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SUMMARY
The elastic map, or generalized Hooke’s Law, associates stress with strain in an elastic
material. A symmetry of the elastic map is a reorientation of the material that does not
change the map. We treat the topic of elastic symmetry conceptually and pictorially.
The elastic map is assumed to be linear, and we study it using standard notions from
linear algebra—not tensor algebra. We depict strain and stress using the “beachballs”
familiar to seismologists. The elastic map, whose inputs and outputs are strains and
stresses, is in turn depicted using beachballs. We are able to infer the symmetries for
most elastic maps, sometimes just by inspection of their beachball depictions. Many
of our results will be familiar, but our versions are simpler and more transparent than
their counterparts in the literature.

Key words: Elasticity, seismic anisotropy. theoretical seis-
mology

1 Introduction

Elasticity is about the relation between strain and stress. We
refer to the function T from strain to stress as the elastic
map. It expresses the “constitutive relations” of the material
under consideration, or the “generalized Hooke’s Law” (Aki
& Richards 2002).

The map T describes the strain-stress relation at a par-
ticular point p in the material. A symmetry of T is a rotation
of the material, about p, that does not change T. We present
a treatment of elastic symmetry that we think is more con-
ceptual than the usual approach through tensor analysis.
Our approach has its beginnings in the work of William
Thomson (Lord Kelvin) (1856) in the mid-nineteenth cen-
tury. According to Helbig (1994, 2013) and Cowin et al.
(1991), Kelvin’s insights were largely forgotten by the elas-
ticity community until much later, when they were reintro-
duced by Rychlewski (1984). Most of the ideas—especially
the notion of eigensystem of a linear transformation—were
already routine for mathematicians and theoretical physi-
cists of the early twentieth century, so it is a bit surprising
that they were still regarded as novel in elasticity in the
1980s. Rychlewski himself apparently felt much the same:

Thus we deal with the linear symmetric operator α → C · α
acting in a finite-dimensional space with a scalar product.. . . The

situation has been investigated as fully as possible, and it only
remains to translate the information available into the language
of mechanics. (Rychlewski 1984, p 305)

Thus, although our exposition of elasticity is non-traditional
vis-a-vis older expositions, it will be unremarkable to math-
ematicians and physicists. Our exposition does not use the

Voigt matrix (Eq. S13 of the Supporting Information), and
it requires no knowledge of tensors. What it does rely on
is introductory linear algebra, which we review. Specifically,
we rely heavily on orthogonality, on matrix representations
of the elastic map T, and on eigensystems of T.

Mathematically, strains and stresses are 3× 3 symmet-
ric matrices and can therefore be depicted as “beachballs,”
as seismologists do for moment tensors. Because the strain-
stress relation is assumed to be linear, any elastic map T can
then be depicted using beachballs. The depiction in princi-
ple determines T completely, but of course one cannot just
glance at the depiction and expect to infer T quantitatively.

In Sections 4–9 we characterize elastic maps T that
have as a symmetry the rotation Zξ through angle ξ about
the z-axis. There are five cases to consider: ξ = ±2π/n for
n = 1, 2, 3, 4, as well as ξ regular, meaning none of the pre-
ceding; see Fig. 1. For each case there is an intrinsic char-
acterization of T and a more conventional characterization
using matrices. Figs. 6, 9, 10, 11 illustrate the intrinsic char-
acterizations, and Table 1 lists the matrix characterizations.

FIG. 1

In Section 14 we give a relatively elementary proof that
any material can be oriented so that its group of elastic
symmetries is one of eight reference groups. The proof is
largely a matter of looking at the intersections of circles on a
sphere, as in Figs. 16–18. Matrix characterizations for elastic
maps associated with the reference groups are given in Table
4, and intrinsic characterizations are given in Section 12.1.
The simplicity of the matrix characterizations relative to
their traditional counterparts (e.g., Nye 1957, 1985, pp 140–
141) is due to our use of the basis B defined in Eq. (3).

Nowhere do we assume that elastic symmetry groups
arise from crystallographic symmetry groups. We neverthe-
less find that if an elastic map T has a symmetry with ro-
tation axis v and rotation angle ξ, where ξ is regular, then
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all rotations about v, regardless of rotation angle, are sym-
metries of T. We also find that if T has a 3-fold or 4-fold
symmetry with axis v, then it has three or four (respectively)
2-fold symmetries with axes perpendicular to v. These facts
go into deriving the eight reference groups mentioned above.

In Section 15 we show by example how to find the sym-
metry group of virtually any elastic map T. We say “vir-
tually,” because the method can be defeated by a carefully
and maliciously constructed T (Section 15.8). Our method
is related to that of Bóna et al. (2007), but we think that
our beachball pictures offer a useful complement to the Bona
approach.

Many of our results will be familiar, at least to the ex-
perts. Fig. 6, for example, which characterizes elastic maps
that have symmetry Zξ for some regular ξ, would have been
immediately recognizable to Rychlewski (1984). Likewise,
the number eight for the number of elastic symmetry groups
is now generally agreed upon (Forte & Vianello 1996; Chad-
wick et al. 2001).

An idealized seismic plane wave traveling in an arbi-
trary direction in an anisotropic elastic material is apt to
be neither a P-wave nor an S-wave. That is, the wave’s
vibration direction is neither parallel nor perpendicular to
the direction of travel. If, however, the direction of travel
is an elastic symmetry axis, then, with some unlikely excep-
tions, the wave must indeed be either a P-wave or an S-wave
(Fedorov 1968). If also the relevant elastic map T has for its
symmetry group one of the reference subgroups of Section
12, then in most cases both the vibration direction and the
speed of the wave are simply related to the intrinsic param-
eters for T. (We do not treat these topics here.)

Treatments of elasticity can be found in Fedorov (1968);
Nye (1957, 1985); Auld (1973); Musgrave (1970); Helbig
(1994); Chapman (2004); Slawinski (2015) and many others.
A reference for linear algebra is Hoffman & Kunze (1971).
Our Appendix G is a glossary of notation.

2 The elastic map

2.1 The elastic map and the cijkl

Expositions of elasticity are generally based on numbers
cijkl, i, j, k, l = 1, 2, 3, that are assumed to satisfy

cijkl = cjikl (1a)

cijkl = cijlk (1b)

cijkl = cklij (1c)

The cijkl determine a linear mapping T of the six-
dimensional space M of symmetric matrices to itself:

T(E) = F, fij =

3∑
k, l=1

cijkl ekl, (2)

where E = (eij) and F = (fij) are 3×3 symmetric matrices
(Aki & Richards 2002, Eq. 2.18). If E is the strain matrix
at a point in some hypothetical material described by the
cijkl, then F is the corresponding stress matrix. We refer to
T as the elastic map.

Eqs. (1a) and (1b) arise from the symmetry of the strain
and stress matrices. Eq. (1c) is due to the assumed existence
of a strain-energy function (Aki & Richards 2002).

Since the elastic map T is linear, we consider its matrix
representation [T]BB with respect to a basis B for M. The
calculations will be simplest, and [T]BB will best express
T, if the basis vectors are chosen to be orthonormal. The
“vectors” must of course be 3× 3 symmetric matrices, since
they are in M. We take B to be the basis whose elements are

B1 =
1√
2

0 0 0
0 0 1
0 1 0

 B2 =
1√
2

0 0 1
0 0 0
1 0 0



B3 =
1√
2

0 1 0
1 0 0
0 0 0

 B4 =
1√
2

−1 0 0
0 1 0
0 0 0



B5 =
1√
6

1 0 0
0 1 0
0 0 −2

 B6 =
1√
3

1 0 0
0 1 0
0 0 1

 (3)

The Bi are indeed orthonormal, that is, Bi ·Bj = δi j . Here
the dot is the inner product of matrices. The inner product
of 3× 3 matrices M = (mij) and N = (nij) is defined by

M ·N =

3∑
i, j=1

mij nij (4)

(Juxtaposition of matrices, with no dot, signifies matrix mul-
tiplication.)

We let tij be the ijth entry of the 6 × 6 matrix [T]BB.
That is,

[T]BB =


t11 t12 . . . t16

t21 t22 . . . t26

...
...

...
t61 t62 . . . t66

 (5)

We will find that [T]BB is symmetric. and hence the 21 en-
tries tij with j ≥ i, in conjunction with the basis B, are
enough to determine T and thus to specify the elasticity of
the material under consideration. We think that those 21
numbers are better parameters to focus on than the cijkl.
We nevertheless want to be able to translate between the tij
and the cijkl:

As will be explained in Section 2.2, the entries in the
jth column of the matrix [T]BB are the coordinates of T(Bj)
with respect to the basis B. That is,

T(Bj) = t1j B1 + . . .+ t6 j B6 (6)

Since the Bi are orthonormal,

T(Bj) = (T(Bj) ·B1)B1 + . . .+ (T(Bj) ·B6)B6 (7)

Hence

tij = T(Bj) ·Bi (8)

As an example, we calculate t14. From Eqs. (2) and (3),

T(B4) =
1√
2

c1122 − c1111 c1222 − c1211 c1322 − c1311

c2122 − c2111 c2222 − c2211 c2322 − c2311

c3122 − c3111 c3222 − c3211 c3322 − c3311


(9)
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Then

t14 = T(B4) ·B1

=
1

2
(c2322 − c2311 + c3222 − c3211)

= c2223 − c1123 (10a)

Similarly,

t46 =
1√
6

(−c1111 − c1133 + c2222 + c2233) (10b)

t66 =
1

3
(c1111 + c2222 + c3333 + 2c1122 + 2c1133 + 2c2233)

(10c)

Treating the other 33 entries tij the same way, we would
eventually have [T]BB. Eq. (S29), however, in the Support-
ing Information has a less painful calculation of [T]BB from
the cijkl. The main point at the moment is that [T]BB turns
out to be symmetric

The peculiar form of Eqs. (10) may at first be regarded
as reflecting poorly on the tij . Conceptually, however, the
tij stand on their own. From Eq. (8), the entry tij tells how
much the stress that is associated with strain Bj resem-
bles the strain or stress Bi. If anything, then, the form of
Eqs. (10) calls for a conceptual justification of the cijkl, not
of the tij . In this paper we deal with T and [T]BB rather
than with the cijkl. If the tij are known—through observa-
tion or otherwise—then, from a purely logical point of view,
the cijkl can be dispensed with. If desired, the cijkl can be
found from [T]BB using Eqs. (1) and (S28).

2.2 Matrix representations of linear
transformations of M

Let F be a basis for M with elements (matrices) F1, . . . , F6.
For a matrix E ∈ M we denote its F-coordinate vector by
[E]F. Thus

[E]F = (x1, . . . , x6) ⇐⇒ E = x1F1 + . . .+ x6F6 (11)

If the basis F is orthonormal, then

xi = E · Fi (F orthonormal) (12)

Now let S be a linear transformation of M, and let F
and G both be bases for M. We define the 6×6 matrix [S]GF
to be the matrix that takes the F-coordinate vector of E to
the G-coordinate vector of S(E):

[S]GF[E]F = [S(E)]G (E ∈ M) (13)

(Think of coordinate vectors as column vectors when matrix
multiplication is concerned.) We refer to [S]GF as the matrix
of S with respect to the bases F and G.

If S1 and S2 are linear transformations of M, and if
F, G, H are bases for M, then

[S2]HG [S1]GF = [S2 ◦ S1]HF (14a)

[I]FF = I 6×6 (14b)

where I is the identity transformation on M, where I 6×6 is
the 6 × 6 identity matrix, and where the symbol ◦ denotes
composition of functions:

(S2 ◦ S1)(E) = S2 (S1(E)) (15)

Thus Eq. (14a) says that matrix multiplication is the ma-
trix analog of composition of functions. Eqs. (13) and (14)

look innocent enough, but they are the key to many matrix
manipulations. Notice how their form suggests the correct
move.

To arrive at a more familiar description of [S]GF: From
Eqs. (11) the coordinate vector for Fj with respect to the
basis F is

[Fj ]F = ej , (16)

where e1, . . . , e6 are the standard basis for R6. The jth col-
umn of the matrix [S]GF is therefore

[S]GF ej = [S]GF [Fj ]F (from Eq. 16)

= [S(Fj)]G (from Eq. 13) (17)

In words, the jth column of [S]GF consists of the coordinates
of S(Fj) with respect to the basis G.

The diagram below summarizes the relation between
the linear transformation S and its matrix representation.

E ∈ M S(E) ∈ M

[E]F ∈ R6 [S(E)]G ∈ R6

S

[S]GF

(18)

Finally, from Eq. (13) with F = G,

S(E) = λE ⇐⇒ [S]FF[E]F = λ [E]F (19)

That is, the 3 × 3 symmetric matrix E is an eigenvector of
the transformation S if and only if the coordinate vector
[E]F is an eigenvector of the matrix [S]FF. The eigenvalues
are the same for both.

2.2.1 In terms of the elastic map T

We now take S in Section 2.2 to be the elastic map T, and
we take both of the bases F and G to be the basis B of
Eq. (3). From Eqs. (3), (11), (12), the coordinate vector of
the matrix E = (eij) ∈ M with respect to the basis B is

[E]B =
(√

2 e23,
√

2 e13,
√

2 e12,

e22 − e11√
2

,
e11 + e22 − 2e33√

6
,
e11 + e22 + e33√

3

)
(20a)

The matrix whose B-coordinate vector is (x1, . . . , x6) is

x1B1 + . . .+ x6B6 =

1√
6

x5 −
√

3x4 +
√

2x6

√
3x3

√
3x2√

3x3 x5 +
√

3x4 +
√

2x6

√
3x1√

3x2

√
3x1

√
2x6 − 2x5


(20b)

An important property of the B-coordinate mapping
E → [E]B is that it preserves the inner product, since the
basis B is orthonormal. Thus

[E1]B · [E2]B = E1 · E2 (E1, E2 ∈ M) (21)

where the dots on the left and right sides of the equation
refer to the inner products in R6 and M, respectively. The
inner product of 3× 3 matrices was defined in Eq. (4).
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2.2.2 Example: calculation of the 3× 3 matrix T(E)

Let E be the strain matrix

E =

1 0 0
0 1 0
0 0 4

 (22)

and let T be the elastic map with

[T]BB =
1

5


5 −2

6 −2
5

−2 5
−2 6

6

 (23)

(Blank entries are understood to be zeros.) Then the stress
matrix T(E) is calculated in the following steps, using
Eqs. (20):

[E]B = (0, 0 , 0, 0,−
√

6, 2
√

3) (24a)

[T(E)]B = [T]BB[E]B =
1

5
(0, 2
√

6, 0, 0, −6
√

6, 12
√

3)

(24b)

T(E) =
1

5

 6 0 2
√

3
0 6 0

2
√

3 0 24

 (24c)

2.3 A picture for the elastic map

Since the elastic map T : M→ M is linear, it is determined
by its values on any basis for M. To depict T, it is therefore
enough to depict some basis elements F1, . . . , F6 together
with the corresponding T(F1), . . . ,T(F6). This is done by
means of “beachballs,” as explained in Section 2.4. In Fig. 2
the basis is B of Eq. (3) and T is the elastic map whose
matrix with respect to B is that of Eq. (23).FIG. 2

2.4 Beachballs—a picture for strain and stress

Since the members of M are 3× 3 symmetric matrices, they
can be depicted as beachballs as is done in seismology. The
radius of the beachball for E ∈ M is made proportional to
‖E‖ and, for any point v = (x, y, z) on the surface of the
ball,

v is colored

{
red if (Ev) · v > 0

white if (Ev) · v < 0
(25)

The nodal curves on the ball, which separate red from white,
are

(Ev) · v = 0 (26)

See Fig. 3.FIG. 3
The beachball is thus a contour map of the function

v → (Ev) · v, but with only one contour, namely the zero
contour.

If the eigenvalues of the matrix E are of mixed sign,
then the beachball for E shows both red and white, and the
size and coloring of the ball determine E. If they are all of
one sign, though, the ball is all red or all white, and it does
not reveal E. In our figures, when we show a beachball for a
matrix E whose eigenvalues all have the same sign (but not

all equal), we therefore show not the beachball for E itself
but for the perturbed matrix

‖E‖ E + εI

‖E + εI‖ , (27)

where I is the 3× 3 identity matrix and where the number
ε, positive or negative and not necessarily small, is such as
to nudge the resulting beachball into the bicolored regime.
The ball then is not strictly correct, but it gives a sugges-
tion of the matrix E. In Fig. 19 the ball for G6 has been
perturbed in this way; instead of being solid red, it has two
small white caps. The ball for G6 in Fig. 21 has likewise
been perturbed, giving it the narrow white band. (The solid
red balls for B6 and T(B6) in Fig. 2 are correct, since those
matrices are multiples of the identity.) We could have em-
ployed a more sophisticated coloring scheme that would have
made the perturbations unnecessary, but the existing binary
scheme seems enough for what we are trying to show. The
perturbations are only for display purposes; all calculations
are done with the unperturbed matrices.

2.5 Matrix of S with respect to an arbitrary
orthonormal basis

Continuing from Section 2.2, we now assume that the basis G
for M is orthonormal. (An example of G would be the basis
B of Eq. 3.) Denoting the elements (i.e., matrices) of the
basis F by F1, F2, . . . , F6 and those of G by G1, G2, . . . , G6,
we have, for any matrix E ∈ M,

E = (E ·G1)G1 + . . .+ (E ·G6)G6, (28)

The G-coordinate vector for E is therefore

[E]G = (E ·G1, . . . , E ·G6) (29)

From Eq. (17) the jth column of the matrix [S]GF con-
sists of the coordinates of S(Fj) with respect to the basis G.
From Eq. (29), the jth column is therefore

[S]GF ej = (S(Fj) ·G1, . . . ,S(Fj) ·G6) , (30)

with the 6-tuples thought of as column vectors. Hence the
ijth entry of [S]GF is

([S]GF)i j =
(
S(Fj) ·Gi

)
(G orthonormal) (31a)

Explicitly,

[S]GF =

S(F1) ·G1 . . . S(F6) ·G1

...
...

S(F1) ·G6 . . . S(F6) ·G6

 (31b)

From Eq. (13) the matrix [I]GF takes F-coordinates to
G-coordinates. From Eq. (31) with S = I,

[I]GF =

F1 ·G1 . . . F6 ·G1

...
...

F1 ·G6 . . . F6 ·G6

 (G orthonormal)

(32)
The jth column of [I]GF is thus the G-coordinate 6-tuple
of Fj .
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2.6 Two special types of transformation

We consider a linear transformation S : V → V. Although
V can be any finite dimensional (real) inner product space,
the only relevant instances here are V = R3 and V = R6

with the standard inner product, and V = M with the inner
product defined in Eq. (4).

The adjoint of S is the linear transformation S∗ : V→ V
such that, for all E1, E2 ∈ V,

S∗(E1) · E2 = E1 · S(E2) (definition of S∗) (33)

From Eq. (31) it follows that for any orthonormal basis G
of V,

[S∗]GG = [S]>GG (G orthonormal), (34)

where T> = (tji) is the transpose of the matrix T = (tij).

