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formulation which was one of the first stable elements utilizing polynomial bases for both stress and displacement. The

difficulty in building conforming approximation spaces for the stress has also resulted in several nonconforming mixed

methods, see, for example, References 8,9 where the FE approximation of the stress does not reside in the space dictated

by theweak formulation. The task of establishing approximation spaces for thesemixed FEmethods is certainly not trivial

and is an active area of investigation and recent publications include.10,11

Stabilized FE methods that adjust the functionals of the weak formulation can be used to ensure discrete stability.12

This type of stabilization is performed for both the mixed and classical FE methods, see the work of Nakshatrala et al.13

as well as Masud and Xia.14 However, stabilized methods generally require arduous analyses to establish a proper choice

of penalization/stabilization parameters. Reduced integration methods are also commonly used when approaching the

incompressible limit.15 The discontinuousGalerkin (DG)method also remains a popular choice for nearly incompressible

elastostatics.4,16,17 In general, these achieve stability by adjusting the interelement jump or average terms by weights in a

manner similar to the stabilized FE methods.

Stable FE methods such as the least squares FE methods (LSFEMs) (see, e.g., text by Bochev and Gunzberger18) or

the discontinuous Petrov–Galerkin (DPG) method of Demkowicz and Gopalakrishnan19 can be employed to resolve the

stability issue. The LSFEM has been applied to linear elastostatics in References 20 and 21, a weighted first-order system

least squares is applied successfully to nearly incompressible materials. Gopalakrishnan and Qiu provide an analysis of

the well-posedness of the DPG method applied to linear elastostatics in Reference 22. In Reference 23, Bramwell et al.

consider two distinct DPG methods for the nearly incompressible elastostatics problem that are locking free and present

numerical verifications highlighting capabilities as 𝜈 → 0.5. TheDPGhas also been successfully applied to this problem in

several works, including the fully incompressible case in Reference 24 employing the compliance tensor to avoid locking

in that case. In References 24,25, the DPGmethod is applied to the problem of linear elastostatics and several variational

formulations are considered including for the case of nearly incompressible materials. In particular, in Reference 24, the

idea of coupling multiple weak formulations throughout the computational domain is explored in great detail.

In the classical FEmethod, the approximations of displacements of the equivalent weak form of the underlying partial

differential equation (PDE) of static equilibrium are sought in C0 continuous polynomial spaces and stress approxima-
tions are established by computing gradients of the displacements, that is, the stresses are piecewise discontinuous. On

the other hand, mixed FE methods for the linear elastostatics problem consider an equivalent first-order system of the

underlying PDE. This first-order system description can lead to weak forms which allow stresses to be in H(div,Ω) and

displacements that are in L2(Ω) (see section 2.4 of Reference 25 for a thorough discussion on other options). Hence, in
the FE approximations the displacements must be sought in piecewise discontinuous polynomial function spaces. The

theory of distributions ensures that optimally convergent FE solutions can be established for both classical and mixed

FE methods, as well as for their properly stabilized counterparts if 𝜈 is close to 0.5. However, the resulting numerical

approximations are not physical, as we know that both the displacement and certain components of the stress fields are

continuous.We know of three options to establish both continuous displacements and stresses. First, the isogeometric FE

methods of Hughes et al.26 which uses higher order bases for the discrete FE approximation, that is, Ck continuity. Sec-
ond, the k-version FEmethod of Surana et al.27 which employs higher order bases as well as a least squares approach. The
popularity of the isogeometric FE method has grown significantly over the last decade, but the stability issue of nearly

incompressible materials still persist. In Reference 28, Taylor introduces a mixed version of the isogeometric FEmethods

for incompressible solids where discontinuous stress approximations are sought. Finally, the use of postprocessing tech-

niques where a discontinuous solution component is projected into a continuous discrete space, for example, by using

Oswald operators, see References 29,30 for details and further references.

The automatic variationally stable finite element (AVS-FE) method introduced by Calo et al.31 provides a framework,

much like the DPG of Demkowicz and Gopalakrishnan,19 to establish stable FE approximations for any PDE. However,

the AVS-FE differs in its choice of trial spaces while employing the DPG concept of optimal discontinuous test functions.

In addition to the approximation of the trial variables, the AVS-FE also comes with a “built-in” error estimator and error

indicators that can be employed to drivemesh adaptive strategies. The stability property of the AVS-FE allows us to derive

Petrov–Galerkin weak formulations that are posed with trial functions that are in classical Hilbert spaces, for example,

H(div) and H1. Hence, the corresponding FE approximations are to be sought in classical continuous FE approximation
spaces yielding continuous FE approximations for all trial variables. The LSFEMs presented in References 20,21 also pose
weak formulations in Hilbert spaces as the AVS-FE but considers alternative formulations for the elasticity problem and

considers nonconforming approximations for the displacement.

In this article, we build upon the preliminary investigation of Valseth32 for the AVS-FE method applied to linear

elastostatics of nearly incompressible media. We introduce our model problem and notations in Section 2.1, The weak
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formulation and its corresponding FE discretization are presented in Section 2 in conjunction with a brief review of the

AVS-FE methodology. In Section 2.4, we present optimal a priori error estimates. Several numerical verifications are

presented in Section 3 highlighting the stability of our method as 𝜈 → 0.5, including an asymptotic convergence study

with comparisons to existing FE methods. We draw conclusions and discuss future works in Section 4.

2 THE AVS-FE METHOD

The AVS-FE method31 provides a functional setting to analyze linear boundary value problems (BVPs) in which the

underlying differential operator is nonself-adjoint or leads to unstable FE discretizations. In this section, we introduce

our model problem, and briefly review the AVS-FE method. A thorough introduction can be found in Reference 31.

