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1 | INTRODUCTION

Linear elastostatics is arguably the most successful area of application of the classical (Bubnov-Galerkin) finite element
(FE) method. For homogeneous isotropic engineering materials, such as steel and aluminum, the Bubnov-Galerkin
method is stable, satisfies a best approximation property in terms of elastic strain energy and is computationally efficient.
However, for commonly employed modern engineering materials such as rubbers and soft plastics, that is, nearly incom-
pressible materials, the Bubnov-Galerkin method suffers from locking and loss of discrete stability (see, e.g., References
1-3). In Reference 4, Phillips and Wheeler investigate this phenomenon in great detail and highlight that error estimates
for the classical FE method depend on the factor 1/(1 — 2v), which clearly tends to infinity as v — 0.5.

Mixed FE methods® provide functional settings in which certain FE discretizations are stable for mixed forms of the
elastostatics problem as well as for the Stokes equations which and can be shown to be equivalent to the equations of linear
elastostatics when v = 0.5. Other mixed FE methods based on the consideration of the underlying equations of elastostat-
ics using the compliance tensor do not suffer from this loss of stability, but often require additional constraints to ensure
symmetric stresses,® called Hellinger-Reissner formulations, and are typically more computationally costly than the pri-
mal Bubnov-Galerkin formulation. In Reference 7, Arnold and Winther present an element for the Hellinger-Reissner
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formulation which was one of the first stable elements utilizing polynomial bases for both stress and displacement. The
difficulty in building conforming approximation spaces for the stress has also resulted in several nonconforming mixed
methods, see, for example, References 8,9 where the FE approximation of the stress does not reside in the space dictated
by the weak formulation. The task of establishing approximation spaces for these mixed FE methods is certainly not trivial
and is an active area of investigation and recent publications include.!®!!

Stabilized FE methods that adjust the functionals of the weak formulation can be used to ensure discrete stability.'?
This type of stabilization is performed for both the mixed and classical FE methods, see the work of Nakshatrala et al.!3
as well as Masud and Xia.'* However, stabilized methods generally require arduous analyses to establish a proper choice
of penalization/stabilization parameters. Reduced integration methods are also commonly used when approaching the
incompressible limit.!® The discontinuous Galerkin (DG) method also remains a popular choice for nearly incompressible
elastostatics.*1%17 In general, these achieve stability by adjusting the interelement jump or average terms by weights in a
manner similar to the stabilized FE methods.

Stable FE methods such as the least squares FE methods (LSFEMs) (see, e.g., text by Bochev and Gunzberger'®) or
the discontinuous Petrov-Galerkin (DPG) method of Demkowicz and Gopalakrishnan'® can be employed to resolve the
stability issue. The LSFEM has been applied to linear elastostatics in References 20 and 21, a weighted first-order system
least squares is applied successfully to nearly incompressible materials. Gopalakrishnan and Qiu provide an analysis of
the well-posedness of the DPG method applied to linear elastostatics in Reference 22. In Reference 23, Bramwell et al.
consider two distinct DPG methods for the nearly incompressible elastostatics problem that are locking free and present
numerical verifications highlighting capabilities as v — 0.5. The DPG has also been successfully applied to this problem in
several works, including the fully incompressible case in Reference 24 employing the compliance tensor to avoid locking
in that case. In References 24,25, the DPG method is applied to the problem of linear elastostatics and several variational
formulations are considered including for the case of nearly incompressible materials. In particular, in Reference 24, the
idea of coupling multiple weak formulations throughout the computational domain is explored in great detail.

In the classical FE method, the approximations of displacements of the equivalent weak form of the underlying partial
differential equation (PDE) of static equilibrium are sought in C° continuous polynomial spaces and stress approxima-
tions are established by computing gradients of the displacements, that is, the stresses are piecewise discontinuous. On
the other hand, mixed FE methods for the linear elastostatics problem consider an equivalent first-order system of the
underlying PDE. This first-order system description can lead to weak forms which allow stresses to be in H(div, Q) and
displacements that are in L?(Q) (see section 2.4 of Reference 25 for a thorough discussion on other options). Hence, in
the FE approximations the displacements must be sought in piecewise discontinuous polynomial function spaces. The
theory of distributions ensures that optimally convergent FE solutions can be established for both classical and mixed
FE methods, as well as for their properly stabilized counterparts if v is close to 0.5. However, the resulting numerical
approximations are not physical, as we know that both the displacement and certain components of the stress fields are
continuous. We know of three options to establish both continuous displacements and stresses. First, the isogeometric FE
methods of Hughes et al.?® which uses higher order bases for the discrete FE approximation, that is, C* continuity. Sec-
ond, the k-version FE method of Surana et al.?” which employs higher order bases as well as a least squares approach. The
popularity of the isogeometric FE method has grown significantly over the last decade, but the stability issue of nearly
incompressible materials still persist. In Reference 28, Taylor introduces a mixed version of the isogeometric FE methods
for incompressible solids where discontinuous stress approximations are sought. Finally, the use of postprocessing tech-
niques where a discontinuous solution component is projected into a continuous discrete space, for example, by using
Oswald operators, see References 29,30 for details and further references.

The automatic variationally stable finite element (AVS-FE) method introduced by Calo et al.3! provides a framework,
much like the DPG of Demkowicz and Gopalakrishnan,!® to establish stable FE approximations for any PDE. However,
the AVS-FE differs in its choice of trial spaces while employing the DPG concept of optimal discontinuous test functions.
In addition to the approximation of the trial variables, the AVS-FE also comes with a “built-in” error estimator and error
indicators that can be employed to drive mesh adaptive strategies. The stability property of the AVS-FE allows us to derive
Petrov-Galerkin weak formulations that are posed with trial functions that are in classical Hilbert spaces, for example,
H(div) and H'. Hence, the corresponding FE approximations are to be sought in classical continuous FE approximation
spaces yielding continuous FE approximations for all trial variables. The LSFEMs presented in References 20,21 also pose
weak formulations in Hilbert spaces as the AVS-FE but considers alternative formulations for the elasticity problem and
considers nonconforming approximations for the displacement.

