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Deep learning methods have become an omnipresent and
highly successful part of recent approaches in imaging and
vision. However, in most cases they are used on a purely
empirical basis without real understanding of their behavior.
From a scientific viewpoint, this is unsatisfying.

Many mathematically inclined researchers have a strong
desire to understand the theoretical reasons for the success of
these approaches and to find relations between deep learning
and mathematically well-established techniques in imaging
science. The goal of this special issue is to showcase their
latest research results and to promote future research in this
direction. It features twelve articles. To avoid any conflicts of
interest, articles in which one of the guest editors is involved
as co-author, have been handled by another guest editor.
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We start with papers that provide mathematical insights
into prototypical and widely used neural network architec-
tures. The article “The Global Optimization Geometry of
Shallow Linear Neural Networks” by Zhu et al. shows that
classical linear neural networks have benign geometric prop-
erties such that, e.g., the popular gradient descent algorithms
for training can be globally convergent.

In their paper on “ProcessingSimpleGeometricAttributes
with Autoencoders”, Newson et al. analyze how autoen-
coders, which constitute the simplest generative networks,
encode and decode size and position. To this end, they
consider centered dics with variable radii and Dirac delta
functions.

Stability of neural nets under adversarial attacks is an
important problem. It is addressed in the article “Adversar-
ial Noise Attacks of Deep Learning Architectures—Stability
Analysis via SparseModeled Signals” by Romano et al.. The
authors derive stability theorems for state-of-the-art classi-
fication method by assuming that the signal has a (possibly
multi-layer) sparse representation.

The popularity of the ResNet architecture is reflected by
the fact that it is analyzed in multiple articles in our spe-
cial issue. In “Forward Stability of ResNet and Its Variants,”
Zhang and Schaeffer relate the post-activation ResNet to an
optimal control problemwith differential inclusions, and they
derive continuous-time stability results for the corresponding
differential inclusion. These results enable them to propose
ResNet variants with improved stability bounds.

Ruthotto andHaber contribute a paper with the title “Deep
Neural Networks Motivated by Partial Differential Equa-
tions,” where they connect ResNet architectures to parabolic
and hyperbolic differential equations. This allows them to
transfer the well-established theory from partial differential
equations to neural networks, which also leads to several new
architectures.

Rousseau et al. present an article on “Residual Networks
as Flows ofDiffeomorphisms.” They show that ResNets with
shared weights can be seen as numerical approximations of
exponential diffeomorphic operators.
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The usefulness of advanced mathematics for improv-
ing deep learning approaches is demonstrated in the next
two articles. In their paper “On Orthogonal Projections for
DimensionReduction andApplications inAugmentedTarget
Loss Functions for Learning Problems,” Breger et al. advo-
cate orthogonal projections on high-dimensional input and
target data in learning frameworks. They introduce a general
framework of variational loss functions for learning tasks
that integrate additional information via transformations and
projections of the target data, and they show that this concept
can increase the accuracy of clinical image segmentation and
music information classification.

The paper of Effland et al. focuses on variational net-
works, a particular type of recurrent neural networks. Using
an optimal control approach they analyze the well-known
observation that gradient flows can yield better results if they
are stopped before convergence. This paradoxical situation
also appears in highly expressive regularizers that are learned
from data. They derive first- and second-order conditions for
optimal stopping times and come up with variational net-
works that achieve competitive results for image denoising
and deblurring.

The remaining articles in this special issue connect learn-
ing and inverse problems. In “A Convex Variational Model
for Learning Convolutional Image Atoms from Incomplete
Data,” Chambolle et al. present convex and semi-convex
frameworks for simultaneous atom learning and image recon-
structions involving incomplete, noisy and blurry data. In a
continuous setting, well-posedness and stability results are
established.

The paper of Schwab et al. with the title “Big in
Japan:RegularizingNetworks for Solving Inverse Problems”
explores combinations of classical regularization and a cor-
rection term that is trained with deep learning. They prove
that the resulting class of methods are convergent approaches
for solving inverse problems, derive convergence rates, and
show their experimental superiority.

Dittmer et al. present an article that interprets the recently
introduced deep image prior (DIP) in terms of optimization
of Tikhonov functionals. They obtain analytic results for spe-
cific network designs and linear operators.

The last paper in our special issue has the title “Networks
for Nonlinear Diffusion Problems in Imaging.” Its authors
Arridge andHauptmannexplore a diffusion-inspirednetwork
architecturewhich they termDiffNet. They show thatDiffNet
can be competitive to the popular U-Net, while requiring
substantially less parameters and training data.

We wish the readers an exciting journey through this fas-
cinating and rapidly evolving area of applied mathematics.
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