2.1 Model problem: Linear elastostatics of nearly incompressible solids

Let Ω ⊂ Rn, n= 1, 2, 3 (we consider the two-dimensional (2D) case here for simplicity) be a bounded open domain, con-
taining a linearly elastic, nearly incompressible, and possible heterogeneous solid. The boundary 𝜕Ω is partitioned into

two open and disjoint segments Γt and Γu, such that 𝜕Ω = Γt ∪ Γu. As depicted in Figure 1, the body is in static equilib-

rium under the action of external body loads f ∈ [L2(Ω)]2 in Ω, surface tractions t ∈ H−1∕2(Γt) on Γt, as well as fixed zero

displacements on Γu. Since the solid is assumed to be linearly elastic, its constitutive behavior is governed by generalized

Hooke’s law, that is:

𝝈 = E𝜺, (1)

where 𝝈 denotes the (2D) Cauchy stress tensor, 𝜺 the (2D) Green strain tensor, andE the fourth-order (Riemann) elasticity

tensor, with elliptic and symmetric Riemann coefficients Eijkl ∈ L∞(Ω). In this work, we limit our focus to problems in
which the deformations in the material remain small and therefore the kinematic relation between the strain tensor 𝜺

and displacement field u is linear and governed by:

𝜺 =
1

2

[
𝛁u+ (𝛁u)T

]
. (2)

With these notations and relations in force, the equilibrium state of the solid is represented by the following BVP,

governing the displacement field u:

Find u ∈ [H1(Ω)]2 such that:

−𝛁 ⋅ 𝝈 = f, in Ω,

𝝈n = t, on Γt,

u = 0, on Γu,

(3)

F IGURE 1 The model problem
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where n denotes the outward unit normal vector to 𝜕Ω. In this article, we consider the specific scenario in which the solid

is comprised of one ormore constituents with nearly incompressiblematerial properties. Hence, the Riemann coefficients

Eijkl can involve values of the Poisson ratio 𝜈 that are very close to, but still less than 0.5.
In the following, we shall use the following notations:

• inner products between vector valued functions are denoted with the single dot symbol ⋅, and inner products between

tensor valued functions are denoted by the colon or double dot symbol :.

• hm is the diameter of element Km.

• in weak formulations, we present edge integrals using trace the operators: (i) 𝛾m0 ∶ H1(Km) ∶→ H1∕2(𝜕Km) as the local
zeroth-order trace operator and (ii) 𝛾mnm ∶ H(div,Km) → H−1∕2(𝜕Km) denote the local normal trace operators where nm
is the outward unit normal vector to the element boundary 𝜕Km (e.g., see Reference 33).

• vector and tensor valued test functions are denoted using v andw, respectively. Restrictions of these to an element Km

are denoted by employing the subscriptm.

2.2 Weak formulation

AVS-FE weak formulations are established using techniques that are similar to DG and DPG methods by considering

elementwise weak formulations that are subsequently summed throughout the FE mesh partition to yield global weak

formulations. We mention only key points here and omit the full derivation here for brevity but refer to Reference 31 for

detailed derivations.

To establish AVS-FE weak formulations, we first require a partition h of Ω into convex elements Km, such that:

Ω = int

(
⋃

Km∈h

Km

)
, Km ∩ Kn = 0, m ≠ n.

The partition h is such that any discontinuities in Eijkl are restricted to the boundaries of each element 𝜕Km. The BVP (3)

is recast as a first-order system by using the stress tensor from the constitutive law (1), that is,

Find (u,𝝈) ∈ [H1(Ω)]2 ×H(div,Ω) such that:

𝝈 − E 𝜺 = 0 in Ω,

− 𝛁 ⋅ 𝝈 = f, in Ω,

𝝈 n = t, on Γt,

u = 0, on Γu,

(4)

where H(div,Ω) is the Hilbert space of tensor-valued functions which divergence is weakly continuous and 𝜺 = 𝜺(u)

denotes the gradient operator in (2). Note that this first-order system, or mixed form, BVP is standard for mixed FE

methods for linear eleastostatics.

Next, the first-order system is multiplied by test functions (v,w)∈L2(Km)6 and enforced weakly on each indi-

vidual element Km ∈ h. We then apply integration by parts locally on each element Km to the term involving

the divergence of the stress field 𝛁 ⋅ 𝝈 to enable weak applications of the Neumann boundary condition (BC). A

subsequent summation of all elements in h and strong enforcement of all BCs leads us to the AVS-FE weak

formulation:

Find (u,𝝈) ∈ U(Ω) such that:

B((u,𝝈), (v,w)) = F(v), ∀(v,w) ∈ V(h),
(5)
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where the test space V(h) is broken, the bilinear form, B ∶ U(Ω) × V(h) → R, and linear functional, F ∶ V(h) → R

are defined:

B((u,𝝈), (v,w))
def
=

∑
Km∈h

{

∫Km[ (𝝈 − E𝜺(u)) ∶ wm +𝝈 ∶ 𝛁vm] dx.∮𝜕Km

𝛾mn (𝝈) 𝛾
m
0 (vm) ds

}
,

F(v)
def
=

∑
Km∈h

∫Kmf ⋅ vm dx,
(6)

and the function spaces are defined:

U(Ω)
def
= {(u,𝝈) ∈ [H1(Ω)]2 ×H(div,Ω) ∶ 𝛾m0 (u)|𝜕Km∩Γu = 0, 𝛾m0 (𝝈)|𝜕Km∩Γt = t ∀Km ∈ h},

V(h)
def
= {(v,w) ∈ [H1(h)]

2 × [L2(Ω)]4 ∶ 𝛾m0 (vm)|𝜕Km∩Γu = 0, ∀Km ∈ h},
(7)

with norms || ⋅ ||U(Ω) ∶ U(Ω) → [0,∞) and || ⋅ ||V (h) :V(h)→ [0,∞) defined as:

||(u,𝝈)||U(Ω)

def
=

√

∫Ω

[𝛁u ∶ 𝛁u+u ⋅ u+ (𝛁 ⋅ 𝝈)2 +𝝈 ⋅ 𝝈] dx,

||(v,w)||V(h)

def
=

√
∑

Km∈h
∫Km[h

2
m𝛁vm ∶ 𝛁vm + vm ⋅ vm +wm ∶ wm] dx.

(8)

The norm || ⋅ ||V (h) is equivalent to the L2 norm:

||(v,w)||L2(Ω) =
√

∫Ω

[v ⋅ v+w ∶ w] dx. (9)

Note that the edge integrals in (6) are to be interpreted as duality pairings in H1/2(𝜕Km)×H−1/2(𝜕Km), but we

employ notation that is engineering convention here using the integral representation. Most importantly, since (u,𝝈) ∈

[H1(Ω)]2 ×H(div,Ω), these integrals are well defined and our trial space is continuous. As the trial and test spaces are of

different regularity we are in a Petrov–Galerkin setting, particularly a DPG setting, since the test space is broken. How-

ever, since the trial space is [H1(Ω)]2 ×H(div,Ω) our functional setting differs from that of DPG methods in which the

regularity of the trial space is reduced by introducing variables on the edge of each element.

Remark 1. The norm ||⋅||V (h) is used in the discrete computational setting due to exhaustive numerical experimentation.
In particular, its use is justified based on (i) engineering and (ii) computational intuition. (i) The scaling ensures consis-

tency of units, for example, if v is of unit length then 𝛁v is of unit 1

length
. Thus, all entries are of the same unit. (ii) The

scaling also ensures that all terms in the norm are of the same magnitude in the discrete setting due to the exact same

reasoning since gradient terms scale as h−1. Finally we note that the equivalence between ||⋅||V (h) and ||⋅||L2(Ω) is based
on mesh dependent constants.