In this article, we build upon the preliminary investigation of Valseth3? for the AVS-FE method applied to linear
elastostatics of nearly incompressible media. We introduce our model problem and notations in Section 2.1, The weak
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formulation and its corresponding FE discretization are presented in Section 2 in conjunction with a brief review of the
AVS-FE methodology. In Section 2.4, we present optimal a priori error estimates. Several numerical verifications are
presented in Section 3 highlighting the stability of our method as v — 0.5, including an asymptotic convergence study
with comparisons to existing FE methods. We draw conclusions and discuss future works in Section 4.

2 | THE AVS-FE METHOD

The AVS-FE method®!' provides a functional setting to analyze linear boundary value problems (BVPs) in which the
underlying differential operator is nonself-adjoint or leads to unstable FE discretizations. In this section, we introduce
our model problem, and briefly review the AVS-FE method. A thorough introduction can be found in Reference 31.

2.1 | Model problem: Linear elastostatics of nearly incompressible solids

Let Q c R", n=1,2,3 (we consider the two-dimensional (2D) case here for simplicity) be a bounded open domain, con-
taining a linearly elastic, nearly incompressible, and possible heterogeneous solid. The boundary 0Q is partitioned into
two open and disjoint segments I'; and I'y, such that 0Q =T'; UTy,. As depicted in Figure 1, the body is in static equilib-
rium under the action of external body loads f € [L?*(Q)]? in Q, surface tractions t € H~/2(I';) on I';, as well as fixed zero
displacements on I'y. Since the solid is assumed to be linearly elastic, its constitutive behavior is governed by generalized
Hooke’s law, that is:

o = Ee, €}

where o denotes the (2D) Cauchy stress tensor, € the (2D) Green strain tensor, and E the fourth-order (Riemann) elasticity
tensor, with elliptic and symmetric Riemann coefficients Ej; € L*(Q). In this work, we limit our focus to problems in
which the deformations in the material remain small and therefore the kinematic relation between the strain tensor &
and displacement field u is linear and governed by:

£==[Va+(Vw']. @)

N | =

With these notations and relations in force, the equilibrium state of the solid is represented by the following BVP,
governing the displacement field u:

Find u € [H(Q)]? such that:
-V.-o=1f inQ,

on =t onl},

(3

u =0, only,

FIGURE 1 The model problem
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where n denotes the outward unit normal vector to dQ. In this article, we consider the specific scenario in which the solid
is comprised of one or more constituents with nearly incompressible material properties. Hence, the Riemann coefficients
Ejji can involve values of the Poisson ratio v that are very close to, but still less than 0.5.

In the following, we shall use the following notations:

« inner products between vector valued functions are denoted with the single dot symbol -, and inner products between
tensor valued functions are denoted by the colon or double dot symbol :.

o h,, is the diameter of element K,,,.
+ in weak formulations, we present edge integrals using trace the operators: (i) yJ' : H (K, :— HY?(0K,,) as the local

zeroth-order trace operator and (ii) y{,’fﬂ : H(div,K,,) -» H"'/?(0K,,) denote the local normal trace operators where n,,
is the outward unit normal vector to the element boundary 0K, (e.g., see Reference 33).

« vector and tensor valued test functions are denoted using v and w, respectively. Restrictions of these to an element K,
are denoted by employing the subscript m.

2.2 | Weak formulation

AVS-FE weak formulations are established using techniques that are similar to DG and DPG methods by considering
elementwise weak formulations that are subsequently summed throughout the FE mesh partition to yield global weak
formulations. We mention only key points here and omit the full derivation here for brevity but refer to Reference 31 for
detailed derivations.

To establish AVS-FE weak formulations, we first require a partition 7, of Q into convex elements K, such that:

Q:int( U K_m> K,NK,=0, m#n.

K, P,

The partition 7, is such that any discontinuities in Ej; are restricted to the boundaries of each element 0K,,. The BVP (3)
is recast as a first-order system by using the stress tensor from the constitutive law (1), that is,

Find (u, 6) € [HY(Q)]?> x H(div, Q) such that:

c—Ee=0 inQ,
- V-o=f inQ,

on=t onl}

“4)

u=0, only,

where H(div, Q) is the Hilbert space of tensor-valued functions which divergence is weakly continuous and € = £(u)
denotes the gradient operator in (2). Note that this first-order system, or mixed form, BVP is standard for mixed FE
methods for linear eleastostatics.

Next, the first-order system is multiplied by test functions (v,w) € L?(K,,)® and enforced weakly on each indi-
vidual element K,, € P,. We then apply integration by parts locally on each element K, to the term involving
the divergence of the stress field V- ¢ to enable weak applications of the Neumann boundary condition (BC). A
subsequent summation of all elements in 7, and strong enforcement of all BCs leads us to the AVS-FE weak
formulation:

Find (u, o) € U(Q) such that:
B((u,0),(v,w)) = F(v), V(v,w) € V(Py),

(5
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where the test space V(P},) is broken, the bilinear form, B : U(Q) X V(P,) — R, and linear functional, F : V(P;) - R
are defined:

B((u, 6), (V,w)) dzef Y {/ [ (6 —Ee(w)) : w,, +0 : Vv, ] dx.jl{ (o) y(;”(vm) ds},
K, 0K,

K, P, (6)
def
Fv)= Y f- vy, dx,
K,eP,JK,
and the function spaces are defined:
def .
U©Q = {(u0) € [H Q) x H(div, Q) : Yo ok, ar, = 0,74"(6)jok,,nr, = t VK € Pp}, @
def
V(Pn) = {(v,w) € [H'P)? X [L2Q)]* : 7' Vm)iok,,r, =0, VKin € Py},
with norms || - [lu) : U(Q) = [0,00) and || - ||v pr) : V(Pr) — [0, 00) defined as:
def
l(w, o)llug = \//[Vu :Vu+u-u+(V-0)+0-0]dx,
Q
def (8)
lv. W)lvp,) = > / (M2 Vi @ VYV 4 Vi - Vi + Wiy © Wiy dX
K,eP,JK,
The norm || - ||v (pr) is equivalent to the L? norm:
(v, W)l 12 = \//[v-v+w D w] dx. 9
Q

Note that the edge integrals in (6) are to be interpreted as duality pairings in HY2(0K,,) x H"V?(0K,,), but we
employ notation that is engineering convention here using the integral representation. Most importantly, since (u, o) €
[H'(Q)]? x H(div, Q), these integrals are well defined and our trial space is continuous. As the trial and test spaces are of
different regularity we are in a Petrov—-Galerkin setting, particularly a DPG setting, since the test space is broken. How-
ever, since the trial space is [H*(Q)]?> x H(div, Q) our functional setting differs from that of DPG methods in which the
regularity of the trial space is reduced by introducing variables on the edge of each element.

