such that [T]g,s, is diagonal. (The basis
B3 is B(t,u,v) as usual.) We find

[Tles; = [Ilsn [Tles [Lee,
= [pge T5 [T]ee,

c11 0 ci13 —ca3
0 c11 €23 C13
_ C13 C23 (33 0
T | —ces a3 0O €33

R(—t) (Z ’;) R(#)
(D.1a)

where, after some manipulations,

c11 = l(aJchrpu cos2(u — 9u))

5 — pu(1 = cos(v — 0,)) sin 2u

L (a+c— pucos2(u—0.)) + pu(1 — cos(v — 6,)) sin 2u

€33 = 5
2

1
€13 = =5 pu sin2(u — 60,) — py (1 — cos(v — 6,)) cos2u

ca3 = pysin(v — 6,), (D.1b)

where 0, and 6, are from Eqs. (126) and
pu(T) = \/(a —¢)? + 4(h? + m?)

pu(T) = Vh%2+m? (D.2)
From Egs. (F.5) and (D.la) the condition ¢ = 6. from
Eq. (89) is enough to diagonalize the lower right 2 x 2 sub-
matrix of [T|;,. From Egs. (D.1b) the conditions u = 6,
and v = 0, are enough to make ci13 = c23 = 0 and thus to
diagonalize the upper left 4 x 4 submatrix. With [T]g,s, di-
agonalized, B(¢, u, v) is an eigenbasis for T, and the diagonal
entries are the corresponding eigenvalues.

APPENDIX E: The eigenbasis for T’ in Fig. 23

With U as in Eq. (196b) the eigenvectors of T’ in Fig. 23
are G; = UH;U", where

0 V2 2-+3

Hi=| V2 0 243
2—-vV3 2443 0

0 -2 2+43

Ho=[ -2 0 23

24+v3 2-V3 0

0 V6 1
Hy=[v6 0 -1

1 -1 0

-2 0 0
Hi=|0 143 0

0 0 1-+3

-2 0 0
Hs=|0 1-3 0

0 0 1++3

1 0 0
He=10 1 0 (B.1)

0 0 1

(Normalizing factors have been omitted.) Because the eigen-
values A1 and Ay of T’ are not simple, there are infinitely
many essentially different possibilities for the G; and hence
for the H;. Note also that initially U is not known; the eigen-
vectors G; of T’ come first, and then U is found from them.

APPENDIX F: Some diagonalization

We review the diagonalization of a 2 x 2 symmetric matrix
S = (si;). We let R(6) be the 2 x 2 rotation matrix

R(6) = (cose _sin 9) E0)

sinf  cosf
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Then APPENDIX G: Glossary of selected notation
S = R(0) (/61 £2> ( )T» (F.2a) M = all 3 x 3 symmetric matrices.
where .., Wy) = subspace spanned by wi,...,wy
1 _ 1 _
= 5(511 + S22+ p), po= 5(511 + 522 — p), (F.2b) 6-tuples:

. [Elr Eq. 11
and where, with 6(x,y) being the ordinary angular polar ei,...,es = standard basis
coordinate of a point (z,y), e12(r), es4(s), ese(t) Eq. 80