2.6.1 Unitary transformations

A linear transformation U : V→ V is said to be unitary if

U ◦U∗ = I (definition of unitary) (35)

The unitary transformations are those that preserve in-
ner products, hence distances and angles. From Eqs. (14)
and (34),

U is unitary ⇐⇒ [U]GG [U]>GG = I (G orthonormal)
(36)

For a square matrix to be orthogonal means that its trans-
pose is its inverse. Hence Eq. (36) says that U is a unitary
transformation if and only if [U]GG is an orthogonal matrix.

From Eq. (36), det [U]GG = ±1 if U is unitary. We define
U to be a rotation of V if U is unitary and det [U]FF = +1.
Here F can be any basis for V, since changing F does not
change the determinant.

2.6.2 Self-adjoint transformations

A linear transformation S : V→ V is said to be self-adjoint
if

S∗ = S (definition of self-adjoint) (37)

From Eq. (34),

S is self-adjoint ⇐⇒ [S]GG is symmetric (G orthonormal)
(38)

Since the matrix [T]BB is symmetric and the basis B is
orthonormal, then the elastic map T is self-adjoint:

T∗ = T (39)

2.6.3 Orthogonality terminology

Some terminology regarding orthogonality:
Vectors v1 and v2 in V are orthogonal if v1 · v2 = 0.
Subspaces W1 and W2 of V are orthogonal, written

W1 ⊥ W2, if every vector in one subspace is orthogonal
to every vector in the other:

W1 ⊥W2 ⇐⇒
(
v1 ∈W1 and v2 ∈W2 =⇒ v1 · v2 = 0

)
(40)

The orthogonal complement of a subspace W is

W⊥ = {v ∈ V : v ·w = 0 for all w ∈W} (41)

The subspace 〈W1, . . . ,Wn〉 spanned by W1, . . . ,Wn

consists of all the linear combinations of vectors from
W1, . . .Wn.

A subspace W is the orthogonal direct sum of subspaces
W1, . . . ,Wn, written W = W1 ⊥ . . . ⊥Wn, if W is the span
of W1, . . . ,Wn and if W1, . . . ,Wn are pairwise orthogonal:

W = W1 ⊥ . . . ⊥Wn

⇐⇒
(
W = 〈W1, . . .Wn〉 and Wi ⊥Wj , i 6= j

)
(42)

(The notation W1 ⊥W2 is therefore ambiguous, with mean-
ings from both Eqs. (40) and (42). We rely on context to
distinguish them.)

A subspace W of V is said to be invariant under U :
V → V if U(W) ⊂ W. A non-zero subspace W is prime for
U if W is invariant (under U) and has no proper subspaces
that are invariant. (The improper subspaces of W are {0}
and W itself.)

From Lemma 1 below, if U is unitary then the
whole space V is the orthogonal direct sum of subspaces
W1, . . . ,Wn that are prime for U. In that case, W1, . . . ,Wn

are said to be prime summands (of V, for U):

W1, . . . ,Wn are prime summands for U

⇐⇒

{
V = W1 ⊥ . . . ⊥Wn

W1, . . . ,Wn are prime for U
(43)

If, for example, U is rotation through 30◦ about the z-axis
in R3, then the prime subspaces would be the z-axis and the
xy-plane. Those two subspaces would also be prime sum-
mands. If, however, the rotation is through 180◦ then the
z-axis and every horizontal line through the origin would be
prime subspaces. The three coordinate axes would be prime
summands. So also would be the z-axis together with the
lines x = y and x = −y in the xy-plane.

Finally, when V is the orthogonal direct sum of non-
zero subspaces W1, . . . ,Wn, we write T = W1

λ1

⊥ . . . ⊥ Wn
λn

to mean that the linear transformation T : V→ V is multi-
plication by λi on Wi:

T = W1
λ1

⊥ . . . ⊥Wn
λn

⇐⇒

{
V = W1 ⊥ . . . ⊥Wn

T(v) = λiv (v ∈Wi)

(44)
The numbers λ1, . . . , λn are then the eigenvalues of T, not
necessarily distinct. The eigenspace of T with eigenvalue λ
(Section 3.4) is the orthogonal direct sum of the Wi having
λ = λi

2.6.4 Orthogonality facts

From Eqs. (41) and (42), for any subspace W of V,

V = W ⊥W⊥ (45)

If W is invariant under a unitary transformation U :
V→ V, then so is W⊥:

U(W) ⊂W =⇒ U(W⊥) ⊂W⊥ (46)

Lemma 1. Let U : V→ V be unitary and let W be a non-
zero subspace of V that is invariant under U. Then W is
the orthogonal direct sum of subspaces of V that are prime
for U.
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The lemma is proved in Appendix A.
If T = W1

λ1

⊥ . . . ⊥ Wn
λn

and if U : V → V is unitary,

then from Eq. (44),

U ◦T ◦U∗ = U(W1)
λ1

⊥ . . . ⊥ U(Wn)
λn

(47)

2.7 The Spectral Theorem applied to T

The Spectral Theorem (Hoffman & Kunze 1971, p 314)
states that for each self-adjoint transformation S : V → V
there is an orthonormal eigenbasis—a basis for V consisting
of orthonormal eigenvectors of S.

Since the elastic map T is self-adjoint, then, accord-
ing to the Spectral Theorem, there must be an ortho-
normal basis for M consisting of six eigenvectors of T. Since
T : M → M, an “eigenvector” is now an element of M—a
symmetric 3× 3 matrix.

In terms of strain and stress: For any elastic map T,
there will be six independent 3× 3 strain matrices Gi such
that each of the corresponding stress matrices T(Gi) is a
scalar multiple of its strain matrix.

Fig. 4 depicts T as did Fig. 2 but with the basis B
replaced by an eigenbasis for T.FIG. 4

2.7.1 Invertibility of T

An elastic map T is invertible if and only if its eigenvalues
are all non-zero. In that case the eigenvectors of T−1 are
the same as those of T, and the eigenvalues of T−1 are the
reciprocals of those of T. For T as in Fig. 4, the beachball
depiction of T−1 would appear just as in the figure except
that the radius of each ball T(Gi) on the top row would
change from λi to 1/λi.

2.7.2 Matrix version of the Spectral Theorem

The Spectral Theorem implies that an n×n symmetric ma-
trix S can be written

S = U

λ1

. . .

λn

U> (48)

for some numbers λ1, . . . , λn and for some n × n rotation
matrix U . The jth column of U is then an eigenvector of S
with eigenvalue λj .

2.8 Constructing T with a prescribed eigensystem

Given numbers λ1, . . . , λ6 and an orthonormal basis G =
{G1, . . . , G6} of M, we can construct an elastic map T that
has λ1, . . . , λ6 as its eigenvalues and has G1, . . . , G6 as the
corresponding eigenvectors. The matrix [T]GG of T with re-
spect to G must be diagonal with diagonal entries λ1, . . . , λ6.
The matrix with respect to B is then, from Eq. (14a),

[T]BB = = [I]BG [T]GG [I]GB

= [I]BG

λ1

. . .

λ6

 [I]TBG, (49)

where [I]BG is calculated from Eq. (32).

3 Symmetries of T

3.1 Conjugation by a rotation matrix

Recall that a square matrix U is orthogonal if UU> = I. If
also detU = 1 then U is said to be a rotation matrix. We
let U be the group of all 3× 3 rotation matrices. Examples
of matrices in U would be the 3 × 3 rotations Xξ, Yξ, Zξ
through angle ξ about the x, y, z axes, respectively:

Xξ =

1 0 0
0 cos ξ − sin ξ
0 sin ξ cos ξ


Yξ =

 cos ξ 0 sin ξ
0 1 0

− sin ξ 0 cos ξ


Zξ =

cos ξ − sin ξ 0
sin ξ cos ξ 0

0 0 1

 (50)

For U ∈ U, we define a linear transformation
U : M→ M by

U(E) = UE U> (U ∈ U, E ∈ M) (51)

In words, U is conjugation by U .
From Eq. (51),

U1 ◦ U2 = U1U2 (52)

Since

U(E1) · E2 = (UE1 U
>) · E2

= E1 · (U>E2 U) = E1 · U>(E2),

then by comparison with Eq. (33),

U
∗

= U> (53)

That is, U
∗

is conjugation by U>. Then U is unitary
(Eq. 35), since

U ◦ U∗
= U ◦ U> = UU> = I = I (54)

3.1.1 The beachball for U(E)

For E ∈ M the beachball for U(E) is the result of apply-
ing the rotation U to the beachball for E. To see this, let
E′ = U(E) and v′ = Uv, with v = (x, y, z) ∈ R3. Then

(E′v′) · v′ = (Ev) · v (55)

Thus, from Eq. (25), the rotated point v′ is red on the ball
for E′ if and only if the original point v is red on the ball
for E. See Fig. 5.

The rotation U of R3 operates on the material and op-
erates on the beachballs. The rotation U of M operates on
3× 3 symmetric matrices (strains and stresses). FIG. 5

3.1.2 The matrix of U

Eqs. (14) and (54) imply [U ]FF [U
∗
]FF = I6×6, whether or

not the basis F is orthonormal. Hence

[U
∗
]FF = [U ]−1

FF (56)

If G is an orthonormal basis for M, then from Eq. (36)
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the matrix [U ]GG is orthogonal, that is, [U ]GG [U ]>GG = I.
Equivalently,

[U ]−1
GG = [U ]>GG (G orthonormal) (57)

From Eqs. (53), (56), (57),

[U
∗
]GG = [U>]GG = [U ]>GG (G orthonormal) (58)

The matrix [U ]GG is found from Eq. (31); its ijth entry
is (

[U ]GG
)
i j

=
(
UGjU

>
)
·Gi (G orthonormal) (59a)

More explicitly,

[U ]GG =


(UG1U

>) ·G1 . . . (UG6U
>) ·G1

...
...

(UG1U
>) ·G6 . . . (UG6U

>) ·G6

 (59b)

If, for example, we take U = Zξ (Eq. 50) and G = B (Eq. 3),
then

[Zξ]BB =


cos ξ sin ξ
− sin ξ cos ξ

cos 2ξ − sin 2ξ
sin 2ξ cos 2ξ

1
1

 ,

(60)
with blank entries understood to be zero.

An arbitrary U ∈ U has the form U = V ZξV
> for some

V ∈ U and ξ ∈ R. Then U = V ◦ Zξ ◦ V > and

det[U ]BB = det[V ]BB det[Zξ]BB det[V >]BB

= det[Zξ]BB = 1 (61)

Since U is unitary, then it is a rotation (of M). Most rota-
tions U of M, however, do not have the form U = U , as can
be seen from Section 3.1.3.

3.1.3 Retrieving U from U

Given a rotation U of M, we ask whether U = U for some
U ∈ U.

Let E be the diagonal matrix with diagonal entries
3, 2, 1. Let V ∈ U be a TBP eigenframe for U(E), and let
µ1, µ2, µ3 be the eigenvalues of U(E) in descending order.
(See Section 5 for TBP.) If U = U then

U(E) = U(E)

V

µ1 0 0
0 µ2 0
0 0 µ3

V > = U

3 0 0
0 2 0
0 0 1

U> (62)

Then

(µ1, µ2, µ3) = (3, 2, 1) (63a)

U = V R for one of R = I,Xπ, Yπ, Zπ (63b)

Eq. (63b) is from Proposition 5 of Tape & Tape (2012).
It says that the matrices U and V differ at most by sign
changes of two columns.

Thus U cannot have the form U = U unless the eigen-
values of U(E) are 3, 2, 1. And when the eigenvalues are in
fact 3, 2, 1 there are only four candidates for U ; we need only
check to see whether U = V R for R = I,Xπ, Yπ, Zπ.

Helbig (1994) and Mehrabadi & Cowin (1990) have
more complicated approaches to this problem.

3.2 How T changes when the material is rotated

Let’s be clear that our entire enterprise deals only with a
specific point in some material; we are not interested in how
the elasticity is changing from one point to another. When
we speak of rotations, the rotations should be thought of,
intuitively, as rotations about the specified point. Strains
and stresses are likewise strains and stresses at the specified
point. We imagine the point to be at the origin in R3.

Suppose now that we use a rotation U ∈ U to rotate
our material. We want to compare the elastic maps T and
T′ before and after the rotation. Suppose the strains before
and after the rotations are E and E′. Both of the matrices E
and E′ operate on vectors in R3. The output vector assigned
to the input vector v by E′ is

E′v = UE U>v (v ∈ R3) (64)

Since Eq. (64) holds for all v, then, with the analogous fact
for stresses included,

E′ = UE U> = U(E)

F ′ = UF U> = U(F ) (65)

The maps T and T′ take strain matrices to stress matrices:
T(E) = F and T′(E′) = F ′. Thus,

T′(E′) = F ′

T′(U(E)) = U(F )

T′(U(E)) = U(T(E)) (66)

Since Eq. (66) holds for all E then

T′ ◦ U = U ◦T

T′ = U ◦T ◦ U∗
(67)

If G is an orthonormal basis for M, then, from Eqs. (14a)
and (58), the matrix equivalent of Eq. (67) is

[T′]GG = [U ]GG [T]GG [U ]>GG (G orthonormal) (68)

3.3 The notion of symmetry for T

We define V ∈ U to be a symmetry of an elastic map if the
map does not change when the relevant material is rotated
by V . More precisely, V is a symmetry of T if the two elastic
maps T and V ◦T ◦ V ∗

(from Eq. 67) are the same.

V is a symmetry of T ⇐⇒ V ◦T ◦ V ∗
= T (69)

We require V to be a rotation matrix—an orthogonal matrix
with determinant +1. We could have required V to be only
an orthogonal matrix, so that perhaps detV = −1. But if
V is orthogonal with detV = −1, then −V is a rotation
matrix. Since −V = V , then V being a symmetry of T
would be equivalent to −V being a symmetry of T. Allowing
detV = −1 would gain nothing.

3.3.1 The ∆-test for a symmetry of T

From Eq. (69),

V is a symmetry of T ⇐⇒ ∆(V,T) = 0 6×6, (70a)

where 0 6×6 is the 6× 6 zero matrix and

∆(V,T) = [V ]GG [T]GG [V ]>GG − [T]GG (G orthonormal)
(70b)
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Suppose, for example, that we want to find the matrix [T]BB
when Zπ is a symmetry of T. If T were an arbitrary elastic
map, its matrix T with respect to B would be, say,

T =


a g m q t v
g b h n r u
m h c i o s
q n i d j p
t r o j e k
v u s p k f

 (71)

With V = Zπ (Eq. 50), we therefore want to find the entries
a, b, c, . . . of T so that V is a symmetry of T. From Eq. (60)
with ξ = π and from Eq. (71),

∆(V,T) = −2


m q t v
h n r u

m h
q n
t r
v u

 , (72)

where blank entries are understood to be zero. From
Eq. (70a), the rotation V is a symmetry of T if and only
if ∆(V,T) is the zero matrix. So h = m = n = q = r = t =
u = v = 0, and T in Eq. (71) becomes Tmono, where

Tmono =


a g
g b

c i o s
i d j p
o j e k
s p k f

 (73)

3.4 Eigenspaces of T and their role in symmetry

For λ ∈ R we let

MT(λ) = {E ∈ M : T(E) = λE} (74)

If λ is an eigenvalue of T, then its eigenspace is MT(λ); it
consists of the zero vector together with the eigenvectors of
T having eigenvalue λ.

Theorem 1. Let T be an elastic map and let V be a 3× 3
rotation matrix. Then V is a symmetry of T if and only if
all eigenspaces of T are invariant under V .

Proof. Suppose first that V is a symmetry of T. Then T ◦
V = V ◦T, from Eq. (69). Hence if E ∈ MT(λ), then

T
(
V (E)

)
= V (T(E)) = V (λE) = λV (E),

so that V (E) ∈ MT(λ). Hence V (MT(λ)) ⊂ MT(λ).
Conversely, suppose V (MT(λ)) ⊂ MT(λ) for all eigen-

values λ of T. Then if E is an eigenvector of T with eigen-
value λ, so is V (E), and so

(T ◦ V )(E) = T
(
V (E)

)
= λV (E)

= V (λE) = V (T(E)) = (V ◦T)(E)

Since the eigenvectors E of T span M, then T ◦ V = V ◦T,
by linearity. Then V is a symmetry of T, by Eq. (69).

Theorem 1 was known to Rychlewski (1984).
If T is an elastic map, then, from the Spectral Theorem,

M is the orthogonal direct sum of the eigenspaces of T. Thus,
if µ1, . . . , µk are the distinct eigenvalues of T,

M = MT(µ1) ⊥ . . . ⊥ MT(µk) (75)

If V is a symmetry of T, then each MT(µi) is invariant
under V . From Lemma 1, each subspace MT(µi) is an or-
thogonal direct sum (Eq. 42) of subspaces prime for V .
In the hypothetical illustration in Eq. (76), the eigenspace
MT(µ1) is the orthogonal direct sum of the prime subspaces
W1,W2,W3, whereas the eigenspace MT(µk) is itself prime.

M = MT(µ1) ⊥ . . . ⊥ MT(µk)

W1 W2 W3 Wn

(76)

Thus,

T = W1
λ1

⊥ . . . ⊥Wn
λn

(77)

(In this example, λ1 = λ2 = λ3 = µ1 and λn = µk.) This
means, as in Eq. (44), that M is the orthogonal direct sum
of the Wi, and that on Wi the linear transformation T is
multiplication by λi. Here, however, the Wi are prime for V .
The converse is also seen to be true. Thus,

Theorem 2. A rotation matrix V is a symmetry of an elas-
tic map T if and only if, for some numbers λ1, . . . , λn and
for some subspaces W1, . . . ,Wn of M,

(i) Each Wi is prime for V .

(ii) T = W1
λ1

⊥ . . . ⊥Wn
λn

Using Eqs. (43) and (44), we can paraphrase conditions
(i) and (ii) as

W1, . . . ,Wn are prime summands of M for V

T(E) = λiE (E ∈Wi) (78)

3.5 Some matrices, six-tuples, and subspaces

With B1, . . . , B6 the basis B given in Eq. (3), we define ma-
trices in M by

B12(r) = (cos r)B1 + (sin r)B2

B34(s) = (cos s)B3 + (sin s)B4

B56(t) = (cos t)B5 + (sin t)B6 (79)

The corresponding elements of R6 are

e12(r) = [B12(r)]B = (cos r, sin r, 0, 0, 0, 0)

e34(s) = [B34(s)]B = (0, 0, cos s, sin s, 0, 0)

e56(t) = [B56(t)]B = (0, 0, 0, 0, cos t, sin t) (80)

Thus r, s, t are the angular polar coordinates in the respec-
tive x1x2, x3x4, x5x6-planes.