Remark 1. The norm |||y (pr) is used in the discrete computational setting due to exhaustive numerical experimentation.
In particular, its use is justified based on (i) engineering and (ii) computational intuition. (i) The scaling ensures consis-
tency of units, for example, if v is of unit length then Vv is of unit @. Thus, all entries are of the same unit. (ii) The
scaling also ensures that all terms in the norm are of the same magnitude in the discrete setting due to the exact same
reasoning since gradient terms scale as h~!. Finally we note that the equivalence between ||-||v (pry and ||-||12q) is based
on mesh dependent constants.

In the spirit of the DPG method, we now introduce an equivalent norm on the trial space, the energy norm ||-||g :
U(Q) — [0, ):

|B(u, 0), (v, W))|

def
l(a, o)z = ) (10)
vwer@n oo V. W)llve,)
and a Riesz representation problem for (p, r), the optimal test functions:
(P, 1), (V, W)y p,, = B((@, 6), (v, W)), V(V,W) € V(Pp). (11)

The Riesz representation problem is well posed with unique solutions due to the inner product in the left-hand
side and guarantees the stability of DPG methods. The Riesz representation problem also leads to the following norm
equivalence:

l(w, o)lls = ll(@. Ollve,) (12)
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which will be employed extensively in the following. For details on optimal test functions and proof of the norm equiv-
alence, we refer to References 19,34. Due to the energy norm, the bilinear form (6) has continuity and inf-sup constants
equal to one and the load functional is also continuous which can be shown using classical techniques. Hence, we
have established a well posed weak formulation of the linear elastostatics BVP using continuous trial spaces for both
displacement and stress fields, that is, [H'(Q)]* x H(div, Q), in terms of the energy norm (10).

Well-posedness in terms of the energy norm is essentially an assumption of DPG methods as we define a norm that
ensure inf-sup and continuity conditions of the bilinear form. For completeness, we also provide the following lemma of
well-posedness in standard Sobolev norms by first stating two important results. For the sake of simplicity, we consider
the case in which homogeneous Dirichlet BCs are applied on the full boundary 0Q = I'y:

Proposition 1. Let (u®, 6”) € [H] (Q)]* x [L*(Q)]* be the solution of the dual mixed formulation:

Find (uP,6”) € [H: ()% x [L2(Q)]* such that:

/ [(6” —Eem®)) : w+6” : Vv]dx = / f-vdx, V(v,w)e[H. (Q x [L2(Q)]*, (13)
Q Q v

. S/
n'g

bP(uP,6P),(v,w))

which is well posed. Hence, the bilinear form satisfies the inf-sup condition:

[B° P, 6P).(v, w))| >

dy>0: sup

D D
u,o D(Q)
wwev@ N1"Wive 7 I Nowa (14)

where UP(Q) = V(Q) = [H} (Q)]* x [L*(Q)]* and H}. (Q) is the space of H" functions that satisfy homogeneous Dirichlet
conditions on T’y = 0Q.

Proof. see theorem 2.1 in Reference 25. n

We write the bilinear form (6) as:

B((u, 0), (v, w)) = bP((u, 6), (v, W) + (1 (6), 7' V), 15)

where (12(0). 70'W)r, = T en fuc (701(0) .70 (Vin) } ds.

Proposition 2. Let o € H(div, P,) and v e [H' ()] Then:

550 sup  E@AE

275 llellor,)
i S T r® llelloe, (16)

where H(div, Pp,) denotes the broken H(div) space and ||o ||y, ) is the minimum energy extension norm:

[(7a (©):75 Vi )dr, |

def
ollopr,y = =inf ||o iv.Q)-
[| ”U(Fh) el T |0 || H(div,) 17)
In addition, if 6 € H(div, Q):
(ri (o), y'W)r, =0, VYve HY Q). (18)
Proof. see theorem 2.3 in Reference 35. [

Lemma 1. Let (u,0) € U(Q) and (v,w) € V(Py,). Then, the AVS-FE weak formulation (5) satisfies all conditions of the
Babuska Lax-Milgram theorem?® and is well posed.
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Proof. The load functional and bilinear form (6) are continuous due to the Cauchy-Schwarz inequality. The following
inf-sup condition:

IC>0: su Bo.o)@wW)| 5 ||(u, & ,
(v,w)eIF/)(Ph) 16wl = Iw, Hlveay (19

is satisfied due to theorem 3.3 in Reference 35. This theorem holds if the following conditions hold (see assumptions 3.1
and 3.2 in Reference 35): (i) the bilinear form bP(-, -) satisfies the inf-sup condition and has a trivial kernel, the form
(rn'(0), 7, (V))r, satisfies (ii) an inf-sup condition and (iii) a kernel preserving property. Due to Proposition 1, we can
conclude that the bilinear form bP(-, -) satisfies (i). Second, (¥ (o), Yo' (V))r, satisfies the inf-sup condition in (16), and
the kernel preserving property is satisfied by noting that (y;'(5), y;"(v))r, vanishes if evaluated using test functions from

the test space of bP(-, -). The norm in the denominator is defined: ||(v, w)||?, . = |[v||? +||w|

w(P,) HY(Py) .

2
LX(Q)"
Remark 2. The bilinear and linear forms in (6) are not unique choices for the AVS-FE method. We have chosen these
particular forms as they allow us to keep the weak formulation close to classical mixed FE methods for linear elastostatics
and enforce Dirichlet BCs strongly and Neumann BCs weakly. Other forms can be derived in which the trial space is
continuous, and the test space is discontinuous, due to the flexibility of the Petrov—Galerkin method. In Reference 25
Keith et al. consider several possible weak formulations for the elastostatics problem and the DPG method and perform
a rigorous analysis showing their well posedness.