In the spirit of the DPG method, we now introduce an equivalent norm on the trial space, the energy norm ||⋅||B ∶

U(Ω) → [0,∞):

||(u,𝝈)||B
def
= sup

(v,w)∈V(h)∖{(0,0)}

|B(u,𝝈), (v,w))|
||(v,w)||V(h)

, (10)

and a Riesz representation problem for (p, r), the optimal test functions:

((p, r), (v,w))V(h)
= B((u,𝝈), (v,w)), ∀(v,w) ∈ V(h). (11)

The Riesz representation problem is well posed with unique solutions due to the inner product in the left-hand

side and guarantees the stability of DPG methods. The Riesz representation problem also leads to the following norm

equivalence:

||(u,𝝈)||B = ||(p, r)||V(h), (12)
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which will be employed extensively in the following. For details on optimal test functions and proof of the norm equiv-

alence, we refer to References 19,34. Due to the energy norm, the bilinear form (6) has continuity and inf-sup constants
equal to one and the load functional is also continuous which can be shown using classical techniques. Hence, we

have established a well posed weak formulation of the linear elastostatics BVP using continuous trial spaces for both

displacement and stress fields, that is, [H1(Ω)]2 ×H(div,Ω), in terms of the energy norm (10).

Well-posedness in terms of the energy norm is essentially an assumption of DPG methods as we define a norm that

ensure inf-sup and continuity conditions of the bilinear form. For completeness, we also provide the following lemma of
well-posedness in standard Sobolev norms by first stating two important results. For the sake of simplicity, we consider

the case in which homogeneous Dirichlet BCs are applied on the full boundary 𝜕Ω = Γu:

Proposition 1. Let (uD,𝝈D) ∈ [H1
Γu
(Ω)]2 × [L2(Ω)]4 be the solution of the dual mixed formulation:

Find (uD,𝝈D) ∈ [H1
Γu
(Ω)]2 × [L2(Ω)]4 such that:

∫Ω

[
(
𝝈D − E𝜺(uD)

)
∶ w+𝝈D ∶ 𝛁v] dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
bD(uD,𝝈D),(v,w))

= ∫Ω

f ⋅ v dx, ∀(v,w) ∈ [H1
Γu
(Ω)]2 × [L2(Ω)]4, (13)

which is well posed. Hence, the bilinear form satisfies the inf-sup condition:

∃𝛾 > 0 ∶ sup
(v,w)∈V(Ω)

|bD(uD, 𝝈D),(v,w))|
||(v,w)||V(Ω)

≥ 𝛾 ||(uD,𝝈D)||UD(Ω), (14)

where UD(Ω) = V(Ω) = [H1
Γu
(Ω)]2 × [L2(Ω)]4 and H1

Γu
(Ω) is the space of H1 functions that satisfy homogeneous Dirichlet

conditions on Γu = 𝜕Ω.

Proof. see theorem 2.1 in Reference 25. ▪

We write the bilinear form (6) as:

B((u,𝝈), (v,w)) = bD((u,𝝈), (v,w)) + ⟨𝛾mn (𝝈), 𝛾m0 (v)⟩Γh , (15)

where ⟨𝛾mn (𝝈), 𝛾m0 (v)⟩Γh
def
=

∑
Km∈h

∮
𝜕Km

{𝛾mn (𝝈) , 𝛾
m
0 (vm) } ds.

Proposition 2. Let 𝝈 ∈ H(div,h) and v∈ [H1(h)]2. Then:

∃𝛾S > 0 ∶ sup
vm∈[H1(h)]

2

|⟨𝛾mn (𝝈),𝛾m0 (vm)⟩Γh |
||v||H1(h)

≥ 𝛾S ||𝝈||Û(Γh), (16)

where H(div,h) denotes the broken H(div) space and ||𝝈||Û(Γh) is the minimum energy extension norm:

||𝝈||Û(Γh)
def
= sup

v∈[H1(h)]
2

|⟨𝛾mn (𝝈),𝛾m0 (vm)⟩Γh |
||v||H1(h)

= inf ||𝝈||H(div,Ω). (17)

In addition, if 𝝈 ∈ H(div,Ω):

⟨𝛾mn (𝝈), 𝛾m0 (v)⟩Γh = 0, ∀v ∈ H1(Ω). (18)

Proof. see theorem 2.3 in Reference 35. ▪

Lemma 1. Let (u,𝝈) ∈ U(Ω) and (v,w)∈V(h). Then, the AVS-FE weak formulation (5) satisfies all conditions of the
Babuška Lax–Milgram theorem36 and is well posed.



VALSETH et al. 7

Proof. The load functional and bilinear form (6) are continuous due to the Cauchy–Schwarz inequality. The following

inf-sup condition:

∃C > 0 ∶ sup
(v,w)∈V(h)

|B(u,𝝈),(v,w))|
||(v,w)||W(h)

≥ 𝛾 ||(u,𝝈)||U(Ω), (19)

is satisfied due to theorem 3.3 in Reference 35. This theorem holds if the following conditions hold (see assumptions 3.1

and 3.2 in Reference 35): (i) the bilinear form bD(⋅ , ⋅) satisfies the inf-sup condition and has a trivial kernel, the form
⟨𝛾mn (𝝈), 𝛾m0 (v)⟩Γh satisfies (ii) an inf-sup condition and (iii) a kernel preserving property. Due to Proposition 1, we can
conclude that the bilinear form bD(⋅ , ⋅) satisfies (i). Second, ⟨𝛾mn (𝝈), 𝛾m0 (v)⟩Γh satisfies the inf-sup condition in (16), and
the kernel preserving property is satisfied by noting that ⟨𝛾mn (𝝈), 𝛾m0 (v)⟩Γh vanishes if evaluated using test functions from
the test space of bD(⋅ , ⋅). The norm in the denominator is defined: ||(v,w)||2

W(h)
= ||v||2

H1(h)
+ ||w||2

L2(Ω)
. ▪

Remark 2. The bilinear and linear forms in (6) are not unique choices for the AVS-FE method. We have chosen these

particular forms as they allow us to keep the weak formulation close to classical mixed FEmethods for linear elastostatics

and enforce Dirichlet BCs strongly and Neumann BCs weakly. Other forms can be derived in which the trial space is

continuous, and the test space is discontinuous, due to the flexibility of the Petrov–Galerkin method. In Reference 25

Keith et al. consider several possible weak formulations for the elastostatics problem and the DPG method and perform

a rigorous analysis showing their well posedness.

