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Background

In 1999–2000: Frequency combs were invented

“The excitement surrounding the rapid evolution in these fields
since 1999 gives us a hint of what it must have been like after
1927 when the first ideas of quantummechanics were introduced. . .”
— — J. L. Hall and T. W. Hänsch, 2005 Nobel prize winners in Physics
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The key advance was electronically locking fceo and frep!
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Background

Frequency and time measurement was revolutionized
Many new applications opened up1

1S. Diddams, J. Opt. Soc. Am. B 27, 51 (2010).
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Motivation

Advances have all been through “cut-and-try” experimentation
Theoretical tools for analyzing and designing frequency combs
are primitive
▶ “Brute force” simulations or rough analytical approximations

⋆ Adequate for post-hoc analysis; inadequate for design
⋆ yield limited insight into the sources of instability

Key theoretical questions:
Where in the adjustable parameter space are combs stable?
What is the noise performance?
How can we optimize the comb?
▶ high output power and/or large bandwidth and/or low noise
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Approach

Combine: 400 years of dynamical systems theory
+

modern computers and algorithms
(linear algebra + root-finding)

to answer these questions
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Origins of the Dynamical Approach

These dynamical ideas are very old!

The pendulum clock:
(Galileo – 1632; Huygens – 1673; Euler – 1736)

Stability of the solar system:
▶ Two body problem: Newton – 1686
▶ Three body problem:

In general, not solvable, but . . .
stable fixed points found by Lagrange – 1772 (observed 1906)

Application to continuous systems . . .
(described by partial differential equations)
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Origins of the Dynamical Approach

Before Maxwell’s Equations (1861) . . .
Before the Maxwell-Boltzmann distribution (1865) . . .

Maxwell explained the stability of Saturn’s rings (1859)
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Numerous Applications

Control of satellite orbits
Electronic system design
Plasma systems (tokamaks, ionosphere,. . .)
Mechanical, chemical, and fluid systems
Biological systems (heart, animal populations)
Economic systems
Lasers/other optical resonators
▶ but mostly in highly simplified, almost analytical approximations!
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Frequency Comb Systems

Passively modelocked lasers (slow saturable gain):
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1S. Wang et al., J. Opt. Soc. Am. B 31, 2914 (2014).
2S. Wang et al., Opt. Lett. 42, 2362 (2017).

Menyuk STMCOS 2018 9 / 33



Saturable Absorption

Round trips

The loss is saturated by the incoming pulse and then recovers
almost instantaneously with fast absorbers

slowly compared to the pulse duration with slow absorbers
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Frequency Comb Systems

Microresonators

The Lugiato-Lefever Equation:3

∂ψ

∂t
−i
∂2ψ

∂x2 − i |ψ|2ψ + (1+ iα)ψ − F = 0

System Parameters:

α : frequency detuning (−5 to 10)
F : pump amplitude (0 to 4)
L : microresonator length (25 to 200)

3Z. Qi et al., Conf. Lasers Elect.-Opt. (2018), paper SF2A.6.
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Dynamical Systems Methods

Standard, “brute-force” approach
Solve the evolution equations for many roundtrips
Use a noisy initial condition
Convergence⇐⇒ existence + stability
Change parameters; repeat

Advantages:
Easy to program
Intuitive (mimics experiments)

Disadvantages:
Computationally slow
Ambiguous near a stability boundary
Limited insight into sources of instability

This approach is better for analysis than synthesis!
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Dynamical Systems Methods

Our Approach
Solve the evolution equations once to find a stationary solution
▶ in a highly stable case

Determine the stationary solution as parameters vary by solving a
root-finding problem

In parallel, find the eigenvalues of the linearized evolution equation
▶ The dynamical spectrum
▶ A stable solution has no eigenvalues with positive real parts

Find parameters where one or more eigenvalues hit the imaginary axis

Track the stability boundary
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Atlas of Dynamical Spectra

Classical NLS Spectrum Soliton Laser With locking
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Dynamical Systems Methods

Advantages
103 – 105 times faster than brute-force solutions
Unambiguous determination of stable operating parameter
regimes
Allows rapid mapping and optimization of solution properties
▶ bandwidth, power, noise. . .