2.3 | AVS-FE discretization

To establish FE discretizations of the weak formulation (5), the AVS-FE takes the approach of classical FE methods and
seeks continuous polynomial approximations that are in conforming subspaces of the [H'(Q)]?> x H(div, Q) trial spaces.
Hence, for the displacement field we use classical C°(Q) continuous Lagrange polynomials. Generally, in mixed FE meth-
ods this choice leads to unstable and inconsistent FE discretizations and is avoided and the stress field is sought in a
Raviart-Thomas (RT) or Brezzi-Douglas-Marini (BDM) space.’ Due to the stability properties of the AVS-FE method, it
is often convenient to employ the same C%(Q) polynomials for the stress variable. As reported in Reference 37, for con-
vex domains and smooth solutions, the C°(€) are superior. In Section 3, we present numerical verifications comparing
the approximations from these spaces. Furthermore, we present a verification where we again compare the classical RT
spaces with the C°(Q2) polynomials for a physical application in which the stress field is such that it is discontinuous in
the tangential direction.

Hence, we seek numerical approximations (u”, ") of (u, o) of the weak formulation (5) and represent the approxi-
mations as linear combinations of the trial bases (¢'(x), ¢/(x)) € UMQ) (e.g., PP(Q) X RT,(L)) and their corresponding
degrees of freedom:

Ny N,
v'x) = Y ul ¢p'x), 6" = ) 0" @) (20)
i=1 j=1

Now, the test space, which is discontinuous, is to be constructed by the DPG philosophy using optimal test functions
defined by the discrete equivalent of the Riesz representation problem (11). Thus, the optimal test space is spanned by
functions that are solutions of the global weak problems, for example, for a trial basis function ¢'(x) for the displacement
variable, its corresponding optimal test function (@', ") is defined by:

( (r,2), (&)i,(pi) )V(P) = B((¢',0), (r,2)), V(r,z) e V(Py), i=1,...,N. (21)

Inspection of (21) reveals the ingenuity of the DPG philosophy since the test space is broken, we do not need to solve
this problem globally but rather elementwise local analogues which can be solved in a completely decoupled local fashion.
Hence, the AVS-FE approximation is governed by:

Find (u", 6") € UMQ) such that:

(22)
B((uh, o), (v, w*)) = F(v*), V(V*,W*) € V*(Pp),
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where the test space V*(P},) is spanned by the approximated optimal test functions computed from local equivalents
of (21).

The choice we have made of fully continuous trial spaces has several important consequences: (i) as the bilinear
form (6) is such that information is transferred from element-to-element by the continuity of trial functions alone, the
optimal test functions in the AVS-FE have the same support as its trial basis functions. Hence, the resulting global stiffness
matrix has the same sparseness as mixed FE methods. (ii) the local optimal test function problems can be solved by using
the same polynomial degree of approximation as the trial functions which define each problem. Thus, the cost incurred to
establish the optimal test functions is kept as low as possible (see Remark 3). (iii) finally, the AVS-FE optimal test functions
can be implemented in legacy FE software in which continuous polynomials are the only available basis functions by
redefining the element stiffness matrix assembly process.

Remark 3. If the computation of the optimal test functions could be performed exactly, discrete inf-sup constant would
be identical to the continuous one (often referred to as the ideal DPG method). Unless the test space is L?, that is, the
LSFEM, this is not possible in practical computations and we consider an approximation of these functions.?? Thus, there
is a potential loss of discrete stability if the optimal test functions are computed without sufficient accuracy. Sufficient
accuracy is ensured by the existence of (local) Fortin operators.® The construction of such operators for the DPG method
is studied in great detail in Reference 39, and its analysis was recently further refined in Reference 40. For second-order
PDEs, a Fortin operator’s existence and thus discrete stability is ensured if the local Riesz representation problems are
solved using polynomials of order r = p + Ap, where p is the degree of the trial space discretization and Ap = d the space
dimension. However, while this enrichment degree ensures the existence of the required Fortin operator, numerical evi-
dence suggest that in most cases Ap = 1 is typically sufficient.** Alternative test spaces for the DPG method for singular
perturbation problems are investigated in Reference 41, even for the case of Ap = 0.

In the AVS-FE method, numerical evidence suggest that r = p is sufficient3!-*” for convection-diffusion PDEs as well as
extensive numerical experimentation for the linear elastostatics PDE. Since the test functions are sought in a discontinu-
ous polynomial space, using r = p still result in a larger space than the trial as the discontinuous spaces contain additional
degrees of freedom. Furthermore, in the limit h — 0 the space V(P},) is essentially L?, that is, any polynomial degree above
constants is inherently an enrichment of the test space.

The approach to establishing AVS-FE approximations described until this point can be established in FE software
with relative ease. However, there are other alternative interpretations of DPG methods which are even more straight-
forward in terms of implementation aspects. The inventors of the DPG, Demkowicz and Gopalakrishnan refer to this as
different “hats” of DPG methods*? and the one we have explained here is that of a Petrov-Galerkin method with opti-
mal test functions which leads to (22). As for the DPG method, we are also going to consider another “hat,” in which
a saddle point, or mixed, interpretation of the AVS-FE method which allows us to employ high level FE solvers such as
FEniCS.*? Hence, let us introduce a new unknown function (e, E), the error representation function. This function derives
its name since it is a Riesz representer of the approximation error induced by the AVS-FE approximation (22) of the weak
formulation (5):

Find (e,E) € V(Py) such that:
((e’ E)’ (V’ w))V(Ph) = F(V) - B((uha O-h)’ (V’ W)), (23)
Y(v,w) € V(Py).