With 〈S1, S2〉 denoting the subspace spanned by S1 and
S2, we define subspaces of M by

B12 = 〈B1, B2〉, B34 = 〈B3, B4〉, B56 = 〈B5, B6〉 (81)

The corresponding subspaces of R6 are

E12 = 〈e1, e2〉 = {(x1, x2, 0, 0, 0, 0) : x1, x2 ∈ R}
E34 = 〈e3, e4〉 = {(0, 0, x3, x4, 0, 0) : x3, x4 ∈ R}
E56 = 〈e5, e6〉 = {(0, 0, 0, 0, x5, x6) : x5, x6 ∈ R}, (82)
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where e1, . . . , e6 is the standard basis for R6.

4 The symmetry Zξ when ξ is regular

4.1 Subspaces of M invariant under Zξ when ξ is
regular

The notion of a prime subspace was introduced in Section
2.6.3. If A is a 6 × 6 matrix, a non-zero subspace E of R6

is prime for A if it is invariant (under multiplication by A)
and if it has no proper invariant subspaces.

For the 6×6 matrix A = [Zξ]BB we can try to guess the
prime subspaces from inspection of the matrix, and we will
usually be right. From Eq. (60),

[Zξ]BB =

R(−ξ)
R(2ξ)

I2×2

 , (83)

where R(θ) is the 2× 2 rotation matrix from Eq. (F.1) of
Appendix F, and where I2×2 is the 2× 2 identity matrix.
(Blank entries are understood to be zeros.)

From Eqs. (82) and (83), the subspaces E12,E34,E56 of
R6 are invariant under [Zξ]BB. Since on E56 the matrix [Zξ]BB
is the identity, then E56 itself is not prime (for [Zξ]BB), but
all of its one-dimensional subspaces are prime. Each has the
form 〈e56(t)〉 for some t.

On the subspace E12 the matrix [Zξ]BB is rotation
through angle −ξ, and on E34 it is rotation through angle
2ξ, so E12 and E34 are prime for most choices of ξ. But
are they always prime, and might there be other prime sub-
spaces? Theorem 3 gives some answers, but in the context
of M rather than R6.

Recall from Fig.1 that ξ is regular if rotations through
angle ξ are neither 1-fold, 2-fold. 3-fold, nor 4-fold:

ξ is regular ⇐⇒ ξ 6= ±2π/n (mod 2π), n = 1, 2, 3, 4
(84)

Theorem 3. Regardless of ξ, the subspaces B12, B34,
〈B56(t)〉 of M are invariant under Zξ. If ξ is regular, they are
the prime subspaces for Zξ. (See Section 3.5 for notation.)

Proof. The proof relies on the B-coordinate mapping to go
back and forth between M and R6. Thus B12, B34, 〈B56(t)〉
are invariant under Zξ since E12,E34, 〈e56(t)〉 are invariant
under [Zξ]BB. For ξ regular they are the prime subspaces
for Zξ, since E12,E34, 〈e56(t)〉 are then the prime subspaces
of R6 for [Zξ]BB; see Lemma 6 of Appendix B,

4.2 Prime summands for Zξ when ξ is regular

From Eq. (43), subspaces W1, . . . ,Wn of M are prime sum-
mands for Zξ if they are prime for Zξ and if their orthogonal
direct sum is all of M.

If ξ is regular, there is not much choice about the prime
summands for Zξ, due to Theorem 3. They can only be, for
some t,

B12,B34, 〈B56(t)〉, 〈B56(t′)〉, (85a)

where

t′ = t+ π/2 (85b)

Note that, although there is a prime subspace 〈B56(t)〉 for

each t, there is little choice regarding t′ in Eqs. (85)—it must
be t ± π/2, since B56(t) and B56(t′) are to be orthogonal.
The prime summands for Zξ with ξ regular are shown in
Fig. 6.

The figure illustrates the invariance of the prime sum-
mands under Zξ. Consider, for example, the beachball at
θ = 0 in the x1x2 plane (the 3:00 position), and rotate it
through ξ = 45◦ about its own vertical axis (perpendicular
to the page). The resulting ball is present in the diagram,
and the upper left 2× 2 submatrix of [Zξ]BB (Eq. 83), which
describes a rotation through −ξ about the origin in the x1x2

plane, tells where to find it. (It is at the 4:30 position.) The
balls in the x3x4-plane and x5x6-plane work analogously,
but in the x3x4-plane the matrix [Zξ]BB is rotation through
2ξ, and in the x5x6-plane it is the identity.

The xyz spatial coordinates have no logical relation to
the B-coordinates x1 . . . x6. In a diagram like Fig. 6, where
the xyz directions must be known in order to orient the
beachballs, some decision must therefore be made that re-
lates the two coordinate systems. We chose to have z point
out of the page and x to the right.

In the same vein, a beachball has no particular location
in xyz space. Alternatively, all beachballs can be thought
of as centered at the origin in xyz space. The location of a
beachball in a diagram like Fig. 6 only serves to indicate the
coordinate 6-tuple of the ball. FIG. 6

4.3 Elastic maps with symmetry Zξ for regular ξ

According to Eqs. (78), an elastic map T having sym-
metry V is determined by specifying prime summands
for V and by assigning a number to each of them. If
V = Zξ with ξ regular, then the prime summands are
B12,B34, 〈B56(t)〉, 〈B56(t′)〉; they depend only on t. Hence T
is determined by giving t to specify 〈B56(t)〉 and 〈B56(t′)〉,
and then by assigning respective numbers λ1, λ3, λ5, λ6 to
B12,B34, 〈B56(t)〉, 〈B56(t′)〉. That is, T = TΛ

xiso(t), where, in
the notation of Eq. (44),

TΛ
xiso(t) = B12

λ1 λ1

⊥ B34
λ3 λ3

⊥ 〈B56(t)〉
λ5

⊥ 〈B56(t′)〉
λ6

t′ = t+ π/2, Λ = (λ1, λ1, λ3, λ3, λ5, λ6) (86)

The repetitions λ1 λ1 and λ3 λ3 in the orthogonal direct sum
are reminders that dimB12 = 2 and dimB34 = 2.

For T = TΛ
xiso(t) as in Eq. (86), its symmetry Zξ is

seen in Fig. 6, though the figure itself does not involve T.
In Fig. 6b, for example, the effect of T would be to resize
the balls by the constant factor λ3. One can rotate a ball
through angle ξ about its vertical axis, and then resize it, or
one can resize it and then rotate it. The result is the same,
but only because the rotated ball is in the same subspace as
the original ball, so that the resizing factor does not change.

Theorem 4. (The matrix for TΛ
xiso(t))

For T = TΛ
xiso(t),

[T]BB =


λ1

λ1

λ3

λ3

R(t)

(
λ5

λ6

)
R(t)>


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Proof. Theorem 4 is the special case of Theorem 7 in which

r = 0, U =

(
I2×2

R(t)

)
, λ1 = λ2, and λ3 = λ4.

The form of the matrix [T]BB in Theorem 4 dictates the
definition of the matrix Txiso, namely,

Txiso =


a

a
c

c
e k
k f

 (87)

The matrices Txiso and [T]BB are the same when

a = λ1, c = λ3

e = λ5 cos2 t+ λ6 sin2 t

f = λ6 cos2 t+ λ5 sin2 t

k = (λ5 − λ6) cos t sin t (88)

Appealing to Eqs. (F.2) of Appendix F, we see that Txiso

and [T]BB are also the same when

t = θ∞ =
1

2
θ̂(e− f, 2k)

λ1 = a, λ3 = c

λ5 =
1

2

(
e+ f +

√
(e− f)2 + 4k2

)
λ6 =

1

2

(
e+ f −

√
(e− f)2 + 4k2

)
, (89)

where θ̂(x, y) is the ordinary angular polar coordinate of the
point (x, y). (If e = f and k = 0 then θ∞ is undefined, but
t can be chosen arbitrarily.)

For T having symmetry Zξ for ξ regular, Eqs. (88) give
the matrix entries a, c, e, f, k of Txiso = [T]BB in terms of the
“intrinsic” parameters t, λ1, λ3, λ5, λ6 of T, and Eqs. (89) do
the reverse.

The intrinsic parameters are not unique, but it hardly
matters. From Appendix F we see that two 5-tuples of in-
trinsic parameters give the same T:

t λ1 λ3 λ5 λ6

t µ1 µ3 µ5 µ6

t+ π/2 µ1 µ3 µ6 µ5

(90)

Thus the expressions for λ5 and λ6 in Eqs. (89) can be
swapped if t = θ∞ is replaced by t = θ∞ + π/2, but there is
generally no reason to do so. One tuple of intrinsic parame-
ters is enough.

We have shown that for ξ regular the following are
equivalent:

Zξ is a symmetry of T (91a)

T = TΛ
xiso(t) for some t, λ1, λ3, λ5, λ6 (91b)

[T]BB = Txiso(a, c, e, f, k) for some a, c, e, f, k (91c)

We refer to the condition T = TΛ
xiso(t) as an intrinsic char-

acterization of T, in order to distinguish it from the condi-
tion [T]BB = Txiso, which involves a basis for M. Although
the subspaces B12,B34, 〈B56(t), 〈B56(t′) in the intrinsic char-
acterization appear to involve the basis B, in fact they can
be described without B; see Table 2 for B12 and B34, and see
Eq. (93) for B56(t).

Intrinsic characterizations of elastic maps go back at
least to Rychlewski (1984). Also see Bóna et al. (2007).

4.4 Transverse isotropy

Theorem 5. If Zξ is a symmetry of an elastic map T for
some regular ξ, then Zξ is a symmetry of T for all ξ.

Proof. Let Zξ be a symmetry of T. To show that the ro-
tation Zβ is a symmetry of T, we need only show that the
eigenspaces of T are invariant under Zβ (Theorem 1). To
that end, let W be an eigenspace of T. Then W is invariant
under Zξ, by Theorem 1. Hence W is an orthogonal direct
sum of prime subspaces for Zξ. Since ξ is regular, the prime
subspaces for Zξ are B12,B34, 〈B56(t)〉. Those subspaces, by
Theorem 3, are invariant under Zβ , hence so is W.

Theorem 5 also follows from Eqs. (91), since only Eq. (91a)
mentions ξ.

An elastic map T is said to be transverse isotropic (with
respect to the z-axis) if Zξ is a symmetry of T for all ξ.
Theorem 5 says that If Zξ is a symmetry of T for some
regular ξ, then T is transverse isotropic.

Herman (1945) has a weaker version of Theorem 5.
Where our version has ξ regular, Herman has ξ = 2π/n
for some integer n > 4. We need the stronger version in de-
riving the elastic symmetry groups (Section 14, especially
Lemma 3).

5 Subspaces of M described intrinsically

In Table 2 we list some subspaces of M that will be rele-
vant to elastic symmetry. To describe them we borrow ter-
minology from seismology, which we explain next. We do
not intend, however, to discuss applications to seismology.

As always, M is the space of 3× 3 symmetric matrices.
A TBP frame for a matrix E ∈ M is a rotation matrix whose
first, second, and third columns are eigenvectors T, B, P of
E corresponding to the respective largest, intermediate, and
smallest eigenvalues of E.

A deviatoric matrix in M is one with trace equal to
zero. A double couple is a deviatoric matrix with determi-
nant zero. Its eigenvalues therefore have the form µ, 0,−µ.
The beachball for a double couple has the classic beach-
ball look, with the ball surface divided into four congruent
lunes having alternating colors (e.g., B2 in Fig. 3). The fault
planes of the double couple are the two planes that define
the boundaries of the lunes; the normal vectors to the fault
planes are T±P. The null axis is the intersection of the two
fault planes; it is in the direction of B.

A crack matrix is a matrix in M with two equal eigen-
values (not three). Its c-axis is in the direction of the eigen-
vector with the simple (i.e., non-repeated) eigenvalue. The
beachball for a crack matrix has rotational symmetry about
the c-axis through all angles; if bicolored, it looks more like
a striped pool ball than a traditional beachball (e.g., B5 in
Fig. 3).

An isotropic matrix in M is a multiple of the identity.
Its beachball is all red or all white.

A generic matrix E ∈ M is neither a double couple
(DC), a crack matrix, nor an isotropic matrix. Thus

E is generic

⇐⇒ E has distinct eigenvalues but is not a DC (92)

The matrix for the beachball in Fig. 7(d) is generic. FIG. 7
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The subspace B12 in Eq. (81) and Fig. 6a consists of
all double couples having a fault plane horizontal. See also
Fig. 7(a).

The subspace B34 in Eq. (81) and Fig. 6b consists of all
double couples with null axis vertical.

The subspace B56 in Eq. (81) and Fig. 8 consists of all
crack matrices with c-axis vertical. They are the diagonal
matrices with diagonal entries of the form p, p, q. The red or
white band on the beachball for such a matrix has angular
half-width ν given by tan ν =

√
−p/q (from Eq. 26). The

angular half-width of the band for the crack matrix B56(t)
is therefore, from Eqs. (3) and (79),

ν(t) = tan−1

√
1√
2

cot(t0 − t)

t0 = ∠((1, 1, 1), (0, 0, 1)) = tan−1
√

2 (93)

FIG. 8
The subspace 〈B6〉 consists of the isotropic matrices.

Its orthogonal complement 〈B6〉⊥ = 〈B1, . . . , B5〉 consists
of the deviatoric matrices. The subspace 〈B4, B5, B6〉 con-
sists of the diagonal matrices, and 〈B4, B5〉 consists of the
deviatoric diagonal matrices.Table 2

6 Elastic maps with symmetry Zπ/2

If an elastic map T has the symmetry Zπ/2 then it also has
the symmetry Zπ and so, from Section 3.3.1, its matrix with
respect to B has at least the form of Tmono in Eq. (73). With
V = Zπ/2, we therefore look for the entries a, b, c, . . . of Tmono

such that V is a symmetry of T. From Eqs. (60) and (70b),

∆(V,T) = −


a− b 2g

2g b− a
2o 2s
2j 2p

2o 2j
2s 2p

 (94)

The rotation V is a symmetry of T if and only if ∆(V,T) is
the zero matrix. Setting b = a and g = j = o = p = s = 0
in Tmono gives [T]BB = T4 with T4 as in Table 1.Table 1

We will see momentarily that the intrinsic character-
ization of elastic maps T having symmetry Zπ/2 is T =
TΛ

4 (s, t), where

TΛ
4 (s, t) = B12

λ1 λ1

⊥〈B34(s)〉
λ3

⊥〈B34(s′)〉
λ4

⊥〈B56(t)〉
λ5

⊥〈B56(t′)〉
λ6

s′ = s+ π/2, t′ = t+ π/2

Λ = (λ1, λ1, λ3, λ4, λ5, λ6) (95)

Theorem 6. (The matrix for TΛ
4 (s, t))

For T = TΛ
4 (s, t),

[T]BB =


λ1

λ1

R(s)

(
λ3

λ4

)
R(s)>

R(t)

(
λ5

λ6

)
R(t)>


Proof. The theorem is the special case of Theorem 7 in

which r = 0, U =

(
R(s)

R(t)

)
, and λ1 = λ2.

The matrix [T]BB in Theorem 6 is the same as the matrix
T4 in Table 1 when

c = λ3 cos2 s+ λ4 sin2 s

d = λ4 cos2 s+ λ3 sin2 s

i = (λ3 − λ4) cos s sin s

a, e, f, k are as in Eq. (88) (96)

The two matrices are also the same when

s = θ4 =
1

2
θ̂(c− d, 2i)

λ3 =
1

2

(
c+ d+

√
(c− d)2 + 4i2

)
λ4 =

1

2

(
c+ d−

√
(c− d)2 + 4i2

)
t, λ1, λ5, λ6 are as in Eqs. (89) (97)

For T having symmetry Zπ/2, Eqs. (96) give the matrix
entries a, c, d, e, f, i, k of T4 = [T]BB in terms of the intrinsic
parameters s, t, λ1, λ3, λ4, λ5, λ6 of T, and Eqs. (97) do the
reverse.

The intrinsic parameters are not unique, but it rarely
matters. The following three 7-tuples all give the same T.

s t λ1 λ3 λ4 λ5 λ6

s t µ1 µ3 µ4 µ5 µ6

s+ π/2 t µ1 µ4 µ3 µ5 µ6

s t+ π/2 µ1 µ3 µ4 µ6 µ5

(98)

We have now shown that the following are equivalent:

Zπ/2 is a symmetry of T (99a)

[T]BB = T4(a, c, d, e, f, i, k) for some a, c, d, e, f, i, k (99b)

T = TΛ
4 (s, t) for some s, t, λ1, λ3, λ4, λ5, λ6 (99c)

To see that the five subspaces in the orthogonal di-
rect sum (Eq, 95) are invariant under Zπ/2, note that in-
variance has nothing to do with the λi. We can there-
fore assume for a moment that λ1, λ3, λ4, λ5, λ6 are dis-
tinct, so that the five subspaces are eigenspaces of T. By
Theorem 1 they are therefore invariant under Zπ/2. The four
one-dimensional subspaces are then automatically prime
for Zπ/2. The other subspace B12 is also prime, since its
only proper subspaces have the form 〈B12(r)〉, and they are
not invariant under Zπ/2 (e.g., Fig. 6a). Prime summands
for Zπ/2—one quintuple of summands for each s and t—are
therefore

B12, 〈B34(s)〉, 〈B34(s′)〉, 〈B56(t)〉, 〈B56(t′)〉 (100)

They are shown in Fig. 9 for s = 55◦ and t = 40◦.
An elastic map T having symmetry Zπ/2 is determined

by specifying s and t to give the five prime summands and
by attaching a number λ1, λ3, λ4, λ5, λ6 to each. FIG. 9

7 Elastic maps with symmetry Zπ

Let U = U4×4 be the 4× 4 rotation matrix

U =

u33 u34 u35 u36

u43 u44 u45 u46

u53 u54 u55 u56

u63 u64 u65 u66

 (101)
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Let B2 = B2(r, U) be the orthonormal basis of M whose ele-
ments are defined by their B-coordinate 6-tuples as follows:

B-coordinate 6-tuple Element of basis B2(r, U)

(cos r, sin r, 0, 0, 0, 0) B12(r)
(− sin r, cos r, 0, 0, 0, 0) B12(r′)
(0, 0, u33, u43, u53, u63) B3(U)
(0, 0, u34, u44, u54, u64) B4(U)
(0, 0, u35, u45, u55, u65) B5(U)
(0, 0, u36, u46, u56, u66) B6(U)

(102)
where r′ = r + π/2. Thus

Bj(U) = u3jB3 + u4jB4 + u5jB5 + u6jB6 (j = 3, 4, 5, 6)
(103)

We will see momentarily that the intrinsic characterization
of elastic maps T having symmetry Zπ is T = TΛ

2 (r, U),
where

TΛ
2 (r, U) =〈B12(r)〉

λ1

⊥ 〈B12(r′)〉
λ2

⊥

〈B3(U)〉
λ3

⊥ 〈B4(U)〉
λ4

⊥ 〈B5(U)〉
λ5

⊥ 〈B6(U)〉
λ6

r′ = r + π/2, Λ = (λ1, . . . , λ6) (104)

Theorem 7. (The matrix for TΛ
2 (r, U))

For T = TΛ
2 (r, U),

[T]BB =


R(r)

(
λ1

λ2

)
R(r)>

U


λ3

λ4

λ5

λ6

U>


Proof. From Eq. (104) the matrix [T]B2B2 is diagonal with
diagonal entries λ1, . . . , λ6. It is related to [T]BB by

[T]BB = [I]B B2 [T]B2B2 [I]B2B, (105)

where [I]B B2 is the matrix that takes B2-coordinates to B-
coordinates. From Eq. (32) its jth column is the B-coordinate
6-tuple of the jth element of B2(r, U). Hence from Eq. (102),

[I]B2B2 =

(
R(r)

U4×4

)
(106)

Eq. (105) therefore becomes

[T]BB =

(
R(r)

U4×4

)λ1

. . .