Yields insight into the sources of instability

Disadvantages
More difficult to program
The concepts are unfamiliar to many optical experimentalists
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Dynamical Systems Methods

Two important caveats
Accessibility vs. stability
▶ Dynamical methods do not tell you how to access stable solutions

⋆ Example: single solitons are hard to access in microresonators
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Dynamical Systems Methods

Two important caveats
Accessibility vs. stability
▶ Dynamical methods do not tell you how to access stable solutions

⋆ Example: single solitons are hard to access in microresonators

Unstable system evolution
▶ Dynamical methods do not tell you how an unstable solution

evolves
⋆ Chaos, another stable solution, breathers are all possible

Dynamical and evolutionary methods are complementary!
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The SESAM Modelocked Fiber Laser

The system is built using
▶ telecom grade polarization-maintaining (PM) components
▶ highly-doped erbium-doped fiber
▶ highly non-linear PM fibers
▶ a semiconductor saturable absorber mirror (SESAM)

Output: highly stable 200 MHz combs with Pav = 5 mW

1Sinclair et al., Opt. Express 22, 6996 (2014).
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Balance of Energy

The SESAM and the linear gain open a gain window that allows
the pulse to grow

A soliton wake instability will occur when g0 becomes sufficiently
large or β′′ becomes sufficiently small
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Stable Operation

The stable pulse is close in shape to a sech pulse
(soliton solution of the nonlinear Schrödinger equation)
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Soliton Wake Instability

Quasi-periodicity is observed in the evolution
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Soliton Wake Instability

Quasi-periodicity is observed in the evolutionLetter Optics Letters 3

Fig. 3. The evolution profile of the wake mode instability (a) in
the time domain, and (b) in the frequency domain, (see Visual-
ization 1), and the pulse amplitude profile at (c) T = 823, (d)
T = 948, (e) T = 1073, and (f) T = 1198. The locations of profiles
(c), (d), (e), and (f) are marked by white lines in (a).

the boundary tracking algorithms that are described in [21, 26].
In this approach, we find a stationary solution [u0, φ, ts] of Eq. (1),
which corresponds to a modelocked pulse. We then linearize
Eq. (1) about this solution, and we determine the eigenvalues
(dynamical spectrum) and eigenvectors of this linearized equa-
tion. Determining this dynamical spectrum is mathematically
analogous to finding the eigenvalues and eigenmodes of an
active waveguide.

In Fig. 4, we show the dynamical spectrum near the origin of
the complex plane for the SESAM laser. Resembling the dynam-
ical spectrum of classical soliton perturbation theory [35], the
spectrum has two branches corresponding to continuous wave
perturbations, as well as four discrete eigenvalues that corre-
spond to perturbations of the stationary pulse’s central time (λt),
central phase (λφ), central frequency (λ f ), and amplitude (λa),
respectively. However, there are two additional discrete eigen-
values λw+ and λw− that correspond to the wake modes [21], as
shown in Fig. 4.

If any eigenvalues in the dynamical spectrum have a positive
real part, then the stationary pulse is unstable [26]. Both λt and
λφ remain at the origin due to the time and phase invariance
of Eq. (1). We see from Fig. 4 that when g0 = 7.74, the real
parts of the continuous spectrum are negative and the discrete
eigenvalues λ f and λa are both negative. In addition, the wake
mode eigenvalues λw± = −7.75× 10−4 ± 0.352i, as shown in
Fig. 4. Hence, the system is stable and close to the stability
boundary in the parameter space. The wake modes are bounded
modes with a very slow decay rate in T [21].

The stationary pulse becomes unstable when the unsaturated
gain g0 becomes sufficiently large. In Fig. 4, we use dashed
arrows to show how the dynamical spectrum shifts when g0
increases up to 13.5. We find that all eigenvalues have negative
real parts except the wake mode eigenvalues, for which λw± =
9.09× 10−3 ± 1.19i. The positive real part of λw± indicate that
the wake modes will grow, destablizing the stationary pulse.

Fig. 4. The variation of the dynamical spectrum when the un-
saturated gain g0 increases from 1.90 to 2.70. We find that
λw± = −7.75 × 10−4 ± 0.352i when g0 = 7.74 and λw± =
9.09 × 10−3 ± 1.19i when g0 = 13.5. The dashed arrows in-
dicate how the spectrum shifts as g0 increases from 7.74 to 13.5.
The eigenvalue λa < −0.90 is not shown here.

In Fig. 5, we show the stable regions in the (g0, β′′) parameter
space. When the group delay dispersion coefficient β′′ varies
from −0.03 ps2 to zero, there exist two stability boundaries. For
a given value of β′′, when g0 becomes sufficiently small, the
pulse becomes unstable due to the background radiation (con-
tinuous modes) [26], i.e., the system gain is below the mode-
locking threshold. When g0 becomes sufficiently large, the pulse
becomes unstable due to the wake modes. The instability thresh-
old for g0 decreases as the system approaches zero dispersion.
When β′′ = 0, the pulse is in principle stable in a very narrow
range of g0, 1.14 < g0 < 1.18. In practice, this range is so narrow
that a laser that operated in it would be destablized by noise and
other perturbations. In addition, the pulse width of the station-
ary pulse is τ0 > 3 ps, which is longer than the SESAM recovery
time, τA = 2 ps. This operating state of the SESAM is inefficient
because the saturable absorption that the pulse experiences is
strongly offset by the lower-level population recovery.