2.3 AVS-FE discretization

To establish FE discretizations of the weak formulation (5), the AVS-FE takes the approach of classical FE methods and

seeks continuous polynomial approximations that are in conforming subspaces of the [H1(Ω)]2 ×H(div,Ω) trial spaces.

Hence, for the displacement field we use classicalC0(Ω) continuous Lagrange polynomials. Generally, in mixed FEmeth-
ods this choice leads to unstable and inconsistent FE discretizations and is avoided and the stress field is sought in a

Raviart–Thomas (RT) or Brezzi–Douglas–Marini (BDM) space.5 Due to the stability properties of the AVS-FE method, it

is often convenient to employ the same C0(Ω) polynomials for the stress variable. As reported in Reference 37, for con-
vex domains and smooth solutions, the C0(Ω) are superior. In Section 3, we present numerical verifications comparing
the approximations from these spaces. Furthermore, we present a verification where we again compare the classical RT

spaces with the C0(Ω) polynomials for a physical application in which the stress field is such that it is discontinuous in
the tangential direction.

Hence, we seek numerical approximations (uh,𝝈h) of (u,𝝈) of the weak formulation (5) and represent the approxi-

mations as linear combinations of the trial bases (𝝓i(x),𝝋j(x)) ∈ Uh(Ω) (e.g., p(Ω) × RTp(Ω)) and their corresponding
degrees of freedom:

uh(x) =

Nu∑

i=1

uhi 𝝓i(x), 𝝈h(x) =

N𝝈∑

j=1

𝝈h,j 𝝋j(x). (20)

Now, the test space, which is discontinuous, is to be constructed by the DPG philosophy using optimal test functions

defined by the discrete equivalent of the Riesz representation problem (11). Thus, the optimal test space is spanned by

functions that are solutions of the global weak problems, for example, for a trial basis function 𝝓i(x) for the displacement

variable, its corresponding optimal test function (𝝓̃
i
, 𝝋̃i) is defined by:

(
(r, z), (𝝓̃

i
, 𝝋̃i)

)

V(h)
= B((𝝓i, 0), (r, z)), ∀(r, z) ∈ V(h), i = 1, … ,N. (21)

Inspection of (21) reveals the ingenuity of the DPG philosophy since the test space is broken, we do not need to solve

this problem globally but rather elementwise local analogueswhich can be solved in a completely decoupled local fashion.

Hence, the AVS-FE approximation is governed by:

Find (uh,𝝈h) ∈ Uh(Ω) such that:

B((uh,𝝈h), (v∗,w∗)) = F(v∗), ∀(v∗,w∗) ∈ V∗(h),
(22)
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where the test space V *(h) is spanned by the approximated optimal test functions computed from local equivalents

of (21).

The choice we have made of fully continuous trial spaces has several important consequences: (i) as the bilinear

form (6) is such that information is transferred from element-to-element by the continuity of trial functions alone, the

optimal test functions in theAVS-FE have the same support as its trial basis functions. Hence, the resulting global stiffness

matrix has the same sparseness as mixed FEmethods. (ii) the local optimal test function problems can be solved by using

the same polynomial degree of approximation as the trial functions which define each problem. Thus, the cost incurred to

establish the optimal test functions is kept as low as possible (see Remark 3). (iii) finally, theAVS-FE optimal test functions

can be implemented in legacy FE software in which continuous polynomials are the only available basis functions by

redefining the element stiffness matrix assembly process.

Remark 3. If the computation of the optimal test functions could be performed exactly, discrete inf-sup constant would
be identical to the continuous one (often referred to as the ideal DPG method). Unless the test space is L2, that is, the
LSFEM, this is not possible in practical computations and we consider an approximation of these functions.22 Thus, there

is a potential loss of discrete stability if the optimal test functions are computed without sufficient accuracy. Sufficient

accuracy is ensured by the existence of (local) Fortin operators.38 The construction of such operators for the DPGmethod

is studied in great detail in Reference 39, and its analysis was recently further refined in Reference 40. For second-order

PDEs, a Fortin operator’s existence and thus discrete stability is ensured if the local Riesz representation problems are

solved using polynomials of order r = p+Δp, where p is the degree of the trial space discretization and Δp = d the space
dimension. However, while this enrichment degree ensures the existence of the required Fortin operator, numerical evi-

dence suggest that in most cases Δp = 1 is typically sufficient.40 Alternative test spaces for the DPG method for singular

perturbation problems are investigated in Reference 41, even for the case of Δp = 0.

In the AVS-FEmethod, numerical evidence suggest that r= p is sufficient31,37 for convection-diffusion PDEs as well as
extensive numerical experimentation for the linear elastostatics PDE. Since the test functions are sought in a discontinu-

ous polynomial space, using r= p still result in a larger space than the trial as the discontinuous spaces contain additional
degrees of freedom. Furthermore, in the limit h→ 0 the spaceV(h) is essentially L2, that is, any polynomial degree above
constants is inherently an enrichment of the test space.

The approach to establishing AVS-FE approximations described until this point can be established in FE software

with relative ease. However, there are other alternative interpretations of DPG methods which are even more straight-

forward in terms of implementation aspects. The inventors of the DPG, Demkowicz and Gopalakrishnan refer to this as

different “hats” of DPG methods42 and the one we have explained here is that of a Petrov–Galerkin method with opti-

mal test functions which leads to (22). As for the DPG method, we are also going to consider another “hat,” in which

a saddle point, or mixed, interpretation of the AVS-FE method which allows us to employ high level FE solvers such as

FEniCS.43 Hence, let us introduce a new unknown function (e,E), the error representation function. This function derives
its name since it is a Riesz representer of the approximation error induced by the AVS-FE approximation (22) of the weak

formulation (5):

Find (e,E) ∈ V(h) such that:

((e,E), (v,w))V(h)
= F(v) − B((uh,𝝈h), (v,w)),

∀(v,w) ∈ V(h).

(23)

Again, the broken nature of the test space allows this function to be approximated on each element Km ∈ h a poste-

riori to the solution of (22) to be used as an error estimate and error indicator. Using basic arguments (see, e.g., Reference

42) the following saddle point system can be established:

Find (uh,𝝈h) ∈ Uh(Ω) ∧ (e,E) ∈ V(h) such that:

((e,E), (v,w))V(h)
− B((uh,𝝈h), (v,w)) = −F(v),

∀(v,w) ∈ V(h),

B((yh, zh), (e,E)) = 0,

∀(yh, zh) ∈ Uh(Ω).