λ6

(R(r)
U4×4

)>
,

(107)
which is the same as in the theorem.

The matrix [T]BB in Theorem 7 has the same form as Tmono

in Table 1, but when are the two matrices equal? From the
theorem it is obvious how to find the entries a, b, c, . . . of
Tmono in terms of the intrinsic parameters r, U, λ1, . . . , λ6

of T. Conversely, one gets r, λ1, λ2 from the submatrix(
a g
g b

)
of Tmono using Eqs. (F.2) or (F.3), and, in prin-

ciple, one gets U and λ3, λ4, λ5, λ6 from an eigensystem for
the lower right 4× 4 submatrix of Tmono. Getting the eigen-
system symbolically, however, is not appealing, since the
characteristic polynomial is quartic. (Finding it numerically
is not a problem.)

In Section 3.3.1 we showed that an elastic map T has
symmetry Zπ if and only if its matrix with respect to B has
the form Tmono. The following are therefore equivalent:

Zπ is a symmetry of T (108a)

[T]BB = Tmono(a, b, . . .) for some a, b, . . . (108b)

T = TΛ
2 (r, U) for some r, U, λ1, . . . , λ6 (108c)

Reasoning as we did from Eq. (95), we find from
Eq. (104) that the prime summands for Zπ—one sextuple
for each choice of r and U—are

〈B12(r)〉, 〈B12(r′)〉, 〈B3(U)〉, 〈B4(U)〉, 〈B5(U)〉, 〈B6(U)〉
(109)

Fig. 10 shows the prime summands for one choice of r and U .
The 180◦ symmetry is obvious in the figure. (The color re-
versal produced by 180◦ rotation of the first and second
beachballs is acceptable, since the matrix −E is always in
the subspace 〈E〉.)

An elastic map T having symmetry Zπ is determined by
a number r and a 4× 4 rotation matrix U to specify the six
prime summands, and by numbers λ1, . . . , λ6 to be assigned
to them. FIG. 10

8 The symmetry Z2π/3

8.1 Prime summands for Z2π/3

Motivated by Eq. (C.1) of Appendix C, we define the matrix
B(θ, u, v) by

B(θ, u, v) =
cos θ√

2

− sinu sin v sinu cos v 0
sinu cos v sinu sin v cosu

0 cosu 0


+

sin θ√
2

− sinu cos v − sinu sin v cosu
− sinu sin v sinu cos v 0

cosu 0 0


(110)

Then

B(θ, u, v) = (cos θ)B(0, u, v) + (sin θ)B(π/2, u, v) (111)

For each u and v there is a subspace of M spanned by
B(0, u, v) and B(π/2, u, v), namely,

B(u, v) = {rB(θ, u, v) : r, θ ∈ R} (112)

The B-coordinate vector of B(θ, u, v) is

(B(θ, u, v))B = e(θ, u, v) (113)

where e(θ, u, v) is from Eq. (C.1). Using Eq. (113) to trans-
late between M and R6, we conclude from Lemma 7 of Ap-
pendix C:

Theorem 8. The subspaces of M that are prime for Z2π/3

are B(u, v) and 〈B56(t)〉 (any t, u, v).

The prime summands of M for Z2π/3 are then

B(u, v), B(u′, v), 〈B56(t)〉, 〈B56(t′)〉 (114a)

where

t′ = t+ π/2, u′ = u+ π/2 (114b)
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The prime summands for Zξ with ξ = 2π/3 are a general-
ization of those for regular ξ in the sense that

B(0, v) = B12, B(π/2, v) = B34 (115)

We let B(t, u, v) be the orthonormal basis of M whose ele-
ments are

B(0, u, v), B(π/2, u, v) (a basis for B(u, v))

B(0, u′, v), B(π/2, u′, v) (a basis for B(u′, v))

B56(t), B56(t′) (a basis for B56) (116)

When feasible, we abbreviate B(t, u, v) to B3.
For ξ = 2π/3 the 6 × 6 matrix of Zξ with respect to

B(t, u, v) is found from Eqs. (3) and (59) to be the same
as [Zξ]BB in Eq. (83); it is independent of t u v. Since for
ξ = 2π/3 a rotation through 2ξ is the same as a rotation
through −ξ,

[Zξ]B3B3 =

R(−ξ)
R(−ξ)

I2×2

 (ξ = 2π/3)

(117)
In Fig. 11 the coordinate planes are for coordinates with

respect to the basis B(t, u, v). The figure illustrates the prime
summands and their invariance under Z2π/3. In Fig. 11(b),
for example, if the ball at θ = 0 (the 3:00 position) is ro-
tated through an angle of 2π/3 about its own vertical axis
(perpendicular to the page), the resulting ball is present in
the diagram. According to the middle 2× 2 submatrix in
Eq. (117), it should be the ball at θ = −2π/3 (the 7:00
position).FIG. 11

8.2 The remarkable subspaces B(u, v)

Whereas the subspace B12 consists of the double couples
having a fault plane horizontal, and B34 consists of the dou-
ble couples with null axis vertical, the subspaces B(u.v) are
more subtle and intriguing.

Since the matrices B(0, u, v) and B(π/2, u, v) are both
orthogonal toB5 andB6 in the basis B (Eqs. 3), the subspace
B(u, v) is a (two-dimensional) subspace of B12 ⊥ B34. The
matrices in B(u, v) are therefore deviatoric, that is, each has
trace zero.

Recall that a double couple matrix is a deviatoric matrix
with determinant zero. From Eq. (110),

detB(θ, u, v) =
1√
8

cos2 u sinu sin(v + 3θ) (118)

Hence, for u 6= nπ/2, a matrix B(θ, u, v) is a double couple
if and only if θ = −v/3 + nπ/3.

From Eq. (110),

Zβ B(θ, u, v)Z>β = B(θ − β, u, v + 3β) (119)

A beachball pattern is determined by the eigenvalue triple
Λ of the beachball matrix, with the entries of Λ being in
descending order. Conjugating a matrix preserves its eigen-
values, hence, with β = −v/3 in Eq. (119),

Λ(B(θ, u, v)) = Λ(B(θ + v/3, u, 0)), (120)

and then

Λ
(
B(u, v)

)
= Λ

(
B(u, 0)

)
(121)

Thus the totality of beachball patterns in the subspace
B(u, v) is not affected by v.

To explain how u affects the patterns, we use the pa-
rameter γ(Λ), which for a deviatoric eigenvalue triple Λ is
the signed angle between (1, 0,−1) and Λ (Tape & Tape
2013, Section 2.3.2). In general, γ varies between −π/6 and
π/6, with γ = 0 for double couples and |γ| = π/6 for
CLVDs—crack matrices that are deviatoric. For matrices
in B(u, v), however, γ varies between values −γmax(u) and
γmax(u). As shown in Fig. 12, the number γmax(u) ranges
from zero at u = nπ/2 to π/6 at u = ±u0 + nπ, where
u0 = (1/2) tan−1

√
8 = 35.3◦. Thus, for u near nπ/2 the

matrices in the subspace B(u, v) all resemble double couples,
while for u near ±u0 + nπ, they vary from double couples
nearly to CLVDs.

The subspace B(u0, v) also has the special property that
its matrices all have a common eigenframe. See Section S3. FIG. 12

8.3 Elastic maps with symmetry Z2π/3

We now give an intrinsic characterization of elastic maps T
that have symmetry Z2π/3. The reasoning is the same as for
regular ξ in Section 4.3, but now the prime summands are
as in Eq. (114). From Eqs. (78), the map T is determined
by giving t, u, v to specify the prime summands, and by as-
signing respective numbers λ1, λ3, λ5, λ6 to them. That is,
T = TΛ

3 (t, u, v), where

TΛ
3 (t, u, v) = B(u, v)

λ1 λ1

⊥ B(u′, v)
λ3 λ3

⊥ 〈B56(t)〉
λ5

⊥ 〈B56(t′)〉
λ6

Λ = (λ1, λ1, λ3, λ3, λ5, λ6) (122)

Theorem 9. (The matrix of TΛ
3 (t, u, v))

For T = TΛ
3 (t, u, v),

[T]BB = [I]B B3


λ1

λ1

λ3

λ3

λ5

λ6

 [I]B3B (123)

where [I]B B3 is the 6× 6 matrix

[I]B B3 =

(cosu)I2×2 −(sinu)I2×2

(sinu)R(v) (cosu)R(v)
R(t)

 (124)

Proof. From Eq. (122) the matrix of T with re-
spect to B(t, u, v) is diagonal with diagonal entries
λ1, λ1, λ3, λ3, λ5, λ6. It is related to [T]BB by [T]BB =
[I]BB3 [T]B3B3 [I]B3B, where [I]BB3 is the matrix that takes
B(t, u, v)-coordinates to B-coordinates. From Eqs. (32), (3),
(116), the matrix [I]BB3 is as stated in Eq, (124).

The matrix [T]BB in Theorem 9 dictates the definition of the
matrix T3 in Table 1. The two matrices are the same when
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the entries of T3 are

a = λ1 cos2 u+ λ3 sin2 u

c = λ3 cos2 u+ λ1 sin2 u

h =
1

2
(λ3 − λ1) sin 2u sin v

m =
1

2
(λ1 − λ3) sin 2u cos v

e, f, k are as in Eqs. (88) (125)

The two matrices are also the same if h2 +m2 6= 0 and

u = θu =
1

2
θ̂
(
a− c, 2

√
h2 +m2

)
v = θv = θ̂(m,−h)

λ1 =
1

2

(
a+ c+

√
(a− c)2 + 4(h2 +m2)

)
λ3 =

1

2

(
a+ c−

√
(a− c)2 + 4(h2 +m2)

)
t, λ5, λ6 are as in Eqs. (89) (126)

Verification of Eqs. (126) is just a calculation, though best
done by computer. (One might nevertheless wonder where
the equations come from. See Appendix D). For the case
h = m = 0 that is ruled out in Eqs. (126), the matrix T3

becomes Txiso and hence is covered by Eqs. (89).
For T having symmetry Z2π/3, Eqs. (125) give the ma-

trix entries a, c, e, f, h, k,m of T3 = [T]BB in terms of the in-
trinsic parameters t, u, v, λ1, λ3, λ5, λ6 of T, and Eqs. (126)
do the reverse. As usual, the intrinsic parameters are not
unique. The following 7-tuples of intrinsic parameters all
give the same T. One 7-tuple is usually enough, however.

t u v λ1 λ3 λ5 λ6

t u v µ1 µ3 µ5 µ6

t −u v + π µ1 µ3 µ5 µ6

t u+ π/2 v µ3 µ1 µ5 µ6

t+ π/2 u v µ1 µ3 µ6 µ5

(127)

We now have the three equivalent conditions:

Z2π/3 is a symmetry of T (128a)

T = TΛ
3 (t, u, v) for some t, u, v, λ1, λ3, λ5, λ6 (128b)

[T]BB = T3(a, c, e, f, h, k,m) for some a, c, e, f, h, k,m
(128c)

9 Elastic maps with symmetry Zξ when ξ = 0

It remains to treat ξ = 0. The matrix Zξ is then the iden-
tity matrix I. Since I is the identity transformation, all sub-
spaces of M are invariant under I, hence all one-dimensional
subspaces are prime for I. Any six one-dimensional and
mutually orthogonal subspaces are therefore prime sum-
mands for I. Basis elements for the subspaces can be spec-
ified by a 6 × 6 rotation matrix U ; the columns of U are
the B-coordinate vectors for the basis elements, call them
B1(U), . . . , B6(U).

An elastic map T with symmetry I—that is, any elastic
map whatsoever—is therefore determined by specifying U
to give the prime summands 〈B1(U)〉, . . . , 〈B6(U)〉 and by
specifying numbers λ1, . . . , λ6 to be assigned to them:

T = 〈B1(U)〉
λ1

⊥ . . . ⊥ 〈B6(U)〉
λ6

(U = U6×6) (129)

This is not new. The numbers λ1, . . . , λ6 are the eigenvalues
of T, and B1(U), . . . , B6(U) are the eigenvectors.

The group of 6× 6 rotation matrices has dimension 15,
and so 15 real parameters would be required to specify U .

10 How the symmetries change when the material
is rotated

Elastic maps T and T′ are defined to be equivalent if there
is a matrix U ∈ U such that

T′ = U ◦T ◦ U∗
(130)

Section 3.2 gave some motivation for the definition; the maps
T and T′ can be regarded as describing the elasticity in
a material before and after rotating the material using U .
Section S2 has a test for equivalence of elastic maps whose
eigenvalues are simple.

We denote the group of symmetries of T by ST:

ST = {V ∈ U : V is a symmetry of T} (131)

Then a group U of rotations is said to be an elastic symmetry
group if U = ST for some elastic map T.

For U and V both in U, and with T′ = U ◦T ◦ U∗
,

V ◦T◦V ∗
= T ⇐⇒ UV U> ◦T′ ◦ (UV U>)∗ = T′ (132)

Thus V is a symmetry of T if and only if UV U> is a sym-
metry of T′.

If T and T′ are equivalent, then their symmetry groups
ST and ST′ are conjugate. More precisely, if T′ = U ◦T◦U∗

then

ST′ = USTU>, (133)

where USTU consists of all matrices UV U>, V ∈ ST.

10.1 Orientation information in TΛ
4 , TΛ

3 , TΛ
2

From here up until Section 16, virtually all of the matrix rep-
resentations are with respect to the basis B. When feasible
we therefore drop the subscript and write [T] for [T]BB.

Recall that conjugation of T by U formally expresses
the effect on T of rotating the material using the matrix
U ∈ U. Recall also that TΛ

4 (s, t), TΛ
3 (t, u, v), TΛ

2 (r, U), and
TΛ

xiso(t) are the most general elastic maps having the respec-
tive symmetries Zπ/2, Z2π/3, Zπ, and Zξ for ξ regular. Since
Zβ is a symmetry of TΛ

xiso, rotating by Zβ has no effect on
TΛ

xiso, but for most β it does impact TΛ
4 , TΛ

3 , and TΛ
2 . Thus

Zβ ◦TΛ
4 (s, t) ◦ Zβ

∗
= TΛ

4 (s+ 2β, t) (134)

Zβ ◦TΛ
3 (t, u, v) ◦ Zβ

∗
= TΛ

3 (t, u, v + 3β) (135)

Zβ ◦TΛ
2 (r, U) ◦ Zβ

∗
= TΛ

2 (r − β,
(
R(2β)

I2×2

)
U)

(136)

Eqs. (134) and (136) follow by inspection of the matrix
[Zβ ]BB (Eq. 83) and the matrices of TΛ

4 and TΛ
2 in Theo-

rems (6) and (7). Eq. (135) follows from Theorem 9 and
from the fact that (from Eqs. 83 and 124)

[Zβ ]B B [I]B B(t,u,v)

= [I]B B(t,u,v+3β)

R(−β)
R(−β)

I2×2

 (137)
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From Eq. (134), the elastic mappings TΛ
4 (s, t) and

TΛ
4 (s+ 2β, t) are equivalent. They describe a material hav-

ing symmetry Zπ/2, before and after being rotated by Zβ .
The elastic maps TΛ

3 (t, u, v) and TΛ
3 (t, u, v + 3β) likewise

describe a material having symmetry Z2π/3, before and after
being rotated by Zβ . Section S1 has the very simple matrix
equivalents of Eqs. (134) and (135).

11 Unanticipated but unavoidable symmetries

We have considered elastic maps T that have symmetry Zξ.
Except when ξ = nπ, the map T turns out to have other
(non-trivial) symmetries as well, perhaps unexpected. Fig. 6,
for example, showed prime summands for Zξ when ξ is regu-
lar. The beachballs for the prime summands obviously have
every horizontal (i.e., in the plane of the paper) axis as a
2-fold axis of symmetry. Thus,

Theorem 10. (A regular axis requires an orthogonal
2-fold axis.)

If an elastic map T has the symmetry Zξ for some regular ξ,
then it also has as symmetries all 2-fold rotations about
horizontal axes. (It also has all rotations about the z-axis as
symmetries, by Theorem 5.)

11.1 Symmetries accompanying a 4-fold rotation
FIG. 13

What about a map T that has symmetry Zπ/2? Prime sum-
mands for Zπ/2 are shown in Fig. 9, and here again a hori-
zontal 2-fold axis is obvious, now that we think to look for
it. There are four of them, and Fig. 13 shows how to find
them; they are at θ = s/2 + nπ/4. Thus,

Theorem 11. (A 4-fold axis requires an orthogonal
2-fold axis.)

If an elastic map T has the symmetry Zπ/2, so that T =
TΛ

4 (s, t) for some s, t,Λ, then it has four 2-fold symmetries
with horizontal axes at θ = s/2 + nπ/4.

In terms of the entries a, c, . . . of the matrix T4 the horizontal
2-fold axes of T are at θ = θ4/2+nπ/4, where, from Eq. (97),

θ4 = 1
2
θ̂(c− d, 2i).

As one might expect, there is nothing special about the
4-fold axis for T being vertical. If T has a 4-fold symmetry
with axis in the direction of v ∈ R3 then it also has four
2-fold symmetries with axes perpendicular to v.

11.2 Symmetries accompanying a 3-fold rotation

We consider T = TΛ
3 (t, u, v)—the most general elastic map

having a 3-fold symmetry with vertical axis. A 2-fold symme-
try with horizontal axis would have the form V = ZβYπZ

>
β

for some β. Using Eqs. (59) and (116), we calculate the
matrix [V ]B3B3 = (tij) of V with respect to the basis
B3 = B(t, u, v) and find that it has the unwanted entry

t31 = sin 2u sin(v − 3β) sin(v − β) (138)

We therefore try setting β = v/3. The matrix [V ]B3B3 sim-
plifies to

−cos
2v

3
sin

2v

3

sin
2v

3
cos

2v

3

−cos
2v

3
sin

2v

3

sin
2v

3
cos

2v

3
1

1


(139)

The prime summands B(u, v), B(u′, v), 〈B56(t)〉, 〈B56(t′)〉—
and hence the eigenspaces of T—are therefore invariant
under V , where V = Zv/3YπZ

>
v/3 = ZθXπZ

>
θ is now the

180◦ rotation about the horizontal axis in the θ = π/2+v/3
direction. The rotation V must be a symmetry of T, by
Theorem 1. Thus,

Theorem 12. (A 3-fold axis requires an orthogonal
2-fold axis.)