Fig. 5. The stability boundaries in the parameter space of the
unsaturated gain g0 and the group velocity dispersion β′′. The
points (i) and (ii) indicates the cases g0 = 7.74 and g0 = 13.5,
respectively, with β′′ = −0.0144 ps2.

The real parts of the dynamical spectrum that we show in
Fig. 4 indicate the growth rate of the eigenmodes, while the
imaginary part of the spectrum indicates their phase shift per
round trip with respect to the stationary pulse. In the presence
of noise, the eigenmodes with non-zero imaginary eigenvalues
introduce a frequency modulation of the modelocked spectrum,
which can be observed in the power spectrum as sidebands.
We have shown the profile of the sidebands in [20] when ob-
served using a radio frequency (RF) spectrum analyzer. These
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Dynamical Spectrum

As g0 increases:
▶ a pair of eigenvalues λe,λ∗e emerge from the radiation modes

(edge bifurcation)

Re[λe],Re[λ∗e] become positive, leading to instability
(Hopf bifurcation)1

λe

λ∗e

0
λe

λ∗e

0

1S. Wang et al., Opt. Lett. 42, 2362 (2017).
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Stable Region

Continuous modes become unstable when the gain is too low
The wake mode instability occurs when
▶ the unsaturated gain becomes large
▶ the group delay dispersion becomes small

(due to radiation modes)

(due to wake modes)

Once the stable region is known, optimization is possible!
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Cnoidal Waves in Microresonators

Solitons are a special case of a broader class of periodic
waveforms: cnoidal waves
Cnoidal waves include:
▶ Single solitons
▶ Soliton crystals
▶ Turing rolls

Cnoidal wave attributes:
On the one hand, they . . .
▶ have clean spectra with evenly spaced comb lines (like single solitons)
▶ have analytical solutions that exist in the no-loss limit (like single solitons)1

▶ can have a broad bandwidth (like solitons)

1Z. Qi et al., J. Opt. Soc. Am. B 34, 785 (2017).
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Cnoidal Waves in Microresonators

Solitons are a special case of a broader class of periodic
waveforms: cnoidal waves
Cnoidal waves include:
▶ Single solitons
▶ Soliton crystals
▶ Turing rolls

Cnoidal wave attributes:
On the other hand, they . . .
▶ can be easily and deterministically accessed

(unlike single solitons or soliton crystals)
▶ use the pump more efficiently and produce higher power comb lines

BUT
with lines spaced farther apart
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Stable Regions

Stable regions for different
periodicities

F = normalized pump power
α = normalized detuning
L = normalized diameter

Continuous waves are stable below the red-dashed line
Below α = 41/30 ≃ 1.37, cnoidal waves can be easily accessed by raising the
pump power
Cnoidal waves are stable in a U-shaped region in α-F space
Moving along this region, different values of Nper can be
deterministically accessed
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Stable Regions (L = 50)

Why are single solitons hard to access

Substantial overlap with other cnoidal waves

Almost complete overlap with continuous waves

By contrast the periodicity-8 cnoidal wave can be
deterministically accessed!
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Periodicity-8 Cnoidal Waves (L = 50)

Controllability and bandwidth

With FSR = 125 GHz; 30 dB down bandwidth = 24 THz

Uses the pump more efficiently than a single soliton

Large bandwidth can be obtained!

* large n limit (n ≳ 4)
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Conclusions

Powerful dynamical methods can be combined with modern
computer algorithms to:
▶ rapidly determine where in the parameter space stable solutions lie
▶ yield important insights into the sources of instability
▶ rapidly determine the noise performance
▶ optimize the system performance
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Conclusions

We have applied these methods to:
▶ Laser models with slow saturable gain

⋆ Identified parameters ranges where two stable solutions exist
⋆ Compare the cubic-quintic model to other models

▶ SESAM laser
⋆ Characterized the wake mode instability
⋆ Determined where stable solutions exist
⋆ Explained the appearance of sidebands
⋆ Characterized the noise performance
⋆ Optimized the system parameters

▶ Microresonators
⋆ Determined where cnoidal waves are stable
⋆ Explained why single solitons are hard to access
⋆ Found broadband, easily accessible cnoidal wave solutions
⋆ Determined the impact of thermal effect
⋆ Determined the impact of avoided crossings
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Summary

These methods are an important complement to widely used
evolutionary methods and should be commonly used!

Our software is available at:
http://www.umbc.edu/photonics/software.html

See: “Dynamical method to evaluate noise. . .”
“Boundary tracking algorithms”
“Stability boundary tracking for cnoidal wave solutions”
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