Again, the broken nature of the test space allows this function to be approximated on each element K,, € P;, a poste-
riori to the solution of (22) to be used as an error estimate and error indicator. Using basic arguments (see, e.g., Reference
42) the following saddle point system can be established:

Find (u”", ") € UMQ) A (e, E) € V(P),) such that:
((e.E), (Vv. W)y, — B(W", 6"), (v, w)) = —F(v),
V(v,w) € V(Pp), (24)
B((y".z"). (e.E)) =0,
V(yh, z") e UNQ).
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The discretization of (e, E) in (24) follows standard FE methodology and the space V(P},) is to be discretized with
discontinuous polynomials. Clearly, the global computational cost of this saddle point system is larger than that of com-
puting optimal test functions to establish (22). However, this cost is justified as the error representation function is to be
used as an a posteriori error estimator as well as elementwise error indicators to be used in mesh adaptive strategies. In
addition, the effort in implementation into high level FE solvers with well-established documentation and capabilities is
embarrassingly low. The norm equivalence (12) between the energy norm and the norm on V(P;,) of Riesz representers
leads to the following identity for the error representation function:

lw=-u",6 - 6"l = ll(e,E)llve,), (25)
which allows us to approximate the approximation error in the energy norm, which is not directly computable due to the
supremum, as well as elementwise error indicators:

lw—-u", 6 - oMl ~ ", ENllvep,.

(26)
n=ll(e", EMlyx,),

where (e, E") is the approximation of (e, E) computed from the discretization of the saddle point system (24).

Remark 4. We conclude this section by noting that the two interpretations of the AVS-FE in this section are completely
equivalent. Hence, potential users that are limited by their available computer resources or software has the option of
pursuing either interpretation being aware of their caveats.

2.4 | Error estimates

In this section, we establish a priori error estimates for the AVS-FE method. While we here assume that the components
o" are discretized with continuous polynomials in C°(Q), the analysis can be performed with minor modifications using,
for example, RT or BDM discretizations. Furthermore, we assume that the optimal test functions, to be computed in
the approach of (22) are sought in local polynomial spaces of the same degree as the trial functions. Equivalently, we
assume that the discrete error representation function is in discontinuous polynomial spaces of the same degree as the
trial functions. We shall use the arbitrary constant C to denote generic mesh independent constants.

The starting point of our analysis is the best approximation property of the AVS-FE and DPG methods in terms of
the energy norm.'” Hence, let (u, 5) € U(Q) be the exact solution of the weak formulation (5) and (u", 6") € UMQ) its
approximation computed from the AVS-FE discretization (22) or equivalently from the saddle point system (24). Then,
the energy norm of the approximation error satisfies:

w-u" 6 -c"s < ll(u-V", 6 —W"|s, (27)

where (v, w") are arbitrary functions in U"(Q). The proof of this inequality is established using classical techniques
from functional analysis and both inf-sup and continuity constants being unity. In addition, since the energy norm
is an equivalent norm to || - ||y« on the trial space, we consequently have the following quasi-best approximation

property:

lw—-u",6-6"llu@ < C llu-v", 6 - W)l (28)
where the mesh independent norm equivalence constant C depends on the continuity constants of of the bilinear form and
a Fortin operator.>*#° Another key component in the following analysis is the convergence of polynomial interpolating
functions. Hence, there exist a global polynomial interpolation operator ITj,:*

My, : U-U™. (29)

Thus, ITy,(u) represents an interpolant of u consisting of globally continuous piecewise polynomials, then
Reference 3:
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Theorem1. Letu € H'(Q)and Iy, (u) € U"P be the interpolant of u (29). Then, there exists C > 0 such that the interpolation
error can be bounded as follows:

h
[l — MWl sy < C Il () (30)

r=s

where h is the maximum element diameter, p the minimum polynomial degree of interpolants in the mesh, s <r, and y = min
(p+1,7).

To establish error estimates in terms of the energy norm, we first establish a bound on the Riesz representers of the
trial functions, that is, the optimal test functions.

Lemma 2. Let (u,0) € U(Q) be the exact solution of the AVS-FE weak formulation (5) and (u", 6") € UMQ) its corre-
sponding AVS-FE approximation from (22). Then:

h#t
— (31)

Pu

l(u-u"6-6"|s<C

where h is the maximum element diameter, i = min (py + 1, rp), pu the minimum polynomial degree of approximation of u"
in the mesh, and ry, the regularity of the solution p of the distributional PDE underlying the Riesz representation problem (11)

Proof. The RHS of (27) can be bounded by the error in the Riesz representers of the exact and approximate AVS-FE trial
functions by the energy norm equivalence in (12), and the map induced by the Riesz representation problem (11) to yield:

h

l(w—-u"6—06"ls < ll(p-p"r—Nllvr,, (32)

where (p,r) € V(P;,) are the exact Riesz representers of (u, ) through (11), and (p”", ") € V*(P},) are the approximate
Riesz representers of (u”, 6") through a FE discretization of (11). The definition of || - ||y (pk) then gives:

lw-u" 6 -6Mls<CC Y {hullVP - VD"lli2} +1IP — P"ll2@) + lIr — ¥l 12(0)).

K, P,
Since [[p - p"ll2@) < [P — P"llip, and [V — VD[l < [1p — P Ilirp,). We get:

lw—u"6-0cMlg <CC Y {hullp-pP"llme,)}+I1IP— P lme,+ It — 1" l12@).
K, P,

Now, we pick A, = hmax = h, and trial functions that are polynomial interpolants for the Riesz representers (p”, r") of the
same degree p,. Hence, we bound ||r — r"||;2(q) using Theorem 1 and ||p — p”|| m(p, by an extension of this theorem for
broken Hilbert spaces as introduced by Riviére et al.*> to get:

-1 h;q—l

i hH2
[(m=u",o-0c"p Scth+C2F+C3pT, (33)

where y; = min (py +1,1p), 2 = min (py + 1, 7y), p, I the regularities of the Riesz representers of the PDEs underly-
ing (11). Since the second term in the RHS of (33) is dominant, the proof is completed. L]

Next, with the quasi-best approximation property (28) at hand, we can readily introduce a priori bounds in classical
Sobolev norms. First, the bound in terms of the norm || - ||y is governed by the following lemma:

Lemma 3. Let (u,0) € U(Q) be the exact solution of the AVS-FE weak formulation (5) and (u", 6") € UNQ) its corre-
sponding AVS-FE approximation through (22). Then:

=1 =1
3iCc>0 :||(u—uh,0'—0'h)||U(g)§C<h +h ) (34)

ry—1 re—1

Pu Pu
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where h is the maximum element diameter, y; = min (py + 1, ry), pu the minimum polynomial degree of approximation of
u", i, = min (py + 1,7,), in the mesh, ry the regularity of the solution u of the governing PDE (3), and r, the regularity of
the solution o of the governing first-order system PDE (4).
Proof. By the quasi-best approximation property:

l(w-u",6 - 6"|lug < C llu-v" 6 -wHluq,
the definition of the norm on U(Q) (8) leads to:

h h
lw-u",6 - 6"llue < C {llu-V'meo +ll6 — W"|lxdve }

since we use basis functions that are polynomial interpolants and note that || — W"||g@iva) < |l6 — W"||m @), the
approximation property in Theorem 1 with s=1 gives:

ht—1 hte—1
lw=—vu",6-"llue < <c1 —+C, —>
p u

re—1
u c

where we use the definitions of Lemma 3 for the x’s and r’s. Finally, combining the constants C;, C, and noting that in
the AVS-FE method we always pick p, = p, the desired error bound is established. (]

Remark 5. Note that choosing approximation spaces such as RT or BDM for the stress variable optimal error estimates
can be established for these spaces. We refer to the text of Brezzi and Fortin® for details.