If an elastic map T has the symmetry Z2π/3, so that T =
TΛ

3 (t, u, v) for some t, u, v,Λ, then it has three 2-fold sym-
metries with horizontal axes at θ = π/2 + v/3 + nπ/3.

In terms of the entries a, c, . . . of the matrix T3, the 2-fold
axes of T are at θ = π/2+θv/3+nπ/3, where θv = θ̂(m,−h)
(Eq. 126).

There must be a 2-fold axis (three in fact) in Fig. 11,
but it does not give itself away. Fig. 14 offers some help.

Consistent with Theorems 11 and 12, Fedorov (1968)
recognized that the distinctions between what are effectively
our matrices T4 and Ttet, and between our T3 and Ttrig, are
only distinctions in orientation; it is a matter of where the
2-fold axes fall. (See Table 4 for Ttet and Ttrig.)

A baseless division into two groups of the classes in the tetrago-
nal and trigonal systems is used in many works. . . (Fedorov 1968,
p 31)

FIG. 14

11.3 A 2-fold axis requires no other 2-fold axes

An elastic map T with the 2-fold symmetry Zπ may fail
to have a horizontal 2-fold axis, but it has an orienta-
tion marker nonetheless. For T = TΛ

2 (r, U), the eigenvector
B12(r) is a double couple with a horizontal fault plane. Its
null axis, necessarily horizontal, is in the direction θ = −r,
as for example in Fig. 10, where r = 30◦.

11.4 The meaning of the parameters r, s, t, u, v

Eqs. (91b), (99c), (108c), (128b) were supposed to give con-
ceptual characterizations of elastic maps having various ro-
tational symmetries about the z-axis. We can now fulfill that
promise by explaining the parameters r, s, t, u, v that appear
in the equations. The numbers s and v are orientation pa-
rameters; they locate the respective 2-fold axes of TΛ

4 (s, t)
and TΛ

3 (t, u, v), as described in Sections 11.1 and 11.2. The
number r is also an orientation parameter, as explained in
Section 11.3, but rotating the hypothetical material about
the z-axis changes both r and U , as seen in Eq. (136). The
number u affects beachball patterns in the subspace B(u, v),
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as explained in Section 8.2. The number t determines the
pattern on the beachball for the crack matrix B56(t); see
Eq. (93).

12 The reference subgroups of U

Table 3 lists eight “reference” subgroups of U; they are
U1, Umono, . . . , Uiso. In Section 14 we will see that, for any
elastic map T, the group ST of its symmetries is a conjugate
of one of the reference groups. In that sense there are only
eight elastic symmetry groups.Table 3

To elaborate on the reference groups:
The matrices in Uxiso are the rotational symmetries of

a vertical cylinder.
The 24 rotational symmetries of any cube (the “gyroid”

group) are the 4-fold rotations about the face centers of the
cube, the 2-fold rotations about the midpoints of the edges,
and the 3-fold rotations about the vertices. For Ucube the
cube is oriented with its face centers on the xyz coordinate
axes. The matrices in Ucube are the 3 × 3 rotation matrices
having exactly one non-zero entry in each row and column,
and with that entry being ±1.

The 8 members of Utet are the (rotational) symmetries
of a square prism. The 6 members of Utrig are the symmetries
of an equilateral triangular prism. The four members of Uorth
are the symmetries of a brick. The two members of Umono are
the symmetries of a wedge—an isosceles triangular prism.

From the third column of Table 3, the containments
among the reference groups are

Uiso = U

Uxiso Ucube 24

Utrig 6 Utet 8

Uorth 4

Umono 2

U1 = {I}

(140)

Solid arrows mean “is a subgroup of” and dashed arrows
mean “is a subgroup of a group conjugate to.” The integers
give the number of elements in the group, if finite.

The subscripts mono, orth, tet, trig are for the
terms monoclinic, orthorhombic, tetragonal, and trigonal,
which are relics from an era—not yet completely past—
when crystallographic symmetries were thought to deter-
mine elastic symmetries. More informative terms would
be wedge-like, brick-like, square-prismatic, and (equilateral)
triangular-prismatic. A material whose elastic symmetry is
square-prismatic, for example, can be sculpted into a square
prism whose geometric symmetries are the same as its elas-
tic symmetries. The term transverse isotropic would become
cylindrical, and isotropic would become spherical.Table 4

12.1 Elastic maps for each reference group

For each reference group U = U1, Umono, . . . , Uiso we now
give both an intrinsic and a matrix characterization of
elastic maps whose symmetries are at least those in U .
The matrix characterizations are the “reference” matrices
T1, Tmono, . . . , Tiso in Table 4.

Each matrix characterization can be verified using the
∆-test of Eqs. (70). In most cases the intrinsic character-
ization can then be found just by inspection of the ma-
trix characterization. A fancier approach is to appeal to
Theorem 7, which pertains to the vertical 2-fold symmetry
Zπ. Since all of the reference groups except U1 and Utrig con-
tain Zπ, then the intrinsic characterizations associated with
the other six reference groups are special cases of that for
Umono (Eq. 147b). (Their six reference matrices are likewise
special cases of Tmono, as seen in Table 4.)

The intrinsic characterizations are indeed intrinsic, in
the sense that the subspaces in their orthogonal direct sums
can be described without mentioning B or any other basis
of M. See Table 2.

We have talked about the notion of prime summands for
an individual rotation matrix. The notion also makes sense
for a group of rotation matrices; “invariant” then means in-
variant under V for all V in the group. In each of the intrin-
sic characterizations below, the subspaces in the orthogonal
direct sum are prime summands for the relevant reference
group.

Recall that ST is the group of symmetries of the elastic
map T.

12.1.1 Reference group Uiso

The condition ST = Uiso is equivalent to each of

[T] = Tiso(a, f) for some a and f (141a)

T = 〈B6〉⊥
λ1 λ1 λ1 λ1 λ1

⊥ 〈B6〉
λ6

for some λ1 and λ6 (141b)

The subspace 〈B6〉⊥ is 〈B1, B2, B3, B4, B5〉 in Table 2; it
consist of the deviatoric matrices.

12.1.2 Reference group Uxiso

The condition ST ⊃ Uxiso is equivalent to each of

[T] = Txiso(a, c, e, f, k) for some a, c, e, f, k (142a)

T = B12
λ1 λ1

⊥ B34
λ3 λ3

⊥ 〈B56(t)〉
λ5

⊥ 〈B56(t′)〉
λ6

for some t, λ1, λ3, λ5, λ6 (142b)

12.1.3 Reference group Ucube

The condition ST ⊃ Ucube is equivalent to each of

[T] = Tcube(a, d, f) for some a, d, f (143a)

T = 〈B1, B2, B3〉
λ1 λ1 λ1

⊥ 〈B4, B5〉
λ4 λ4

⊥ 〈B6〉
λ6

for some λ1, λ4, λ6

(143b)
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12.1.4 Reference group Utet

The condition ST ⊃ Utet is equivalent to each of

[T] = Ttet(a, c, d, e, f, k) for some a, c, d, e, f, k (144a)

T = B12
λ1 λ1

⊥ 〈B3〉
λ3

⊥ 〈B4〉
λ4

⊥ 〈B56(t)〉
λ5

⊥ 〈B56(t′)〉
λ6

for some t, λ1, λ3, λ4, λ5, λ6 (144b)

The matrix Ttet is the special case of T4 where the horizontal
two-fold axes are at θ = nπ/4.

12.1.5 Reference group Uorth

Here U is a 3×3 rotation matrix U = (uij)i,j=4,5,6. Matrices
Bj(U) are defined by

Bj(U) = u4jB4 + u5jB5 + u6jB6 (j = 4, 5, 6) (145)

Then the condition ST ⊃ Uorth is equivalent to each of

[T] = Torth(a, b, . . .) for some a, b, . . . (146a)

T = 〈B1〉
λ1

⊥ 〈B2〉
λ2

⊥ 〈B3〉
λ3

⊥ 〈B4(U)〉
λ4

⊥ 〈B5(U)〉
λ5

⊥ 〈B6(U)〉
λ6

for some U, λ1, . . . λ6 (146b)

Eq. (146b) is simpler than it appears, since the ma-
trices B4(U), B5(U), B6(U) are a basis for the subspace
〈B4, B5, B6〉 consisting of the diagonal matrices (Table 2).

12.1.6 Reference group Umono

The condition ST ⊃ Umono is equivalent to each of

[T] = Tmono(a, b, . . .) for some a, b, . . ., (147a)

T = 〈B12(r)〉
λ1

⊥ 〈B12(r′)〉
λ2

⊥ 〈B3(U)〉
λ3

⊥ 〈B4(U)〉
λ4

⊥

〈B5(U)〉
λ5

⊥ 〈B6(U)〉
λ6

for some r, U, λ1, . . . λ6 (147b)

where in Eq. (147b) the matrix U is now a 4 × 4 rotation
matrix and where the Bj(U) are as in Eq. (103). This is a
repetition of Eqs. (108).

12.1.7 Reference group Utrig

The condition ST ⊃ Utrig is equivalent to each of

[T] = Ttrig(a, c, e, f, k,m) for some a, c, e, f, k,m (148a)

T = B(u, 0)
λ1 λ1

⊥ B(u′, 0)
λ3 λ3

⊥ 〈B56(t)〉
λ5

⊥ 〈B56(t′)〉
λ6

for some t, u, λ1, λ3, λ5, λ6 (148b)

The matrix Ttrig is the special case of T3 where the horizon-
tal 2-fold axes are at θ = π/2 + nπ/3. Thus the y-axis, not
the x-axis, is one of the 2-fold axes.

12.1.8 Reference group U1 = {I}

The condition ST ⊃ U1 is satisfied for all T.

12.1.9 Only a one-way test for ST ⊃ Umono

Let

T 0
mono =


a

b
c i o s
i d j p
o j e k
s p k f

 (149)

The matrix T 0
mono is the matrix of T when ST ⊃ Umono and

when the double couple eigenvectors B12(r) and B12(r′) of T
are B1 and B2 (in either order), so that their null axes are in
the x and y coordinate directions. The condition [T] = T 0

mono

implies ST ⊃ Umono, but the converse is false.
To describe all elastic maps having 2-fold symmetry

with axis vertical, one wants the matrix Tmono. On the other
hand, every T having 2-fold symmetry is equivalent to an
elastic map whose matrix with respect to B is T 0

mono (for
some a, b, . . .).

The matrices Tmono and T 0
mono are comparable to the

matrices in Eqs. (3.29) of Helbig (1994).

13 Symmetry for a subspace of M

When a subspace W of M is invariant under V we will also
say that V is a symmetry of W:

V is a symmetry of W ⇐⇒ V (W) ⊂W (150)

We thus have two notions of symmetry: one for an elastic
map T (Eq. 69), and one for a subspace W of M. Theorem
13, next, relates the two notions. Due to the close relation,
subspace symmetry will be our key to identifying the sym-
metry of elastic maps, in Section 15. For example, a con-
sequence of Theorems 13 and 16 is that if an elastic map
T has a simple eigenvalue whose eigenvector (3× 3 matrix)
is generic (Fig. 7d), then the symmetry of T can only be
orthorhombic, monoclinic, or trivial. Thus, trigonal, tetrag-
onal, cubic, transverse isotropic, and isotropic symmetry can
often be ruled out by casual inspection of the eigensystem
for T.

Theorem 13. A rotation V ∈ U is a symmetry of an elastic
map T if and only if V is a symmetry of each eigenspace
of T.

Proof. The theorem is just a paraphrase of Theorem 1.

When V is a symmetry of a one-dimensional subspace
W = 〈E〉, we will also say that V is a symmetry of E itself.
Theorems 14 and 16 show that the symmetries of E are easy
to recognize from the beachball for E.

Theorem 14. A rotation V ∈ U is a symmetry of E ∈ M
if and only if V (E) = ±E.

Proof. First suppose V is a symmetry of E. Since E ∈ 〈E〉
then so is V (E). Since 〈E〉 is one-dimensional, then, for some
number t,

V (E) = t E (151)
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Since V is unitary, then ‖V (E)‖ = ‖E‖. Hence

‖V (E)‖ = ‖tE‖
‖E‖ = |t| ‖E‖

t = ±1 (152)

Hence V (E) = ±E.
Conversely, suppose V (E) = ±E. If F ∈ 〈E〉, then

F = tE for some t, and V (F ) = V (tE) = t V (E) = ±tE ∈
〈E〉. Hence V is a symmetry of 〈E〉.

The condition V (E) = −E severely constrains E. If
µ1, µ2, µ3 are the eigenvalues of E in descending order, then
−µ3,−µ2,−µ1 are the eigenvalues of −E in descending or-
der. Since for any V ∈ U the matrices E and V (E) have the
same eigenvalues, then V (E) = −E implies µ3 = −µ1 and
µ2 = 0. Thus,

V (E) = −E =⇒ E is a double couple (153)

We mentioned in Section 3.1.1 that the beachball for
V (E) is the result of applying the rotation V to the beach-
ball for E. Informally, Theorem 14 says that V is a symmetry
of E if and only if the rotated ball differs from the original
ball by at most a swapping of red with white. This of course
assumes that the ball for E is bicolored, not just one solid
color.

Fig. 9 illustrates Theorem 14 and Eq. (153). The ro-
tation Zπ/2 is a symmetry of each of the five subspaces
in the figure. The one-dimensional subspaces are 〈B34(s)〉,
〈B34(s′)〉, 〈B56(t)〉, and 〈B56(t′)〉. Using Zπ/2 to rotate the
beachballs for the matrices B56(t) and B56(t′) has no effect
on the appearance of the balls. Doing the same for B34(s)
and B34(s′), which are double couples, has the effect of re-
versing red and white on each ball.

We denote the group of symmetries of E ∈ M by S(E):

S(E) = {V ∈ U : V is a symmetry of E} (154)

For a subspace W of M, we likewise use the notation S(W)
to refer to the group of symmetries of W. Given W, we can
consider the elastic map T such that

T = W
1
⊥W⊥

2
(155)

Since the symmetries of W are the same as those of W⊥
(Eq. 46), they are also the symmetries of T, by Theorem
13. The group S(W) is therefore an elastic symmetry group.

There are not many possibilities for a symmetry V of E.

Theorem 15. (S(E) for diagonal E)

E =

µ µ
µ

 =⇒ S(E) = Uiso (156a)

E =

µ µ
µ3

 =⇒ S(E) = Uxiso (µ 6= µ3) (156b)

E =

µ −µ
0

 =⇒ S(E) = Utet (156c)

If E is diagonal and generic (Eq. 92) then S(E) = Uorth
(156d)

Proof. The theorem should seem plausible just from beach-
ball pictures. For algebraic proofs of Eqs. (156b) and (156d)

see Appendix A of Tape & Tape (2012). A variation of the
argument for Eq. (156d) shows that if E is a double cou-
ple then the rotations V that give V (E) = −E are the
two 180◦ rotations about the fault plane normals, together
with the ±90◦ rotations about the null axis. Together with
Eq. (156d), this gives Eq. (156c).

From Theorem 15 we get, more generally,

Theorem 16. (S(E) for arbitrary E)

(i) If E is generic then its symmetry group S(E) is con-
jugate to Uorth. The non-trivial members of S(E) are the
three 2-fold rotations about the principal axes of E.

(ii) If E is a double couple, then S(E) is conjugate to Utet.
The null axis of E is the 4-fold axis of S(E), and the T and
P axes of E are two of the 2-fold axes of S(E).

(iii) If E is a crack matrix, then S(E) is conjugate to Uxiso.
The c-axis of E is the regular axis of S(E).

Thus the symmetry of E is obvious from the (perhaps per-
turbed) beachball for E.

Symmetry groups S(W) for selected subspaces W of M
were given in Table 2. As an example, we derive S(W) for
W = 〈B4, B5〉. The subspace W is 〈B6〉⊥ ∩ 〈B4, B5, B6〉—
the diagonal matrices that are deviatoric. Since conjuga-
tion preserves matrix trace, then S〈B4, B5, B6〉 ⊂ S(W).
Conversely, S(W) ⊂ S〈B4, B5, B6〉, since if V ∈ S(W) and
F ∈ 〈B4, B5, B6〉, then F = E + tI for some E ∈ W and
t ∈ R, and

V (F ) = V (E+tI) = V (E)+t V (I) = V (E)︸ ︷︷ ︸
∈W

+tI ∈ 〈B4, B5, B6〉

(157)
Hence S(W) = S〈B4, B5, B6〉. From Proposition 1 of Tape
& Tape (2016) we know that S〈B4, B5, B6〉 = Ucube. Thus

S〈B4, B5〉 = S〈B4, B5, B6〉 = Ucube (158)

Theorem 17. The eight reference groups are elastic sym-
metry groups. That is, for each reference group U (Table 3)
there is an elastic map T for which ST = U .

Proof.
(i)–(v) Each of Uiso, Uxiso, Utet, Uorth, Ucube is the sym-

metry group of a subspace of M (Theorem 15 and Eq. 158)
and hence is an elastic symmetry group; see Eq. (155).

(vi) For U = Umono. We can take

T = 〈B1〉
λ1

⊥〈B2〉
λ2

⊥〈B34(s)〉
λ3

⊥〈B34(s′)〉
λ4

⊥〈B56(t)〉
λ5

⊥〈B56(t′)〉
λ6

,

(159)
where, say, s = 55◦, t = 40◦, and where λ1, . . . , λ6 are dis-
tinct, so that each of 〈B1〉, . . . , 〈B56(t′)〉 is an eigenspace
of T. The beachballs for B1, . . . , B56(t′) appear in Fig. 9,
the balls for B1 and B2 being at (x1, x2) = (1, 0) and
(x1, x2) = (0, 1). The symmetries common to all six beach-
balls are Zπ and I, hence ST = Umono.

(vii) For U = Utrig. We can take T as in Eq. (148b) with
λ1 = λ6 = 1, λ3 = 2, λ5 = 3, t = v = 0, and u = π/4. Then
〈B5〉 is an eigenspace of T and has symmetry group Uxiso,
hence ST ⊂ Uxiso. The members of Uxiso are the rotations Zξ
(any ξ) and the horizontal 2-fold rotations ZθXπZ

>
θ (any θ).