e(0,u,v) Eq. C.1
- _ 2 4 4g?
p=p(S) }/(SH s22)? s 3 X 3 matrices:
é = é(S) = — (/9\(811 — S22, 2512) (F.QC) X& Y'&, Zg Eq. 50
2 i Eq. 3
Thus p and 20 are the polar coordinates of the point Bi2(r), Bsa(s), Bse(t) Eq. 79
(811 — 822, 2s12). From Eq. (F.2a) the numbezs 1 and po are B(0,u,v) Eq. 110
the eigenvalues of S, and the columns of R(0) are the corre- Bj(Usxa) Eq. 103
sponding eigenvectors. The parameter 6 is thus the angular B;(Usxs) Eq. 145
polar coordinate of the first eigenvector. The parameter p is .
zero if and only if S is a multiple of the identity matrix. 6 x 6 matrices:
An alternative to Eq. (F.2a) is Thovo, T3, Ty, Txiso Table 1
T1, Thonos Torru, Trer,y - - - Table 4
S =R(0+7/2) <“2 0 ) RO +m/2)" (F.3) [Sler  (e-g-, [Tleer) Egs. 13, 17
0 m [Mcr Eq. 32
The first and second eigenvalues are now p2 and p1. The two Subspaces of R®:
triples 0, p1, p2 and 0 + /2, po, g1 are equally valid descrip- Eio, Ess, Esc Eq. 82
tions of S. The former is the one with the first eigenvalue E(u7 v) ' Eq C.3
greater than or equal to the second. '
From Eq. (F.2b), Subspaces of M:
5 Bi2, Bss, Bse Eq. 81
1 0 s11+822 (1 O p(1 O
(‘6 m) === (o 1) +£ (0 _1) (F.4) B(u,v) Eq. 112
. . . . L . Bases for M:
Since the operation of conjugation is linear, and since
it leaves the identity matrix unchanged, conjugation of B Eq. 3
Eq. (F.4) by R(—0 + 0) gives B(t, u,v) = Bs Eq. 116
R(—0)SR(0) — (F. Linear transformations of M:
_ — . — Sz o Sl Eq. 15
s11 + S22 (1 O) 4P ( cos2(0 —0) —sin2(0 —0) ) g Eq. 33
2 0 1 2 \—sin2(60 —0) —cos2(0—0 U Eq. 51
T (r,U) Eq. 104
T4 (t, u,v) Eq. 122
Ti\(s,t) Eq. 95
T=W; L...1W, Eq. 44
A An
Orthogonality:
Wl 1 W2 Eq. 40
Wt Eq. 41
W=W; L...1LW, Eq. 42
Groups of rotation matrices:
U Section 3.1
u17ul\'lONOa Z/IORTH7I/{TET7 ce Table 4
St Eq. 131
S(E) Eq. 154

Uuw) Lemma 4
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Tyviono (5 = 7T) Txiso (f regular)
a g a
g b a
c t o s c
i d j p c
o j e k e k
s p k f kE f
Ty (§=m7/2) T5 (£ =2n/3)
a a 0 m -—h
a 0 a h m
c i m h c 0
i —h m 0 c
e k e k
E f kE f

Table 1. Matrices [T|pp for elastic maps T having rotational
symmetry Zg for § as indicated. The rotation Z /5, for example, is
a symmetry of T if and only if [T|gg = T4 for some a,c,d, e, f, i,k
(Section 6). If the basis for the matrix representations in the table
is changed from B to the basis ® defined in Eq. (S23), the matrices
analogous to T3 and Ty are consistent with Egs. (5.9) and (5.26)
of Mehrabadi & Cowin (1990). Blank entries are understood to
be zeros.

Subspace W Defining feature for members of W Member E = (e;;) of W S(W)
<Bl7 Ba, B3, B4, Bs) Deviatoric Z e;i; =0 Usso

(Bs, B4, Bs, Bg) z-axis is a principal axis ez =e13 =0 Usxiso
(Bs, B4, Bs) Deviatoric, and z-axis is a principal axis e23 =ei3 = €;; =0 Usxiso
(Ba, Bs, Bs) ryz-axes are principal axes FE is diagonal Ucusr
(B1, B2, Bs3) e11 =eg2 =e33 =0 Ucusr
(Ba, Bs) Deviatoric, and zyz-axes are principal axes F is diagonal, > e;; =0 Ucuse
(B1, B2) = Bi1a Double couple, and z-axis is a fault normal ej; = e22 =e33 =e12 =0 Uxiso
(B3, B4) = B3a Double couple, and z-axis is the null axis ej3 =e23 =e33 =0, e11 = —e2a  Uxiso
(Bs, Bg) = Bsg Crack matrix, and z-axis is the c-axis FE is diagonal,ej; = ea2 Uxiso
(Bs) Isotropic E =tI3x3 Urso

Table 2. TWO-COLUMN WIDTH. Selected subspaces W of M
relevant to elastic symmetry. The subspace (B3, B4, Bs), for ex-
ample, is the set of all deviatoric matrices with a principal axis
(i-e., eigendirection) vertical. The matrices Bi,...,Bs are as in
Eq. (3). The descriptions in the second and third columns are
intrinsic; they do not involve the basis B or any other basis of M.
The last column gives the symmetry group S(W) of W, to be
explained in Section 13. Subspaces that are orthogonal comple-
ments of each other, such as (B1, B2, B3) and (By, Bs, Bg), have
the same symmetry group.