3 | NUMERICAL VERIFICATIONS

To assess the performance of our method, we first consider a problem with a smooth solution which allows us to assess
the convergence properties of the AVS-FE method to verify the a priori bounds of Section 2.4. Then, we consider an
example problem considered by Brenner,*® with a manufactured exact solution that is dependent on the Poisson’s ratio
which is used in a comparison between the AVS-FE method, the mixed FE method of Arnold and Winther,” and the
Bubnov-Galerkin FE method. As final numerical verifications, we present two engineering applications, (i) an example in
which a commonly applied engineering structure, a cantilever beam, is considered and (ii) the deformation of a composite
structure.

In the numerical verifications presented in this section we use the FE solvers Firedrake*’ and FEniCS.* In particular,
for all presented verifications using uniform meshes we use Firedrake, whereas in the case of mesh-adaptive refinements,
we use FEniCS. In all cases, we use the linear solver MUMPS™* to perform the inversion of the resulting stiffness matrices.

3.1 | Asymptotic convergence studies

To present the convergence properties of the AVS-FE for nearly incompressible elastostatics, we consider a 2D model
problem with a smooth exact solution which ensures the stress regularity is H!, that is, we use C° continuous approxi-
mations for both variables. The domain is the unit square, that is, Q = (0,1) x (0, 1) C R?, consisting of a material that is
nearly incompressible with physical properties listed in Table 1, and a sinusoidal exact solution.

ug(x sin(zx) sin
ue(x) = (X | _ (zx) sin(zy) ’ (35)
uy*(X) sin(zx) sin(xy)
where A is the Lamé parameter: Inspection of (35) reveals the proper BCs are homogeneous Dirichlet conditions on the
entire boundary 0Q and the source fis chosen such that it is the differential operator of the PDE (3) acting on u®(x).

As an initial verification, we consider uniform mesh refinements starting from a mesh consisting of two triangle
elements, and we use C°(Q) polynomials of increasing order. With this exact solution, the a priori error estimates from



12 Wl LEY VALSETH ET AL.

Section 2.4 are:

l(w—u", 6 - 6"y < C kP,

(36)
l(u—u", 6 -6 <Chb.

In Figures 2 and 3, we present the convergence history for the norms indicated in (36) with the exception of the
llo — 6"||gaiv.o) as this is a component of ||(u — u”, q — q¢")|| ). In these figures we also show the errors in the individual
norms ||u — u”||12q) and |[u — u"||n(q). The rates of convergence are as predicted in (36) for the energy norm and the norm
on U(Q). For the individual norms we observe the expected rates of convergence for polynomial FE approximations with
the exception of the cases p = 4 and p = 2 where the observed rates are one order higher in ||u — u”|| 12 and |lu - u”| HU(Q)-
This can be seen in Figure 2(A,B) where the slopes for p =4 and p = 2 are equal to the slopes for p = 5and p = 3, respectively.
This problem was also considered in Reference 23 for the DPG method and we point out that the convergence rates of the
AVS-FE approximations match the presented rates in Reference 23.

3.2 | Comparison with other FE methods
To compare the AVS-FE method for nearly incompressible elasticity to other FE methods, we consider a model problem

of which the solution is a function of the Poisson’s ratio from Reference 46. The exact solution is given in (37), we use the
same Young’s modulus as in the preceding example. However, we increase the Poisson’s ratio to 0.49999999 to make the

TABLE 1 Material data for the nearly incompressible problem

Property Symbol Value
Young’s modulus E 1500 MPa
Poisson’s ratio v 0.4999
A B
(A),0 ®)
E ool —— p=1——
L p=2 —%— B f g —
107 | p=3 E 0 p=4
F p= g 107 ¢ p=5 E
p =
102 3 E
g 10 | E
10° | E

Error norm
=)
nN
T
[X)
1

Error norm

10* | ‘ E
g —|4 ] i ) 1
: ' ] 10° F 1
10° E i —‘5 ]
f 6 § : :
L-—|6 | 10 | —‘5 E

108 | E
-7 L M| M| el N -5 L el el el
10 10
10° 102 10° 10* 10’ 102 10° 10*
dofs dofs
lu — vl 2 - lu =" ll 10y

FIGURE 2 Asymptotic convergence results
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p=5
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FIGURE 3 Asymptotic convergence results

problem more challenging with a Lamé parameter A of the order 10'!.

ex : _ sin(zx) sin(xzy)
ue(x) = {ux (x)} _ {s1n(27ry)[ 1+ cos(2zx)] + 0 } . 37)

U (x) sin(2zx) [1 — cos(2xy)] + w

The methods we consider are the Bubnov-Galerkin (see chapter 26 in Reference 49 for a description of the imple-
mentation of this method) and a mixed method of Arnold and Winther”* in addition to the AVS-FE method. For
the Bubnov-Galerkin method, we approximate u using C°(Q) linear polynomials. Likewise, for the first-order system
least squares method we use linear polynomials for both variables u and o, and in the AVS-FE approximation we
use linear polynomials and first-order RT bases for u and o, respectively. In the mixed method, u is approximated
with linear discontinuous polynomials and ¢ with the lowest order Arnold-Winther element (i.e., cubic). The ini-
tial mesh we consider is uniform, consisting of eight triangular elements, and we proceed to perform uniform mesh
refinements.