Which of them are in ST? The matrix of T with respect to



Elastic symmetry with beachball pictures 19

B is

[T] =
1

2


3 −1

3 −1
−1 3
−1 3

6
2

 (160)

Using the ∆-test, we find that Zξ is a symmetry of T if and
only if ξ = n2π/3, and ZθXπZ

>
θ is a symmetry of T if and

only if θ = π/2 + nπ/3. Hence ST = Utrig.
(viii) For U = U1. Let T be as in Eq. (23). The eigenvalues

of T are 3/5, 4/5, . . . , 8/5. Eigenvectors for eigenvalues 3/5
and 4/5 are

G1 =

−1 0 0
0 1 1
0 1 0

 , G2 =

 1 0
√

3
0 1 0√
3 0 −2

 (161)

The matrices G1 and G2 are generic and have no principal
axis in common. The non-trivial symmetries of any generic
matrix are the three 2-fold rotations about its principal axes,
so the only symmetry common to the eigenspaces 〈G1〉 and
〈G2〉 of T is the identity. Hence ST = U1. Fig. 4 is the
beachball picture for T.

14 The elastic symmetry groups

In Theorem 18 below we show that the symmetry group of
every elastic map is the conjugate of some reference group
(Table 3). Together with Theorem 17 this means that the
elastic symmetry groups are exactly the conjugates of the
eight reference groups.

In a tour de force in their Section 6, Forte & Vianello
(1996) detail the long history of the problem of determining
the number of elastic symmetry groups. We cannot possi-
bly do justice to their recounting of it. We only mention
that in the older literature the seemingly natural groups
{I, Zπ/2, Zπ, Z3π/2} and {I, Z2π/3, Z4π/3} were incorrectly
considered to be elastic symmetry groups (e.g., Nye 1957,
1985; Cowin et al. 1991). (The discussions were not explic-
itly in terms of elastic symmetry groups, so our paraphrase
is loose.) This would bring the number of elastic symmetry
groups to ten, not eight. This of course counts conjugate
groups as the same.

Forte & Vianello (1996) gave a proof concluding that
the correct number was eight, and other proofs appeared
later, also concluding eight (e.g., Chadwick et al. 2001; Bóna
et al. 2007). Our proof, also concluding eight, may neverthe-
less be of interest, due to its pedestrian approach. It mainly
involves circles on a sphere, as in Figs. 16, 17, 18. The proof
is tedious, however, in that Lemma 4 requires consideration
of various cases.

Fortunately, the ideas in the proof of Lemma 4 are not
needed elsewhere in the paper, so the proof can be skipped
if desired. Neither Theorem 17 nor Theorem 18, however,
should be regarded as mere formalities. Their conclusions are
not obvious, as illustrated by the historical confusion over
the two groups {I, Zπ/2, Zπ, Z3π/2} and {I, Z2π/3, Z4π/3} al-
luded to above.

In connection with Lemma 2, a point v on the unit
sphere is a “regular axis” for a group U of rotations if all

rotations about v are in U . Thus v = ±001 are the regular
axes for Uxiso.

Lemma 2. If a group U ′xiso is conjugate to Uxiso, then there
is no group U strictly between U ′xiso and Uiso. That is,

U ′xiso ⊂ U ⊂ Uiso =⇒
(
U = U ′xiso or U = Uiso

)
Proof. Suppose U ′xiso ⊂ U ⊂ Uiso. If U = U ′xiso, then we are
done. If not, there is a rotation U in U −U ′xiso. If v1 is one of
the two regular axes for U ′xiso, then both v1 and v2 = Uv1

are regular axes for U , with v1 6= ±v2. Then U is all of Uiso,
as illustrated in Fig. 15. FIG. 15

Lemma 3. Let U be an elastic symmetry group contain-
ing distinct 2-fold rotations V1 and V2. Let α be the angle
between their rotation axes, here considered as lines rather
than vectors, so that α ≤ 90◦. If α 6= 45, 60, 90◦, then U is
either Uiso or a conjugate of Uxiso.

Proof. Since V1 and V2 are 2-fold, the product rotation
V1 V2 has rotation angle 2α. (So does V2 V1; as vectors,
the rotation axes of V1 V2 and V2 V1 are oppositely di-
rected.) Since α 6= 0, 45, 60, 90◦, then 2α is regular. Since
V1 V2 ∈ U , then U has a subgroup U ′xiso conjugate to Uxiso, by
Theorem 10. Thus U ′xiso ⊂ U , and so U must be U ′xiso or Uiso,
from Lemma 2.

We define a point v of the unit sphere to be an avail-
able 2-fold point for a group U of rotations if the angular
distances between v and the axes of all 2-fold rotations in
U are 45◦, 60◦, or 90◦. Note that if v is an available 2-fold
point for U then so is −v.

Lemma 4. For a subgroup U of U and for a 2-fold rotation
V , let U(V ) be the smallest elastic symmetry group that
contains U and V . Then if U is a conjugate of a reference
group (Table 3), so is U(V ).

Proof. Let v be one of the two points where the rotation
axis of V intersects the unit sphere.

(i) The case where v is not an available 2-fold point
for U . There is a 2-fold rotation V ′ ∈ U with rotation axis
v′ such that v′ · v ≥ 0 and ∠(v,v′) 6= 45, 60, 90◦.

If V ′ = V , then V ∈ U and U(V ) = U . (Note that
U is itself an elastic symmetry group, by Theorem 17 and
Eq. 133.)

If V ′ 6= V , then applying Lemma 3 to U(V ) shows that
U(V ) is either Uiso or a conjugate of Uxiso.

(ii) The case where v is an available 2-fold point for U .
If U = U1, the group U(V ) is a conjugate of Umono.
If U = Umono, then the point v is 45◦, 60◦, or 90◦ from

the north or south pole, and the group U(V ) is a conjugate
of Utet, Utrig, or Uorth, respectively. (If U is only a conjugate
of Umono rather than being Umono itself, the conclusion does
not change.)

If U = Uorth the available 2-fold points for U are shown
in Fig. 16; the point v must be one of them. From the fig-
ure, the points v1 = 101 and v2 = 11

√
2 are the only two

essentially different possibilities for v.
The case v = v1: Since ∠(v, 100) = 45◦ and v × 100 ∝

010, then U(V ) has a 4-fold axis at 010. The group U(V ) is
then the conjugate of Utet that has 2-fold axes at 101̄, 100,
101, and 001. (It is a subgroup of the group of symmetries
of the dashed cube in Fig. 16b.)

The case v = v2: Since v and the three 2-fold axes for
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U are edge midpoints or face centers of the dashed cube in
Fig. 16c, then U(V ) must be a subgroup of the rotational
symmetry group of the cube. Since ∠(v, 001) = 45◦ and
v× 001 ∝ 11̄0, then U(V ) has a 4-fold rotation with axis at
(the face center) 11̄0. Since ∠(v, 100) = 60◦ and v × 100 ∝
0
√

2 1̄, then U(V ) has a 3-fold rotation with axis at (the
lower right cube vertex) 0

√
2 1̄. The group U(V ) is therefore

a conjugate of Ucube.FIG. 16
If U = Utet the group U(V ) is a conjugate of Ucube. The

argument is similar to that for U = Uorth.
If U = Utrig then U(V ) is a conjugate of Ucube or Uxiso.

See Fig. 17.FIG. 17
FIG. 18 If U = Ucube there are no available 2-fold points for U ;

see Fig. 18.
If U = Uxiso there are also no available 2-fold points

for U .

Theorem 18. (The elastic symmetry groups are con-
jugates of the reference groups.)

For any elastic map T the group ST of its symme-
tries is a conjugate of one of the eight reference groups
U1, Umono, . . . , Uiso in Table 3. That is, for each T there
is a reference group U and a rotation matrix U such that
ST = UU U>.

Proof. The idea of the proof is to start with the trivial group
{I} and add 2-fold rotations from ST one-by-one, and then
to see what groups are generated.

More precisely, we construct subgroups Uk of U by

U1 = {I}

Uk+1 = Uk(Vk+1), Vk+1 ∈ ST − Uk, Vk+1 is 2-fold
(162)

The construction terminates when ST − Uk contains no
2-fold rotation Vk+1 to add. Until then, we have

U1 ⊂ U2 ⊂ U3 ⊂ . . . (163)

Each Uk is a subgroup of ST, and each Uk is a conjugate
of some reference group, by Lemma 4. Then, since the sub-
group containments in Eq. (163) are strict, there can be at
most eight of the Uk. (If Uk is a conjugate of Uxiso, then
Uk+1 = Uiso, by Lemma 2). Thus, for some k ≤ 8,

U1 ⊂ U2 ⊂ . . . ⊂ Uk (164a)

ST − Uk contains no 2-fold rotations (164b)

Theorems 10, 11, 12 then tell us that the set ST − Uk is
not just devoid of 2-fold rotations, it is in fact empty. Then
ST = Uk and so ST is a conjugate of a reference group.

With ST = UU U> as in the theorem, we refer to U as
the reference group for T. We then call the symmetry of T
trivial, monoclinic, . . . , isometric according to whether the
reference group is U1, Umono, . . . , Uiso. Although T uniquely
determines its reference group, the rotation matrix U is
not unique, since U can always be replaced by UV , where
V UV > = U .

For each elastic map T there is a “characteristic solid”
whose group of (rotational) geometric symmetries is ST. If
the solid is sculpted out of the material whose elasticity
is described by T, without reorienting it, then its elastic
symmetries are the same as its geometric symmetries. In
Fig. 20 (next section), for example, the characteristic solid

for T′ is the brick at the upper right. The elastic symmetries
of T′ are obvious from the brick.

If the material being considered is reoriented, its elastic
map T is apt to change, and its elastic symmetry group
ST = UU U> is apt to change, but its reference group U
will not.

15 Finding the symmetries of elastic maps

In Sections 15.1–15.7 we find the symmetries of seven elastic
maps T′. To get an impression of the method, it is enough to
read just one or two of the seven sections. Readers wanting
to use the method themselves, however, will want the full
repertoire of seven examples.

Given an elastic map T′, we know from Theorem 18
that its symmetry group has the form ST′ = UUU>, where
U ∈ U and where U is one of the eight reference groups. For
most T′ the reference group U can be found just by inspec-
tion of the beachball picture for T′. Initially, we therefore
recommend ignoring the main text and just looking at the
beachball figures and their captions (e.g., Figs. 19 and 20).
First, however, review Theorem 16, so as to be able to rec-
ognize beachball symmetries.

In the figures the rotation U gives the orientation of
the beachballs. Although U can usually be guessed approxi-
mately and informally from the figure, the analytic approach
described in the text is needed to find the matrix U explic-
itly and thus to give a complete description of the symmetry
group ST′ .

We treat the entries in our matrices [T′] as exact. Thus
we are ignoring the important practical problem of how to
incorporate observational uncertainties into our analyses.
See, for example, Danek et al. (2015).

Many authors have treated the problem of identi-
fying the symmetries of given elastic maps. See Backus
(1970); Helbig (1994); Baerheim (1998); Bóna et al. (2007);
Abramian et al. (2019).

15.1 Example: monoclinic

We will find the symmetry group ST′ of the elastic map T′

whose matrix with respect to B is

[T′] =
1

80



222 −12
√

6 −82 21
√

6 −39
√

2 0

.. 196 12
√

6 30 10
√

3 −16

.. .. 222 9
√

6 −51
√

2 0

.. .. .. 242 −6
√

3 −24

.. .. .. .. 254 −8
√

3
.. .. .. .. .. 304


(165)

An eigensystem of T′ is shown in Fig. 19. From the figure,

T′ = 〈G1〉
1

⊥ 〈G3〉
2

⊥ 〈G4〉
3

⊥ 〈G2, G5, G6〉
4, 4, 4

(166)

The one-dimensional eigenspaces are 〈G1〉, 〈G3〉, 〈G4〉. The FIG. 19
matrix G1 is a double couple and therefore has tetragonal
symmetry, whereas G3 and G4 are generic and therefore
have orthorhombic symmetry; see Theorem 16. Orthorhom-
bic symmetry is more informative than tetragonal symme-
try, in the sense that it puts more constraints on the symme-
try of T′. We will consider G3—the eigenvector of T′ with
eigenvalue equal to 2.
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From Eq. (165),

G3 =

 −
√

3
√

2 −3
√

3√
2 2

√
3 −

√
2

−3
√

3 −
√

2 −
√

3

 (167)

(We have omitted the normalizing factor 1/(4
√

5), which is
inessential.) Diagonalizing gives G3 = UH3U

>, where

H3 = 2


√

3 + 1 √
3− 1

−2
√

3

 (168a)

U =
1

2

 −1 1
√

2

−
√

2 −
√

2 0

1 −1
√

2

 (168b)

The matrix of the elastic map T = U
∗ ◦T′ ◦U with respect

to B is

[T] = [U ]> [T′] [U ]

=
1

20


50 + 15

√
3 −15

−15 50− 15
√

3
64 0 0 −8
0 76 12 0
0 12 44 0
−8 0 0 76

 ,

(169)

And from Eqs. (166) and (47),

T = 〈H1〉
1

⊥ 〈H3〉
2

⊥ 〈H4〉
3

⊥ 〈H2, H5, H6〉
4, 4, 4

(Hi = U>Gi U) (170)

From Eq. (168a) the matrix H3 is diagonal and generic.
Hence from Eq. (156d) the group S(H3) of symmetries of
H3 is Uorth = {I,Xπ, Yπ, Zπ}. Since 〈H3〉 is an eigenspace
of T, then from Theorem 13,

ST ⊂ {I,Xπ, Yπ, Zπ}︸ ︷︷ ︸
S(H3)

, (171)

Using Eq. (169) and applying the ∆-test to Xπ, Yπ, Zπ, we
find that only I and Zπ are symmetries of T. Thus ST =
{I, Zπ} = Umono, and then ST′ = UUmono U>; the symmetry
of T′ is monoclinic. (Here U can be replaced by the more
transparent matrix Yπ/4, since UZ3π/4 = Yπ/4.) The two
matrices in the group ST′ are1 0 0

0 1 0
0 0 1

 and

0 0 1
0 −1 0
1 0 0

 .

The wedge at the upper right in Fig. 19 is the characteristic
solid for T′. If it had been sculpted out of the hypothetical
material under consideration, without reorienting the ma-
terial, then its geometric symmetries would be the same as
its elastic symmetries. (All symmetries are understood to be
rotational, as usual.)

15.2 Example: orthorhombic

We next find the symmetry group ST′ of the elastic map T′

whose matrix with respect to B is

[T′] =
1

10



38 18 3
√

2 −5
√

2 −
√

6 −
√

8

.. 38 3
√

2 5
√

2 −
√

6 −
√

8

.. .. 41 0 −7
√

3 6
.. .. .. 20 0 0

.. .. .. .. 27 −2
√

3
.. .. .. .. .. 56


(172)

An eigensystem of T′ is shown in Fig. 20. From the figure,

T′ = 〈G1〉
1

⊥ 〈G2〉
2

⊥ 〈G3〉
3

⊥ 〈G4〉
4

⊥ 〈G5, G6〉
6, 6

(173)

The one-dimensional eigenspaces are 〈G1〉, 〈G2〉, 〈G3〉, 〈G4〉. FIG. 20
The matrices G1, G2, G3 are double couples and therefore
have tetragonal symmetry, whereas G4 is generic and there-
fore has the more informative orthorhombic symmetry. We
therefore consider G4— the eigenvector of T′ with eigen-
value equal to 4.

From Eq. (172),

G4 =


√

8 +
√

3 −
√

27
√

6

−
√

27
√

8 +
√

3
√

6√
6

√
6

√
8−
√

12

 (174)

Diagonalizing gives G4 = UH4U
>, where

H4 =
√

8

1 +
√

6
1

1−
√

6

 (175a)

U =
1

2


√

2 1 −1

−
√

2 1 −1

0
√

2
√

2

 (175b)

The matrix of the elastic map T = U
∗ ◦T′ ◦U with respect

to B is

[T] = [U ]>[T′] [U ]

=
1

5



10
15

5

28 2
√

3 2

2
√

3 24 −2
√

3

2 −2
√

3 28

 , (176)

And from Eqs. (173) and (47),

T = 〈H1〉
1

⊥ 〈H2〉
2

⊥ 〈H3〉
3

⊥ 〈H4〉
4

⊥ 〈H5, H6〉
6, 6

(Hi = U>Gi U) (177)

The matrix H4 is diagonal and generic (Eq. 175a), and so the
group S(H4) of symmetries of H4 is Uorth = {I,Xπ, Yπ, Zπ},
from Eq. (156d). Then

Uorth ⊂ ST ⊂ Uorth︸ ︷︷ ︸
S(H4)

(178)

The first subset containment is due to the matrix [T] in
Eq. (176) having the form of the reference matrix Torth in
Table 4, and the second is due to 〈H4〉 being an eigenspace
of T; see Theorem 13. From Eq. (178) we have ST = Uorth
and then ST′ = UUorthU>; the symmetry of T′ is orthogo-
nal.
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The brick at the upper right in Fig. 20 is the charac-
teristic solid for T′. If it had been sculpted out of the hypo-
thetical material under consideration, without reorienting
the material, then its geometric symmetries would be the
same as its elastic symmetries.

15.3 Example: tetragonal

Next we find the symmetry group ST′ for the map T′ whose
matrix with respect to B is

[T′] =
1

64



168 4
√

6 −40 6
√

6 6
√

2 0

.. 324 −4
√

6 −42 −14
√

3 16
√

3

.. .. 168 −6
√

6 −6
√

2 0

.. .. .. 233 35
√

3 −8
√

3
.. .. .. .. 163 −8
.. .. .. .. .. 352


(179)

An eigensystem of T′ is shown in Fig. 21. From the figure,FIG. 21

T′ = 〈G1, G2〉
2, 2

⊥ 〈G3〉
3

⊥ 〈G4〉
4

⊥ 〈G5〉
5

⊥ 〈G6〉
6

(180)

The one-dimensional eigenspaces are 〈G3〉, 〈G4〉, 〈G5〉, 〈G6〉.
The matrices G3 and G4 are double couples, and G5 and G6

are crack matrices. The double couples are more informative
than the crack matrices. We consider G3—the eigenvector
of T′ with eigenvalue equal to 3.

From Eq. (179),

G3 =

−1
√

6 1√
6 2 −

√
6

1 −
√

6 −1

 , (181)

Diagonalizing gives G3 = UH3U
>, where

H3 =

(
4
−4

0

)
, U =

1√
8

 1 −
√

3 2√
6
√

2 0

−1
√

3 2

 (182)

The matrix of the elastic map T = U
∗ ◦T′ ◦U with respect

to B is

[T] = [U ]> [T′] [U ]

=
1

2


4

4
8

6
11 −1
−1 11

 , (183)

And from Eqs. (180) and (47),

T = 〈H1, H2〉
2, 2

⊥ 〈H3〉
3

⊥ 〈H4〉
4

⊥ 〈H5〉
5

⊥ 〈H6〉
6

(Hi = U>Gi U) (184)

From Eq. (182) the matrix H3 is a double couple of the form
in Eq. (156c), and so S(H3) = Utet. Then

Utet ⊂ ST ⊂ Utet︸︷︷︸
S(H3)

(185)

The first subset containment is due to the matrix [T] in
Eq. (183) having the form of the reference matrix Ttet, and
the second is due to 〈H3〉 being an eigenspace of T; see

Theorem 13. From Eq. (185) we have ST = Utet, and then
ST′ = UUtet U>; the symmetry of T′ is tetragonal.