(24)
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The discretization of (e,E) in (24) follows standard FE methodology and the space V(h) is to be discretized with

discontinuous polynomials. Clearly, the global computational cost of this saddle point system is larger than that of com-

puting optimal test functions to establish (22). However, this cost is justified as the error representation function is to be

used as an a posteriori error estimator as well as elementwise error indicators to be used in mesh adaptive strategies. In

addition, the effort in implementation into high level FE solvers with well-established documentation and capabilities is

embarrassingly low. The norm equivalence (12) between the energy norm and the norm on V(h) of Riesz representers

leads to the following identity for the error representation function:

||(u − uh,𝝈 − 𝝈h)||B = ||(e,E)||V(h), (25)

which allows us to approximate the approximation error in the energy norm, which is not directly computable due to the

supremum, as well as elementwise error indicators:

||(u − uh,𝝈 − 𝝈h)||B ≈ ||(eh,Eh)||V(h),

𝜂 = ||(eh,Eh)||V(Km),
(26)

where (eh,Eh) is the approximation of (e,E) computed from the discretization of the saddle point system (24).

Remark 4. We conclude this section by noting that the two interpretations of the AVS-FE in this section are completely
equivalent. Hence, potential users that are limited by their available computer resources or software has the option of

pursuing either interpretation being aware of their caveats.

2.4 Error estimates

In this section, we establish a priori error estimates for the AVS-FE method. While we here assume that the components

𝝈h are discretized with continuous polynomials in C0(Ω), the analysis can be performed with minor modifications using,
for example, RT or BDM discretizations. Furthermore, we assume that the optimal test functions, to be computed in

the approach of (22) are sought in local polynomial spaces of the same degree as the trial functions. Equivalently, we

assume that the discrete error representation function is in discontinuous polynomial spaces of the same degree as the

trial functions. We shall use the arbitrary constant C to denote generic mesh independent constants.

The starting point of our analysis is the best approximation property of the AVS-FE and DPG methods in terms of

the energy norm.19 Hence, let (u,𝝈) ∈ U(Ω) be the exact solution of the weak formulation (5) and (uh,𝝈h) ∈ Uh(Ω) its

approximation computed from the AVS-FE discretization (22) or equivalently from the saddle point system (24). Then,

the energy norm of the approximation error satisfies:

||(u − uh,𝝈 − 𝝈h)||B ≤ ||(u − vh,𝝈 −wh)||B, (27)

where (vh,wh) are arbitrary functions in Uh(Ω). The proof of this inequality is established using classical techniques

from functional analysis and both inf-sup and continuity constants being unity. In addition, since the energy norm

is an equivalent norm to || ⋅ ||U(Ω) on the trial space, we consequently have the following quasi-best approximation

property:

||(u − uh,𝝈 − 𝝈h)||U(Ω) ≤ C ||(u − vh,𝝈 −wh)||U(Ω), (28)

where themesh independent normequivalence constantC depends on the continuity constants of of the bilinear formand

a Fortin operator.39,40 Another key component in the following analysis is the convergence of polynomial interpolating

functions. Hence, there exist a global polynomial interpolation operator Πhp:44

Πhp ∶ U → Uhp. (29)

Thus, Πhp(u) represents an interpolant of u consisting of globally continuous piecewise polynomials, then

Reference 3:
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Theorem1. Let u ∈ Hr(Ω) andΠhp(u) ∈ Uhp be the interpolant of u (29). Then, there exists C> 0 such that the interpolation
error can be bounded as follows:

||u − Πhp(u)||Hs(Ω) ≤ C
h 𝜇−s

p r−s
||u||Hr(Ω), (30)

where h is themaximum element diameter, p theminimumpolynomial degree of interpolants in themesh, s≤ r, and 𝜇 = min

(p+ 1, r).

To establish error estimates in terms of the energy norm, we first establish a bound on the Riesz representers of the

trial functions, that is, the optimal test functions.

Lemma 2. Let (u,𝝈) ∈ U(Ω) be the exact solution of the AVS-FE weak formulation (5) and (uh,𝝈h) ∈ Uh(Ω) its corre-
sponding AVS-FE approximation from (22). Then:

||(u − uh,𝝈 − 𝝈h)||B ≤ C
h 𝜇−1

p
rp−1
u

, (31)

where h is themaximum element diameter, 𝜇 =min (pu + 1, rp), pu theminimumpolynomial degree of approximation of uh

in themesh, and rp the regularity of the solution p of the distributional PDE underlying the Riesz representation problem (11)

Proof. The RHS of (27) can be bounded by the error in the Riesz representers of the exact and approximate AVS-FE trial
functions by the energy norm equivalence in (12), and themap induced by the Riesz representation problem (11) to yield:

||(u − uh,𝝈 − 𝝈h)||B ≤ ||(p − ph, r − rh)||V(h), (32)

where (p, r)∈V(h) are the exact Riesz representers of (u,𝝈) through (11), and (ph, rh)∈V *(h) are the approximate

Riesz representers of (uh,𝝈h) through a FE discretization of (11). The definition of || ⋅ ||V (h) then gives:

||(u − uh,𝝈 − 𝝈h)||B ≤ C(
∑

Km∈h

{hm||𝛁p − 𝛁ph||L2(Ω)}+ ||p − ph||L2(Ω) + ||r − rh||L2(Ω)).

Since ||p − ph||L2(Ω) ≤ ||p − ph||H1(h) and ||𝛁p − 𝛁ph||L2(Ω) ≤ ||p − ph||H1(h), we get:

||(u − uh,𝝈 − 𝝈h)||B ≤ C(
∑

Km∈h

{hm||p − ph||H1(h)}+ ||p − ph||H1(h) + ||r − rh||L2(Ω)).