In Figure 4, we compare the convergence history of these three methods in terms of the L2, and H! norms (only
L? for the mixed method) of the error on u —u”. The Bubnov-Galerkin method performs well initially, but upon con-
tinued mesh refinements becomes unstable, as indicated by the diverging errors. The AVS-FE method does not suffer
from these issues, and retains the optimal rates of convergence in both L? and H' norms. The increasing errors of the
Bubnov-Galerkin FE method is likely due to ill conditioning of the resulting stiffness matrices. By lowering the Pois-
son ratio this effect of ill conditioning is negated, as expected. Thereby limiting the applicability of the Bubnov-Galerkin
FE method for nearly incompressible materials. Finally, the mixed method of Arnold and Winther, remains stable as
expected. However, in the last two refinements, the rate of convergence is reduced slightly. We attribute this to ill condi-
tioning as in the Bubnov-Galerkin FE method. This has also been observed and studied by Carstensen et al.,® where it
is noted that for pure Dirichlet BCs the stiffness matrix condition number grows to infinity as v — 0.5 (see section 3.3 in
Reference 50).
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(A) 4o - . (B) 1o
’ AVS-FEM —+— ] I AVS-FEM —+—
Galerkin —»%— | | Galerkin —%—
AWFEM

Error norm
Error norm
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A4l M| M| T B S I | M| Ll M|
10 10
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||U—uh||L2(Q)- ||“—Uh||1-1'(m~

FIGURE 4 Comparison between the AVS-FE method, the mixed method of Arnold and Winther, and the Bubnov-Galerkin FE
method. AVS-FE, automatic variationally stable finite element; FE, finite element

TABLE 2 Material properties

Physical property Young’s modulus Poisson’s ratio
Matrix 1500 MPa 0.49
Inclusion 10,000 MPa 0.3

3.3 | Adaptive mesh refinement

Modern engineering materials often consist of multiple constituents, that is, composites. Material inclusions often lead
to stress concentrations and need to be accurately resolved to ensure confidence in the engineering design. Resolution of
such features is typically achieved by carefully constructed FE meshes which requires a significant effort from analysts, or
mesh refinements. Until this point, we have presented numerical verifications in which the mesh partitions are uniform
and their refinements are uniform as well, since the solutions are known to be rather well behaved, a priori. While these
certainly give us confidence in the AVS-FE approximations, the computational cost of uniform mesh refinements becomes
very large as h — 0. To this end, we consider adaptive mesh refinements that are guided by the built-in error indicators (26).
As an adaptive strategy, we choose the marking strategy and refinement criteria of Dorfler™ using a fixed parameter
0 =0.5.

As an example of a simplified composite material we consider a unit square domain with an inclusion in the center
atx=y=0.5, as shown in Figure 5. The matrix material is nearly incompressible and the inclusion is a stiff material with
Young’s modulus several orders of magnitude larger than the bulk material. In Table 2, the properties of the materials
are listed. Materials with these properties are, for example, Silicone based rubber for the matrix and an epoxy based
inclusion. The BCs are as shown in Figure 5, that is, a surface traction t={100 MPa, 0} on the right side and a fully
clamped boundary on a portion of the left side. Hence, we expect significant concentration of stresses near the inclusion.
We employ the error representation function (26) as an a posteriori error estimate. The goal of the adaptive algorithm is
then to minimize this error based on its local error indicators.
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FIGURE 5 Linear elastic problem with inclusion AY
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To establish an initial mesh taking into account the circular geometry with reasonable accuracy, we employ the built-in
FEniCS* mesh generation functionality. In particular, we use the tool “mshr” to create an inclusion consisting of 250
line segments to accurately represent the circumference of the circle. The initial mesh is shown in Figure 6. For the
AVS-FE approximations, we consider second-order approximations for all variables in both cases of RT and C°(Q) stress
approximations.

The normal stresses oy, and o,, are presented in Figure 7 where the stresses, as expected, are concentrated near the
stiff inclusion. Furthermore, we see in this figure that the stresses perpendicular to the loading, that is, 5,, are dominated
by the Poisson effect which is another indication that the AVS-FE approximation of this problem is consistent with the
expected physics. As a sanity check, we also note that the far field stresses are equal to the applied surface traction t, see
Figure 7(A). The shear stress component 7, is shown in Figure 8 along with the adapted mesh after 12 refinements. The
final adapted mesh shown in Figure 8(A) highlights that the built-in error indicators as well as the marking strategy of
Dorfler lead to mesh refinements in locations critical to proper resolution of physical features.

Computing these results in the AVS-FE method is straightforward due to its built-in error estimate and discrete sta-
bility. Hence, the effort in implementation of the adaptive algorithm is minimal and requires only a FE solver with
mesh refinement capabilities. However, it is worth mentioning that the required effort to establish similar results in the
Bubnov-Galerkin FE method would be significant. While several a posteriori error estimation techniques exists, the sta-
bility issue that arises with the jump in material coefficients will likely require significant efforts in analysis to ensure
stability of the error estimation or prohibitively large mesh generation efforts.
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FIGURE 7 AVS-FE approximate normal stress components (MPa). AVS-FE, automatic variationally stable finite element
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FIGURE 8 AVS-FE approximate shear stress component (MPa) and final mesh. AVS-FE, automatic variationally stable finite element

Finally, we compare C°(Q) and RT stress approximations. The inclusion leads to a stress field that has continuous
normal components across the interface between the two materials, whereas the tangential components are discontin-
uous. While this domain is still convex, we therefore expect that the generally advocated C°(Q) stress approximations
in the AVS-FE method will be less accurate than the standard mixed FE choice of RT discretization. Thus, as a verifica-
tion we consider both types of stress approximations in this experiment and measure the difference between the two by
the approximate energy norm. To this end, we employ the same adaptive algorithm for the case of C°(Q) stresses and in
Figure 9, the convergence histories of the approximate error in the energy norm through (26) for both cases are presented.
As expected, in this case the RT approximations lead to lower energy norm errors due to the pollution effect of enforcing
continuity of tangential stress components for the C%(Q) case. Finally, in Figure 10 the final adapted mesh for the case of
CO(Q) stresses are presented. The overly restrictive stress approximations lead to mesh refinements that do not resolve the
stress field near the inclusion in the same way as the RT case as evident from comparison of Figures 8(B) and 10. Hence,
the C°(Q) stress approximations are not applicable for this problem.
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FIGURE 9 Convergence of the energy norm comparing C°(Q) and RT stress R
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3.4 | Engineering application: Nonuniform bending of a 2D beam