For example, a 4-fold rotation in ST′ is

UZπ/2U
> =

1

2

 1 −
√

2 1√
2 0 −

√
2

1
√

2 1

 (186)

The square prism in Fig. 21 is the characteristic solid for T′.

15.4 Example: transverse isotropic

Next we find the symmetry group ST′ of the map T′ whose
matrix with respect to B is

[T′] =
1

128



532 92
√

3 122 −2
√

3 −60 48

.. 348 −2
√

3 126 −20
√

3 16
√

3

.. .. 349 31
√

3 −126 24

.. .. .. 287 −42
√

3 8
√

3
.. .. .. .. 212 −16
.. .. .. .. .. 704


(187)

An eigensystem of T′ is shown in Fig. 22. From the figure, FIG. 22

T′ = 〈G1, G2〉
1, 1

⊥ 〈G3, G4〉
3, 3

⊥ 〈G5〉
5

⊥ 〈G6〉
6

(188)

The one-dimensional eigenspaces are 〈G5〉 and 〈G6〉. Both
G5 and G6 are crack matrices. We consider G5—the eigen-
vector of T′ with eigenvalue equal to 5.

From Eq. (187),

G5 =

8
√

2 + 5 −
√

27 −6

−
√

27 8
√

2− 1 −6
√

3

−6 −6
√

3 8
√

2− 4

 , (189)

Diagonalizing gives G5 = UH5U
>, where

H5 = 8


√

2 + 1 √
2 + 1 √

2− 2

 (190a)

U =
1√
8

 1 −
√

6 1√
3
√

2
√

3
−2 0 2

 (190b)

We always require U to be a rotation matrix, but here, with
G5 being a crack matrix, independent eigenvectors of G5

are not necessarily orthogonal, so some care was required in
getting U .

The matrix of the elastic map T = U
∗ ◦ T′ ◦ U with

respect to B is

[T] = [U ]>[T′] [U ]

=
1

2


2

2
6

6
11 −1
−1 11

 , (191)

And from Eqs. (188) and (47),

T = 〈H1, H2〉
1, 1

⊥ 〈H3, H4〉
3, 3

⊥ 〈H5〉
5

⊥ 〈H6〉
6

(Hi = U>Gi U) (192)
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From Eq. (190a) the matrix H5 has the form in Eq. (156b),
and so S(H5) = Uxiso. Then

Uxiso ⊂ ST ⊂ Uxiso︸︷︷︸
S(H5)

(193)

The first subset containment is due to the matrix [T] in
Eq. (191) having the form of the reference matrix Txiso, and
the second is due to 〈H5〉 being an eigenspace of T. From
Eq. (193) we have ST = Uxiso, and then ST′ = UUxisoU>;
the map T′ is transverse isotropic.

The cylinder in Fig. 22 is the characteristic solid for T′.
If it had been sculpted out of the hypothetical material
under consideration, without reorienting the material, then
its geometric symmetries would be the same as its elastic
symmetries.

If the matrix [T] in Eq. (191) had not had the form
of Txiso, we would not have had the benefit of the first con-
tainment in Eq. (193). We would then test the rotations
in Uxiso to see which are symmetries of T. The proof of
Theorem 17(vii) describes a comparable calculation.

15.5 Example: cubic

Next we find the symmetry group ST′ of the map T′ whose
matrix with respect to B is

[T′] =
1

36



52 4 16 −6 −2
√

3 0

.. 64 4 12 4
√

3 0

.. .. 52 −6 −2
√

3 0

.. .. .. 45 3
√

3 0
.. .. .. .. 39 0
.. .. .. .. .. 108

 (194)

One eigensystem of T′ is shown in Fig. 23 and given inFIG. 23
Appendix E. From the figure,

T′ = W′
1, 1, 1

⊥ 〈G4, G5〉
2, 2

⊥ 〈G6〉
3

, (195)

where W′ = 〈G1, G2, G3〉. The lone one-dimensional eigen-
space is 〈G6〉 = 〈I〉, whose symmetry puts no constraints on
the symmetry of T′. All is not lost, however. From Fig. 23,
the matrices G4 and G5 appear to have a common eigen-
frame U . Analytically, we find from Eq. (194) that

G4 = UH4 U
>, G5 = UH5 U

> (196a)

where H4 and H5 are given in Eqs. (E.1) and where

U =
1√
6


√

3 −1
√

2

0 2
√

2

−
√

3 −1
√

2

 (196b)

Since H4 and H5 are diagonal, then U is indeed a common
frame for G4 and G5.

Letting T = U
∗ ◦ T′ ◦ U , we have, from Eqs. (195)

and (47),

T = W
1, 1, 1

⊥ 〈H4, H5〉
2, 2

⊥ 〈I〉
3

(Hi = U>Gi U) (197)

The two-dimensional subspace 〈H4, H5〉, being orthogonal
to 〈I〉, consists of deviatoric matrices, and since they are
diagonal, then 〈H4, H5〉 must be 〈B4, B5〉, whose symmetry
group is Ucube (Eq. 158). Then W must be 〈B4, B5, B6〉⊥,

whose symmetry group is also Ucube. Writing the appropri-
ate symmetry group above each summand, we have, from
Eq. (197),

T =

Ucube
W

1, 1, 1
⊥
Ucube
〈B4, B5〉

2, 2

⊥
Uiso
〈I〉
3

(198)

Thus ST = Ucube (Theorem 13) and then ST′ = UUcube U>;
the map T′ is cubic. The cube in Fig. 23 is the characteristic
solid for T′.

The matrix [T], not used here, would be diagonal with
diagonal entries 1, 1, 1, 2, 2, 3.

15.5.1 Cubic symmetry in general

We have now found the symmetry group of T′ in Eq. (194).
We can see from that example how cubic symmetry can
arise more generally. For an arbitrary T′ and for U ∈ U, the
map T′ has symmetry group ST′ = UUcube U> if one of the
following holds (for some subspace W′ and some numbers
λ1, λ2, λ3):

T′ = W′
λ1 λ1 λ1

⊥ U〈B4, B5〉U>
λ2 λ2

⊥ 〈I〉
λ3

(λ1, λ2, λ3 distinct)

(199a)

T′ = W′
λ1 λ1 λ1

⊥ U〈B4, B5, B6〉U>
λ2 λ2 λ2

(λ1 6= λ2) (199b)

T′ = W′
λ1 λ1 λ1 λ1

⊥ U〈B4, B5〉U>
λ2 λ2

(λ1 6= λ2) (199c)

The equations are not as daunting as they appear, since
matrices in U〈B4, B5, B6〉U> and U〈B4, B5〉U> all have the
common eigenframe U . The subspace U〈B4, B5, B6〉U> con-
sists of all such matrices, and U〈B4, B5〉U> consists of those
that are deviatoric. Both subspaces are therefore relatively
easy to recognize.

Eqs. (199) are the only possibilities for cubic symme-
try, as follows from Eqs. (47), (143b), and Theorem 13.
Hence, from Eq. (199a), if an elastic map T′ has exactly
three eigenspaces, a necessary and sufficient condition for
S ′T to be a conjugate of Ucube is that one of the eigenspaces
be 〈I〉 and that another be two-dimensional and consist of
matrices all with a common eigenframe. (Fig. 23 is typical.)
This is Theorem 4.2 of Bóna et al. (2007).

Similarly, if T′ has exactly two eigenspaces, a necessary
and sufficient condition for S ′T to be a conjugate of Ucube is
that one of the eigenspaces be three-dimensional and consist
of matrices having a common eigenframe (Eq. 199b), or that
one of the eigenspaces be two-dimensional and consist of
deviatoric matrices having a common eigenframe (Eq. 199c).

15.6 Example: trigonal

Next we find the symmetry group ST′ of the map T′ whose
matrix with respect to B is [T′] =

1

16



4(8−
√

3) −8 3
√

2 −6
√

2 −3
√

6 0

.. 4(8 +
√

3) 3
√

2 6
√

2 −3
√

6 0

.. .. 76 −2
√

3 12
√

3 4
√

3
.. .. .. 24 6 0
.. .. .. .. 52 4
.. .. .. .. .. 88


(200)
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An eigensystem of T′ is shown in Fig. 24. From the figure,FIG. 24

T′ = 〈G1, G2〉
1,1

⊥ 〈G3, G4〉
3,3

⊥ 〈G5〉
5

⊥ 〈G6〉
6

(201)

The one-dimensional eigenspaces are 〈G5〉 and 〈G6〉. Both
G5 and G6 are crack matrices. We consider G5—the eigen-
vector of T′ with eigenvalue equal to 5.

From Eq. (200),

G5 =


√

8− 1 −3 0

−3
√

8− 1 0

0 0
√

8 + 2

 (202)

Diagonalizing gives

G5 = U0H5U
>
0 , (203a)

where

H5 = 2


√

2 + 1 √
2 + 1 √

2− 2

 (203b)

U0 =
1√
2

 0 −1 1
0 1 1

−
√

2 0 0

 (203c)

The matrix of the elastic map T0 = U0
∗ ◦ T′ ◦ U0 with

respect to B is

[T0] = [U0]>[T′] [U0]

=
1

4



6 0 3
√

3

0 6 −
√

3 3

3 −
√

3 10 0√
3 3 0 10

22 −2
−2 22

 , (204)

The matrix [T0] has the form of T3 in Table 1, so T0

has a vertical 3-fold axis. Its horizontal 2-fold axes, from
Theorem 12, are at θ = π/2+π/18+nπ/3. We therefore let

U = U0Zt =
1√
2

 − sin t − cos t 1
sin t cos t 1

−
√

2 cos t
√

2 sin t 0

 (t = π/18)

(205)
and

T = Zt
∗ ◦T0 ◦ Zt (t = π/18)

= U
∗ ◦T′ ◦ U (206)

The map T has its horizontal 2-fold axes at θ = π/2+nπ/3.
Its matrix is

[T] = [U ]>[T′] [U ]

=
1

2



3
√

3

3
√

3√
3 5√

3 5
11 −1
−1 11

 (207)

And from Eq. (201),

T = 〈H1, H2〉
1,1

⊥ 〈H3, H4〉
3,3

⊥ 〈H5〉
5

⊥ 〈H6〉
6

(Hi = U>Gi U) (208)

Eq. (203a) remains correct when U is substituted for U0,
since ZξH5Z

>
ξ = H5. (In changing U0 to U , we are only

rotating the eigenframe for the crack matrix G5 about its
c-axis.) From Eq. (203b) the matrix H5 has the form in
Eq. (156b), and so S(H5) = Uxiso. Then

ST ⊂ Uxiso︸︷︷︸
S(H5)

(209)

Using the ∆-test and Eq. (207) we then examine the mem-
bers of Uxiso to see which are symmetries of T. (The proof
of Theorem 17(vii) describes a comparable calculation.) The
result is ST = Utrig. The map T′ is therefore trigonal, with
ST′ = UUtrig U>. The triangular prism in Fig. 24 is the
characteristic solid for T′.

15.7 Example: trivial symmetry

Let T be the elastic map with [T]BB as in Eq. (23). In item
(viii) in the proof of Theorem 17 we noted that the eigenval-
ues λ1 and λ2 of T were simple and that their eigenvectors
G1 and G2 were generic, with no principal axis in common.
Hence T had only the trivial symmetry.

Fig. 4 is the beachball picture for T. The characteristic
solid for T, not shown, would be an irregularly shaped solid.

A sufficient condition for trivial symmetry of an arbi-
trary elastic map is that it have simple eigenvalues λi and
λj with eigenvectors Gi and Gj that have only the trivial
symmetry in common.

15.8 Example: a defeat

Here is an example of an elastic map T′ where our method
fails to identify its symmetry. The matrix of T′ with respect
to B is

1

160



252 −12
√

6 −52 16
√

6 −24
√

2 0

.. 180 12
√

6 6 2
√

3 −32

.. .. 252 4
√

6 −36
√

2 0

.. .. .. 211 −23
√

3 −48

.. .. .. .. 257 −16
√

3
.. .. .. .. .. 288


(210)

Two eigensystems of T′ are shown in Fig. 25, one with FIG. 25
orthonormal eigenvectors G1, . . . , G6. the other with ortho-
normal eigenvectors J1, . . . , J6. From the figure,

T′ = W1
1.1,1

⊥ W2
2,2,2

, (211a)

where

W1 = 〈G1, G2, G3〉 = 〈J1, J2, J3〉
W2 = 〈G4, G5, G6〉 = 〈J4, J5, J6〉 (211b)

As always, the symmetry group ST ′ of T′ is the inter-
section of the symmetry groups of the eigenspaces of T′.
Neither of the eigenspaces W1 and W2, however, is one-
dimensional, which makes their symmetries harder to rec-
ognize. In fact in Fig. 25(a) we do not recognize either
〈G1, G2, G3〉 or 〈G4, G5, G6〉 as conjugates of any of the sub-
spaces in Table 2, whose symmetry groups are known and
would have helped. With only Fig. 25(a) to work with, we
are at a dead end.

In Fig. 25(b), however, 2-fold symmetry for T′ is
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clear. Given analytic expressions for J1, . . . , J6, we can
confirm that the symmetry of T′ is monoclinic, with
ST ′ = UUmono U> and U = Yπ/4—the same as for T′ in
Section 15.1. Mathematical software, however, when asked
for eigenvectors of T′ here, is not apt to be so kind as to
return J1, . . . , J6. (We only know J1, . . . , J6 because we our-
selves constructed T′ from them.) Our method would there-
fore fail to find the symmetry of T′.

16 Stability

An elastic map T is said to be stable if

T(E) · E > 0 (E ∈ M, E 6= 0 3×3) (212a)

Equivalently, the matrix of T with respect to an orthonormal
basis G should satisfy

([T]GG w) ·w > 0 (w ∈ R6, w 6= 0), (212b)

Either of Eqs. (212) is equivalent to the eigenvalues of T
being positive. Thus the elastic map T in Fig. 4 is stable, as
seen from its eigenvalues. Had it been unstable, there would
have been a color reversal between the beachballs for Gi and
T(Gi) for at least one of the eigenvectors Gi.

Using intrinsic characterizations of elastic maps—e.g.,
Eqs. (143b) or (147b)—we can easily make up examples of
stable elastic maps T that have prescribed symmetries; see
Eq. (49).

Attempting the same using matrix characterizations
will usually fail. If, for example, we choose each matrix entry
a, b, . . . , p of Torth randomly between −1 and 1, the proba-
bility of getting a stable matrix is only ≈ 0.001. We can get
some insight into why this should be so by considering the

probability of getting a stable matrix T =

(
a g
g b

)
when

choosing each of the entries a, b, g randomly between −1
and 1. The fractional volume of the unit abg-cube occupied
by stable matrices T can be visualized and then found to
be only about 0.1. If the same experiment is performed with
the arbitrary 6×6 symmetric T = T1 of Table 4, thus choos-
ing each entry a, b, . . . , v randomly between −1 and 1, the
probability of getting a stable T is for all practical purposes
zero; you cannot construct a stable matrix that way.

Either of Eqs. (212) is equivalent to the more traditional
characterization of stability in terms of the 6× 6 Voigt ma-
trix C. That is, T is stable if and only if

Cw ·w > 0 (w ∈ R6, w 6= 0), (213)

where C is from Eqs. (S13). Slawinski (2015) explains the
physical meaning of Eq. (213).

17 Summary and afterthoughts

Two reminders: All of our elastic symmetries are rotational.
The vector space M consists of all 3×3 symmetric matrices;
its members can be thought of as strains or stresses.

The elastic map T : M → M, assumed to be linear,
relates strain and stress at a point p in some material. A
symmetry of T is a rotation of the material about p that
leaves T unchanged. Given an arbitrary T, we wish to find
the group ST of all its symmetries.

In Sections 4–9 we describe elastic maps having the
symmetry Zξ—rotation through angle ξ about the z-axis.
In Section 11, however, we find that the seemingly natural
group {(Zξ)n : n ∈ Z} of integral powers of Zξ is not an
elastic symmetry group unless the angle ξ is 0 or π. That
is, unless ξ = 0 or π, there is no elastic map T such that
{(Zξ)n : n ∈ Z} = ST.

This raises the question of what in fact are the elastic
symmetry groups. That is, when is a group of rotations also
the group of symmetries of some elastic map? The answer is
given in Theorems 17 and 18: The elastic symmetry groups
are the conjugates of the eight reference groups in Table 3.
The proof of this fact does not assume that elastic sym-
metries arise from crystallographic symmetries; it is purely
mathematical.

We have two notions of symmetry for a rotation. One is
as a symmetry of an elastic map, as above, and the other is
as a symmetry of a subspace W of M. In beachball terms, a
rotation V is a symmetry of W if using V to rotate beachballs
whose matrices are in W gives only beachballs whose matri-
ces are also in W. The symmetries of an elastic map T turn
out to be the symmetries that are common to its eigenspaces
(Theorem 13). Since the symmetries of a subspace are often
relatively easy to recognize, we are usually able to realize
our original goal of finding the group ST of symmetries of T
(Section 15).

For more of a summary than that, we recommend the
introduction. In this concluding section we only add a few
comments that would not have made sense in the introduc-
tion.

The orthonormal basis B of M (Eq. 3) makes the refer-
ence matrices simple (Table 4). In the literature, one encoun-
ters the basis Φ defined in our Eq. (S23); see, for example,
Eq. (2.5) of Mehrabadi & Cowin (1990) or Eqs. (4) and (5)
of Bóna et al. (2007). The basis Φ plays the same role as B,
but it is less suited than B for the study of symmetry. His-
torically, Φ arose because it was orthonormal and because
the matrix [T]ΦΦ was closely related to the Voigt matrix
for T. The traditional Voigt matrix, defined in Eq. (S13),
is still used by some authors, but it is undesirable for rea-
sons explained in Section S4.5.3. It has been an obstacle to
understanding.

The fact that the groups {I, Zπ/2, Zπ, Z3π/2} and
{I, Z2π/3, Z4π/3} are not elastic symmetry groups was not
always recognized and can cause some confusion. Nye (1957,
1985), for example, has ten matrices, not eight, that would
be the analogs of our reference matrices.

The significance of Theorem 5 is apt to be missed. For
an elastic map T, the theorem says that if Zξ is a symme-
try of T for some regular ξ (Fig. 1), then Zξ is a symmetry
of T for all ξ. We used the theorem in deriving the elas-
tic symmetry groups. The proof of the theorem looks easy,
but the work had already been done in Lemmas 5 and 6 of
Appendix B.

We are intrigued by the prime subspaces B(u.v) for Zξ,
ξ = 2π/3. The contrast with their tame counterparts for
ξ = π/2 is striking; compare Fig. 11 with Fig. 9. We suspect
that we are still missing some insights.