Now, we pick hm = hmax = h, and trial functions that are polynomial interpolants for the Riesz representers (ph, rh) of the
same degree pu. Hence, we bound ||r − rh||L2(Ω) using Theorem 1 and ||p − ph||H1(h) by an extension of this theorem for

broken Hilbert spaces as introduced by Riviére et al.45 to get:

||(u − uh,𝝈 − 𝝈h)||B ≤ C1h
h𝜇1−1

p
rp−1

u

+C2
h𝜇1−1

p
rp−1

u

+C3
h𝜇2

p
rr
u

, (33)

where 𝜇1 = min (pu + 1, rp), 𝜇2 = min (pu + 1, rr), rp, rr the regularities of the Riesz representers of the PDEs underly-
ing (11). Since the second term in the RHS of (33) is dominant, the proof is completed. ▪

Next, with the quasi-best approximation property (28) at hand, we can readily introduce a priori bounds in classical

Sobolev norms. First, the bound in terms of the norm || ⋅ ||U(Ω) is governed by the following lemma:

Lemma 3. Let (u,𝝈) ∈ U(Ω) be the exact solution of the AVS-FE weak formulation (5) and (uh,𝝈h) ∈ Uh(Ω) its corre-
sponding AVS-FE approximation through (22). Then:

∃ C > 0 ∶ ||(u − uh,𝝈 − 𝝈h)||U(Ω) ≤ C

(
h𝜇1−1

p
ru−1
u

+
h𝜇2−1

p
r𝝈−1
u

)
, (34)



VALSETH et al. 11

where h is the maximum element diameter, 𝜇1 =min (pu + 1, ru), pu the minimum polynomial degree of approximation of
uh, 𝜇2 = min (pu + 1, r𝝈), in the mesh, ru the regularity of the solution u of the governing PDE (3), and r𝝈 the regularity of
the solution 𝝈 of the governing first-order system PDE (4).

Proof. By the quasi-best approximation property:

||(u − uh,𝝈 − 𝝈h)||U(Ω) ≤ C ||(u − vh,𝝈 −wh)||U(Ω),

the definition of the norm on U(Ω) (8) leads to:

||(u − uh,𝝈 − 𝝈h)||U(Ω) ≤ C {||u − vh||H1(Ω) + ||𝝈 −wh||H(div,Ω)},

since we use basis functions that are polynomial interpolants and note that ||𝝈 −wh||H(div,Ω) ≤ ||𝝈 −wh||H1(Ω), the

approximation property in Theorem 1 with s= 1 gives:

||(u − uh,𝝈 − 𝝈h)||U(Ω) ≤
(
C1

h𝜇1−1

p
ru−1
u

+C2
h𝜇2−1

p
r𝝈−1
𝝈

)
,

where we use the definitions of Lemma 3 for the 𝜇’s and r’s. Finally, combining the constants C1,C2 and noting that in
the AVS-FE method we always pick pu = p𝝈 the desired error bound is established. ▪

Remark 5. Note that choosing approximation spaces such as RT or BDM for the stress variable optimal error estimates

can be established for these spaces. We refer to the text of Brezzi and Fortin5 for details.

3 NUMERICAL VERIFICATIONS

To assess the performance of our method, we first consider a problem with a smooth solution which allows us to assess

the convergence properties of the AVS-FE method to verify the a priori bounds of Section 2.4. Then, we consider an

example problem considered by Brenner,46 with a manufactured exact solution that is dependent on the Poisson’s ratio

which is used in a comparison between the AVS-FE method, the mixed FE method of Arnold and Winther,7 and the

Bubnov–Galerkin FEmethod. As final numerical verifications, we present two engineering applications, (i) an example in

which a commonly applied engineering structure, a cantilever beam, is considered and (ii) the deformation of a composite

structure.

In the numerical verifications presented in this section we use the FE solvers Firedrake47 and FEniCS.43 In particular,

for all presented verifications using uniformmeshes we use Firedrake, whereas in the case of mesh-adaptive refinements,

we use FEniCS. In all cases, we use the linear solverMUMPS48 to perform the inversion of the resulting stiffnessmatrices.

3.1 Asymptotic convergence studies

To present the convergence properties of the AVS-FE for nearly incompressible elastostatics, we consider a 2D model

problem with a smooth exact solution which ensures the stress regularity is H1, that is, we use C0 continuous approxi-
mations for both variables. The domain is the unit square, that is, Ω = (0, 1) × (0, 1) ⊂ R2, consisting of a material that is

nearly incompressible with physical properties listed in Table 1, and a sinusoidal exact solution.

uex(x) =

{
uexx (x)

uexy (x)

}
=

{
sin(𝜋x) sin(𝜋y)

sin(𝜋x) sin(𝜋y)

}
, (35)

where 𝜆 is the Lamé parameter: Inspection of (35) reveals the proper BCs are homogeneous Dirichlet conditions on the

entire boundary 𝜕Ω and the source f is chosen such that it is the differential operator of the PDE (3) acting on uex(x).

As an initial verification, we consider uniform mesh refinements starting from a mesh consisting of two triangle

elements, and we use C0(Ω) polynomials of increasing order. With this exact solution, the a priori error estimates from
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Section 2.4 are:

||(u − uh,𝝈 − 𝝈h)||U(Ω) ≤ C hp,

||(u − uh,𝝈 − 𝝈h)||B ≤ C hp.
(36)

In Figures 2 and 3, we present the convergence history for the norms indicated in (36) with the exception of the

||𝝈 − 𝝈h||H(div,Ω) as this is a component of ||(u − uh,q − qh)||U(Ω). In these figures we also show the errors in the individual

norms ||u − uh||L2(Ω) and ||u − uh||H1(Ω). The rates of convergence are as predicted in (36) for the energy normand thenorm

onU(Ω). For the individual norms we observe the expected rates of convergence for polynomial FE approximations with

the exception of the cases p= 4 and p= 2where the observed rates are one order higher in ||u − uh||L2(Ω) and ||u − uh||H1(Ω).

This can be seen inFigure 2(A,B)where the slopes for p= 4 and p= 2 are equal to the slopes for p= 5 and p= 3, respectively.
This problemwas also considered in Reference 23 for the DPGmethod and we point out that the convergence rates of the

AVS-FE approximations match the presented rates in Reference 23.

3.2 Comparison with other FE methods

To compare the AVS-FE method for nearly incompressible elasticity to other FE methods, we consider a model problem

of which the solution is a function of the Poisson’s ratio from Reference 46. The exact solution is given in (37), we use the

same Young’s modulus as in the preceding example. However, we increase the Poisson’s ratio to 0.49999999 to make the

Property Symbol Value

Young’s modulus E 1500 MPa

Poisson’s ratio 𝜈 0.4999

TABLE 1 Material data for the nearly incompressible problem

(A) (B)

F IGURE 2 Asymptotic convergence results
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(A) (B)

F IGURE 3 Asymptotic convergence results

problem more challenging with a Lamé parameter 𝜆 of the order 1011.

uex(x) =

{
uexx (x)

uexy (x)

}
=

{
sin(2𝜋y) [−1+ cos(2𝜋x)] + sin(𝜋x) sin(𝜋y)

1+ 𝜆

sin(2𝜋x) [1 − cos(2𝜋y)] + sin(𝜋x) sin(𝜋y)

1+ 𝜆

}
. (37)

The methods we consider are the Bubnov–Galerkin (see chapter 26 in Reference 49 for a description of the imple-

mentation of this method) and a mixed method of Arnold and Winther7,50 in addition to the AVS-FE method. For

the Bubnov–Galerkin method, we approximate u using C0(Ω) linear polynomials. Likewise, for the first-order system
least squares method we use linear polynomials for both variables u and 𝝈, and in the AVS-FE approximation we

use linear polynomials and first-order RT bases for u and 𝝈, respectively. In the mixed method, u is approximated

with linear discontinuous polynomials and 𝝈 with the lowest order Arnold-Winther element (i.e., cubic). The ini-

tial mesh we consider is uniform, consisting of eight triangular elements, and we proceed to perform uniform mesh

refinements.