To further illustrate the AVS-FE method in its application to FE analyses of nearly incompressible solids, we present
a common engineering application of nonuniform bending of beams. The 2D problem concerns a beam with a length
L =2m and slenderness ratio L/H = 10, and consists of a homogeneous linearly elastic isotropic material with a Young’s
modulus equal to that of a nitrile based rubber, that is, E = 1.5 MPa. The Poisson ratio v is chosen such that % —v=10"°
and therefore the material is nearly incompressible. The beam is subject to kinematic constraints along its left edge, where
material particles are prohibited from moving in the x direction but free to move in the y direction. To eliminate the rigid
body translation in the y direction, the bottom left corner point is kept fixed. In terms of loading, the beam is subject to a
downward uniform distributed force g, of 3.33 N/m as depicted in Figure 11).

For our numerical experiment of the AVS-FE method, we start with an initial uniform mesh of four triangular elements
(two elements in the length, versus one in the height) and subsequently conduct uniform h-refinements in which each
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FIGURE 11 Linear elastic beam problem

FIGURE 12 Nonuniform bending of a nearly
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element is partitioned into four new elements. In all computations, we employ quadratic (i.e., p=2) C° trial functions
for the displacements and second-order RT functions functions for the stress variable. The evolution of the elastic strain
energy of the AVS-FE solutions throughout the h-refinement process are shown in orange in Figure 12. In comparison,
the corresponding results for the classical FE, or Bubnov-Galerkin, method are also shown in this graph in blue. These
were established by using the same mesh partitions as for the AVS-FE method but employing the classical C° quadratic
Lagrangian trial functions for the displacements and a standard displacement based weak formulation, as is common in
classical Bubnov—Galerkin analyses.

Figure 12 shows that, as expected for this level of near incompressibility, the classical FE solutions fail to converge
and start to exhibit spurious behavior as h — 0 with greatly changing values for the elastic strain energy between suc-
cessive solutions. The AVS-FE method, on the other hand, maintains numerical stability from the onset and exhibits
convergence upon continued uniform mesh refinements. The converged AVS-FE solutions are physically valid, as can be
seen in Figure 13, in which contour plots of the distributions of the normal stress oy, (Figure 13A) and shear stress 7y,
(Figure 13B) are shown of the AVS-FE solution for the mesh consisting of 22 x 11 elements. Since RT trial functions have
been used to compute the stress variables, minor discontinuities across interelement edges can be observed, but these
attenuate as the mesh is further refined. Hence, the AVS-FE method shows less sensitivity to the nearly incompressible
constitutive behavior of the material than the classical FE method.
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FIGURE 13 AVS-FE stress distributions of beam in bending with % — v = 107°. AVS-FE, automatic variationally stable finite element
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4 | CONCLUSIONS

We have presented a mixed FE method that results in continuous FE approximations of both the displacement and (nor-
mal) stress fields in linear elasticity. In particular, we considered nearly incompressible materials as classical FE methods
suffer from loss of discrete stability for such materials. The DPG philosophy of optimal test spaces leads to stable FE
approximations without reformulation of the problem using the compliance tensor for the case for the nearly incompress-
ible case. The DPG method we present distinguishes itself from the DPG method by only breaking the test space while
keeping the trial space globally confirming. Hence, in the corresponding FE approximation we use classical FE bases such
as Lagrange polynomials and RT functions.

We present a priori error bounds in terms of norms of the numerical approximation errors of both displacement and
stress trial variables. These bounds are all optimal in the sense that the approximation errors converge at rates equal to
their underlying interpolating functions. Numerical verifications of the asymptotic convergence properties confirm the
established error bound in all appropriate norms. A convergence study comparing our method to existing FE methods,
that is, Bubnov-Galerkin FE method and the mixed FE method of Arnold and Winther’, show that the AVS-FE method
is superior for the case of nearly incompressible materials for the presented verification. In the verification presented,
the Bubnov-Galerkin FE method suffered from a loss of stability as the mesh was refined, thereby resulting in loss of
convergence. The mixed method of Arnold and Winther did not lose stability but for highly refined meshes a reduction in
convergence rate was observed. The AVS-FE method did not exhibit these types of behavior, nor have we observed such
behavior for other verifications we have performed. We attribute this to the scaling term h2, of the H' seminorm portion
of || - llv »wy (8) as it ensures entries in the resulting stiffness matrix are of similar order of magnitude. However, we cannot
rule out such behavior for the AVS-FE method for very fine meshes as this is an issue of numerical linear algebra and
not the AVS-FE method. Similar behavior has been observed by Storn>? for the DPG method, where it is attributed to the
inversion of the Gram matrix in the computation of optimal test functions.

By considering a global saddle point form of the AVS-FE method, we establish both approximations of the displace-
ment an stress fields as well as an approximation of an error representation function which measures the global energy
error of the AVS-FE approximation. This error representation leads to a posteriori error estimates and error indicators
which we employ in a mesh adaptive strategy. We present a numerical verification of a challenging physical application
of a composite material where the built-in error indicator is used to drive adaptive mesh refinements to resolve the stress
field in the composite.

While successful for the presented composite material, the built-in error indicator is a local indication of the residual
of the AVS-FE approximation (see (25)). However, in certain applications, localized solution features may be of higher
importance than the global energy error. Hence, goal-oriented error estimates and error indicators based on local quan-
tities of interest> can provide alternative mesh refinement strategies. As shown in Reference 37, alternative AVS-FE
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goal-oriented error estimates are capable of accurately estimating these errors and driving goal-oriented mesh refine-
ments. While we have considered a single AVS-FE weak formulation here (5), as mentioned in Remark 2, this is not a
unique choice. In Reference 25, multiple weak formulations for linear elasticity are considered for the DPG method, all
of which provide slightly different FE approximations. Such investigation for the AVS-FE method and comparison of the
DPG and AVS-FE methods for linear elasticity are postponed to future works.
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