The results in this paper depend only on the elastic
map being linear and self-adjoint. No other assumptions are
involved.
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APPENDIX A: Proof of Lemma 1 of Section 4.3

Lemma 1 Let U : V → V be unitary and let W be a
non-zero subspace of V that is invariant under U. Then
W is the orthogonal direct sum of subspaces of V that are
prime for U.

Proof. The proof is by induction. Let P(n) be the statement
that if W is a non-zero subspace of V with dim ≤ n and if W
is invariant under U, then W is the orthogonal direct sum
of subspaces that are prime for U.

The statement P(1) is true, vacuously.
Assume P(n) and prove P(n+ 1): Let W be a non-zero

subspace with dim ≤ n + 1 that is invariant (under U). If
W is prime, then the sought-after orthogonal direct sum is
W = W. If W is not prime, then, among the non-zero invari-
ant subspaces of W, let W1 be one of smallest dimension.
We note: (i) The orthogonal complement W⊥1 of W1 in W
is invariant by Eq. (46). (ii) dimW⊥1 ≤ n. (iii) W⊥1 6= {0}.
Thus P(n) can be applied to W⊥1 , so that W⊥1 is the orthog-
onal direct sum of prime subspaces W2, . . . ,Wj . Since W1 is
also prime, then

W = W1 ⊥W⊥1 = W1 ⊥W2 ⊥ . . . ⊥Wj

W1, . . .Wj are prime (A.1)

APPENDIX B: Prime subspaces for [Zξ]BB when ξ
is regular

Let A be a 6 × 6 matrix and let w ∈ R6 be non-zero. In
Appendices B and C we will be considering the smallest
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subspace ŵ of R6 that contains w and that is invariant under
A. If w, Aw, . . . , Ajw are linearly dependent, then

ŵ = 〈w, Aw, . . . , Aj−1w〉 (B.1)

We will also need the matrix K(k) whose rows are
w, Aw, . . . , Akw. For A = [Zξ]BB and w = (a, b, c, d, e, f) ∈
R6, it is (from Eq. 83)

K(k) =


a b c d e f

a cos ξ + b sin ξ b cos ξ − a sin ξ c cos 2ξ − d sin 2ξ d cos 2ξ + c sin 2ξ e f
a cos 2ξ + b sin 2ξ b cos 2ξ − a sin 2ξ c cos 4ξ − d sin 4ξ d cos 4ξ + c sin 4ξ e f

...
...

...
...

...
...

a cos kξ + b sin kξ b cos kξ − a sin kξ c cos 2kξ − d sin 2kξ d cos 2kξ + c sin 2kξ e f

 (B.2)

Lemma 5. Let ξ be regular, that is, ξ 6= ±2π/n, n =
1, 2, 3, 4. Let the subspace E of R6 be invariant under
(multiplication by) [Zξ]BB, and let dimE ≤ 3. If w =
(a, b, c, d, e, f) ∈ E then a = b = 0 or c = d = 0.

Proof. Let A = [Zξ]BB, and consider the matrix with rows
w, Aw, A2w, A3w—it is K(3) in Eq. (B.2). The determinant
of its left-hand 4× 4 submatrix is found to be

−16(a2 + b2)(c2 + d2)(1 + 2 cos ξ)2 sin 2ξ sin ξ sin4 ξ

2
(B.3)

Since E is invariant, then w, Aw, A2w, A3w are all in E,
and since dim E ≤ 3 they are linearly dependent. The de-
terminant in Eq. (B.3) must therefore be zero. The factors
involving ξ, however, are non-zero, since ξ is regular. Hence
a = b = 0 or c = d = 0.

Lemma 6. If ξ is regular, the prime subspaces of R6 for
(multiplication by) [Zξ]BB are E12, E34, and 〈e56(t)〉 (any t).

Proof. Let A = [Zξ]BB. We look first for the subspaces of
dim ≤ 3 that are prime for A. From Eq. (83) we can see
that the following subspaces are invariant under A.

dim 3 E12 ⊥ 〈e56(t)〉 E34 ⊥ 〈e56(t)〉
dim 2 E12 E34 E56

dim 1 〈e56(t)〉
dim 0 {0}

, (B.4)

But are they prime, and have we found all of them?
To that end, suppose that a subspace E has dim ≤ 3

and is prime (for A). Since it is prime, it contains a non-
zero element w = (a, b, c, d, e, f). Again since E is prime, the
smallest invariant subspace ŵ containing w must be all of E.
Since dim E ≤ 3 then ŵ = 〈w, Aw, A2w〉, from Eq. (B.1).
The rows w, Aw, A2w of the matrixK(2) in Eq. (B.2) there-
fore span E, and the same will be true for the rows of any
matrix that is row equivalent to K(2).

(i) The case c2 + d2 6= 0 (and necessarily a = b = 0,
from Lemma 5): The matrix K(2) is row equivalent to0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 e f

 (B.5)

The subspace E is therefore spanned by e3, e4, and
e e5 + f e6. If e2 + f2 6= 0, then E is the three-dimensional
subspace E34 ⊥ 〈e56(t) for some t, but it is not prime, since
it has proper invariant subspaces. If e = f = 0, then E is
the two-dimensional space E34.

(ii) The case a2 + b2 6= 0: Similar to (i). The only can-
didate for a prime subspace is E12.

(iii) The case a = b = c = d = 0: The subspace E must
be 〈e56(t)〉 for some t.

Thus the only possible prime subspaces of dim ≤ 3 are
E12, E34, and 〈e56(t)〉. Since no one of them contains an-
other, they are indeed prime.

Could there be a prime subspace with dim > 3? If so, it
would have dimension 4 or 5 (R6 is not prime) and it would
then have to be the orthogonal complement of an invariant
subspace of dimension 1 or 2. But the invariant subspaces
of dimension 1 and 2 are now known (bottom two rows of
Eq. B.6), and their orthogonal complements, shown above
them, are not prime:

dim 5 E12 ⊥ E34 ⊥ 〈e56(t′)〉
dim 4 E34 ⊥ E56 E12 ⊥ E56 E12 ⊥ E34

dim 2 E12 E34 E56

dim 1 〈e56(t)〉

,

(B.6)

APPENDIX C: Prime subspaces for [Zξ]BB when
ξ = 2π/3

We define the unit vector e(θ, u, v) in R6 by

e(θ, u, v) = (cos θ) (cosu, 0, sinu cos v, sinu sin v, 0, 0) +

(sin θ) (0, cosu, − sinu sin v, sinu cos v, 0, 0)
(C.1)

Then

e(θ, u, v) = (cos θ) e(0, u, v) + (sin θ) e(π/2, u, v) (C.2)

For each u and v we define E(u, v) to be the subspace
of R6 spanned by the orthonormal vectors e(0, u, v) and
e(π/2, u, v):

E(u, v) = {r e(θ, u, v) : r, θ ∈ R} (C.3)

Note that in the two-dimensional space E(u, v) the angle θ
is indeed the usual angular polar coordinate with respect to
the basis vectors e(0, u, v) and e(π/2, u, v). And on E(u, v)
multiplication by [Zξ]BB is rotation through angle −ξ:

[Zξ]BB(e(θ, u, v)) = e(θ − ξ, u, v) (ξ = 2π/3) (C.4)

Hence E(u, v) is not only invariant under [Zξ]BB, it is prime.

Lemma 7. Let ξ = 2π/3. The subspaces of R6 that are
prime for (multiplication by) [Zξ]BB are E(u, v) and e56(t)
(any t, u, v).

Proof. Let E be prime for A = [Zξ]BB with ξ = 2π/3, and
choose a non-zero point w = (a, b, c, d, e, f) in E. Since E
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is prime then ŵ = E, and since A3w = w (Eq. 83) then
ŵ = 〈w, Aw, A2w〉. As in the proof of Lemma 6, we consider
the matrix K = K(2) whose rows are w, Aw, A2w. Its rows
span E and hence so do the rows of any matrix that is row
equivalent to it. From Eq. (B.2) with ξ = 2π/3, the matrix
K is

a b c d e f

−a+
√

3 b

2

−
√

3 a− b
2

−c+
√

3 d

2

−
√

3 c− d
2

e f

−a−
√

3 b

2

√
3 a− b

2

−c−
√

3 d

2

√
3 c− d

2
e f


(C.5)

The matrix K is row equivalent to

K′ =

a2 + b2 0 ac+ bd ad− bc 0 0
0 a2 + b2 bc− ad ac+ bd 0 0
0 0 0 0 e f


(C.6)

The rows of K′ are

(a2 + b2, 0, ac+ bd, ad− bc, 0, 0) = h e(0, u, v)

(0, a2 + b2, bc− ad, ac+ bd, 0, 0) = h e(π/2, u, v)

(0, 0, 0, 0, e, f) =
√
e2 + f2 e56(t) (C.7)

where

h =
√

(a2 + b2)(a2 + b2 + c2 + d2)

u = θ̂(
√
a2 + b2,

√
c2 + d2)

v = θ̂(ac+ bd, ad− bc)

t = θ̂(e, f) (C.8)

and where θ̂(x, y) is the usual angular polar coordinate of a
point (x, y) in the plane.

The subspace E is therefore spanned by h e(0, u, v),
h e(π/2, u, v), and

√
e2 + f2 e56(t). If h = 0 then E =

〈e56(t)〉 (w was non-zero), which is prime. If e2 + f2 = 0
then E = 〈e(0, u, v), e(π/2, u, v)〉 = E(u, v), which is prime
by Eq. (C.4). If h and e2 + f2 are both non-zero, then E
is three dimensional and has the proper invariant subspaces
E(u, v) and 〈e56(t)〉, so E is not prime.

APPENDIX D: Motivation for Eqs. (89) and (126)

To arrive at Eqs. (89) and (126), we assume [T]BB = T3 and
then look for t, u, v such that [T]B3B3 is diagonal. (The basis
B3 is B(t, u, v) as usual.) We find

[T]B3B3 = [I]B3B [T]BB [I]BB3

= [I]B3B T3 [I]BB3

=


c11 0 c13 −c23

0 c11 c23 c13

c13 c23 c33 0
−c23 c13 0 c33

R(−t)
(
e k
k f

)
R(t)

 ,

(D.1a)

where, after some manipulations,

c11 =
1

2

(
a+ c+ ρu cos 2(u− θu)

)
− ρv(1− cos(v − θv)) sin 2u

c33 =
1

2

(
a+ c− ρu cos 2(u− θu)

)
+ ρv(1− cos(v − θv)) sin 2u

c13 = −1

2
ρu sin 2(u− θu)− ρv (1− cos(v − θv)) cos 2u

c23 = ρv sin(v − θv), (D.1b)

where θu and θv are from Eqs. (126) and

ρu(T ) =
√

(a− c)2 + 4(h2 +m2)

ρv(T ) =
√
h2 +m2 (D.2)

From Eqs. (F.5) and (D.1a) the condition t = θ∞ from
Eq. (89) is enough to diagonalize the lower right 2× 2 sub-
matrix of [T]B3B3 . From Eqs. (D.1b) the conditions u = θu
and v = θv are enough to make c13 = c23 = 0 and thus to
diagonalize the upper left 4× 4 submatrix. With [T]B3B3 di-
agonalized, B(t, u, v) is an eigenbasis for T, and the diagonal
entries are the corresponding eigenvalues.

APPENDIX E: The eigenbasis for T′ in Fig. 23

With U as in Eq. (196b) the eigenvectors of T′ in Fig. 23
are Gi = UHiU

>, where

H1 =

 0
√

2 2−
√

3√
2 0 2 +

√
3

2−
√

3 2 +
√

3 0



H2 =

 0 −
√

2 2 +
√

3

−
√

2 0 2−
√

3

2 +
√

3 2−
√

3 0



H3 =

 0
√

6 1√
6 0 −1

1 −1 0



H4 =

−2 0 0

0 1 +
√

3 0

0 0 1−
√

3



H5 =

−2 0 0

0 1−
√

3 0

0 0 1 +
√

3



H6 =

1 0 0
0 1 0
0 0 1

 (E.1)

(Normalizing factors have been omitted.) Because the eigen-
values λ1 and λ4 of T′ are not simple, there are infinitely
many essentially different possibilities for the Gi and hence
for the Hi. Note also that initially U is not known; the eigen-
vectors Gi of T′ come first, and then U is found from them.

APPENDIX F: Some diagonalization

We review the diagonalization of a 2× 2 symmetric matrix
S = (sij). We let R(θ) be the 2× 2 rotation matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(F.1)
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Then

S = R(θ̄)

(
µ1 0
0 µ2

)
R(θ̄)>, (F.2a)

where

µ1 =
1

2
(s11 + s22 + ρ̄), µ2 =

1

2
(s11 + s22 − ρ̄), (F.2b)

and where, with θ̂(x, y) being the ordinary angular polar
coordinate of a point (x, y),

ρ̄ = ρ̄(S) =
√

(s11 − s22)2 + 4s2
12

θ̄ = θ̄(S) =
1

2
θ̂(s11 − s22, 2s12) (F.2c)

Thus ρ̄ and 2θ̄ are the polar coordinates of the point
(s11−s22, 2s12). From Eq. (F.2a) the numbers µ1 and µ2 are
the eigenvalues of S, and the columns of R(θ̄) are the corre-
sponding eigenvectors. The parameter θ̄ is thus the angular
polar coordinate of the first eigenvector. The parameter ρ̄ is
zero if and only if S is a multiple of the identity matrix.

An alternative to Eq. (F.2a) is

S = R(θ̄ + π/2)

(
µ2 0
0 µ1

)
R(θ̄ + π/2)> (F.3)

The first and second eigenvalues are now µ2 and µ1. The two
triples θ̄, µ1, µ2 and θ̄ + π/2, µ2, µ1 are equally valid descrip-
tions of S. The former is the one with the first eigenvalue
greater than or equal to the second.

From Eq. (F.2b),(
µ1 0
0 µ2

)
=
s11 + s22

2

(
1 0
0 1

)
+
ρ̄

2

(
1 0
0 −1

)
(F.4)

Since the operation of conjugation is linear, and since
it leaves the identity matrix unchanged, conjugation of
Eq. (F.4) by R(−θ + θ̄) gives

R(−θ)SR(θ) = (F.5)

s11 + s22

2

(
1 0
0 1

)
+
ρ̄

2

(
cos 2(θ − θ̄) − sin 2(θ − θ̄)
− sin 2(θ − θ̄) − cos 2(θ − θ̄)

)

APPENDIX G: Glossary of selected notation

M = all 3× 3 symmetric matrices.

〈w1, . . . ,wn〉 = subspace spanned by w1, . . . ,wn

6-tuples:

[E]F Eq. 11
e1, . . . , e6 = standard basis
e12(r), e34(s), e56(t) Eq. 80
e(θ, u, v) Eq. C.1

3× 3 matrices:

Xξ, Yξ, Zξ Eq. 50
Bi Eq. 3
B12(r), B34(s), B56(t) Eq. 79
B(θ, u, v) Eq. 110
Bj(U4×4) Eq. 103
Bj(U3×3) Eq. 145

6× 6 matrices:

Tmono, T3, T4, Txiso Table 1
T1, Tmono, Torth, Ttet, . . . Table 4
[S]GF (e.g., [T]BB) Eqs. 13, 17
[I]GF Eq. 32

Subspaces of R6:

E12,E34,E56 Eq. 82
E(u, v) Eq. C.3

Subspaces of M:

B12,B34,B56 Eq. 81
B(u, v) Eq. 112

Bases for M:

B Eq. 3
B(t, u, v) = B3 Eq. 116

Linear transformations of M:

S2 ◦ S1 Eq. 15
S∗ Eq. 33

U Eq. 51
TΛ

2 (r, U) Eq. 104
TΛ

3 (t, u, v) Eq. 122
TΛ

4 (s, t) Eq. 95
T = W1

λ1

⊥ . . . ⊥Wn
λn

Eq. 44

Orthogonality:

W1 ⊥W2 Eq. 40

W⊥ Eq. 41
W = W1 ⊥ . . . ⊥Wn Eq. 42

Groups of rotation matrices:

U Section 3.1
U1,Umono,Uorth,Utet, . . . Table 4
ST Eq. 131
S(E) Eq. 154
U(V ) Lemma 4
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Tmono (ξ = π) Txiso (ξ regular)

a g

g b
c i o s

i d j p

o j e k
s p k f





a

a
c

c

e k
k f


T4 (ξ = π/2) T3 (ξ = 2π/3)

a

a
c i

i d
e k

k f





a 0 m −h
0 a h m
m h c 0

−h m 0 c
e k

k f


Table 1. Matrices [T]BB for elastic maps T having rotational

symmetry Zξ for ξ as indicated. The rotation Zπ/2, for example, is

a symmetry of T if and only if [T]BB = T4 for some a, c, d, e, f, i, k
(Section 6). If the basis for the matrix representations in the table

is changed from B to the basis Φ defined in Eq. (S23), the matrices

analogous to T3 and T4 are consistent with Eqs. (5.9) and (5.26)
of Mehrabadi & Cowin (1990). Blank entries are understood to

be zeros.

Subspace W Defining feature for members of W Member E = (ei j) of W S(W)

〈B1, B2, B3, B4, B5〉 Deviatoric
∑
eii = 0 Uiso

〈B3, B4, B5, B6〉 z-axis is a principal axis e23 = e13 = 0 Uxiso
〈B3, B4, B5〉 Deviatoric, and z-axis is a principal axis e23 = e13 =

∑
eii = 0 Uxiso

〈B4, B5, B6〉 xyz-axes are principal axes E is diagonal Ucube
〈B1, B2, B3〉 e11 = e22 = e33 = 0 Ucube
〈B4, B5〉 Deviatoric, and xyz-axes are principal axes E is diagonal,

∑
eii = 0 Ucube

〈B1, B2〉 = B12 Double couple, and z-axis is a fault normal e11 = e22 = e33 = e12 = 0 Uxiso
〈B3, B4〉 = B34 Double couple, and z-axis is the null axis e13 = e23 = e33 = 0, e11 = −e22 Uxiso
〈B5, B6〉 = B56 Crack matrix, and z-axis is the c-axis E is diagonal, e11 = e22 Uxiso
〈B6〉 Isotropic E = t I3×3 Uiso

Table 2. TWO-COLUMN WIDTH. Selected subspaces W of M
relevant to elastic symmetry. The subspace 〈B3, B4, B5〉, for ex-
ample, is the set of all deviatoric matrices with a principal axis

(i.e., eigendirection) vertical. The matrices B1, . . . , B6 are as in

Eq. (3). The descriptions in the second and third columns are
intrinsic; they do not involve the basis B or any other basis of M.

The last column gives the symmetry group S(W) of W, to be

explained in Section 13. Subspaces that are orthogonal comple-
ments of each other, such as 〈B1, B2, B3〉 and 〈B4, B5, B6〉, have

the same symmetry group.