In Figure 4, we compare the convergence history of these three methods in terms of the L2, and H1 norms (only

L2 for the mixed method) of the error on u−uh. The Bubnov–Galerkin method performs well initially, but upon con-

tinued mesh refinements becomes unstable, as indicated by the diverging errors. The AVS-FE method does not suffer

from these issues, and retains the optimal rates of convergence in both L2 and H1 norms. The increasing errors of the

Bubnov–Galerkin FE method is likely due to ill conditioning of the resulting stiffness matrices. By lowering the Pois-

son ratio this effect of ill conditioning is negated, as expected. Thereby limiting the applicability of the Bubnov–Galerkin

FE method for nearly incompressible materials. Finally, the mixed method of Arnold and Winther, remains stable as

expected. However, in the last two refinements, the rate of convergence is reduced slightly. We attribute this to ill condi-

tioning as in the Bubnov–Galerkin FE method. This has also been observed and studied by Carstensen et al.,50 where it

is noted that for pure Dirichlet BCs the stiffness matrix condition number grows to infinity as 𝜈 → 0.5 (see section 3.3 in

Reference 50).
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(A) (B)

F IGURE 4 Comparison between the AVS-FE method, the mixed method of Arnold and Winther, and the Bubnov–Galerkin FE

method. AVS-FE, automatic variationally stable finite element; FE, finite element

Physical property Young’s modulus Poisson’s ratio

Matrix 1500 MPa 0.49

Inclusion 10,000 MPa 0.3

TABLE 2 Material properties

3.3 Adaptive mesh refinement

Modern engineering materials often consist of multiple constituents, that is, composites. Material inclusions often lead

to stress concentrations and need to be accurately resolved to ensure confidence in the engineering design. Resolution of

such features is typically achieved by carefully constructed FEmeshes which requires a significant effort from analysts, or

mesh refinements. Until this point, we have presented numerical verifications in which the mesh partitions are uniform

and their refinements are uniform as well, since the solutions are known to be rather well behaved, a priori. While these

certainly give us confidence in theAVS-FE approximations, the computational cost of uniformmesh refinements becomes

very large ash→ 0. To this end,we consider adaptivemesh refinements that are guided by the built-in error indicators (26).

As an adaptive strategy, we choose the marking strategy and refinement criteria of Dörfler51 using a fixed parameter

𝜃 = 0.5.

As an example of a simplified composite material we consider a unit square domain with an inclusion in the center

at x= y= 0.5, as shown in Figure 5. The matrix material is nearly incompressible and the inclusion is a stiff material with
Young’s modulus several orders of magnitude larger than the bulk material. In Table 2, the properties of the materials

are listed. Materials with these properties are, for example, Silicone based rubber for the matrix and an epoxy based

inclusion. The BCs are as shown in Figure 5, that is, a surface traction t= {100 MPa, 0}T on the right side and a fully

clamped boundary on a portion of the left side. Hence, we expect significant concentration of stresses near the inclusion.

We employ the error representation function (26) as an a posteriori error estimate. The goal of the adaptive algorithm is

then to minimize this error based on its local error indicators.
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F IGURE 5 Linear elastic problem with inclusion

F IGURE 6 Initial mesh for the inclusion problem

To establish an initialmesh taking into account the circular geometrywith reasonable accuracy,we employ the built-in

FEniCS43 mesh generation functionality. In particular, we use the tool “mshr” to create an inclusion consisting of 250

line segments to accurately represent the circumference of the circle. The initial mesh is shown in Figure 6. For the

AVS-FE approximations, we consider second-order approximations for all variables in both cases of RT and C0(Ω) stress
approximations.

The normal stresses 𝜎xx and 𝜎yy are presented in Figure 7 where the stresses, as expected, are concentrated near the

stiff inclusion. Furthermore, we see in this figure that the stresses perpendicular to the loading, that is, 𝜎yy are dominated

by the Poisson effect which is another indication that the AVS-FE approximation of this problem is consistent with the

expected physics. As a sanity check, we also note that the far field stresses are equal to the applied surface traction t, see

Figure 7(A). The shear stress component 𝜏xy is shown in Figure 8 along with the adapted mesh after 12 refinements. The

final adapted mesh shown in Figure 8(A) highlights that the built-in error indicators as well as the marking strategy of

Dörfler lead to mesh refinements in locations critical to proper resolution of physical features.

Computing these results in the AVS-FE method is straightforward due to its built-in error estimate and discrete sta-

bility. Hence, the effort in implementation of the adaptive algorithm is minimal and requires only a FE solver with

mesh refinement capabilities. However, it is worth mentioning that the required effort to establish similar results in the

Bubnov–Galerkin FE method would be significant. While several a posteriori error estimation techniques exists, the sta-

bility issue that arises with the jump in material coefficients will likely require significant efforts in analysis to ensure

stability of the error estimation or prohibitively large mesh generation efforts.
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(A) (B)

F IGURE 7 AVS-FE approximate normal stress components (MPa). AVS-FE, automatic variationally stable finite element

(A) (B)

F IGURE 8 AVS-FE approximate shear stress component (MPa) and final mesh. AVS-FE, automatic variationally stable finite element

Finally, we compare C0(Ω) and RT stress approximations. The inclusion leads to a stress field that has continuous

normal components across the interface between the two materials, whereas the tangential components are discontin-

uous. While this domain is still convex, we therefore expect that the generally advocated C0(Ω) stress approximations
in the AVS-FE method will be less accurate than the standard mixed FE choice of RT discretization. Thus, as a verifica-

tion we consider both types of stress approximations in this experiment and measure the difference between the two by

the approximate energy norm. To this end, we employ the same adaptive algorithm for the case of C0(Ω) stresses and in
Figure 9, the convergence histories of the approximate error in the energy norm through (26) for both cases are presented.

As expected, in this case the RT approximations lead to lower energy norm errors due to the pollution effect of enforcing

continuity of tangential stress components for the C0(Ω) case. Finally, in Figure 10 the final adapted mesh for the case of
C0(Ω) stresses are presented. The overly restrictive stress approximations lead tomesh refinements that do not resolve the
stress field near the inclusion in the same way as the RT case as evident from comparison of Figures 8(B) and 10. Hence,

the C0(Ω) stress approximations are not applicable for this problem.
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F IGURE 9 Convergence of the energy norm comparing C0(Ω) and RT stress

approximations computed using the approximate energy norm, see (26)

F IGURE 10 Final adapted mesh using C0(Ω) stress

approximations

3.4 Engineering application: Nonuniform bending of a 2D beam

To further illustrate the AVS-FE method in its application to FE analyses of nearly incompressible solids, we present

a common engineering application of nonuniform bending of beams. The 2D problem concerns a beam with a length

L= 2 m and slenderness ratio L/H = 10, and consists of a homogeneous linearly elastic isotropic material with a Young’s

modulus equal to that of a nitrile based rubber, that is, E= 1.5 MPa. The Poisson ratio 𝜈 is chosen such that 1
2
− 𝜈 = 10−9

and therefore thematerial is nearly incompressible. The beam is subject to kinematic constraints along its left edge, where

material particles are prohibited frommoving in the x direction but free to move in the y direction. To eliminate the rigid
body translation in the y direction, the bottom left corner point is kept fixed. In terms of loading, the beam is subject to a

downward uniform distributed force q, of 3.33 N/m as depicted in Figure 11).

For our numerical experiment of theAVS-FEmethod,we startwith an initial uniformmesh of four triangular elements

(two elements in the length, versus one in the height) and subsequently conduct uniform h-refinements in which each
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F IGURE 11 Linear elastic beam problem

F IGURE 12 Nonuniform bending of a nearly

incompressible beam—elastic strain energy

evolution

element is partitioned into four new elements. In all computations, we employ quadratic (i.e., p= 2) C0 trial functions
for the displacements and second-order RT functions functions for the stress variable. The evolution of the elastic strain

energy of the AVS-FE solutions throughout the h-refinement process are shown in orange in Figure 12. In comparison,
the corresponding results for the classical FE, or Bubnov–Galerkin, method are also shown in this graph in blue. These

were established by using the same mesh partitions as for the AVS-FE method but employing the classical C0 quadratic
Lagrangian trial functions for the displacements and a standard displacement based weak formulation, as is common in

classical Bubnov–Galerkin analyses.

Figure 12 shows that, as expected for this level of near incompressibility, the classical FE solutions fail to converge

and start to exhibit spurious behavior as h→ 0 with greatly changing values for the elastic strain energy between suc-

cessive solutions. The AVS-FE method, on the other hand, maintains numerical stability from the onset and exhibits

convergence upon continued uniformmesh refinements. The converged AVS-FE solutions are physically valid, as can be

seen in Figure 13, in which contour plots of the distributions of the normal stress 𝜎xx (Figure 13A) and shear stress 𝜏xy
(Figure 13B) are shown of the AVS-FE solution for the mesh consisting of 22× 11 elements. Since RT trial functions have

been used to compute the stress variables, minor discontinuities across interelement edges can be observed, but these

attenuate as the mesh is further refined. Hence, the AVS-FE method shows less sensitivity to the nearly incompressible

constitutive behavior of the material than the classical FE method.
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F IGURE 13 AVS-FE stress distributions of beam in bending with 1

2
− 𝜈 = 10−9. AVS-FE, automatic variationally stable finite element

4 CONCLUSIONS

We have presented a mixed FE method that results in continuous FE approximations of both the displacement and (nor-

mal) stress fields in linear elasticity. In particular, we considered nearly incompressible materials as classical FEmethods

suffer from loss of discrete stability for such materials. The DPG philosophy of optimal test spaces leads to stable FE

approximations without reformulation of the problem using the compliance tensor for the case for the nearly incompress-

ible case. The DPG method we present distinguishes itself from the DPG method by only breaking the test space while

keeping the trial space globally confirming. Hence, in the corresponding FE approximationwe use classical FE bases such

as Lagrange polynomials and RT functions.

We present a priori error bounds in terms of norms of the numerical approximation errors of both displacement and

stress trial variables. These bounds are all optimal in the sense that the approximation errors converge at rates equal to

their underlying interpolating functions. Numerical verifications of the asymptotic convergence properties confirm the

established error bound in all appropriate norms. A convergence study comparing our method to existing FE methods,

that is, Bubnov–Galerkin FE method and the mixed FE method of Arnold and Winther7, show that the AVS-FE method

is superior for the case of nearly incompressible materials for the presented verification. In the verification presented,

the Bubnov–Galerkin FE method suffered from a loss of stability as the mesh was refined, thereby resulting in loss of

convergence. Themixedmethod of Arnold andWinther did not lose stability but for highly refinedmeshes a reduction in

convergence rate was observed. The AVS-FE method did not exhibit these types of behavior, nor have we observed such

behavior for other verifications we have performed. We attribute this to the scaling term h2m of the H1 seminorm portion

of || ⋅ ||V (h) (8) as it ensures entries in the resulting stiffnessmatrix are of similar order ofmagnitude. However, we cannot
rule out such behavior for the AVS-FE method for very fine meshes as this is an issue of numerical linear algebra and

not the AVS-FE method. Similar behavior has been observed by Storn52 for the DPGmethod, where it is attributed to the

inversion of the Gram matrix in the computation of optimal test functions.

By considering a global saddle point form of the AVS-FE method, we establish both approximations of the displace-

ment an stress fields as well as an approximation of an error representation function which measures the global energy

error of the AVS-FE approximation. This error representation leads to a posteriori error estimates and error indicators

which we employ in a mesh adaptive strategy. We present a numerical verification of a challenging physical application

of a composite material where the built-in error indicator is used to drive adaptive mesh refinements to resolve the stress

field in the composite.

While successful for the presented composite material, the built-in error indicator is a local indication of the residual

of the AVS-FE approximation (see (25)). However, in certain applications, localized solution features may be of higher

importance than the global energy error. Hence, goal-oriented error estimates and error indicators based on local quan-

tities of interest53 can provide alternative mesh refinement strategies. As shown in Reference 37, alternative AVS-FE
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goal-oriented error estimates are capable of accurately estimating these errors and driving goal-oriented mesh refine-

ments. While we have considered a single AVS-FE weak formulation here (5), as mentioned in Remark 2, this is not a

unique choice. In Reference 25, multiple weak formulations for linear elasticity are considered for the DPG method, all

of which provide slightly different FE approximations. Such investigation for the AVS-FE method and comparison of the

DPG and AVS-FE methods for linear elasticity are postponed to future works.
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